xref: /openbmc/qemu/target/arm/helper.c (revision 0edc2afe0c8197bbcb98f948c609fb74c9b1ffd5)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/page-protection.h"
16 #include "exec/mmap-lock.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/cputlb.h"
22 #include "exec/translation-block.h"
23 #include "hw/irq.h"
24 #include "system/cpu-timers.h"
25 #include "exec/icount.h"
26 #include "system/kvm.h"
27 #include "system/tcg.h"
28 #include "qapi/error.h"
29 #include "qemu/guest-random.h"
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/probe.h"
32 #include "accel/tcg/getpc.h"
33 #include "semihosting/common-semi.h"
34 #endif
35 #include "cpregs.h"
36 #include "target/arm/gtimer.h"
37 
38 #define HELPER_H "tcg/helper.h"
39 #include "exec/helper-proto.h.inc"
40 
41 static void switch_mode(CPUARMState *env, int mode);
42 
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)43 uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
44 {
45     assert(ri->fieldoffset);
46     if (cpreg_field_is_64bit(ri)) {
47         return CPREG_FIELD64(env, ri);
48     } else {
49         return CPREG_FIELD32(env, ri);
50     }
51 }
52 
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)53 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
54 {
55     assert(ri->fieldoffset);
56     if (cpreg_field_is_64bit(ri)) {
57         CPREG_FIELD64(env, ri) = value;
58     } else {
59         CPREG_FIELD32(env, ri) = value;
60     }
61 }
62 
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)63 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65     return (char *)env + ri->fieldoffset;
66 }
67 
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)68 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
69 {
70     /* Raw read of a coprocessor register (as needed for migration, etc). */
71     if (ri->type & ARM_CP_CONST) {
72         return ri->resetvalue;
73     } else if (ri->raw_readfn) {
74         return ri->raw_readfn(env, ri);
75     } else if (ri->readfn) {
76         return ri->readfn(env, ri);
77     } else {
78         return raw_read(env, ri);
79     }
80 }
81 
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)82 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
83                              uint64_t v)
84 {
85     /*
86      * Raw write of a coprocessor register (as needed for migration, etc).
87      * Note that constant registers are treated as write-ignored; the
88      * caller should check for success by whether a readback gives the
89      * value written.
90      */
91     if (ri->type & ARM_CP_CONST) {
92         return;
93     } else if (ri->raw_writefn) {
94         ri->raw_writefn(env, ri, v);
95     } else if (ri->writefn) {
96         ri->writefn(env, ri, v);
97     } else {
98         raw_write(env, ri, v);
99     }
100 }
101 
raw_accessors_invalid(const ARMCPRegInfo * ri)102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
103 {
104    /*
105     * Return true if the regdef would cause an assertion if you called
106     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
107     * program bug for it not to have the NO_RAW flag).
108     * NB that returning false here doesn't necessarily mean that calling
109     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
110     * read/write access functions which are safe for raw use" from "has
111     * read/write access functions which have side effects but has forgotten
112     * to provide raw access functions".
113     * The tests here line up with the conditions in read/write_raw_cp_reg()
114     * and assertions in raw_read()/raw_write().
115     */
116     if ((ri->type & ARM_CP_CONST) ||
117         ri->fieldoffset ||
118         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
119         return false;
120     }
121     return true;
122 }
123 
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)124 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
125 {
126     /* Write the coprocessor state from cpu->env to the (index,value) list. */
127     int i;
128     bool ok = true;
129 
130     for (i = 0; i < cpu->cpreg_array_len; i++) {
131         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
132         const ARMCPRegInfo *ri;
133         uint64_t newval;
134 
135         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
136         if (!ri) {
137             ok = false;
138             continue;
139         }
140         if (ri->type & ARM_CP_NO_RAW) {
141             continue;
142         }
143 
144         newval = read_raw_cp_reg(&cpu->env, ri);
145         if (kvm_sync) {
146             /*
147              * Only sync if the previous list->cpustate sync succeeded.
148              * Rather than tracking the success/failure state for every
149              * item in the list, we just recheck "does the raw write we must
150              * have made in write_list_to_cpustate() read back OK" here.
151              */
152             uint64_t oldval = cpu->cpreg_values[i];
153 
154             if (oldval == newval) {
155                 continue;
156             }
157 
158             write_raw_cp_reg(&cpu->env, ri, oldval);
159             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
160                 continue;
161             }
162 
163             write_raw_cp_reg(&cpu->env, ri, newval);
164         }
165         cpu->cpreg_values[i] = newval;
166     }
167     return ok;
168 }
169 
write_list_to_cpustate(ARMCPU * cpu)170 bool write_list_to_cpustate(ARMCPU *cpu)
171 {
172     int i;
173     bool ok = true;
174 
175     for (i = 0; i < cpu->cpreg_array_len; i++) {
176         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
177         uint64_t v = cpu->cpreg_values[i];
178         const ARMCPRegInfo *ri;
179 
180         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
181         if (!ri) {
182             ok = false;
183             continue;
184         }
185         if (ri->type & ARM_CP_NO_RAW) {
186             continue;
187         }
188         /*
189          * Write value and confirm it reads back as written
190          * (to catch read-only registers and partially read-only
191          * registers where the incoming migration value doesn't match)
192          */
193         write_raw_cp_reg(&cpu->env, ri, v);
194         if (read_raw_cp_reg(&cpu->env, ri) != v) {
195             ok = false;
196         }
197     }
198     return ok;
199 }
200 
add_cpreg_to_list(gpointer key,gpointer opaque)201 static void add_cpreg_to_list(gpointer key, gpointer opaque)
202 {
203     ARMCPU *cpu = opaque;
204     uint32_t regidx = (uintptr_t)key;
205     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
206 
207     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
208         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
209         /* The value array need not be initialized at this point */
210         cpu->cpreg_array_len++;
211     }
212 }
213 
count_cpreg(gpointer key,gpointer opaque)214 static void count_cpreg(gpointer key, gpointer opaque)
215 {
216     ARMCPU *cpu = opaque;
217     const ARMCPRegInfo *ri;
218 
219     ri = g_hash_table_lookup(cpu->cp_regs, key);
220 
221     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
222         cpu->cpreg_array_len++;
223     }
224 }
225 
cpreg_key_compare(gconstpointer a,gconstpointer b,gpointer d)226 static gint cpreg_key_compare(gconstpointer a, gconstpointer b, gpointer d)
227 {
228     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
229     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
230 
231     if (aidx > bidx) {
232         return 1;
233     }
234     if (aidx < bidx) {
235         return -1;
236     }
237     return 0;
238 }
239 
init_cpreg_list(ARMCPU * cpu)240 void init_cpreg_list(ARMCPU *cpu)
241 {
242     /*
243      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
244      * Note that we require cpreg_tuples[] to be sorted by key ID.
245      */
246     GList *keys;
247     int arraylen;
248 
249     keys = g_hash_table_get_keys(cpu->cp_regs);
250     keys = g_list_sort_with_data(keys, cpreg_key_compare, NULL);
251 
252     cpu->cpreg_array_len = 0;
253 
254     g_list_foreach(keys, count_cpreg, cpu);
255 
256     arraylen = cpu->cpreg_array_len;
257     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
258     cpu->cpreg_values = g_new(uint64_t, arraylen);
259     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
260     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
261     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
262     cpu->cpreg_array_len = 0;
263 
264     g_list_foreach(keys, add_cpreg_to_list, cpu);
265 
266     assert(cpu->cpreg_array_len == arraylen);
267 
268     g_list_free(keys);
269 }
270 
arm_pan_enabled(CPUARMState * env)271 bool arm_pan_enabled(CPUARMState *env)
272 {
273     if (is_a64(env)) {
274         if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
275             return false;
276         }
277         return env->pstate & PSTATE_PAN;
278     } else {
279         return env->uncached_cpsr & CPSR_PAN;
280     }
281 }
282 
283 /*
284  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
285  */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)286 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
287                                         const ARMCPRegInfo *ri,
288                                         bool isread)
289 {
290     if (!is_a64(env) && arm_current_el(env) == 3 &&
291         arm_is_secure_below_el3(env)) {
292         return CP_ACCESS_UNDEFINED;
293     }
294     return CP_ACCESS_OK;
295 }
296 
297 /*
298  * Some secure-only AArch32 registers trap to EL3 if used from
299  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
300  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
301  * We assume that the .access field is set to PL1_RW.
302  */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)303 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
304                                             const ARMCPRegInfo *ri,
305                                             bool isread)
306 {
307     if (arm_current_el(env) == 3) {
308         return CP_ACCESS_OK;
309     }
310     if (arm_is_secure_below_el3(env)) {
311         if (env->cp15.scr_el3 & SCR_EEL2) {
312             return CP_ACCESS_TRAP_EL2;
313         }
314         return CP_ACCESS_TRAP_EL3;
315     }
316     /* This will be EL1 NS and EL2 NS, which just UNDEF */
317     return CP_ACCESS_UNDEFINED;
318 }
319 
320 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
access_tvm_trvm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)321 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
322                                bool isread)
323 {
324     if (arm_current_el(env) == 1) {
325         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
326         if (arm_hcr_el2_eff(env) & trap) {
327             return CP_ACCESS_TRAP_EL2;
328         }
329     }
330     return CP_ACCESS_OK;
331 }
332 
333 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
access_tsw(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)334 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
335                                  bool isread)
336 {
337     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
338         return CP_ACCESS_TRAP_EL2;
339     }
340     return CP_ACCESS_OK;
341 }
342 
343 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
access_tacr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)344 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
345                                   bool isread)
346 {
347     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
348         return CP_ACCESS_TRAP_EL2;
349     }
350     return CP_ACCESS_OK;
351 }
352 
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)353 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
354 {
355     ARMCPU *cpu = env_archcpu(env);
356 
357     raw_write(env, ri, value);
358     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
359 }
360 
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)361 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
362 {
363     ARMCPU *cpu = env_archcpu(env);
364 
365     if (raw_read(env, ri) != value) {
366         /*
367          * Unlike real hardware the qemu TLB uses virtual addresses,
368          * not modified virtual addresses, so this causes a TLB flush.
369          */
370         tlb_flush(CPU(cpu));
371         raw_write(env, ri, value);
372     }
373 }
374 
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)375 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
376                              uint64_t value)
377 {
378     ARMCPU *cpu = env_archcpu(env);
379 
380     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
381         && !extended_addresses_enabled(env)) {
382         /*
383          * For VMSA (when not using the LPAE long descriptor page table
384          * format) this register includes the ASID, so do a TLB flush.
385          * For PMSA it is purely a process ID and no action is needed.
386          */
387         tlb_flush(CPU(cpu));
388     }
389     raw_write(env, ri, value);
390 }
391 
alle1_tlbmask(CPUARMState * env)392 int alle1_tlbmask(CPUARMState *env)
393 {
394     /*
395      * Note that the 'ALL' scope must invalidate both stage 1 and
396      * stage 2 translations, whereas most other scopes only invalidate
397      * stage 1 translations.
398      *
399      * For AArch32 this is only used for TLBIALLNSNH and VTTBR
400      * writes, so only needs to apply to NS PL1&0, not S PL1&0.
401      */
402     return (ARMMMUIdxBit_E10_1 |
403             ARMMMUIdxBit_E10_1_PAN |
404             ARMMMUIdxBit_E10_0 |
405             ARMMMUIdxBit_Stage2 |
406             ARMMMUIdxBit_Stage2_S);
407 }
408 
409 static const ARMCPRegInfo cp_reginfo[] = {
410     /*
411      * Define the secure and non-secure FCSE identifier CP registers
412      * separately because there is no secure bank in V8 (no _EL3).  This allows
413      * the secure register to be properly reset and migrated. There is also no
414      * v8 EL1 version of the register so the non-secure instance stands alone.
