xref: /openbmc/linux/drivers/infiniband/hw/qib/qib_sd7220.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  /*
2   * Copyright (c) 2013 Intel Corporation. All rights reserved.
3   * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4   * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5   *
6   * This software is available to you under a choice of one of two
7   * licenses.  You may choose to be licensed under the terms of the GNU
8   * General Public License (GPL) Version 2, available from the file
9   * COPYING in the main directory of this source tree, or the
10   * OpenIB.org BSD license below:
11   *
12   *     Redistribution and use in source and binary forms, with or
13   *     without modification, are permitted provided that the following
14   *     conditions are met:
15   *
16   *      - Redistributions of source code must retain the above
17   *        copyright notice, this list of conditions and the following
18   *        disclaimer.
19   *
20   *      - Redistributions in binary form must reproduce the above
21   *        copyright notice, this list of conditions and the following
22   *        disclaimer in the documentation and/or other materials
23   *        provided with the distribution.
24   *
25   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32   * SOFTWARE.
33   */
34  /*
35   * This file contains all of the code that is specific to the SerDes
36   * on the QLogic_IB 7220 chip.
37   */
38  
39  #include <linux/pci.h>
40  #include <linux/delay.h>
41  #include <linux/module.h>
42  #include <linux/firmware.h>
43  
44  #include "qib.h"
45  #include "qib_7220.h"
46  
47  #define SD7220_FW_NAME "qlogic/sd7220.fw"
48  MODULE_FIRMWARE(SD7220_FW_NAME);
49  
50  /*
51   * Same as in qib_iba7220.c, but just the registers needed here.
52   * Could move whole set to qib_7220.h, but decided better to keep
53   * local.
54   */
55  #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56  #define kr_hwerrclear KREG_IDX(HwErrClear)
57  #define kr_hwerrmask KREG_IDX(HwErrMask)
58  #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59  #define kr_ibcstatus KREG_IDX(IBCStatus)
60  #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61  #define kr_scratch KREG_IDX(Scratch)
62  #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63  /* these are used only here, not in qib_iba7220.c */
64  #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65  #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66  #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67  #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68  #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
69  
70  /*
71   * The IBSerDesMappTable is a memory that holds values to be stored in
72   * various SerDes registers by IBC.
73   */
74  #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
75  
76  /*
77   * Below used for sdnum parameter, selecting one of the two sections
78   * used for PCIe, or the single SerDes used for IB.
79   */
80  #define PCIE_SERDES0 0
81  #define PCIE_SERDES1 1
82  
83  /*
84   * The EPB requires addressing in a particular form. EPB_LOC() is intended
85   * to make #definitions a little more readable.
86   */
87  #define EPB_ADDR_SHF 8
88  #define EPB_LOC(chn, elt, reg) \
89  	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90  	 EPB_ADDR_SHF)
91  #define EPB_IB_QUAD0_CS_SHF (25)
92  #define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
93  #define EPB_IB_UC_CS_SHF (26)
94  #define EPB_PCIE_UC_CS_SHF (27)
95  #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96  
97  /* Forward declarations. */
98  static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99  			      u32 data, u32 mask);
100  static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101  			     int mask);
102  static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103  static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104  static int qib_sd_setvals(struct qib_devdata *dd);
105  static int qib_sd_early(struct qib_devdata *dd);
106  static int qib_sd_dactrim(struct qib_devdata *dd);
107  static int qib_internal_presets(struct qib_devdata *dd);
108  /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109  static int qib_sd_trimself(struct qib_devdata *dd, int val);
110  static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111  static int qib_sd7220_ib_load(struct qib_devdata *dd,
112  			      const struct firmware *fw);
113  static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114  			     const struct firmware *fw);
115  
116  /*
117   * Below keeps track of whether the "once per power-on" initialization has
118   * been done, because uC code Version 1.32.17 or higher allows the uC to
119   * be reset at will, and Automatic Equalization may require it. So the
120   * state of the reset "pin", is no longer valid. Instead, we check for the
121   * actual uC code having been loaded.
122   */
qib_ibsd_ucode_loaded(struct qib_pportdata * ppd,const struct firmware * fw)123  static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124  				 const struct firmware *fw)
125  {
126  	struct qib_devdata *dd = ppd->dd;
127  
128  	if (!dd->cspec->serdes_first_init_done &&
129  	    qib_sd7220_ib_vfy(dd, fw) > 0)
130  		dd->cspec->serdes_first_init_done = 1;
131  	return dd->cspec->serdes_first_init_done;
132  }
133  
134  /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135  #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
136  #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137  #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138  #define UC_PAR_CLR_D 8
139  #define UC_PAR_CLR_M 0xC
140  #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141  #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142  
qib_sd7220_clr_ibpar(struct qib_devdata * dd)143  void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
144  {
145  	int ret;
146  
147  	/* clear, then re-enable parity errs */
148  	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149  		UC_PAR_CLR_D, UC_PAR_CLR_M);
150  	if (ret < 0) {
151  		qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152  		goto bail;
153  	}
154  	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155  		UC_PAR_CLR_M);
156  
157  	qib_read_kreg32(dd, kr_scratch);
158  	udelay(4);
159  	qib_write_kreg(dd, kr_hwerrclear,
160  		QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161  	qib_read_kreg32(dd, kr_scratch);
162  bail:
163  	return;
164  }
165  
166  /*
167   * After a reset or other unusual event, the epb interface may need
168   * to be re-synchronized, between the host and the uC.
