xref: /openbmc/linux/rust/kernel/sync/locked_by.rs (revision 6fcd6fea)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A wrapper for data protected by a lock that does not wrap it.
4 
5 use super::{lock::Backend, lock::Lock};
6 use crate::build_assert;
7 use core::{cell::UnsafeCell, mem::size_of, ptr};
8 
9 /// Allows access to some data to be serialised by a lock that does not wrap it.
10 ///
11 /// In most cases, data protected by a lock is wrapped by the appropriate lock type, e.g.,
12 /// [`super::Mutex`] or [`super::SpinLock`]. [`LockedBy`] is meant for cases when this is not
13 /// possible. For example, if a container has a lock and some data in the contained elements needs
14 /// to be protected by the same lock.
15 ///
16 /// [`LockedBy`] wraps the data in lieu of another locking primitive, and only allows access to it
17 /// when the caller shows evidence that the 'external' lock is locked. It panics if the evidence
18 /// refers to the wrong instance of the lock.
19 ///
20 /// # Examples
21 ///
22 /// The following is an example for illustrative purposes: `InnerDirectory::bytes_used` is an
23 /// aggregate of all `InnerFile::bytes_used` and must be kept consistent; so we wrap `InnerFile` in
24 /// a `LockedBy` so that it shares a lock with `InnerDirectory`. This allows us to enforce at
25 /// compile-time that access to `InnerFile` is only granted when an `InnerDirectory` is also
26 /// locked; we enforce at run time that the right `InnerDirectory` is locked.
27 ///
28 /// ```
29 /// use kernel::sync::{LockedBy, Mutex};
30 ///
31 /// struct InnerFile {
32 ///     bytes_used: u64,
33 /// }
34 ///
35 /// struct File {
36 ///     _ino: u32,
37 ///     inner: LockedBy<InnerFile, InnerDirectory>,
38 /// }
39 ///
40 /// struct InnerDirectory {
41 ///     /// The sum of the bytes used by all files.
42 ///     bytes_used: u64,
43 ///     _files: Vec<File>,
44 /// }
45 ///
46 /// struct Directory {
47 ///     _ino: u32,
48 ///     inner: Mutex<InnerDirectory>,
49 /// }
50 ///
51 /// /// Prints `bytes_used` from both the directory and file.
52 /// fn print_bytes_used(dir: &Directory, file: &File) {
53 ///     let guard = dir.inner.lock();
54 ///     let inner_file = file.inner.access(&guard);
55 ///     pr_info!("{} {}", guard.bytes_used, inner_file.bytes_used);
56 /// }
57 ///
58 /// /// Increments `bytes_used` for both the directory and file.
59 /// fn inc_bytes_used(dir: &Directory, file: &File) {
60 ///     let mut guard = dir.inner.lock();
61 ///     guard.bytes_used += 10;
62 ///
63 ///     let file_inner = file.inner.access_mut(&mut guard);
64 ///     file_inner.bytes_used += 10;
65 /// }
66 ///
67 /// /// Creates a new file.
68 /// fn new_file(ino: u32, dir: &Directory) -> File {
69 ///     File {
70 ///         _ino: ino,
71 ///         inner: LockedBy::new(&dir.inner, InnerFile { bytes_used: 0 }),
72 ///     }
73 /// }
74 /// ```
75 pub struct LockedBy<T: ?Sized, U: ?Sized> {
76     owner: *const U,
77     data: UnsafeCell<T>,
78 }
79 
80 // SAFETY: `LockedBy` can be transferred across thread boundaries iff the data it protects can.
81 unsafe impl<T: ?Sized + Send, U: ?Sized> Send for LockedBy<T, U> {}
82 
83 // SAFETY: If `T` is not `Sync`, then parallel shared access to this `LockedBy` allows you to use
84 // `access_mut` to hand out `&mut T` on one thread at the time. The requirement that `T: Send` is
85 // sufficient to allow that.
86 //
87 // If `T` is `Sync`, then the `access` method also becomes available, which allows you to obtain
88 // several `&T` from several threads at once. However, this is okay as `T` is `Sync`.
89 unsafe impl<T: ?Sized + Send, U: ?Sized> Sync for LockedBy<T, U> {}
90 
91 impl<T, U> LockedBy<T, U> {
92     /// Constructs a new instance of [`LockedBy`].
93     ///
94     /// It stores a raw pointer to the owner that is never dereferenced. It is only used to ensure
95     /// that the right owner is being used to access the protected data. If the owner is freed, the
96     /// data becomes inaccessible; if another instance of the owner is allocated *on the same
97     /// memory location*, the data becomes accessible again: none of this affects memory safety
98     /// because in any case at most one thread (or CPU) can access the protected data at a time.
new<B: Backend>(owner: &Lock<U, B>, data: T) -> Self99     pub fn new<B: Backend>(owner: &Lock<U, B>, data: T) -> Self {
100         build_assert!(
101             size_of::<Lock<U, B>>() > 0,
102             "The lock type cannot be a ZST because it may be impossible to distinguish instances"
103         );
104         Self {
105             owner: owner.data.get(),
106             data: UnsafeCell::new(data),
107         }
108     }
109 }
110 
111 impl<T: ?Sized, U> LockedBy<T, U> {
112     /// Returns a reference to the protected data when the caller provides evidence (via a
113     /// reference) that the owner is locked.
114     ///
115     /// `U` cannot be a zero-sized type (ZST) because there are ways to get an `&U` that matches
116     /// the data protected by the lock without actually holding it.
117     ///
118     /// # Panics
119     ///
120     /// Panics if `owner` is different from the data protected by the lock used in
121     /// [`new`](LockedBy::new).
access<'a>(&'a self, owner: &'a U) -> &'a T where T: Sync,122     pub fn access<'a>(&'a self, owner: &'a U) -> &'a T
123     where
124         T: Sync,
125     {
126         build_assert!(
127             size_of::<U>() > 0,
128             "`U` cannot be a ZST because `owner` wouldn't be unique"
129         );
130         if !ptr::eq(owner, self.owner) {
131             panic!("mismatched owners");
132         }
133 
134         // SAFETY: `owner` is evidence that there are only shared references to the owner for the
135         // duration of 'a, so it's not possible to use `Self::access_mut` to obtain a mutable
136         // reference to the inner value that aliases with this shared reference. The type is `Sync`
137         // so there are no other requirements.
138         unsafe { &*self.data.get() }
139     }
140 
141     /// Returns a mutable reference to the protected data when the caller provides evidence (via a
142     /// mutable owner) that the owner is locked mutably.
143     ///
144     /// `U` cannot be a zero-sized type (ZST) because there are ways to get an `&mut U` that
145     /// matches the data protected by the lock without actually holding it.
146     ///
147     /// Showing a mutable reference to the owner is sufficient because we know no other references
148     /// can exist to it.
149     ///
150     /// # Panics
151     ///
152     /// Panics if `owner` is different from the data protected by the lock used in
153     /// [`new`](LockedBy::new).
access_mut<'a>(&'a self, owner: &'a mut U) -> &'a mut T154     pub fn access_mut<'a>(&'a self, owner: &'a mut U) -> &'a mut T {
155         build_assert!(
156             size_of::<U>() > 0,
157             "`U` cannot be a ZST because `owner` wouldn't be unique"
158         );
159         if !ptr::eq(owner, self.owner) {
160             panic!("mismatched owners");
161         }
162 
163         // SAFETY: `owner` is evidence that there is only one reference to the owner.
164         unsafe { &mut *self.data.get() }
165     }
166 }
167