415      */
416     { .name = "FCSEIDR",
417       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
418       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
419       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
420       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
421     { .name = "FCSEIDR_S",
422       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
423       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
424       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
425       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
426     /*
427      * Define the secure and non-secure context identifier CP registers
428      * separately because there is no secure bank in V8 (no _EL3).  This allows
429      * the secure register to be properly reset and migrated.  In the
430      * non-secure case, the 32-bit register will have reset and migration
431      * disabled during registration as it is handled by the 64-bit instance.
432      */
433     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
434       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
435       .access = PL1_RW, .accessfn = access_tvm_trvm,
436       .fgt = FGT_CONTEXTIDR_EL1,
437       .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
438       .secure = ARM_CP_SECSTATE_NS,
439       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
440       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
441     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
442       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
443       .access = PL1_RW, .accessfn = access_tvm_trvm,
444       .secure = ARM_CP_SECSTATE_S,
445       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
446       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
447 };
448 
449 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
450     /*
451      * NB: Some of these registers exist in v8 but with more precise
452      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
453      */
454     /* MMU Domain access control / MPU write buffer control */
455     { .name = "DACR",
456       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
457       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
458       .writefn = dacr_write, .raw_writefn = raw_write,
459       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
460                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
461     /*
462      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
463      * For v6 and v5, these mappings are overly broad.
464      */
465     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
466       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
467     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
468       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
469     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
470       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
471     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
472       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
473     /* Cache maintenance ops; some of this space may be overridden later. */
474     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
475       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
476       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
477 };
478 
479 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
480     /*
481      * Not all pre-v6 cores implemented this WFI, so this is slightly
482      * over-broad.
483      */
484     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
485       .access = PL1_W, .type = ARM_CP_WFI },
486 };
487 
488 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
489     /*
490      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
491      * is UNPREDICTABLE; we choose to NOP as most implementations do).
492      */
493     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
494       .access = PL1_W, .type = ARM_CP_WFI },
495     /*
496      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
497      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
498      * OMAPCP will override this space.
499      */
500     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
501       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
502       .resetvalue = 0 },
503     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
504       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
505       .resetvalue = 0 },
506     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
507     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
508       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
509       .resetvalue = 0 },
510     /*
511      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
512      * implementing it as RAZ means the "debug architecture version" bits
513      * will read as a reserved value, which should cause Linux to not try
514      * to use the debug hardware.
515      */
516     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
517       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
518     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
519       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
520     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
521       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
522 };
523 
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)524 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
525                         uint64_t value)
526 {
527     uint32_t mask = 0;
528 
529     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
530     if (!arm_feature(env, ARM_FEATURE_V8)) {
531         /*
532          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
533          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
534          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
535          */
536         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
537             /* VFP coprocessor: cp10 & cp11 [23:20] */
538             mask |= R_CPACR_ASEDIS_MASK |
539                     R_CPACR_D32DIS_MASK |
540                     R_CPACR_CP11_MASK |
541                     R_CPACR_CP10_MASK;
542 
543             if (!arm_feature(env, ARM_FEATURE_NEON)) {
544                 /* ASEDIS [31] bit is RAO/WI */
545                 value |= R_CPACR_ASEDIS_MASK;
546             }
547 
548             /*
549              * VFPv3 and upwards with NEON implement 32 double precision
550              * registers (D0-D31).
551              */
552             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
553                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
554                 value |= R_CPACR_D32DIS_MASK;
555             }
556         }
557         value &= mask;
558     }
559 
560     /*
561      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
562      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
563      */
564     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
565         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
566         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
567         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
568     }
569 
570     env->cp15.cpacr_el1 = value;
571 }
572 
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)573 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
574 {
575     /*
576      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
577      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
578      */
579     uint64_t value = env->cp15.cpacr_el1;
580 
581     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
582         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
583         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
584     }
585     return value;
586 }
587 
588 
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)589 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
590 {
591     /*
592      * Call cpacr_write() so that we reset with the correct RAO bits set
593      * for our CPU features.
594      */
595     cpacr_write(env, ri, 0);
596 }
597 
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)598 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
599                                    bool isread)
600 {
601     if (arm_feature(env, ARM_FEATURE_V8)) {
602         /* Check if CPACR accesses are to be trapped to EL2 */
603         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
604             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
605             return CP_ACCESS_TRAP_EL2;
606         /* Check if CPACR accesses are to be trapped to EL3 */
607         } else if (arm_current_el(env) < 3 &&
608                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
609             return CP_ACCESS_TRAP_EL3;
610         }
611     }
612 
613     return CP_ACCESS_OK;
614 }
615 
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)616 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
617                                   bool isread)
618 {
619     /* Check if CPTR accesses are set to trap to EL3 */
620     if (arm_current_el(env) == 2 &&
621         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
622         return CP_ACCESS_TRAP_EL3;
623     }
624 
625     return CP_ACCESS_OK;
626 }
627 
628 static const ARMCPRegInfo v6_cp_reginfo[] = {
629     /* prefetch by MVA in v6, NOP in v7 */
630     { .name = "MVA_prefetch",
631       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
632       .access = PL1_W, .type = ARM_CP_NOP },
633     /*
634      * We need to break the TB after ISB to execute self-modifying code
635      * correctly and also to take any pending interrupts immediately.
636      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
637      */
638     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
639       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
640     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
641       .access = PL0_W, .type = ARM_CP_NOP },
642     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
643       .access = PL0_W, .type = ARM_CP_NOP },
644     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
645       .access = PL1_RW, .accessfn = access_tvm_trvm,
646       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
647                              offsetof(CPUARMState, cp15.ifar_ns) },
648       .resetvalue = 0, },
649     /*
650      * Watchpoint Fault Address Register : should actually only be present
651      * for 1136, 1176, 11MPCore.
652      */
653     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
654       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
655     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
656       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
657       .fgt = FGT_CPACR_EL1,
658       .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
659       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
660       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
661 };
662 
663 /*
664  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
665  * We use these to decide whether we need to wrap a write to MDCR_EL2
666  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
667  */
668 #define MDCR_EL2_PMU_ENABLE_BITS \
669     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
670 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
671 
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)672 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
673                        uint64_t value)
674 {
675     /*
676      * Note that even though the AArch64 view of this register has bits
677      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
678      * architectural requirements for bits which are RES0 only in some
679      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
680      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
681      */
682     raw_write(env, ri, value & ~0x1FULL);
683 }
684 
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)685 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
686 {
687     /* Begin with base v8.0 state.  */
688     uint64_t valid_mask = 0x3fff;
689     ARMCPU *cpu = env_archcpu(env);
690     uint64_t changed;
691 
692     /*
693      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
694      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
695      * Instead, choose the format based on the mode of EL3.
696      */
697     if (arm_el_is_aa64(env, 3)) {
698         value |= SCR_FW | SCR_AW;      /* RES1 */
699         valid_mask &= ~SCR_NET;        /* RES0 */
700 
701         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
702             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
703             value |= SCR_RW;           /* RAO/WI */
704         }
705         if (cpu_isar_feature(aa64_ras, cpu)) {
706             valid_mask |= SCR_TERR;
707         }
708         if (cpu_isar_feature(aa64_lor, cpu)) {
709             valid_mask |= SCR_TLOR;
710         }
711         if (cpu_isar_feature(aa64_pauth, cpu)) {
712             valid_mask |= SCR_API | SCR_APK;
713         }
714         if (cpu_isar_feature(aa64_sel2, cpu)) {
715             valid_mask |= SCR_EEL2;
716         } else if (cpu_isar_feature(aa64_rme, cpu)) {
717             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
718             value |= SCR_NS;
719         }
720         if (cpu_isar_feature(aa64_mte, cpu)) {
721             valid_mask |= SCR_ATA;
722         }
723         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
724             valid_mask |= SCR_ENSCXT;
725         }
726         if (cpu_isar_feature(aa64_doublefault, cpu)) {
727             valid_mask |= SCR_EASE | SCR_NMEA;
728         }
729         if (cpu_isar_feature(aa64_sme, cpu)) {
730             valid_mask |= SCR_ENTP2;
731         }
732         if (cpu_isar_feature(aa64_hcx, cpu)) {
733             valid_mask |= SCR_HXEN;
734         }
735         if (cpu_isar_feature(aa64_fgt, cpu)) {
736             valid_mask |= SCR_FGTEN;
737         }
738         if (cpu_isar_feature(aa64_rme, cpu)) {
739             valid_mask |= SCR_NSE | SCR_GPF;
740         }
741         if (cpu_isar_feature(aa64_ecv, cpu)) {
742             valid_mask |= SCR_ECVEN;
743         }
744     } else {
745         valid_mask &= ~(SCR_RW | SCR_ST);
746         if (cpu_isar_feature(aa32_ras, cpu)) {
747             valid_mask |= SCR_TERR;
748         }
749     }
750 
751     if (!arm_feature(env, ARM_FEATURE_EL2)) {
752         valid_mask &= ~SCR_HCE;
753 
754         /*
755          * On ARMv7, SMD (or SCD as it is called in v7) is only
756          * supported if EL2 exists. The bit is UNK/SBZP when
757          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
758          * when EL2 is unavailable.
759          * On ARMv8, this bit is always available.
760          */
761         if (arm_feature(env, ARM_FEATURE_V7) &&
762             !arm_feature(env, ARM_FEATURE_V8)) {
763             valid_mask &= ~SCR_SMD;
764         }
765     }
766 
767     /* Clear all-context RES0 bits.  */
768     value &= valid_mask;
769     changed = env->cp15.scr_el3 ^ value;
770     env->cp15.scr_el3 = value;
771 
772     /*
773      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
774      * we must invalidate all TLBs below EL3.
775      */
776     if (changed & (SCR_NS | SCR_NSE)) {
777         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
778                                            ARMMMUIdxBit_E20_0 |
779                                            ARMMMUIdxBit_E10_1 |
780                                            ARMMMUIdxBit_E20_2 |
781                                            ARMMMUIdxBit_E10_1_PAN |
782                                            ARMMMUIdxBit_E20_2_PAN |
783                                            ARMMMUIdxBit_E2));
784     }
785 }
786 
scr_reset(CPUARMState * env,const ARMCPRegInfo * ri)787 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
788 {
789     /*
790      * scr_write will set the RES1 bits on an AArch64-only CPU.
791      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
792      */
793     scr_write(env, ri, 0);
794 }
795 
access_tid4(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)796 static CPAccessResult access_tid4(CPUARMState *env,
797                                   const ARMCPRegInfo *ri,
798                                   bool isread)
799 {
800     if (arm_current_el(env) == 1 &&
801         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
802         return CP_ACCESS_TRAP_EL2;
803     }
804 
805     return CP_ACCESS_OK;
806 }
807 
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)808 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
809 {
810     ARMCPU *cpu = env_archcpu(env);
811 
812     /*
813      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
814      * bank
815      */
816     uint32_t index = A32_BANKED_REG_GET(env, csselr,
817                                         ri->secure & ARM_CP_SECSTATE_S);
818 
819     return cpu->ccsidr[index];
820 }
821 
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)822 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
823                          uint64_t value)
824 {
825     raw_write(env, ri, value & 0xf);
826 }
827 
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)828 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
829 {
830     CPUState *cs = env_cpu(env);
831     bool el1 = arm_current_el(env) == 1;
832     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
833     uint64_t ret = 0;
834 
835     if (hcr_el2 & HCR_IMO) {
836         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
837             ret |= CPSR_I;
838         }
839         if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
840             ret |= ISR_IS;
841             ret |= CPSR_I;
842         }
843     } else {
844         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
845             ret |= CPSR_I;
846         }
847 
848         if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
849             ret |= ISR_IS;
850             ret |= CPSR_I;
851         }
852     }
853 
854     if (hcr_el2 & HCR_FMO) {
855         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
856             ret |= CPSR_F;
857         }
858         if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
859             ret |= ISR_FS;
860             ret |= CPSR_F;
861         }
862     } else {
863         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
864             ret |= CPSR_F;
865         }
866     }
867 
868     if (hcr_el2 & HCR_AMO) {
869         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
870             ret |= CPSR_A;
871         }
872     }
873 
874     return ret;
875 }
876 
access_aa64_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)877 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
878                                        bool isread)
879 {
880     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
881         return CP_ACCESS_TRAP_EL2;
882     }
883 
884     return CP_ACCESS_OK;
885 }
886 
access_aa32_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)887 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
888                                        bool isread)
889 {
890     if (arm_feature(env, ARM_FEATURE_V8)) {
891         return access_aa64_tid1(env, ri, isread);
892     }
893 
894     return CP_ACCESS_OK;
895 }
896 
897 static const ARMCPRegInfo v7_cp_reginfo[] = {
898     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
899     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
900       .access = PL1_W, .type = ARM_CP_NOP },
901     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
902       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
903       .access = PL1_R,
904       .accessfn = access_tid4,
905       .fgt = FGT_CCSIDR_EL1,
906       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
907     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
908       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
909       .access = PL1_RW,
910       .accessfn = access_tid4,
911       .fgt = FGT_CSSELR_EL1,
912       .writefn = csselr_write, .resetvalue = 0,
913       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
914                              offsetof(CPUARMState, cp15.csselr_ns) } },
915     /*
916      * Auxiliary ID register: this actually has an IMPDEF value but for now
917      * just RAZ for all cores:
918      */
919     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
920       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
921       .access = PL1_R, .type = ARM_CP_CONST,
922       .accessfn = access_aa64_tid1,
923       .fgt = FGT_AIDR_EL1,
924       .resetvalue = 0 },
925     /*
926      * Auxiliary fault status registers: these also are IMPDEF, and we
927      * choose to RAZ/WI for all cores.