169   * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170   */
171  #define IBSD_RESYNC_TRIES 3
172  #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173  #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174  
qib_resync_ibepb(struct qib_devdata * dd)175  static int qib_resync_ibepb(struct qib_devdata *dd)
176  {
177  	int ret, pat, tries, chn;
178  	u32 loc;
179  
180  	ret = -1;
181  	chn = 0;
182  	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183  		loc = IB_PGUDP(chn);
184  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185  		if (ret < 0) {
186  			qib_dev_err(dd, "Failed read in resync\n");
187  			continue;
188  		}
189  		if (ret != 0xF0 && ret != 0x55 && tries == 0)
190  			qib_dev_err(dd, "unexpected pattern in resync\n");
191  		pat = ret ^ 0xA5; /* alternate F0 and 55 */
192  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193  		if (ret < 0) {
194  			qib_dev_err(dd, "Failed write in resync\n");
195  			continue;
196  		}
197  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198  		if (ret < 0) {
199  			qib_dev_err(dd, "Failed re-read in resync\n");
200  			continue;
201  		}
202  		if (ret != pat) {
203  			qib_dev_err(dd, "Failed compare1 in resync\n");
204  			continue;
205  		}
206  		loc = IB_CMUDONE(chn);
207  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208  		if (ret < 0) {
209  			qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210  			continue;
211  		}
212  		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213  			qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214  				    ret, chn);
215  			continue;
216  		}
217  		if (++chn == 4)
218  			break;  /* Success */
219  	}
220  	return (ret > 0) ? 0 : ret;
221  }
222  
223  /*
224   * Localize the stuff that should be done to change IB uC reset
225   * returns <0 for errors.
226   */
qib_ibsd_reset(struct qib_devdata * dd,int assert_rst)227  static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
228  {
229  	u64 rst_val;
230  	int ret = 0;
231  	unsigned long flags;
232  
233  	rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234  	if (assert_rst) {
235  		/*
236  		 * Vendor recommends "interrupting" uC before reset, to
237  		 * minimize possible glitches.
238  		 */
239  		spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240  		epb_access(dd, IB_7220_SERDES, 1);
241  		rst_val |= 1ULL;
242  		/* Squelch possible parity error from _asserting_ reset */
243  		qib_write_kreg(dd, kr_hwerrmask,
244  			       dd->cspec->hwerrmask &
245  			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246  		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247  		/* flush write, delay to ensure it took effect */
248  		qib_read_kreg32(dd, kr_scratch);
249  		udelay(2);
250  		/* once it's reset, can remove interrupt */
251  		epb_access(dd, IB_7220_SERDES, -1);
252  		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253  	} else {
254  		/*
255  		 * Before we de-assert reset, we need to deal with
256  		 * possible glitch on the Parity-error line.
257  		 * Suppress it around the reset, both in chip-level
258  		 * hwerrmask and in IB uC control reg. uC will allow
259  		 * it again during startup.
260  		 */
261  		u64 val;
262  
263  		rst_val &= ~(1ULL);
264  		qib_write_kreg(dd, kr_hwerrmask,
265  			       dd->cspec->hwerrmask &
266  			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
267  
268  		ret = qib_resync_ibepb(dd);
269  		if (ret < 0)
270  			qib_dev_err(dd, "unable to re-sync IB EPB\n");
271  
272  		/* set uC control regs to suppress parity errs */
273  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
274  		if (ret < 0)
275  			goto bail;
276  		/* IB uC code past Version 1.32.17 allow suppression of wdog */
277  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
278  			0x80);
279  		if (ret < 0) {
280  			qib_dev_err(dd, "Failed to set WDOG disable\n");
281  			goto bail;
282  		}
283  		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
284  		/* flush write, delay for startup */
285  		qib_read_kreg32(dd, kr_scratch);
286  		udelay(1);
287  		/* clear, then re-enable parity errs */
288  		qib_sd7220_clr_ibpar(dd);
289  		val = qib_read_kreg64(dd, kr_hwerrstatus);
290  		if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
291  			qib_dev_err(dd, "IBUC Parity still set after RST\n");
292  			dd->cspec->hwerrmask &=
293  				~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
294  		}
295  		qib_write_kreg(dd, kr_hwerrmask,
296  			dd->cspec->hwerrmask);
297  	}
298  
299  bail:
300  	return ret;
301  }
302  
qib_sd_trimdone_monitor(struct qib_devdata * dd,const char * where)303  static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
304  	const char *where)
305  {
306  	int ret, chn, baduns;
307  	u64 val;
308  
309  	if (!where)
310  		where = "?";
311  
312  	/* give time for reset to settle out in EPB */
313  	udelay(2);
314  
315  	ret = qib_resync_ibepb(dd);
316  	if (ret < 0)
317  		qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
318  
319  	/* Do "sacrificial read" to get EPB in sane state after reset */
320  	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
321  	if (ret < 0)
322  		qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
323  
324  	/* Check/show "summary" Trim-done bit in IBCStatus */
325  	val = qib_read_kreg64(dd, kr_ibcstatus);
326  	if (!(val & (1ULL << 11)))
327  		qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
328  	/*
329  	 * Do "dummy read/mod/wr" to get EPB in sane state after reset
330  	 * The default value for MPREG6 is 0.
331  	 */
332  	udelay(2);
333  
334  	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
335  	if (ret < 0)
336  		qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
337  	udelay(10);
338  
339  	baduns = 0;
340  
341  	for (chn = 3; chn >= 0; --chn) {
342  		/* Read CTRL reg for each channel to check TRIMDONE */
343  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
344  			IB_CTRL2(chn), 0, 0);
345  		if (ret < 0)
346  			qib_dev_err(dd,
347  				"Failed checking TRIMDONE, chn %d (%s)\n",
348  				chn, where);
349  
350  		if (!(ret & 0x10)) {
351  			int probe;
352  
353  			baduns |= (1 << chn);
354  			qib_dev_err(dd,
355  				"TRIMDONE cleared on chn %d (%02X). (%s)\n",
356  				chn, ret, where);
357  			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358  				IB_PGUDP(0), 0, 0);
359  			qib_dev_err(dd, "probe is %d (%02X)\n",
360  				probe, probe);
361  			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362  				IB_CTRL2(chn), 0, 0);
363  			qib_dev_err(dd, "re-read: %d (%02X)\n",
364  				probe, probe);
365  			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
366  				IB_CTRL2(chn), 0x10, 0x10);
367  			if (ret < 0)
368  				qib_dev_err(dd,
369  					"Err on TRIMDONE rewrite1\n");
370  		}
371  	}
372  	for (chn = 3; chn >= 0; --chn) {
373  		/* Read CTRL reg for each channel to check TRIMDONE */
374  		if (baduns & (1 << chn)) {
375  			qib_dev_err(dd,
376  				"Resetting TRIMDONE on chn %d (%s)\n",
377  				chn, where);
378  			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
379  				IB_CTRL2(chn), 0x10, 0x10);
380  			if (ret < 0)
381  				qib_dev_err(dd,
382  					"Failed re-setting TRIMDONE, chn %d (%s)\n",
383  					chn, where);
384  		}
385  	}
386  }
387  
388  /*
389   * Below is portion of IBA7220-specific bringup_serdes() that actually
390   * deals with registers and memory within the SerDes itself.