928      */
929     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
930       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
931       .access = PL1_RW, .accessfn = access_tvm_trvm,
932       .fgt = FGT_AFSR0_EL1,
933       .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
934       .type = ARM_CP_CONST, .resetvalue = 0 },
935     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
936       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
937       .access = PL1_RW, .accessfn = access_tvm_trvm,
938       .fgt = FGT_AFSR1_EL1,
939       .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
940       .type = ARM_CP_CONST, .resetvalue = 0 },
941     /*
942      * MAIR can just read-as-written because we don't implement caches
943      * and so don't need to care about memory attributes.
944      */
945     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
946       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
947       .access = PL1_RW, .accessfn = access_tvm_trvm,
948       .fgt = FGT_MAIR_EL1,
949       .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
950       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
951       .resetvalue = 0 },
952     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
953       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
954       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
955       .resetvalue = 0 },
956     /*
957      * For non-long-descriptor page tables these are PRRR and NMRR;
958      * regardless they still act as reads-as-written for QEMU.
959      */
960      /*
961       * MAIR0/1 are defined separately from their 64-bit counterpart which
962       * allows them to assign the correct fieldoffset based on the endianness
963       * handled in the field definitions.
964       */
965     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
966       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
967       .access = PL1_RW, .accessfn = access_tvm_trvm,
968       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
969                              offsetof(CPUARMState, cp15.mair0_ns) },
970       .resetfn = arm_cp_reset_ignore },
971     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
972       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
973       .access = PL1_RW, .accessfn = access_tvm_trvm,
974       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
975                              offsetof(CPUARMState, cp15.mair1_ns) },
976       .resetfn = arm_cp_reset_ignore },
977     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
978       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
979       .fgt = FGT_ISR_EL1,
980       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
981 };
982 
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)983 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
984                         uint64_t value)
985 {
986     value &= 1;
987     env->teecr = value;
988 }
989 
teecr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)990 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
991                                    bool isread)
992 {
993     /*
994      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
995      * at all, so we don't need to check whether we're v8A.
996      */
997     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
998         (env->cp15.hstr_el2 & HSTR_TTEE)) {
999         return CP_ACCESS_TRAP_EL2;
1000     }
1001     return CP_ACCESS_OK;
1002 }
1003 
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1004 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1005                                     bool isread)
1006 {
1007     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1008         return CP_ACCESS_TRAP_EL1;
1009     }
1010     return teecr_access(env, ri, isread);
1011 }
1012 
1013 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1014     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1015       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1016       .resetvalue = 0,
1017       .writefn = teecr_write, .accessfn = teecr_access },
1018     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1019       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1020       .accessfn = teehbr_access, .resetvalue = 0 },
1021 };
1022 
1023 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1024     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1025       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1026       .access = PL0_RW,
1027       .fgt = FGT_TPIDR_EL0,
1028       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1029     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1030       .access = PL0_RW,
1031       .fgt = FGT_TPIDR_EL0,
1032       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1033                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1034       .resetfn = arm_cp_reset_ignore },
1035     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1036       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1037       .access = PL0_R | PL1_W,
1038       .fgt = FGT_TPIDRRO_EL0,
1039       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1040       .resetvalue = 0},
1041     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1042       .access = PL0_R | PL1_W,
1043       .fgt = FGT_TPIDRRO_EL0,
1044       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1045                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1046       .resetfn = arm_cp_reset_ignore },
1047     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1048       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1049       .access = PL1_RW,
1050       .fgt = FGT_TPIDR_EL1,
1051       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1052     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1053       .access = PL1_RW,
1054       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1055                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1056       .resetvalue = 0 },
1057 };
1058 
arm_gt_cntfrq_reset(CPUARMState * env,const ARMCPRegInfo * opaque)1059 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
1060 {
1061     ARMCPU *cpu = env_archcpu(env);
1062 
1063     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
1064 }
1065 
1066 #ifndef CONFIG_USER_ONLY
1067 
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1068 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                        bool isread)
1070 {
1071     /*
1072      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1073      * Writable only at the highest implemented exception level.
1074      */
1075     int el = arm_current_el(env);
1076     uint64_t hcr;
1077     uint32_t cntkctl;
1078 
1079     switch (el) {
1080     case 0:
1081         hcr = arm_hcr_el2_eff(env);
1082         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
1083             cntkctl = env->cp15.cnthctl_el2;
1084         } else {
1085             cntkctl = env->cp15.c14_cntkctl;
1086         }
1087         if (!extract32(cntkctl, 0, 2)) {
1088             return CP_ACCESS_TRAP_EL1;
1089         }
1090         break;
1091     case 1:
1092         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1093             arm_is_secure_below_el3(env)) {
1094             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1095             return CP_ACCESS_UNDEFINED;
1096         }
1097         break;
1098     case 2:
1099     case 3:
1100         break;
1101     }
1102 
1103     if (!isread && el < arm_highest_el(env)) {
1104         return CP_ACCESS_UNDEFINED;
1105     }
1106 
1107     return CP_ACCESS_OK;
1108 }
1109 
gt_counter_access(CPUARMState * env,int timeridx,bool isread)1110 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1111                                         bool isread)
1112 {
1113     unsigned int cur_el = arm_current_el(env);
1114     bool has_el2 = arm_is_el2_enabled(env);
1115     uint64_t hcr = arm_hcr_el2_eff(env);
1116 
1117     switch (cur_el) {
1118     case 0:
1119         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
1120         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
1121             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
1122                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
1123         }
1124 
1125         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
1126         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1127             return CP_ACCESS_TRAP_EL1;
1128         }
1129         /* fall through */
1130     case 1:
1131         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
1132         if (has_el2 && timeridx == GTIMER_PHYS &&
1133             (hcr & HCR_E2H
1134              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
1135              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
1136             return CP_ACCESS_TRAP_EL2;
1137         }
1138         if (has_el2 && timeridx == GTIMER_VIRT) {
1139             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
1140                 return CP_ACCESS_TRAP_EL2;
1141             }
1142         }
1143         break;
1144     }
1145     return CP_ACCESS_OK;
1146 }
1147 
gt_timer_access(CPUARMState * env,int timeridx,bool isread)1148 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1149                                       bool isread)
1150 {
1151     unsigned int cur_el = arm_current_el(env);
1152     bool has_el2 = arm_is_el2_enabled(env);
1153     uint64_t hcr = arm_hcr_el2_eff(env);
1154 
1155     switch (cur_el) {
1156     case 0:
1157         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
1158             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
1159             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
1160                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
1161         }
1162 
1163         /*
1164          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
1165          * EL0 if EL0[PV]TEN is zero.
1166          */
1167         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1168             return CP_ACCESS_TRAP_EL1;
1169         }
1170         /* fall through */
1171 
1172     case 1:
1173         if (has_el2 && timeridx == GTIMER_PHYS) {
1174             if (hcr & HCR_E2H) {
1175                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
1176                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
1177                     return CP_ACCESS_TRAP_EL2;
1178                 }
1179             } else {
1180                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
1181                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
1182                     return CP_ACCESS_TRAP_EL2;
1183                 }
1184             }
1185         }
1186         if (has_el2 && timeridx == GTIMER_VIRT) {
1187             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
1188                 return CP_ACCESS_TRAP_EL2;
1189             }
1190         }
1191         break;
1192     }
1193     return CP_ACCESS_OK;
1194 }
1195 
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1196 static CPAccessResult gt_pct_access(CPUARMState *env,
1197                                     const ARMCPRegInfo *ri,
1198                                     bool isread)
1199 {
1200     return gt_counter_access(env, GTIMER_PHYS, isread);
1201 }
1202 
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1203 static CPAccessResult gt_vct_access(CPUARMState *env,
1204                                     const ARMCPRegInfo *ri,
1205                                     bool isread)
1206 {
1207     return gt_counter_access(env, GTIMER_VIRT, isread);
1208 }
1209 
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1210 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1211                                        bool isread)
1212 {
1213     return gt_timer_access(env, GTIMER_PHYS, isread);
1214 }
1215 
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1216 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1217                                        bool isread)
1218 {
1219     return gt_timer_access(env, GTIMER_VIRT, isread);
1220 }
1221 
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1222 static CPAccessResult gt_stimer_access(CPUARMState *env,
1223                                        const ARMCPRegInfo *ri,
1224                                        bool isread)
1225 {
1226     /*
1227      * The AArch64 register view of the secure physical timer is
1228      * always accessible from EL3, and configurably accessible from
1229      * Secure EL1.
1230      */
1231     switch (arm_current_el(env)) {
1232     case 1:
1233         if (!arm_is_secure(env)) {
1234             return CP_ACCESS_UNDEFINED;
1235         }
1236         if (arm_is_el2_enabled(env)) {
1237             return CP_ACCESS_UNDEFINED;
1238         }
1239         if (!(env->cp15.scr_el3 & SCR_ST)) {
1240             return CP_ACCESS_TRAP_EL3;
1241         }
1242         return CP_ACCESS_OK;
1243     case 0:
1244     case 2:
1245         return CP_ACCESS_UNDEFINED;
1246     case 3:
1247         return CP_ACCESS_OK;
1248     default:
1249         g_assert_not_reached();
1250     }
1251 }
1252 
gt_sel2timer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1253 static CPAccessResult gt_sel2timer_access(CPUARMState *env,
1254                                           const ARMCPRegInfo *ri,
1255                                           bool isread)
1256 {
1257     /*
1258      * The AArch64 register view of the secure EL2 timers are mostly
1259      * accessible from EL3 and EL2 although can also be trapped to EL2
1260      * from EL1 depending on nested virt config.
1261      */
1262     switch (arm_current_el(env)) {
1263     case 0: /* UNDEFINED */
1264         return CP_ACCESS_UNDEFINED;
1265     case 1:
1266         if (!arm_is_secure(env)) {
1267             /* UNDEFINED */
1268             return CP_ACCESS_UNDEFINED;
1269         } else if (arm_hcr_el2_eff(env) & HCR_NV) {
1270             /* Aarch64.SystemAccessTrap(EL2, 0x18) */
1271             return CP_ACCESS_TRAP_EL2;
1272         }
1273         /* UNDEFINED */
1274         return CP_ACCESS_UNDEFINED;
1275     case 2:
1276         if (!arm_is_secure(env)) {
1277             /* UNDEFINED */
1278             return CP_ACCESS_UNDEFINED;
1279         }
1280         return CP_ACCESS_OK;
1281     case 3:
1282         if (env->cp15.scr_el3 & SCR_EEL2) {
1283             return CP_ACCESS_OK;
1284         } else {
1285             return CP_ACCESS_UNDEFINED;
1286         }
1287     default:
1288         g_assert_not_reached();
1289     }
1290 }
1291 
gt_get_countervalue(CPUARMState * env)1292 uint64_t gt_get_countervalue(CPUARMState *env)
1293 {
1294     ARMCPU *cpu = env_archcpu(env);
1295 
1296     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
1297 }
1298 
gt_update_irq(ARMCPU * cpu,int timeridx)1299 static void gt_update_irq(ARMCPU *cpu, int timeridx)
1300 {
1301     CPUARMState *env = &cpu->env;
1302     uint64_t cnthctl = env->cp15.cnthctl_el2;
1303     ARMSecuritySpace ss = arm_security_space(env);
1304     /* ISTATUS && !IMASK */
1305     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
1306 
1307     /*
1308      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
1309      * It is RES0 in Secure and NonSecure state.
1310      */
1311     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
1312         ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
1313          (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
1314         irqstate = 0;
1315     }
1316 
1317     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1318     trace_arm_gt_update_irq(timeridx, irqstate);
1319 }
1320 
gt_rme_post_el_change(ARMCPU * cpu,void * ignored)1321 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
1322 {
1323     /*
1324      * Changing security state between Root and Secure/NonSecure, which may
1325      * happen when switching EL, can change the effective value of CNTHCTL_EL2
1326      * mask bits. Update the IRQ state accordingly.
1327      */
1328     gt_update_irq(cpu, GTIMER_VIRT);
1329     gt_update_irq(cpu, GTIMER_PHYS);
1330 }
1331 
gt_phys_raw_cnt_offset(CPUARMState * env)1332 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
1333 {
1334     if ((env->cp15.scr_el3 & SCR_ECVEN) &&
1335         FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
1336         arm_is_el2_enabled(env) &&
1337         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
1338         return env->cp15.cntpoff_el2;
1339     }
1340     return 0;
1341 }
1342 
gt_indirect_access_timer_offset(CPUARMState * env,int timeridx)1343 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx)
1344 {
1345     /*
1346      * Return the timer offset to use for indirect accesses to the timer.
1347      * This is the Offset value as defined in D12.2.4.1 "Operation of the
1348      * CompareValue views of the timers".
1349      *
1350      * The condition here is not always the same as the condition for
1351      * whether to apply an offset register when doing a direct read of
1352      * the counter sysreg; those conditions are described in the
1353      * access pseudocode for each counter register.
1354      */
1355     switch (timeridx) {
1356     case GTIMER_PHYS:
1357         return gt_phys_raw_cnt_offset(env);
1358     case GTIMER_VIRT:
1359         return env->cp15.cntvoff_el2;
1360     case GTIMER_HYP:
1361     case GTIMER_SEC:
1362     case GTIMER_HYPVIRT:
1363     case GTIMER_S_EL2_PHYS:
1364     case GTIMER_S_EL2_VIRT:
1365         return 0;
1366     default:
1367         g_assert_not_reached();
1368     }
1369 }
1370 
gt_direct_access_timer_offset(CPUARMState * env,int timeridx)1371 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx)
1372 {
1373     /*
1374      * Return the timer offset to use for direct accesses to the
1375      * counter registers CNTPCT and CNTVCT, and for direct accesses
1376      * to the CNT*_TVAL registers.
1377      *
1378      * This isn't exactly the same as the indirect-access offset,
1379      * because here we also care about what EL the register access
1380      * is being made from.
1381      *
1382      * This corresponds to the access pseudocode for the registers.
1383      */
1384     uint64_t hcr;
1385 
1386     switch (timeridx) {
1387     case GTIMER_PHYS:
1388         if (arm_current_el(env) >= 2) {
1389             return 0;
1390         }
1391         return gt_phys_raw_cnt_offset(env);
1392     case GTIMER_VIRT:
1393         switch (arm_current_el(env)) {
1394         case 2:
1395             hcr = arm_hcr_el2_eff(env);
1396             if (hcr & HCR_E2H) {
1397                 return 0;
1398             }
1399             break;
1400         case 0:
1401             hcr = arm_hcr_el2_eff(env);
1402             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
1403                 return 0;
1404             }
1405             break;
1406         }
1407         return env->cp15.cntvoff_el2;
1408     case GTIMER_HYP:
1409     case GTIMER_SEC:
1410     case GTIMER_HYPVIRT:
1411     case GTIMER_S_EL2_PHYS:
1412     case GTIMER_S_EL2_VIRT:
1413         return 0;
1414     default:
1415         g_assert_not_reached();
1416     }
1417 }
1418 
gt_recalc_timer(ARMCPU * cpu,int timeridx)1419 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1420 {
1421     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1422 
1423     if (gt->ctl & 1) {
1424         /*
1425          * Timer enabled: calculate and set current ISTATUS, irq, and
1426          * reset timer to when ISTATUS next has to change
1427          */
1428         uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx);
1429         uint64_t count = gt_get_countervalue(&cpu->env);
1430         /* Note that this must be unsigned 64 bit arithmetic: */
1431         int istatus = count - offset >= gt->cval;
1432         uint64_t nexttick;
1433 
1434         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1435 
1436         if (istatus) {
1437             /*
1438              * Next transition is when (count - offset) rolls back over to 0.
1439              * If offset > count then this is when count == offset;
1440              * if offset <= count then this is when count == offset + 2^64
1441              * For the latter case we set nexttick to an "as far in future
1442              * as possible" value and let the code below handle it.
1443              */
1444             if (offset > count) {
1445                 nexttick = offset;
1446             } else {
1447                 nexttick = UINT64_MAX;
1448             }
1449         } else {
1450             /*
1451              * Next transition is when (count - offset) == cval, i.e.
1452              * when count == (cval + offset).
1453              * If that would overflow, then again we set up the next interrupt
1454              * for "as far in the future as possible" for the code below.
1455              */
1456             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
1457                 nexttick = UINT64_MAX;
1458             }
1459         }
1460         /*
1461          * Note that the desired next expiry time might be beyond the
1462          * signed-64-bit range of a QEMUTimer -- in this case we just
1463          * set the timer for as far in the future as possible. When the
1464          * timer expires we will reset the timer for any remaining period.
1465          */
1466         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
1467             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
1468         } else {
1469             timer_mod(cpu->gt_timer[timeridx], nexttick);
1470         }
1471         trace_arm_gt_recalc(timeridx, nexttick);
1472     } else {
1473         /* Timer disabled: ISTATUS and timer output always clear */
1474         gt->ctl &= ~4;
1475         timer_del(cpu->gt_timer[timeridx]);
1476         trace_arm_gt_recalc_disabled(timeridx);
1477     }
1478     gt_update_irq(cpu, timeridx);
1479 }
1480 
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)1481 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1482                            int timeridx)
1483 {
1484     ARMCPU *cpu = env_archcpu(env);
1485 
1486     timer_del(cpu->gt_timer[timeridx]);
1487 }
1488 
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)1489 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1490 {
1491     uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS);
1492     return gt_get_countervalue(env) - offset;
1493 }
1494 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)1495 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1496 {
1497     uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT);
1498     return gt_get_countervalue(env) - offset;
1499 }
1500 
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)1501 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1502                           int timeridx,
1503                           uint64_t value)
1504 {
1505     trace_arm_gt_cval_write(timeridx, value);
1506     env->cp15.c14_timer[timeridx].cval = value;
1507     gt_recalc_timer(env_archcpu(env), timeridx);
1508 }
1509 
do_tval_read(CPUARMState * env,int timeridx,uint64_t offset)1510 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset)
1511 {
1512     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1513                       (gt_get_countervalue(env) - offset));
1514 }
1515 
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)1516 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1517                              int timeridx)
1518 {
1519     uint64_t offset = gt_direct_access_timer_offset(env, timeridx);
1520 
1521     return do_tval_read(env, timeridx, offset);
1522 }
1523 
do_tval_write(CPUARMState * env,int timeridx,uint64_t value,uint64_t offset)1524 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value,
1525                           uint64_t offset)
1526 {
1527     trace_arm_gt_tval_write(timeridx, value);
1528     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1529                                          sextract64(value, 0, 32);
1530     gt_recalc_timer(env_archcpu(env), timeridx);
1531 }
1532 
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)1533 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1534                           int timeridx,
1535                           uint64_t value)
1536 {
1537     uint64_t offset = gt_direct_access_timer_offset(env, timeridx);
1538 
1539     do_tval_write(env, timeridx, value, offset);
1540 }
1541 
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)1542 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1543                          int timeridx,
1544                          uint64_t value)
1545 {
1546     ARMCPU *cpu = env_archcpu(env);
1547     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1548 
1549     trace_arm_gt_ctl_write(timeridx, value);
1550     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1551     if ((oldval ^ value) & 1) {
1552         /* Enable toggled */
1553         gt_recalc_timer(cpu, timeridx);
1554     } else if ((oldval ^ value) & 2) {
1555         /*
1556          * IMASK toggled: don't need to recalculate,
1557          * just set the interrupt line based on ISTATUS
1558          */
1559         trace_arm_gt_imask_toggle(timeridx);
1560         gt_update_irq(cpu, timeridx);
1561     }
1562 }
1563 
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1564 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1565 {
1566     gt_timer_reset(env, ri, GTIMER_PHYS);
1567 }
1568 
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1569 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1570                                uint64_t value)
1571 {
1572     gt_cval_write(env, ri, GTIMER_PHYS, value);
1573 }
1574 
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1575 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1576 {
1577     return gt_tval_read(env, ri, GTIMER_PHYS);
1578 }
1579 
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1580 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1581                                uint64_t value)
1582 {
1583     gt_tval_write(env, ri, GTIMER_PHYS, value);
1584 }
1585 
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1586 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587                               uint64_t value)
1588 {
1589     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1590 }
1591 
gt_phys_redir_timeridx(CPUARMState * env)1592 static int gt_phys_redir_timeridx(CPUARMState *env)
1593 {
1594     switch (arm_mmu_idx(env)) {
1595     case ARMMMUIdx_E20_0:
1596     case ARMMMUIdx_E20_2:
1597     case ARMMMUIdx_E20_2_PAN:
1598         return GTIMER_HYP;
1599     default:
1600         return GTIMER_PHYS;
1601     }
1602 }
1603 
gt_virt_redir_timeridx(CPUARMState * env)1604 static int gt_virt_redir_timeridx(CPUARMState *env)
1605 {
1606     switch (arm_mmu_idx(env)) {
1607     case ARMMMUIdx_E20_0:
1608     case ARMMMUIdx_E20_2:
1609     case ARMMMUIdx_E20_2_PAN:
1610         return GTIMER_HYPVIRT;
1611     default:
1612         return GTIMER_VIRT;
1613     }
1614 }
1615 
gt_phys_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)1616 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
1617                                         const ARMCPRegInfo *ri)
1618 {
1619     int timeridx = gt_phys_redir_timeridx(env);
1620     return env->cp15.c14_timer[timeridx].cval;
1621 }
1622 
gt_phys_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1623 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624                                      uint64_t value)
1625 {
1626     int timeridx = gt_phys_redir_timeridx(env);
1627     gt_cval_write(env, ri, timeridx, value);
1628 }
1629 
gt_phys_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1630 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
1631                                         const ARMCPRegInfo *ri)
1632 {
1633     int timeridx = gt_phys_redir_timeridx(env);
1634     return gt_tval_read(env, ri, timeridx);
1635 }
1636 
gt_phys_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1637 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638                                      uint64_t value)
1639 {
1640     int timeridx = gt_phys_redir_timeridx(env);
1641     gt_tval_write(env, ri, timeridx, value);
1642 }
1643 
gt_phys_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)1644 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
1645                                        const ARMCPRegInfo *ri)
1646 {
1647     int timeridx = gt_phys_redir_timeridx(env);
1648     return env->cp15.c14_timer[timeridx].ctl;
1649 }
1650 
gt_phys_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1651 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652                                     uint64_t value)
1653 {
1654     int timeridx = gt_phys_redir_timeridx(env);
1655     gt_ctl_write(env, ri, timeridx, value);
1656 }
1657 
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1658 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1659 {
1660     gt_timer_reset(env, ri, GTIMER_VIRT);
1661 }
1662 
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1663 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1664                                uint64_t value)
1665 {
1666     gt_cval_write(env, ri, GTIMER_VIRT, value);
1667 }
1668 
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1669 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1670 {
1671     /*
1672      * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0
1673      * we always apply CNTVOFF_EL2. Special case that here rather
1674      * than going into the generic gt_tval_read() and then having
1675      * to re-detect that it's this register.