391   * Post IB uC code version 1.32.17, was_reset being 1 is not really
392   * informative, so we double-check.
393   */
qib_sd7220_init(struct qib_devdata * dd)394  int qib_sd7220_init(struct qib_devdata *dd)
395  {
396  	const struct firmware *fw;
397  	int ret = 1; /* default to failure */
398  	int first_reset, was_reset;
399  
400  	/* SERDES MPU reset recorded in D0 */
401  	was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
402  	if (!was_reset) {
403  		/* entered with reset not asserted, we need to do it */
404  		qib_ibsd_reset(dd, 1);
405  		qib_sd_trimdone_monitor(dd, "Driver-reload");
406  	}
407  
408  	ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
409  	if (ret) {
410  		qib_dev_err(dd, "Failed to load IB SERDES image\n");
411  		goto done;
412  	}
413  
414  	/* Substitute our deduced value for was_reset */
415  	ret = qib_ibsd_ucode_loaded(dd->pport, fw);
416  	if (ret < 0)
417  		goto bail;
418  
419  	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
420  	/*
421  	 * Alter some regs per vendor latest doc, reset-defaults
422  	 * are not right for IB.
423  	 */
424  	ret = qib_sd_early(dd);
425  	if (ret < 0) {
426  		qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
427  		goto bail;
428  	}
429  	/*
430  	 * Set DAC manual trim IB.
431  	 * We only do this once after chip has been reset (usually
432  	 * same as once per system boot).
433  	 */
434  	if (first_reset) {
435  		ret = qib_sd_dactrim(dd);
436  		if (ret < 0) {
437  			qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
438  			goto bail;
439  		}
440  	}
441  	/*
442  	 * Set various registers (DDS and RXEQ) that will be
443  	 * controlled by IBC (in 1.2 mode) to reasonable preset values
444  	 * Calling the "internal" version avoids the "check for needed"
445  	 * and "trimdone monitor" that might be counter-productive.
446  	 */
447  	ret = qib_internal_presets(dd);
448  	if (ret < 0) {
449  		qib_dev_err(dd, "Failed to set IB SERDES presets\n");
450  		goto bail;
451  	}
452  	ret = qib_sd_trimself(dd, 0x80);
453  	if (ret < 0) {
454  		qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
455  		goto bail;
456  	}
457  
458  	/* Load image, then try to verify */
459  	ret = 0;        /* Assume success */
460  	if (first_reset) {
461  		int vfy;
462  		int trim_done;
463  
464  		ret = qib_sd7220_ib_load(dd, fw);
465  		if (ret < 0) {
466  			qib_dev_err(dd, "Failed to load IB SERDES image\n");
467  			goto bail;
468  		} else {
469  			/* Loaded image, try to verify */
470  			vfy = qib_sd7220_ib_vfy(dd, fw);
471  			if (vfy != ret) {
472  				qib_dev_err(dd, "SERDES PRAM VFY failed\n");
473  				goto bail;
474  			} /* end if verified */
475  		} /* end if loaded */
476  
477  		/*
478  		 * Loaded and verified. Almost good...
479  		 * hold "success" in ret
480  		 */
481  		ret = 0;
482  		/*
483  		 * Prev steps all worked, continue bringup
484  		 * De-assert RESET to uC, only in first reset, to allow
485  		 * trimming.
486  		 *
487  		 * Since our default setup sets START_EQ1 to
488  		 * PRESET, we need to clear that for this very first run.
489  		 */
490  		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
491  		if (ret < 0) {
492  			qib_dev_err(dd, "Failed clearing START_EQ1\n");
493  			goto bail;
494  		}
495  
496  		qib_ibsd_reset(dd, 0);
497  		/*
498  		 * If this is not the first reset, trimdone should be set
499  		 * already. We may need to check about this.
500  		 */
501  		trim_done = qib_sd_trimdone_poll(dd);
502  		/*
503  		 * Whether or not trimdone succeeded, we need to put the
504  		 * uC back into reset to avoid a possible fight with the
505  		 * IBC state-machine.
506  		 */
507  		qib_ibsd_reset(dd, 1);
508  
509  		if (!trim_done) {
510  			qib_dev_err(dd, "No TRIMDONE seen\n");
511  			goto bail;
512  		}
513  		/*
514  		 * DEBUG: check each time we reset if trimdone bits have
515  		 * gotten cleared, and re-set them.
516  		 */
517  		qib_sd_trimdone_monitor(dd, "First-reset");
518  		/* Remember so we do not re-do the load, dactrim, etc. */
519  		dd->cspec->serdes_first_init_done = 1;
520  	}
521  	/*
522  	 * setup for channel training and load values for
523  	 * RxEq and DDS in tables used by IBC in IB1.2 mode
524  	 */
525  	ret = 0;
526  	if (qib_sd_setvals(dd) >= 0)
527  		goto done;
528  bail:
529  	ret = 1;
530  done:
531  	/* start relock timer regardless, but start at 1 second */
532  	set_7220_relock_poll(dd, -1);
533  
534  	release_firmware(fw);
535  	return ret;
536  }
537  
538  #define EPB_ACC_REQ 1
539  #define EPB_ACC_GNT 0x100
540  #define EPB_DATA_MASK 0xFF
541  #define EPB_RD (1ULL << 24)
542  #define EPB_TRANS_RDY (1ULL << 31)
543  #define EPB_TRANS_ERR (1ULL << 30)
544  #define EPB_TRANS_TRIES 5
545  
546  /*
547   * query, claim, release ownership of the EPB (External Parallel Bus)
548   * for a specified SERDES.