1676      * Note that the accessfn/perms mean we know we're at EL2 or EL3 here.
1677      */
1678     return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2);
1679 }
1680 
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1681 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1682                                uint64_t value)
1683 {
1684     /* Similarly for writes to CNTV_TVAL_EL02 */
1685     do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2);
1686 }
1687 
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1688 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689                               uint64_t value)
1690 {
1691     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1692 }
1693 
gt_cnthctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1694 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1695                              uint64_t value)
1696 {
1697     ARMCPU *cpu = env_archcpu(env);
1698     uint32_t oldval = env->cp15.cnthctl_el2;
1699     uint32_t valid_mask =
1700         R_CNTHCTL_EL0PCTEN_E2H1_MASK |
1701         R_CNTHCTL_EL0VCTEN_E2H1_MASK |
1702         R_CNTHCTL_EVNTEN_MASK |
1703         R_CNTHCTL_EVNTDIR_MASK |
1704         R_CNTHCTL_EVNTI_MASK |
1705         R_CNTHCTL_EL0VTEN_MASK |
1706         R_CNTHCTL_EL0PTEN_MASK |
1707         R_CNTHCTL_EL1PCTEN_E2H1_MASK |
1708         R_CNTHCTL_EL1PTEN_MASK;
1709 
1710     if (cpu_isar_feature(aa64_rme, cpu)) {
1711         valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
1712     }
1713     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
1714         valid_mask |=
1715             R_CNTHCTL_EL1TVT_MASK |
1716             R_CNTHCTL_EL1TVCT_MASK |
1717             R_CNTHCTL_EL1NVPCT_MASK |
1718             R_CNTHCTL_EL1NVVCT_MASK |
1719             R_CNTHCTL_EVNTIS_MASK;
1720     }
1721     if (cpu_isar_feature(aa64_ecv, cpu)) {
1722         valid_mask |= R_CNTHCTL_ECV_MASK;
1723     }
1724 
1725     /* Clear RES0 bits */
1726     value &= valid_mask;
1727 
1728     raw_write(env, ri, value);
1729 
1730     if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
1731         gt_update_irq(cpu, GTIMER_VIRT);
1732     } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
1733         gt_update_irq(cpu, GTIMER_PHYS);
1734     }
1735 }
1736 
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1737 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1738                               uint64_t value)
1739 {
1740     ARMCPU *cpu = env_archcpu(env);
1741 
1742     trace_arm_gt_cntvoff_write(value);
1743     raw_write(env, ri, value);
1744     gt_recalc_timer(cpu, GTIMER_VIRT);
1745 }
1746 
gt_virt_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)1747 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
1748                                         const ARMCPRegInfo *ri)
1749 {
1750     int timeridx = gt_virt_redir_timeridx(env);
1751     return env->cp15.c14_timer[timeridx].cval;
1752 }
1753 
gt_virt_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1754 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755                                      uint64_t value)
1756 {
1757     int timeridx = gt_virt_redir_timeridx(env);
1758     gt_cval_write(env, ri, timeridx, value);
1759 }
1760 
gt_virt_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1761 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
1762                                         const ARMCPRegInfo *ri)
1763 {
1764     int timeridx = gt_virt_redir_timeridx(env);
1765     return gt_tval_read(env, ri, timeridx);
1766 }
1767 
gt_virt_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1768 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1769                                      uint64_t value)
1770 {
1771     int timeridx = gt_virt_redir_timeridx(env);
1772     gt_tval_write(env, ri, timeridx, value);
1773 }
1774 
gt_virt_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)1775 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
1776                                        const ARMCPRegInfo *ri)
1777 {
1778     int timeridx = gt_virt_redir_timeridx(env);
1779     return env->cp15.c14_timer[timeridx].ctl;
1780 }
1781 
gt_virt_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1782 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1783                                     uint64_t value)
1784 {
1785     int timeridx = gt_virt_redir_timeridx(env);
1786     gt_ctl_write(env, ri, timeridx, value);
1787 }
1788 
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1789 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791     gt_timer_reset(env, ri, GTIMER_HYP);
1792 }
1793 
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1794 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                               uint64_t value)
1796 {
1797     gt_cval_write(env, ri, GTIMER_HYP, value);
1798 }
1799 
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1800 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802     return gt_tval_read(env, ri, GTIMER_HYP);
1803 }
1804 
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1805 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1806                               uint64_t value)
1807 {
1808     gt_tval_write(env, ri, GTIMER_HYP, value);
1809 }
1810 
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1811 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812                               uint64_t value)
1813 {
1814     gt_ctl_write(env, ri, GTIMER_HYP, value);
1815 }
1816 
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1817 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     gt_timer_reset(env, ri, GTIMER_SEC);
1820 }
1821 
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1822 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                               uint64_t value)
1824 {
1825     gt_cval_write(env, ri, GTIMER_SEC, value);
1826 }
1827 
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1828 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830     return gt_tval_read(env, ri, GTIMER_SEC);
1831 }
1832 
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1833 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834                               uint64_t value)
1835 {
1836     gt_tval_write(env, ri, GTIMER_SEC, value);
1837 }
1838 
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1839 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1840                               uint64_t value)
1841 {
1842     gt_ctl_write(env, ri, GTIMER_SEC, value);
1843 }
1844 
gt_sec_pel2_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1845 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1846 {
1847     gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS);
1848 }
1849 
gt_sec_pel2_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1850 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851                                    uint64_t value)
1852 {
1853     gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value);
1854 }
1855 
gt_sec_pel2_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1856 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1857 {
1858     return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS);
1859 }
1860 
gt_sec_pel2_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1861 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1862                               uint64_t value)
1863 {
1864     gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value);
1865 }
1866 
gt_sec_pel2_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1867 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1868                               uint64_t value)
1869 {
1870     gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value);
1871 }
1872 
gt_sec_vel2_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1873 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1874 {
1875     gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT);
1876 }
1877 
gt_sec_vel2_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1878 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1879                               uint64_t value)
1880 {
1881     gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value);
1882 }
1883 
gt_sec_vel2_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1884 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1885 {
1886     return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT);
1887 }
1888 
gt_sec_vel2_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1889 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1890                                    uint64_t value)
1891 {
1892     gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value);
1893 }
1894 
gt_sec_vel2_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1895 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1896                               uint64_t value)
1897 {
1898     gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value);
1899 }
1900 
gt_hv_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)1901 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1902 {
1903     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
1904 }
1905 
gt_hv_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1906 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1907                              uint64_t value)
1908 {
1909     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
1910 }
1911 
gt_hv_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)1912 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1913 {
1914     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
1915 }
1916 
gt_hv_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1917 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1918                              uint64_t value)
1919 {
1920     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
1921 }
1922 
gt_hv_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1923 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1924                             uint64_t value)
1925 {
1926     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
1927 }
1928 
arm_gt_ptimer_cb(void * opaque)1929 void arm_gt_ptimer_cb(void *opaque)
1930 {
1931     ARMCPU *cpu = opaque;
1932 
1933     gt_recalc_timer(cpu, GTIMER_PHYS);
1934 }
1935 
arm_gt_vtimer_cb(void * opaque)1936 void arm_gt_vtimer_cb(void *opaque)
1937 {
1938     ARMCPU *cpu = opaque;
1939 
1940     gt_recalc_timer(cpu, GTIMER_VIRT);
1941 }
1942 
arm_gt_htimer_cb(void * opaque)1943 void arm_gt_htimer_cb(void *opaque)
1944 {
1945     ARMCPU *cpu = opaque;
1946 
1947     gt_recalc_timer(cpu, GTIMER_HYP);
1948 }
1949 
arm_gt_stimer_cb(void * opaque)1950 void arm_gt_stimer_cb(void *opaque)
1951 {
1952     ARMCPU *cpu = opaque;
1953 
1954     gt_recalc_timer(cpu, GTIMER_SEC);
1955 }
1956 
arm_gt_sel2timer_cb(void * opaque)1957 void arm_gt_sel2timer_cb(void *opaque)
1958 {
1959     ARMCPU *cpu = opaque;
1960 
1961     gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS);
1962 }
1963 
arm_gt_sel2vtimer_cb(void * opaque)1964 void arm_gt_sel2vtimer_cb(void *opaque)
1965 {
1966     ARMCPU *cpu = opaque;
1967 
1968     gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT);
1969 }
1970 
arm_gt_hvtimer_cb(void * opaque)1971 void arm_gt_hvtimer_cb(void *opaque)
1972 {
1973     ARMCPU *cpu = opaque;
1974 
1975     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
1976 }
1977 
1978 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1979     /*
1980      * Note that CNTFRQ is purely reads-as-written for the benefit
1981      * of software; writing it doesn't actually change the timer frequency.
1982      * Our reset value matches the fixed frequency we implement the timer at.
1983      */
1984     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1985       .type = ARM_CP_ALIAS,
1986       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1987       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1988     },
1989     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1990       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1991       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1992       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1993       .resetfn = arm_gt_cntfrq_reset,
1994     },
1995     /* overall control: mostly access permissions */
1996     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1997       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1998       .access = PL1_RW,
1999       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2000       .resetvalue = 0,
2001     },
2002     /* per-timer control */
2003     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2004       .secure = ARM_CP_SECSTATE_NS,
2005       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2006       .accessfn = gt_ptimer_access,
2007       .fieldoffset = offsetoflow32(CPUARMState,
2008                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2009       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2010       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2011     },
2012     { .name = "CNTP_CTL_S",
2013       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2014       .secure = ARM_CP_SECSTATE_S,
2015       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2016       .accessfn = gt_ptimer_access,
2017       .fieldoffset = offsetoflow32(CPUARMState,
2018                                    cp15.c14_timer[GTIMER_SEC].ctl),
2019       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2020     },
2021     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2022       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2023       .type = ARM_CP_IO, .access = PL0_RW,
2024       .accessfn = gt_ptimer_access,
2025       .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
2026       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2027       .resetvalue = 0,
2028       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2029       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2030     },
2031     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2032       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2033       .accessfn = gt_vtimer_access,
2034       .fieldoffset = offsetoflow32(CPUARMState,
2035                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2036       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2037       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2038     },
2039     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2041       .type = ARM_CP_IO, .access = PL0_RW,
2042       .accessfn = gt_vtimer_access,
2043       .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
2044       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2045       .resetvalue = 0,
2046       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2047       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2048     },
2049     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2050     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2051       .secure = ARM_CP_SECSTATE_NS,
2052       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2053       .accessfn = gt_ptimer_access,
2054       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2055     },
2056     { .name = "CNTP_TVAL_S",
2057       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2058       .secure = ARM_CP_SECSTATE_S,
2059       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2060       .accessfn = gt_ptimer_access,
2061       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2062     },
2063     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2064       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2065       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2066       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2067       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2068     },
2069     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2070       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2071       .accessfn = gt_vtimer_access,
2072       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2073     },
2074     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2075       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2076       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2077       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2078       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2079     },
2080     /* The counter itself */
2081     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2082       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2083       .accessfn = gt_pct_access,
2084       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2085     },
2086     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2088       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2089       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2090     },
2091     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2092       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2093       .accessfn = gt_vct_access,
2094       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2095     },
2096     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2097       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2098       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2099       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2100     },
2101     /* Comparison value, indicating when the timer goes off */
2102     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2103       .secure = ARM_CP_SECSTATE_NS,
2104       .access = PL0_RW,
2105       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2106       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2107       .accessfn = gt_ptimer_access,
2108       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
2109       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
2110     },
2111     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2112       .secure = ARM_CP_SECSTATE_S,
2113       .access = PL0_RW,
2114       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2115       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2116       .accessfn = gt_ptimer_access,
2117       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2118     },
2119     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2120       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2121       .access = PL0_RW,
2122       .type = ARM_CP_IO,
2123       .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
2124       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2125       .resetvalue = 0, .accessfn = gt_ptimer_access,
2126       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
2127       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
2128     },
2129     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2130       .access = PL0_RW,
2131       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2132       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2133       .accessfn = gt_vtimer_access,
2134       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
2135       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
2136     },
2137     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2138       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2139       .access = PL0_RW,
2140       .type = ARM_CP_IO,
2141       .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
2142       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2143       .resetvalue = 0, .accessfn = gt_vtimer_access,
2144       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
2145       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
2146     },
2147     /*
2148      * Secure timer -- this is actually restricted to only EL3
2149      * and configurably Secure-EL1 via the accessfn.
2150      */
2151     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2152       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2153       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2154       .accessfn = gt_stimer_access,
2155       .readfn = gt_sec_tval_read,
2156       .writefn = gt_sec_tval_write,
2157       .resetfn = gt_sec_timer_reset,
2158     },
2159     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2160       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2161       .type = ARM_CP_IO, .access = PL1_RW,
2162       .accessfn = gt_stimer_access,
2163       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2164       .resetvalue = 0,
2165       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2166     },
2167     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2168       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2169       .type = ARM_CP_IO, .access = PL1_RW,
2170       .accessfn = gt_stimer_access,
2171       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2172       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2173     },
2174 };
2175 
2176 /*
2177  * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
2178  * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
2179  * so our implementations here are identical to the normal registers.
2180  */
2181 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
2182     { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
2183       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2184       .accessfn = gt_vct_access,
2185       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2186     },
2187     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
2188       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
2189       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2190       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2191     },
2192     { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
2193       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2194       .accessfn = gt_pct_access,
2195       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2196     },
2197     { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
2198       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
2199       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2200       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2201     },
2202 };
2203 
gt_cntpoff_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2204 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
2205                                         const ARMCPRegInfo *ri,
2206                                         bool isread)
2207 {
2208     if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
2209         !(env->cp15.scr_el3 & SCR_ECVEN)) {
2210         return CP_ACCESS_TRAP_EL3;
2211     }
2212     return CP_ACCESS_OK;
2213 }
2214 
gt_cntpoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2215 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2216                               uint64_t value)
2217 {
2218     ARMCPU *cpu = env_archcpu(env);
2219 
2220     trace_arm_gt_cntpoff_write(value);
2221     raw_write(env, ri, value);
2222     gt_recalc_timer(cpu, GTIMER_PHYS);
2223 }
2224 
2225 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
2226     .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
2227     .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
2228     .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
2229     .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
2230     .nv2_redirect_offset = 0x1a8,
2231     .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
2232 };
2233 #else
2234 
2235 /*
2236  * In user-mode most of the generic timer registers are inaccessible
2237  * however modern kernels (4.12+) allow access to cntvct_el0
2238  */
2239 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2240 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2241 {
2242     ARMCPU *cpu = env_archcpu(env);
2243 
2244     /*
2245      * Currently we have no support for QEMUTimer in linux-user so we
2246      * can't call gt_get_countervalue(env), instead we directly
2247      * call the lower level functions.
2248      */
2249     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
2250 }
2251 
2252 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2253     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2254       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2255       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2256       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2257       .resetfn = arm_gt_cntfrq_reset,
2258     },
2259     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2260       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2261       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2262       .readfn = gt_virt_cnt_read,
2263     },
2264 };
2265 
2266 /*
2267  * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
2268  * is exposed to userspace by Linux.
2269  */
2270 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
2271     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
2272       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
2273       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2274       .readfn = gt_virt_cnt_read,
2275     },
2276 };
2277 
2278 #endif
2279 
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2280 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2281 {
2282     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2283         raw_write(env, ri, value);
2284     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2285         raw_write(env, ri, value & 0xfffff6ff);
2286     } else {
2287         raw_write(env, ri, value & 0xfffff1ff);
2288     }
2289 }
2290 
2291 /* Return basic MPU access permission bits.  */
simple_mpu_ap_bits(uint32_t val)2292 static uint32_t simple_mpu_ap_bits(uint32_t val)
2293 {
2294     uint32_t ret;
2295     uint32_t mask;
2296     int i;
2297     ret = 0;
2298     mask = 3;
2299     for (i = 0; i < 16; i += 2) {
2300         ret |= (val >> i) & mask;
2301         mask <<= 2;
2302     }
2303     return ret;
2304 }
2305 
2306 /* Pad basic MPU access permission bits to extended format.  */
extended_mpu_ap_bits(uint32_t val)2307 static uint32_t extended_mpu_ap_bits(uint32_t val)
2308 {
2309     uint32_t ret;
2310     uint32_t mask;
2311     int i;
2312     ret = 0;
2313     mask = 3;
2314     for (i = 0; i < 16; i += 2) {
2315         ret |= (val & mask) << i;
2316         mask <<= 2;
2317     }
2318     return ret;
2319 }
2320 
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2321 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2322                                  uint64_t value)
2323 {
2324     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2325 }
2326 
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)2327 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2328 {
2329     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2330 }
2331 
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2332 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2333                                  uint64_t value)
2334 {
2335     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2336 }
2337 
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)2338 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2339 {
2340     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2341 }
2342 
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)2343 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2344 {
2345     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2346 
2347     if (!u32p) {
2348         return 0;
2349     }
2350 
2351     u32p += env->pmsav7.rnr[M_REG_NS];
2352     return *u32p;
2353 }
2354 
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2355 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2356                          uint64_t value)
2357 {
2358     ARMCPU *cpu = env_archcpu(env);
2359     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2360 
2361     if (!u32p) {
2362         return;
2363     }
2364 
2365     u32p += env->pmsav7.rnr[M_REG_NS];
2366     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2367     *u32p = value;
2368 }
2369 
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2370 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2371                               uint64_t value)
2372 {
2373     ARMCPU *cpu = env_archcpu(env);
2374     uint32_t nrgs = cpu->pmsav7_dregion;
2375 
2376     if (value >= nrgs) {
2377         qemu_log_mask(LOG_GUEST_ERROR,
2378                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2379                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2380         return;
2381     }
2382 
2383     raw_write(env, ri, value);
2384 }
2385 
prbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2386 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2387                           uint64_t value)
2388 {
2389     ARMCPU *cpu = env_archcpu(env);
2390 
2391     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2392     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
2393 }
2394 
prbar_read(CPUARMState * env,const ARMCPRegInfo * ri)2395 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
2396 {
2397     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
2398 }
2399 
prlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2400 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2401                           uint64_t value)
2402 {
2403     ARMCPU *cpu = env_archcpu(env);
2404 
2405     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2406     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
2407 }
2408 
prlar_read(CPUARMState * env,const ARMCPRegInfo * ri)2409 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
2410 {
2411     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
2412 }
2413 
prselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2414 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2415                            uint64_t value)
2416 {
2417     ARMCPU *cpu = env_archcpu(env);
2418 
2419     /*
2420      * Ignore writes that would select not implemented region.
2421      * This is architecturally UNPREDICTABLE.
2422      */
2423     if (value >= cpu->pmsav7_dregion) {
2424         return;
2425     }
2426 
2427     env->pmsav7.rnr[M_REG_NS] = value;
2428 }
2429 
hprbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2430 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2431                           uint64_t value)
2432 {
2433     ARMCPU *cpu = env_archcpu(env);
2434 
2435     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2436     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
2437 }
2438 
hprbar_read(CPUARMState * env,const ARMCPRegInfo * ri)2439 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
2440 {
2441     return env->pmsav8.hprbar[env->pmsav8.hprselr];
2442 }
2443 
hprlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2444 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2445                           uint64_t value)
2446 {
2447     ARMCPU *cpu = env_archcpu(env);
2448 
2449     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2450     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
2451 }
2452 
hprlar_read(CPUARMState * env,const ARMCPRegInfo * ri)2453 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
2454 {
2455     return env->pmsav8.hprlar[env->pmsav8.hprselr];
2456 }
2457 
hprenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2458 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2459                           uint64_t value)
2460 {
2461     uint32_t n;
2462     uint32_t bit;
2463     ARMCPU *cpu = env_archcpu(env);
2464 
2465     /* Ignore writes to unimplemented regions */
2466     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
2467     value &= MAKE_64BIT_MASK(0, rmax);
2468 
2469     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2470 
2471     /* Register alias is only valid for first 32 indexes */
2472     for (n = 0; n < rmax; ++n) {
2473         bit = extract32(value, n, 1);
2474         env->pmsav8.hprlar[n] = deposit32(
2475                     env->pmsav8.hprlar[n], 0, 1, bit);
2476     }
2477 }
2478 
hprenr_read(CPUARMState * env,const ARMCPRegInfo * ri)2479 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2480 {
2481     uint32_t n;
2482     uint32_t result = 0x0;
2483     ARMCPU *cpu = env_archcpu(env);
2484 
2485     /* Register alias is only valid for first 32 indexes */
2486     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
2487         if (env->pmsav8.hprlar[n] & 0x1) {
2488             result |= (0x1 << n);
2489         }
2490     }
2491     return result;
2492 }
2493 
hprselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2494 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2495                            uint64_t value)
2496 {
2497     ARMCPU *cpu = env_archcpu(env);
2498 
2499     /*
2500      * Ignore writes that would select not implemented region.
2501      * This is architecturally UNPREDICTABLE.
2502      */
2503     if (value >= cpu->pmsav8r_hdregion) {
2504         return;
2505     }
2506 
2507     env->pmsav8.hprselr = value;
2508 }
2509 
pmsav8r_regn_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2510 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511                           uint64_t value)
2512 {
2513     ARMCPU *cpu = env_archcpu(env);
2514     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
2515                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
2516 
2517     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2518 
2519     if (ri->opc1 & 4) {
2520         if (index >= cpu->pmsav8r_hdregion) {
2521             return;
2522         }
2523         if (ri->opc2 & 0x1) {
2524             env->pmsav8.hprlar[index] = value;
2525         } else {
2526             env->pmsav8.hprbar[index] = value;
2527         }
2528     } else {
2529         if (index >= cpu->pmsav7_dregion) {
2530             return;
2531         }
2532         if (ri->opc2 & 0x1) {
2533             env->pmsav8.rlar[M_REG_NS][index] = value;
2534         } else {
2535             env->pmsav8.rbar[M_REG_NS][index] = value;
2536         }
2537     }
2538 }
2539 
pmsav8r_regn_read(CPUARMState * env,const ARMCPRegInfo * ri)2540 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
2541 {
2542     ARMCPU *cpu = env_archcpu(env);
2543     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
2544                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
2545 
2546     if (ri->opc1 & 4) {
2547         if (index >= cpu->pmsav8r_hdregion) {
2548             return 0x0;
2549         }
2550         if (ri->opc2 & 0x1) {
2551             return env->pmsav8.hprlar[index];
2552         } else {
2553             return env->pmsav8.hprbar[index];
2554         }
2555     } else {
2556         if (index >= cpu->pmsav7_dregion) {
2557             return 0x0;
2558         }
2559         if (ri->opc2 & 0x1) {
2560             return env->pmsav8.rlar[M_REG_NS][index];
2561         } else {
2562             return env->pmsav8.rbar[M_REG_NS][index];
2563         }
2564     }
2565 }
2566 
2567 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
2568     { .name = "PRBAR",
2569       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
2570       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2571       .accessfn = access_tvm_trvm,
2572       .readfn = prbar_read, .writefn = prbar_write },
2573     { .name = "PRLAR",
2574       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
2575       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2576       .accessfn = access_tvm_trvm,
2577       .readfn = prlar_read, .writefn = prlar_write },
2578     { .name = "PRSELR", .resetvalue = 0,
2579       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
2580       .access = PL1_RW, .accessfn = access_tvm_trvm,
2581       .writefn = prselr_write,
2582       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
2583     { .name = "HPRBAR", .resetvalue = 0,
2584       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
2585       .access = PL2_RW, .type = ARM_CP_NO_RAW,
2586       .readfn = hprbar_read, .writefn = hprbar_write },
2587     { .name = "HPRLAR",
2588       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
2589       .access = PL2_RW, .type = ARM_CP_NO_RAW,
2590       .readfn = hprlar_read, .writefn = hprlar_write },
2591     { .name = "HPRSELR", .resetvalue = 0,
2592       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
2593       .access = PL2_RW,
2594       .writefn = hprselr_write,
2595       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
2596     { .name = "HPRENR",
2597       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
2598       .access = PL2_RW, .type = ARM_CP_NO_RAW,
2599       .readfn = hprenr_read, .writefn = hprenr_write },
2600 };
2601 
2602 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2603     /*
2604      * Reset for all these registers is handled in arm_cpu_reset(),
2605      * because the PMSAv7 is also used by M-profile CPUs, which do
2606      * not register cpregs but still need the state to be reset.