549   * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
550   * Returns <0 for errors, >0 if we had ownership, else 0.
551   */
epb_access(struct qib_devdata * dd,int sdnum,int claim)552  static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
553  {
554  	u16 acc;
555  	u64 accval;
556  	int owned = 0;
557  	u64 oct_sel = 0;
558  
559  	switch (sdnum) {
560  	case IB_7220_SERDES:
561  		/*
562  		 * The IB SERDES "ownership" is fairly simple. A single each
563  		 * request/grant.
564  		 */
565  		acc = kr_ibsd_epb_access_ctrl;
566  		break;
567  
568  	case PCIE_SERDES0:
569  	case PCIE_SERDES1:
570  		/* PCIe SERDES has two "octants", need to select which */
571  		acc = kr_pciesd_epb_access_ctrl;
572  		oct_sel = (2 << (sdnum - PCIE_SERDES0));
573  		break;
574  
575  	default:
576  		return 0;
577  	}
578  
579  	/* Make sure any outstanding transaction was seen */
580  	qib_read_kreg32(dd, kr_scratch);
581  	udelay(15);
582  
583  	accval = qib_read_kreg32(dd, acc);
584  
585  	owned = !!(accval & EPB_ACC_GNT);
586  	if (claim < 0) {
587  		/* Need to release */
588  		u64 pollval;
589  		/*
590  		 * The only writable bits are the request and CS.
591  		 * Both should be clear
592  		 */
593  		u64 newval = 0;
594  
595  		qib_write_kreg(dd, acc, newval);
596  		/* First read after write is not trustworthy */
597  		pollval = qib_read_kreg32(dd, acc);
598  		udelay(5);
599  		pollval = qib_read_kreg32(dd, acc);
600  		if (pollval & EPB_ACC_GNT)
601  			owned = -1;
602  	} else if (claim > 0) {
603  		/* Need to claim */
604  		u64 pollval;
605  		u64 newval = EPB_ACC_REQ | oct_sel;
606  
607  		qib_write_kreg(dd, acc, newval);
608  		/* First read after write is not trustworthy */
609  		pollval = qib_read_kreg32(dd, acc);
610  		udelay(5);
611  		pollval = qib_read_kreg32(dd, acc);
612  		if (!(pollval & EPB_ACC_GNT))
613  			owned = -1;
614  	}
615  	return owned;
616  }
617  
618  /*
619   * Lemma to deal with race condition of write..read to epb regs
620   */
epb_trans(struct qib_devdata * dd,u16 reg,u64 i_val,u64 * o_vp)621  static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
622  {
623  	int tries;
624  	u64 transval;
625  
626  	qib_write_kreg(dd, reg, i_val);
627  	/* Throw away first read, as RDY bit may be stale */
628  	transval = qib_read_kreg64(dd, reg);
629  
630  	for (tries = EPB_TRANS_TRIES; tries; --tries) {
631  		transval = qib_read_kreg32(dd, reg);
632  		if (transval & EPB_TRANS_RDY)
633  			break;
634  		udelay(5);
635  	}
636  	if (transval & EPB_TRANS_ERR)
637  		return -1;
638  	if (tries > 0 && o_vp)
639  		*o_vp = transval;
640  	return tries;
641  }
642  
643  /**
644   * qib_sd7220_reg_mod - modify SERDES register
645   * @dd: the qlogic_ib device
646   * @sdnum: which SERDES to access
647   * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
648   * @wd: Write Data - value to set in register
649   * @mask: ones where data should be spliced into reg.
650   *
651   * Basic register read/modify/write, with un-needed acesses elided. That is,
652   * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
653   * returns current (presumed, if a write was done) contents of selected
654   * register, or <0 if errors.
655   */
qib_sd7220_reg_mod(struct qib_devdata * dd,int sdnum,u32 loc,u32 wd,u32 mask)656  static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
657  			      u32 wd, u32 mask)
658  {
659  	u16 trans;
660  	u64 transval;
661  	int owned;
662  	int tries, ret;
663  	unsigned long flags;
664  
665  	switch (sdnum) {
666  	case IB_7220_SERDES:
667  		trans = kr_ibsd_epb_transaction_reg;
668  		break;
669  
670  	case PCIE_SERDES0:
671  	case PCIE_SERDES1:
672  		trans = kr_pciesd_epb_transaction_reg;
673  		break;
674  
675  	default:
676  		return -1;
677  	}
678  
679  	/*
680  	 * All access is locked in software (vs other host threads) and
681  	 * hardware (vs uC access).
682  	 */
683  	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
684  
685  	owned = epb_access(dd, sdnum, 1);
686  	if (owned < 0) {
687  		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
688  		return -1;
689  	}
690  	for (tries = EPB_TRANS_TRIES; tries; --tries) {
691  		transval = qib_read_kreg32(dd, trans);
692  		if (transval & EPB_TRANS_RDY)
693  			break;
694  		udelay(5);
695  	}
696  
697  	if (tries > 0) {
698  		tries = 1;      /* to make read-skip work */
699  		if (mask != 0xFF) {
700  			/*
701  			 * Not a pure write, so need to read.
702  			 * loc encodes chip-select as well as address
703  			 */
704  			transval = loc | EPB_RD;
705  			tries = epb_trans(dd, trans, transval, &transval);
706  		}
707  		if (tries > 0 && mask != 0) {
708  			/*
709  			 * Not a pure read, so need to write.
710  			 */
711  			wd = (wd & mask) | (transval & ~mask);
712  			transval = loc | (wd & EPB_DATA_MASK);
713  			tries = epb_trans(dd, trans, transval, &transval);
714  		}
715  	}
716  	/* else, failed to see ready, what error-handling? */
717  
718  	/*
719  	 * Release bus. Failure is an error.