2607      */
2608     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2609       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2610       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2611       .readfn = pmsav7_read, .writefn = pmsav7_write,
2612       .resetfn = arm_cp_reset_ignore },
2613     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2614       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2615       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2616       .readfn = pmsav7_read, .writefn = pmsav7_write,
2617       .resetfn = arm_cp_reset_ignore },
2618     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2619       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2620       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2621       .readfn = pmsav7_read, .writefn = pmsav7_write,
2622       .resetfn = arm_cp_reset_ignore },
2623     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2624       .access = PL1_RW,
2625       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2626       .writefn = pmsav7_rgnr_write,
2627       .resetfn = arm_cp_reset_ignore },
2628 };
2629 
2630 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2631     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2632       .access = PL1_RW, .type = ARM_CP_ALIAS,
2633       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2634       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2635     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2636       .access = PL1_RW, .type = ARM_CP_ALIAS,
2637       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2638       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2639     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2640       .access = PL1_RW,
2641       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2642       .resetvalue = 0, },
2643     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2644       .access = PL1_RW,
2645       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2646       .resetvalue = 0, },
2647     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2648       .access = PL1_RW,
2649       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2650     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2651       .access = PL1_RW,
2652       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2653     /* Protection region base and size registers */
2654     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2655       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2656       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2657     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2658       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2659       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2660     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2661       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2662       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2663     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2664       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2665       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2666     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2667       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2668       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2669     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2670       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2671       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2672     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2673       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2674       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2675     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2676       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2677       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2678 };
2679 
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2680 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2681                              uint64_t value)
2682 {
2683     ARMCPU *cpu = env_archcpu(env);
2684 
2685     if (!arm_feature(env, ARM_FEATURE_V8)) {
2686         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2687             /*
2688              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2689              * using Long-descriptor translation table format
2690              */
2691             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2692         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2693             /*
2694              * In an implementation that includes the Security Extensions
2695              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2696              * Short-descriptor translation table format.
2697              */
2698             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2699         } else {
2700             value &= TTBCR_N;
2701         }
2702     }
2703 
2704     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2705         /*
2706          * With LPAE the TTBCR could result in a change of ASID
2707          * via the TTBCR.A1 bit, so do a TLB flush.
2708          */
2709         tlb_flush(CPU(cpu));
2710     }
2711     raw_write(env, ri, value);
2712 }
2713 
vmsa_tcr_el12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2714 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715                                uint64_t value)
2716 {
2717     ARMCPU *cpu = env_archcpu(env);
2718 
2719     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2720     tlb_flush(CPU(cpu));
2721     raw_write(env, ri, value);
2722 }
2723 
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2724 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2725                             uint64_t value)
2726 {
2727     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
2728     if (cpreg_field_is_64bit(ri) &&
2729         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2730         ARMCPU *cpu = env_archcpu(env);
2731         tlb_flush(CPU(cpu));
2732     }
2733     raw_write(env, ri, value);
2734 }
2735 
vmsa_tcr_ttbr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2736 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2737                                     uint64_t value)
2738 {
2739     /*
2740      * If we are running with E2&0 regime, then an ASID is active.
2741      * Flush if that might be changing.  Note we're not checking
2742      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
2743      * holds the active ASID, only checking the field that might.
2744      */
2745     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
2746         (arm_hcr_el2_eff(env) & HCR_E2H)) {
2747         uint16_t mask = ARMMMUIdxBit_E20_2 |
2748                         ARMMMUIdxBit_E20_2_PAN |
2749                         ARMMMUIdxBit_E20_0;
2750         tlb_flush_by_mmuidx(env_cpu(env), mask);
2751     }
2752     raw_write(env, ri, value);
2753 }
2754 
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2755 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                         uint64_t value)
2757 {
2758     ARMCPU *cpu = env_archcpu(env);
2759     CPUState *cs = CPU(cpu);
2760 
2761     /*
2762      * A change in VMID to the stage2 page table (Stage2) invalidates
2763      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
2764      */
2765     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2766         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
2767     }
2768     raw_write(env, ri, value);
2769 }
2770 
2771 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2772     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2773       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
2774       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2775                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2776     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2777       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
2778       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2779                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2780     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2781       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
2782       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2783                              offsetof(CPUARMState, cp15.dfar_ns) } },
2784     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2785       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2786       .access = PL1_RW, .accessfn = access_tvm_trvm,
2787       .fgt = FGT_FAR_EL1,
2788       .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
2789       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2790       .resetvalue = 0, },
2791 };
2792 
2793 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2794     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2795       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2796       .access = PL1_RW, .accessfn = access_tvm_trvm,
2797       .fgt = FGT_ESR_EL1,
2798       .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
2799       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2800     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2801       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2802       .access = PL1_RW, .accessfn = access_tvm_trvm,
2803       .fgt = FGT_TTBR0_EL1,
2804       .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
2805       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
2806       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2807                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2808     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2809       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2810       .access = PL1_RW, .accessfn = access_tvm_trvm,
2811       .fgt = FGT_TTBR1_EL1,
2812       .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
2813       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
2814       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2815                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2816     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2817       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2818       .access = PL1_RW, .accessfn = access_tvm_trvm,
2819       .fgt = FGT_TCR_EL1,
2820       .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
2821       .writefn = vmsa_tcr_el12_write,
2822       .raw_writefn = raw_write,
2823       .resetvalue = 0,
2824       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2825     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2826       .access = PL1_RW, .accessfn = access_tvm_trvm,
2827       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2828       .raw_writefn = raw_write,
2829       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2830                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2831 };
2832 
2833 /*
2834  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
2835  * qemu tlbs nor adjusting cached masks.
2836  */
2837 static const ARMCPRegInfo ttbcr2_reginfo = {
2838     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
2839     .access = PL1_RW, .accessfn = access_tvm_trvm,
2840     .type = ARM_CP_ALIAS,
2841     .bank_fieldoffsets = {
2842         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
2843         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
2844     },
2845 };
2846 
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2847 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2848                                 uint64_t value)
2849 {
2850     env->cp15.c15_ticonfig = value & 0xe7;
2851     /* The OS_TYPE bit in this register changes the reported CPUID! */
2852     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2853         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2854 }
2855 
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2856 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                                 uint64_t value)
2858 {
2859     env->cp15.c15_threadid = value & 0xffff;
2860 }
2861 
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2862 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863                            uint64_t value)
2864 {
2865     /* Wait-for-interrupt (deprecated) */
2866     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
2867 }
2868 
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2869 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870                                   uint64_t value)
2871 {
2872     /*
2873      * On OMAP there are registers indicating the max/min index of dcache lines
2874      * containing a dirty line; cache flush operations have to reset these.
2875      */
2876     env->cp15.c15_i_max = 0x000;
2877     env->cp15.c15_i_min = 0xff0;
2878 }
2879 
2880 static const ARMCPRegInfo omap_cp_reginfo[] = {
2881     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2882       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2883       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2884       .resetvalue = 0, },
2885     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2886       .access = PL1_RW, .type = ARM_CP_NOP },
2887     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2888       .access = PL1_RW,
2889       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2890       .writefn = omap_ticonfig_write },
2891     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2892       .access = PL1_RW,
2893       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2894     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2895       .access = PL1_RW, .resetvalue = 0xff0,
2896       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2897     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2898       .access = PL1_RW,
2899       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2900       .writefn = omap_threadid_write },
2901     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2902       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2903       .type = ARM_CP_NO_RAW,
2904       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2905     /*
2906      * TODO: Peripheral port remap register:
2907      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2908      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2909      * when MMU is off.
2910      */
2911     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2912       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2913       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2914       .writefn = omap_cachemaint_write },
2915     { .name = "C9", .cp = 15, .crn = 9,
2916       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2917       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2918 };
2919 
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2920 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2921                               uint64_t value)
2922 {
2923     env->cp15.c15_cpar = value & 0x3fff;
2924 }
2925 
2926 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2927     { .name = "XSCALE_CPAR",
2928       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2929       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2930       .writefn = xscale_cpar_write, },
2931     { .name = "XSCALE_AUXCR",
2932       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2933       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2934       .resetvalue = 0, },
2935     /*
2936      * XScale specific cache-lockdown: since we have no cache we NOP these
2937      * and hope the guest does not really rely on cache behaviour.
2938      */
2939     { .name = "XSCALE_LOCK_ICACHE_LINE",
2940       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2941       .access = PL1_W, .type = ARM_CP_NOP },
2942     { .name = "XSCALE_UNLOCK_ICACHE",
2943       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2944       .access = PL1_W, .type = ARM_CP_NOP },
2945     { .name = "XSCALE_DCACHE_LOCK",
2946       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2947       .access = PL1_RW, .type = ARM_CP_NOP },
2948     { .name = "XSCALE_UNLOCK_DCACHE",
2949       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2950       .access = PL1_W, .type = ARM_CP_NOP },
2951 };
2952 
2953 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2954     /*
2955      * RAZ/WI the whole crn=15 space, when we don't have a more specific
2956      * implementation of this implementation-defined space.
2957      * Ideally this should eventually disappear in favour of actually
2958      * implementing the correct behaviour for all cores.
2959      */
2960     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2961       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2962       .access = PL1_RW,
2963       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2964       .resetvalue = 0 },
2965 };
2966 
2967 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2968     /* Cache status: RAZ because we have no cache so it's always clean */
2969     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2970       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2971       .resetvalue = 0 },
2972 };
2973 
2974 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2975     /* We never have a block transfer operation in progress */
2976     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2977       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2978       .resetvalue = 0 },
2979     /* The cache ops themselves: these all NOP for QEMU */
2980     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2981       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
2982     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2983       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
2984     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2985       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
2986     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2987       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
2988     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2989       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
2990     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2991       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
2992 };
2993 
2994 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2995     /*
2996      * The cache test-and-clean instructions always return (1 << 30)
2997      * to indicate that there are no dirty cache lines.
2998      */
2999     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3000       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3001       .resetvalue = (1 << 30) },
3002     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3003       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3004       .resetvalue = (1 << 30) },
3005 };
3006 
3007 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3008     /* Ignore ReadBuffer accesses */
3009     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3010       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3011       .access = PL1_RW, .resetvalue = 0,
3012       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3013 };
3014 
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)3015 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3016 {
3017     unsigned int cur_el = arm_current_el(env);
3018 
3019     if (arm_is_el2_enabled(env) && cur_el == 1) {
3020         return env->cp15.vpidr_el2;
3021     }
3022     return raw_read(env, ri);
3023 }
3024 
mpidr_read_val(CPUARMState * env)3025 static uint64_t mpidr_read_val(CPUARMState *env)
3026 {
3027     ARMCPU *cpu = env_archcpu(env);
3028     uint64_t mpidr = cpu->mp_affinity;
3029 
3030     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3031         mpidr |= (1U << 31);
3032         /*
3033          * Cores which are uniprocessor (non-coherent)
3034          * but still implement the MP extensions set
3035          * bit 30. (For instance, Cortex-R5).