720  	 */
721  	if (epb_access(dd, sdnum, -1) < 0)
722  		ret = -1;
723  	else
724  		ret = transval & EPB_DATA_MASK;
725  
726  	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
727  	if (tries <= 0)
728  		ret = -1;
729  	return ret;
730  }
731  
732  #define EPB_ROM_R (2)
733  #define EPB_ROM_W (1)
734  /*
735   * Below, all uC-related, use appropriate UC_CS, depending
736   * on which SerDes is used.
737   */
738  #define EPB_UC_CTL EPB_LOC(6, 0, 0)
739  #define EPB_MADDRL EPB_LOC(6, 0, 2)
740  #define EPB_MADDRH EPB_LOC(6, 0, 3)
741  #define EPB_ROMDATA EPB_LOC(6, 0, 4)
742  #define EPB_RAMDATA EPB_LOC(6, 0, 5)
743  
744  /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
qib_sd7220_ram_xfer(struct qib_devdata * dd,int sdnum,u32 loc,u8 * buf,int cnt,int rd_notwr)745  static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
746  			       u8 *buf, int cnt, int rd_notwr)
747  {
748  	u16 trans;
749  	u64 transval;
750  	u64 csbit;
751  	int owned;
752  	int tries;
753  	int sofar;
754  	int addr;
755  	int ret;
756  	unsigned long flags;
757  
758  	/* Pick appropriate transaction reg and "Chip select" for this serdes */
759  	switch (sdnum) {
760  	case IB_7220_SERDES:
761  		csbit = 1ULL << EPB_IB_UC_CS_SHF;
762  		trans = kr_ibsd_epb_transaction_reg;
763  		break;
764  
765  	case PCIE_SERDES0:
766  	case PCIE_SERDES1:
767  		/* PCIe SERDES has uC "chip select" in different bit, too */
768  		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
769  		trans = kr_pciesd_epb_transaction_reg;
770  		break;
771  
772  	default:
773  		return -1;
774  	}
775  
776  	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
777  
778  	owned = epb_access(dd, sdnum, 1);
779  	if (owned < 0) {
780  		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
781  		return -1;
782  	}
783  
784  	/*
785  	 * In future code, we may need to distinguish several address ranges,
786  	 * and select various memories based on this. For now, just trim
787  	 * "loc" (location including address and memory select) to
788  	 * "addr" (address within memory). we will only support PRAM
789  	 * The memory is 8KB.
790  	 */
791  	addr = loc & 0x1FFF;
792  	for (tries = EPB_TRANS_TRIES; tries; --tries) {
793  		transval = qib_read_kreg32(dd, trans);
794  		if (transval & EPB_TRANS_RDY)
795  			break;
796  		udelay(5);
797  	}
798  
799  	sofar = 0;
800  	if (tries > 0) {
801  		/*
802  		 * Every "memory" access is doubly-indirect.
803  		 * We set two bytes of address, then read/write
804  		 * one or mores bytes of data.
805  		 */
806  
807  		/* First, we set control to "Read" or "Write" */
808  		transval = csbit | EPB_UC_CTL |
809  			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
810  		tries = epb_trans(dd, trans, transval, &transval);
811  		while (tries > 0 && sofar < cnt) {
812  			if (!sofar) {
813  				/* Only set address at start of chunk */
814  				int addrbyte = (addr + sofar) >> 8;
815  
816  				transval = csbit | EPB_MADDRH | addrbyte;
817  				tries = epb_trans(dd, trans, transval,
818  						  &transval);
819  				if (tries <= 0)
820  					break;
821  				addrbyte = (addr + sofar) & 0xFF;
822  				transval = csbit | EPB_MADDRL | addrbyte;
823  				tries = epb_trans(dd, trans, transval,
824  						 &transval);
825  				if (tries <= 0)
826  					break;
827  			}
828  
829  			if (rd_notwr)
830  				transval = csbit | EPB_ROMDATA | EPB_RD;
831  			else
832  				transval = csbit | EPB_ROMDATA | buf[sofar];
833  			tries = epb_trans(dd, trans, transval, &transval);
834  			if (tries <= 0)
835  				break;
836  			if (rd_notwr)
837  				buf[sofar] = transval & EPB_DATA_MASK;
838  			++sofar;
839  		}
840  		/* Finally, clear control-bit for Read or Write */
841  		transval = csbit | EPB_UC_CTL;
842  		tries = epb_trans(dd, trans, transval, &transval);
843  	}
844  
845  	ret = sofar;
846  	/* Release bus. Failure is an error */
847  	if (epb_access(dd, sdnum, -1) < 0)
848  		ret = -1;
849  
850  	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
851  	if (tries <= 0)
852  		ret = -1;
853  	return ret;
854  }
855  
856  #define PROG_CHUNK 64
857  
qib_sd7220_prog_ld(struct qib_devdata * dd,int sdnum,const u8 * img,int len,int offset)858  static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
859  			      const u8 *img, int len, int offset)
860  {
861  	int cnt, sofar, req;
862  
863  	sofar = 0;
864  	while (sofar < len) {
865  		req = len - sofar;
866  		if (req > PROG_CHUNK)
867  			req = PROG_CHUNK;
868  		cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
869  					  (u8 *)img + sofar, req, 0);
870  		if (cnt < req) {
871  			sofar = -1;
872  			break;
873  		}
874  		sofar += req;
875  	}
876  	return sofar;
877  }
878  
879  #define VFY_CHUNK 64
880  #define SD_PRAM_ERROR_LIMIT 42
881  
qib_sd7220_prog_vfy(struct qib_devdata * dd,int sdnum,const u8 * img,int len,int offset)882  static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
883  			       const u8 *img, int len, int offset)
884  {
885  	int cnt, sofar, req, idx, errors;
886  	unsigned char readback[VFY_CHUNK];
887  
888  	errors = 0;
889  	sofar = 0;
890  	while (sofar < len) {
891  		req = len - sofar;
892  		if (req > VFY_CHUNK)
893  			req = VFY_CHUNK;
894  		cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
895  					  readback, req, 1);
896  		if (cnt < req) {
897  			/* failed in read itself */
898  			sofar = -1;
899  			break;
900  		}
901  		for (idx = 0; idx < cnt; ++idx) {
902  			if (readback[idx] != img[idx+sofar])
903  				++errors;
904  		}
905  		sofar += cnt;
906  	}
907  	return errors ? -errors : sofar;
908  }
909  
910  static int
qib_sd7220_ib_load(struct qib_devdata * dd,const struct firmware * fw)911  qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
912  {
913  	return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
914  }
915  
916  static int
qib_sd7220_ib_vfy(struct qib_devdata * dd,const struct firmware * fw)917  qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
918  {
919  	return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
920  }
921  
922  /*
923   * IRQ not set up at this point in init, so we poll.
924   */
925  #define IB_SERDES_TRIM_DONE (1ULL << 11)
926  #define TRIM_TMO (15)
927  
qib_sd_trimdone_poll(struct qib_devdata * dd)928  static int qib_sd_trimdone_poll(struct qib_devdata *dd)
929  {
930  	int trim_tmo, ret;
931  	uint64_t val;
932  
933  	/*
934  	 * Default to failure, so IBC will not start
935  	 * without IB_SERDES_TRIM_DONE.
936  	 */
937  	ret = 0;
938  	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
939  		val = qib_read_kreg64(dd, kr_ibcstatus);
940  		if (val & IB_SERDES_TRIM_DONE) {
941  			ret = 1;
942  			break;
943  		}
944  		msleep(20);
945  	}
946  	if (trim_tmo >= TRIM_TMO) {
947  		qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
948  		ret = 0;
949  	}
950  	return ret;
951  }
952  
953  #define TX_FAST_ELT (9)
954  
955  /*
956   * Set the "negotiation" values for SERDES. These are used by the IB1.2
957   * link negotiation. Macros below are attempt to keep the values a
958   * little more human-editable.
959   * First, values related to Drive De-emphasis Settings.
960   */
961  
962  #define NUM_DDS_REGS 6
963  #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
964  
965  #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
966  	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
967  	  (main_d << 3) | 4 | (ipre_d >> 2), \
968  	  (main_s << 3) | 4 | (ipre_s >> 2), \
969  	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
970  	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
971  
972  static struct dds_init {
973  	uint8_t reg_vals[NUM_DDS_REGS];
974  } dds_init_vals[] = {
975  	/*       DDR(FDR)       SDR(HDR)   */
976  	/* Vendor recommends below for 3m cable */
977  #define DDS_3M 0
978  	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
979  	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
980  	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
981  	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
982  	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
983  	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
984  	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
985  	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
986  	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
987  	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
988  	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
989  	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
990  	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
991  	/* Vendor recommends below for 1m cable */
992  #define DDS_1M 13
993  	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
994  	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
995  	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
996  };
997  
998  /*
999   * Now the RXEQ section of the table.
1000   */
1001  /* Hardware packs an element number and register address thus: */
1002  #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1003  #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1004  	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1005  
1006  #define RXEQ_VAL_ALL(elt, adr, val)  \
1007  	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1008  
1009  #define RXEQ_SDR_DFELTH 0
1010  #define RXEQ_SDR_TLTH 0
1011  #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1012  #define RXEQ_SDR_ZCNT 23
1013  
1014  static struct rxeq_init {
1015  	u16 rdesc;      /* in form used in SerDesDDSRXEQ */
1016  	u8  rdata[4];
1017  } rxeq_init_vals[] = {
1018  	/* Set Rcv Eq. to Preset node */
1019  	RXEQ_VAL_ALL(7, 0x27, 0x10),
1020  	/* Set DFELTHFDR/HDR thresholds */
1021  	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1022  	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1023  	/* Set TLTHFDR/HDR theshold */
1024  	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1025  	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */
1026  	/* Set Preamp setting 2 (ZFR/ZCNT) */
1027  	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1028  	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1029  	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1030  	RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1031  	RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1032  	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1033  	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1034  	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1035  };
1036  
1037  /* There are 17 values from vendor, but IBC only accesses the first 16 */
1038  #define DDS_ROWS (16)
1039  #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1040  
qib_sd_setvals(struct qib_devdata * dd)1041  static int qib_sd_setvals(struct qib_devdata *dd)
1042  {
1043  	int idx, midx;
1044  	int min_idx;     /* Minimum index for this portion of table */
1045  	uint32_t dds_reg_map;
1046  	u64 __iomem *taddr, *iaddr;
1047  	uint64_t data;
1048  	uint64_t sdctl;
1049  
1050  	taddr = dd->kregbase + kr_serdes_maptable;
1051  	iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1052  
1053  	/*
1054  	 * Init the DDS section of the table.
1055  	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1056  	 * registers indicated in DDS_REG_MAP.
1057  	 */
1058  	sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1059  	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1060  	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1061  	qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1062  
1063  	/*
1064  	 * Iterate down table within loop for each register to store.
1065  	 */
1066  	dds_reg_map = DDS_REG_MAP;
1067  	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1068  		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1069  		writeq(data, iaddr + idx);
1070  		qib_read_kreg32(dd, kr_scratch);
1071  		dds_reg_map >>= 4;
1072  		for (midx = 0; midx < DDS_ROWS; ++midx) {
1073  			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1074  
1075  			data = dds_init_vals[midx].reg_vals[idx];
1076  			writeq(data, daddr);
1077  			qib_read_kreg32(dd, kr_scratch);
1078  		} /* End inner for (vals for this reg, each row) */
1079  	} /* end outer for (regs to be stored) */
1080  
1081  	/*
1082  	 * Init the RXEQ section of the table.
1083  	 * This runs in a different order, as the pattern of
1084  	 * register references is more complex, but there are only
1085  	 * four "data" values per register.
1086  	 */
1087  	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1088  	taddr += 0x100; /* RXEQ data is in second half of table */
1089  	/* Iterate through RXEQ register addresses */
1090  	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1091  		int didx; /* "destination" */
1092  		int vidx;
1093  
1094  		/* didx is offset by min_idx to address RXEQ range of regs */
1095  		didx = idx + min_idx;
1096  		/* Store the next RXEQ register address */
1097  		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1098  		qib_read_kreg32(dd, kr_scratch);
1099  		/* Iterate through RXEQ values */
1100  		for (vidx = 0; vidx < 4; vidx++) {
1101  			data = rxeq_init_vals[idx].rdata[vidx];
1102  			writeq(data, taddr + (vidx << 6) + idx);
1103  			qib_read_kreg32(dd, kr_scratch);
1104  		}
1105  	} /* end outer for (Reg-writes for RXEQ) */
1106  	return 0;
1107  }
1108  
1109  #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1110  #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1111  #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1112  #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1113  #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1114  #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1115  
1116  /*
1117   * Repeat a "store" across all channels of the IB SerDes.
1118   * Although nominally it inherits the "read value" of the last
1119   * channel it modified, the only really useful return is <0 for
1120   * failure, >= 0 for success. The parameter 'loc' is assumed to
1121   * be the location in some channel of the register to be modified
1122   * The caller can specify use of the "gang write" option of EPB,
1123   * in which case we use the specified channel data for any fields
1124   * not explicitely written.
1125   */
ibsd_mod_allchnls(struct qib_devdata * dd,int loc,int val,int mask)1126  static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1127  			     int mask)
1128  {
1129  	int ret = -1;
1130  	int chnl;
1131  
1132  	if (loc & EPB_GLOBAL_WR) {
1133  		/*
1134  		 * Our caller has assured us that we can set all four
1135  		 * channels at once. Trust that. If mask is not 0xFF,
1136  		 * we will read the _specified_ channel for our starting
1137  		 * value.
1138  		 */
1139  		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1140  		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1141  		if (mask != 0xFF) {
1142  			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1143  						 loc & ~EPB_GLOBAL_WR, 0, 0);
1144  			if (ret < 0) {
1145  				int sloc = loc >> EPB_ADDR_SHF;
1146  
1147  				qib_dev_err(dd,
1148  					"pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1149  					(sloc & 0xF),
1150  					(sloc >> 9) & 0x3f, chnl);
1151  				return ret;
1152  			}
1153  			val = (ret & ~mask) | (val & mask);
1154  		}
1155  		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1156  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1157  		if (ret < 0) {
1158  			int sloc = loc >> EPB_ADDR_SHF;
1159  
1160  			qib_dev_err(dd,
1161  				"Global WR failed: elt %d, addr 0x%X, val %02X\n",
1162  				(sloc & 0xF), (sloc >> 9) & 0x3f, val);
1163  		}
1164  		return ret;
1165  	}
1166  	/* Clear "channel" and set CS so we can simply iterate */
1167  	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1168  	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1169  	for (chnl = 0; chnl < 4; ++chnl) {
1170  		int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1171  
1172  		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1173  		if (ret < 0) {
1174  			int sloc = loc >> EPB_ADDR_SHF;
1175  
1176  			qib_dev_err(dd,
1177  				"Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1178  				(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1179  				val & 0xFF, mask & 0xFF);
1180  			break;
1181  		}
1182  	}
1183  	return ret;
1184  }
1185  
1186  /*
1187   * Set the Tx values normally modified by IBC in IB1.2 mode to default
1188   * values, as gotten from first row of init table.
1189   */
set_dds_vals(struct qib_devdata * dd,struct dds_init * ddi)1190  static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1191  {
1192  	int ret;
1193  	int idx, reg, data;
1194  	uint32_t regmap;
1195  
1196  	regmap = DDS_REG_MAP;
1197  	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1198  		reg = (regmap & 0xF);
1199  		regmap >>= 4;
1200  		data = ddi->reg_vals[idx];
1201  		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1202  		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1203  		if (ret < 0)
1204  			break;
1205  	}
1206  	return ret;
1207  }
1208  
1209  /*
1210   * Set the Rx values normally modified by IBC in IB1.2 mode to default
1211   * values, as gotten from selected column of init table.
1212   */
set_rxeq_vals(struct qib_devdata * dd,int vsel)1213  static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1214  {
1215  	int ret;
1216  	int ridx;
1217  	int cnt = ARRAY_SIZE(rxeq_init_vals);
1218  
1219  	for (ridx = 0; ridx < cnt; ++ridx) {
1220  		int elt, reg, val, loc;
1221  
1222  		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1223  		reg = rxeq_init_vals[ridx].rdesc >> 4;
1224  		loc = EPB_LOC(0, elt, reg);
1225  		val = rxeq_init_vals[ridx].rdata[vsel];
1226  		/* mask of 0xFF, because hardware does full-byte store. */
1227  		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1228  		if (ret < 0)
1229  			break;
1230  	}
1231  	return ret;
1232  }
1233  
1234  /*
1235   * Set the default values (row 0) for DDR Driver Demphasis.
1236   * we do this initially and whenever we turn off IB-1.2
1237   *
1238   * The "default" values for Rx equalization are also stored to
1239   * SerDes registers. Formerly (and still default), we used set 2.
1240   * For experimenting with cables and link-partners, we allow changing
1241   * that via a module parameter.
1242   */
1243  static unsigned qib_rxeq_set = 2;
1244  module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1245  		   S_IWUSR | S_IRUGO);
1246  MODULE_PARM_DESC(rxeq_default_set,
1247  		 "Which set [0..3] of Rx Equalization values is default");
1248  
qib_internal_presets(struct qib_devdata * dd)1249  static int qib_internal_presets(struct qib_devdata *dd)
1250  {
1251  	int ret = 0;
1252  
1253  	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1254  
1255  	if (ret < 0)
1256  		qib_dev_err(dd, "Failed to set default DDS values\n");
1257  	ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1258  	if (ret < 0)
1259  		qib_dev_err(dd, "Failed to set default RXEQ values\n");
1260  	return ret;
1261  }
1262  
qib_sd7220_presets(struct qib_devdata * dd)1263  int qib_sd7220_presets(struct qib_devdata *dd)
1264  {
1265  	int ret = 0;
1266  
1267  	if (!dd->cspec->presets_needed)
1268  		return ret;
1269  	dd->cspec->presets_needed = 0;
1270  	/* Assert uC reset, so we don't clash with it. */
1271  	qib_ibsd_reset(dd, 1);
1272  	udelay(2);
1273  	qib_sd_trimdone_monitor(dd, "link-down");
1274  
1275  	ret = qib_internal_presets(dd);
1276  	return ret;
1277  }
1278  
qib_sd_trimself(struct qib_devdata * dd,int val)1279  static int qib_sd_trimself(struct qib_devdata *dd, int val)
1280  {
1281  	int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1282  
1283  	return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1284  }
1285  
qib_sd_early(struct qib_devdata * dd)1286  static int qib_sd_early(struct qib_devdata *dd)
1287  {
1288  	int ret;
1289  
1290  	ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1291  	if (ret < 0)
1292  		goto bail;
1293  	ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1294  	if (ret < 0)
1295  		goto bail;
1296  	ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1297  bail:
1298  	return ret;
1299  }
1300  
1301  #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302  #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303  #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304  
qib_sd_dactrim(struct qib_devdata * dd)1305  static int qib_sd_dactrim(struct qib_devdata *dd)
1306  {
1307  	int ret;
1308  
1309  	ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1310  	if (ret < 0)
1311  		goto bail;
1312  
1313  	/* more fine-tuning of what will be default */
1314  	ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1315  	if (ret < 0)
1316  		goto bail;
1317  
1318  	ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1319  	if (ret < 0)
1320  		goto bail;
1321  
1322  	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1323  	if (ret < 0)
1324  		goto bail;
1325  
1326  	ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1327  	if (ret < 0)
1328  		goto bail;
1329  
1330  	/*
1331  	 * Delay for max possible number of steps, with slop.
1332  	 * Each step is about 4usec.
1333  	 */
1334  	udelay(415);
1335  
1336  	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1337  
1338  bail:
1339  	return ret;
1340  }
1341  
1342  #define RELOCK_FIRST_MS 3
1343  #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
toggle_7220_rclkrls(struct qib_devdata * dd)1344  void toggle_7220_rclkrls(struct qib_devdata *dd)
1345  {
1346  	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1347  	int ret;
1348  
1349  	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1350  	if (ret < 0)
1351  		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1352  	else {
1353  		udelay(1);
1354  		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1355  	}
1356  	/* And again for good measure */
1357  	udelay(1);
1358  	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1359  	if (ret < 0)
1360  		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1361  	else {
1362  		udelay(1);
1363  		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1364  	}
1365  	/* Now reset xgxs and IBC to complete the recovery */
1366  	dd->f_xgxs_reset(dd->pport);
1367  }
1368  
1369  /*
1370   * Shut down the timer that polls for relock occasions, if needed
1371   * this is "hooked" from qib_7220_quiet_serdes(), which is called
1372   * just before qib_shutdown_device() in qib_driver.c shuts down all
1373   * the other timers
1374   */
shutdown_7220_relock_poll(struct qib_devdata * dd)1375  void shutdown_7220_relock_poll(struct qib_devdata *dd)
1376  {
1377  	if (dd->cspec->relock_timer_active)
1378  		del_timer_sync(&dd->cspec->relock_timer);
1379  }
1380  
1381  static unsigned qib_relock_by_timer = 1;
1382  module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1383  		   S_IWUSR | S_IRUGO);
1384  MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385  
qib_run_relock(struct timer_list * t)1386  static void qib_run_relock(struct timer_list *t)
1387  {
1388  	struct qib_chip_specific *cs = from_timer(cs, t, relock_timer);
1389  	struct qib_devdata *dd = cs->dd;
1390  	struct qib_pportdata *ppd = dd->pport;
1391  	int timeoff;
1392  
1393  	/*
1394  	 * Check link-training state for "stuck" state, when down.
1395  	 * if found, try relock and schedule another try at
1396  	 * exponentially growing delay, maxed at one second.
1397  	 * if not stuck, our work is done.
1398  	 */
1399  	if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1400  	    (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1401  	     QIBL_LINKACTIVE))) {
1402  		if (qib_relock_by_timer) {
1403  			if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1404  				toggle_7220_rclkrls(dd);
1405  		}
1406  		/* re-set timer for next check */
1407  		timeoff = cs->relock_interval << 1;
1408  		if (timeoff > HZ)
1409  			timeoff = HZ;
1410  		cs->relock_interval = timeoff;
1411  	} else
1412  		timeoff = HZ;
1413  	mod_timer(&cs->relock_timer, jiffies + timeoff);
1414  }
1415  
set_7220_relock_poll(struct qib_devdata * dd,int ibup)1416  void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1417  {
1418  	struct qib_chip_specific *cs = dd->cspec;
1419  
1420  	if (ibup) {
1421  		/* We are now up, relax timer to 1 second interval */
1422  		if (cs->relock_timer_active) {
1423  			cs->relock_interval = HZ;
1424  			mod_timer(&cs->relock_timer, jiffies + HZ);
1425  		}
1426  	} else {
1427  		/* Transition to down, (re-)set timer to short interval. */
1428  		unsigned int timeout;
1429  
1430  		timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1431  		if (timeout == 0)
1432  			timeout = 1;
1433  		/* If timer has not yet been started, do so. */
1434  		if (!cs->relock_timer_active) {
1435  			cs->relock_timer_active = 1;
1436  			timer_setup(&cs->relock_timer, qib_run_relock, 0);
1437  			cs->relock_interval = timeout;
1438  			cs->relock_timer.expires = jiffies + timeout;
1439  			add_timer(&cs->relock_timer);
1440  		} else {
1441  			cs->relock_interval = timeout;
1442  			mod_timer(&cs->relock_timer, jiffies + timeout);
1443  		}
1444  	}
1445  }
1446