3036          */
3037         if (cpu->mp_is_up) {
3038             mpidr |= (1u << 30);
3039         }
3040     }
3041     return mpidr;
3042 }
3043 
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)3044 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3045 {
3046     unsigned int cur_el = arm_current_el(env);
3047 
3048     if (arm_is_el2_enabled(env) && cur_el == 1) {
3049         return env->cp15.vmpidr_el2;
3050     }
3051     return mpidr_read_val(env);
3052 }
3053 
3054 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3055     /* NOP AMAIR0/1 */
3056     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3057       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3058       .access = PL1_RW, .accessfn = access_tvm_trvm,
3059       .fgt = FGT_AMAIR_EL1,
3060       .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
3061       .type = ARM_CP_CONST, .resetvalue = 0 },
3062     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3063     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3064       .access = PL1_RW, .accessfn = access_tvm_trvm,
3065       .type = ARM_CP_CONST, .resetvalue = 0 },
3066     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3067       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3068       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3069                              offsetof(CPUARMState, cp15.par_ns)} },
3070     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3071       .access = PL1_RW, .accessfn = access_tvm_trvm,
3072       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3073       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3074                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3075       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
3076     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3077       .access = PL1_RW, .accessfn = access_tvm_trvm,
3078       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3079       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3080                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3081       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
3082 };
3083 
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)3084 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3085 {
3086     return vfp_get_fpcr(env);
3087 }
3088 
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3089 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3090                             uint64_t value)
3091 {
3092     vfp_set_fpcr(env, value);
3093 }
3094 
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)3095 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3096 {
3097     return vfp_get_fpsr(env);
3098 }
3099 
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3100 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3101                             uint64_t value)
3102 {
3103     vfp_set_fpsr(env, value);
3104 }
3105 
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3106 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3107                                        bool isread)
3108 {
3109     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
3110         return CP_ACCESS_TRAP_EL1;
3111     }
3112     return CP_ACCESS_OK;
3113 }
3114 
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3115 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116                             uint64_t value)
3117 {
3118     env->daif = value & PSTATE_DAIF;
3119 }
3120 
aa64_pan_read(CPUARMState * env,const ARMCPRegInfo * ri)3121 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
3122 {
3123     return env->pstate & PSTATE_PAN;
3124 }
3125 
aa64_pan_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3126 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
3127                            uint64_t value)
3128 {
3129     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
3130 }
3131 
3132 static const ARMCPRegInfo pan_reginfo = {
3133     .name = "PAN", .state = ARM_CP_STATE_AA64,
3134     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
3135     .type = ARM_CP_NO_RAW, .access = PL1_RW,
3136     .readfn = aa64_pan_read, .writefn = aa64_pan_write
3137 };
3138 
aa64_uao_read(CPUARMState * env,const ARMCPRegInfo * ri)3139 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
3140 {
3141     return env->pstate & PSTATE_UAO;
3142 }
3143 
aa64_uao_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3144 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                            uint64_t value)
3146 {
3147     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
3148 }
3149 
3150 static const ARMCPRegInfo uao_reginfo = {
3151     .name = "UAO", .state = ARM_CP_STATE_AA64,
3152     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
3153     .type = ARM_CP_NO_RAW, .access = PL1_RW,
3154     .readfn = aa64_uao_read, .writefn = aa64_uao_write
3155 };
3156 
aa64_dit_read(CPUARMState * env,const ARMCPRegInfo * ri)3157 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
3158 {
3159     return env->pstate & PSTATE_DIT;
3160 }
3161 
aa64_dit_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3162 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
3163                            uint64_t value)
3164 {
3165     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
3166 }
3167 
3168 static const ARMCPRegInfo dit_reginfo = {
3169     .name = "DIT", .state = ARM_CP_STATE_AA64,
3170     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
3171     .type = ARM_CP_NO_RAW, .access = PL0_RW,
3172     .readfn = aa64_dit_read, .writefn = aa64_dit_write
3173 };
3174 
aa64_ssbs_read(CPUARMState * env,const ARMCPRegInfo * ri)3175 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
3176 {
3177     return env->pstate & PSTATE_SSBS;
3178 }
3179 
aa64_ssbs_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3180 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181                            uint64_t value)
3182 {
3183     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
3184 }
3185 
3186 static const ARMCPRegInfo ssbs_reginfo = {
3187     .name = "SSBS", .state = ARM_CP_STATE_AA64,
3188     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
3189     .type = ARM_CP_NO_RAW, .access = PL0_RW,
3190     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
3191 };
3192 
aa64_cacheop_poc_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3193 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
3194                                               const ARMCPRegInfo *ri,
3195                                               bool isread)
3196 {
3197     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
3198     switch (arm_current_el(env)) {
3199     case 0:
3200         /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set.  */
3201         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
3202             return CP_ACCESS_TRAP_EL1;
3203         }
3204         /* fall through */
3205     case 1:
3206         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
3207         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
3208             return CP_ACCESS_TRAP_EL2;
3209         }
3210         break;
3211     }
3212     return CP_ACCESS_OK;
3213 }
3214 
do_cacheop_pou_access(CPUARMState * env,uint64_t hcrflags)3215 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
3216 {
3217     /* Cache invalidate/clean to Point of Unification... */
3218     switch (arm_current_el(env)) {
3219     case 0:
3220         /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set.  */
3221         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
3222             return CP_ACCESS_TRAP_EL1;
3223         }
3224         /* fall through */
3225     case 1:
3226         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
3227         if (arm_hcr_el2_eff(env) & hcrflags) {
3228             return CP_ACCESS_TRAP_EL2;
3229         }
3230         break;
3231     }
3232     return CP_ACCESS_OK;
3233 }
3234 
access_ticab(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3235 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
3236                                    bool isread)
3237 {
3238     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
3239 }
3240 
access_tocu(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3241 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
3242                                   bool isread)
3243 {
3244     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
3245 }
3246 
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3247 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3248                                       bool isread)
3249 {
3250     int cur_el = arm_current_el(env);
3251 
3252     if (cur_el < 2) {
3253         uint64_t hcr = arm_hcr_el2_eff(env);
3254 
3255         if (cur_el == 0) {
3256             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
3257                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
3258                     return CP_ACCESS_TRAP_EL2;
3259                 }
3260             } else {
3261                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3262                     return CP_ACCESS_TRAP_EL1;
3263                 }
3264                 if (hcr & HCR_TDZ) {
3265                     return CP_ACCESS_TRAP_EL2;
3266                 }
3267             }
3268         } else if (hcr & HCR_TDZ) {
3269             return CP_ACCESS_TRAP_EL2;
3270         }
3271     }
3272     return CP_ACCESS_OK;
3273 }
3274 
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)3275 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3276 {
3277     ARMCPU *cpu = env_archcpu(env);
3278     int dzp_bit = 1 << 4;
3279 
3280     /* DZP indicates whether DC ZVA access is allowed */
3281     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3282         dzp_bit = 0;
3283     }
3284     return cpu->dcz_blocksize | dzp_bit;
3285 }
3286 
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3287 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3288                                     bool isread)
3289 {
3290     if (!(env->pstate & PSTATE_SP)) {
3291         /*
3292          * Access to SP_EL0 is undefined if it's being used as
3293          * the stack pointer.
3294          */
3295         return CP_ACCESS_UNDEFINED;
3296     }
3297     return CP_ACCESS_OK;
3298 }
3299 
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)3300 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3301 {
3302     return env->pstate & PSTATE_SP;
3303 }
3304 
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)3305 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3306 {
3307     update_spsel(env, val);
3308 }
3309 
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3310 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3311                         uint64_t value)
3312 {
3313     ARMCPU *cpu = env_archcpu(env);
3314 
3315     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3316         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3317         value &= ~SCTLR_M;
3318     }
3319 
3320     /* ??? Lots of these bits are not implemented.  */
3321 
3322     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
3323         if (ri->opc1 == 6) { /* SCTLR_EL3 */
3324             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
3325         } else {
3326             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
3327                        SCTLR_ATA0 | SCTLR_ATA);
3328         }
3329     }
3330 
3331     if (raw_read(env, ri) == value) {
3332         /*
3333          * Skip the TLB flush if nothing actually changed; Linux likes
3334          * to do a lot of pointless SCTLR writes.
3335          */
3336         return;
3337     }
3338 
3339     raw_write(env, ri, value);
3340 
3341     /* This may enable/disable the MMU, so do a TLB flush.  */
3342     tlb_flush(CPU(cpu));
3343 
3344     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
3345         /*
3346          * Normally we would always end the TB on an SCTLR write; see the
3347          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
3348          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
3349          * of hflags from the translator, so do it here.
3350          */
3351         arm_rebuild_hflags(env);
3352     }
3353 }
3354 
mdcr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3355 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3356                            uint64_t value)
3357 {
3358     /*
3359      * Some MDCR_EL3 bits affect whether PMU counters are running:
3360      * if we are trying to change any of those then we must
3361      * bracket this update with PMU start/finish calls.
3362      */
3363     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
3364 
3365     if (pmu_op) {
3366         pmu_op_start(env);
3367     }
3368     env->cp15.mdcr_el3 = value;
3369     if (pmu_op) {
3370         pmu_op_finish(env);
3371     }
3372 }
3373 
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3374 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3375                        uint64_t value)
3376 {
3377     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
3378     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
3379 }
3380 
mdcr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3381 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3382                            uint64_t value)
3383 {
3384     /*
3385      * Some MDCR_EL2 bits affect whether PMU counters are running:
3386      * if we are trying to change any of those then we must
3387      * bracket this update with PMU start/finish calls.
3388      */
3389     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
3390 
3391     if (pmu_op) {
3392         pmu_op_start(env);
3393     }
3394     env->cp15.mdcr_el2 = value;
3395     if (pmu_op) {
3396         pmu_op_finish(env);
3397     }
3398 }
3399 
access_nv1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3400 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
3401                                  bool isread)
3402 {
3403     if (arm_current_el(env) == 1) {
3404         uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
3405 
3406         if (hcr_nv == (HCR_NV | HCR_NV1)) {
3407             return CP_ACCESS_TRAP_EL2;
3408         }
3409     }
3410     return CP_ACCESS_OK;
3411 }
3412 
3413 #ifdef CONFIG_USER_ONLY
3414 /*
3415  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
3416  * code to get around W^X restrictions, where one region is writable and the
3417  * other is executable.
3418  *
3419  * Since the executable region is never written to we cannot detect code
3420  * changes when running in user mode, and rely on the emulated JIT telling us
3421  * that the code has changed by executing this instruction.
3422  */
ic_ivau_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3423 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
3424                           uint64_t value)
3425 {
3426     uint64_t icache_line_mask, start_address, end_address;
3427     const ARMCPU *cpu;
3428 
3429     cpu = env_archcpu(env);
3430 
3431     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
3432     start_address = value & ~icache_line_mask;
3433     end_address = value | icache_line_mask;
3434 
3435     mmap_lock();
3436 
3437     tb_invalidate_phys_range(env_cpu(env), start_address, end_address);
3438 
3439     mmap_unlock();
3440 }
3441 #endif
3442 
3443 static const ARMCPRegInfo v8_cp_reginfo[] = {
3444     /*
3445      * Minimal set of EL0-visible registers. This will need to be expanded
3446      * significantly for system emulation of AArch64 CPUs.
3447      */
3448     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3449       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3450       .access = PL0_RW, .type = ARM_CP_NZCV },
3451     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3452       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3453       .type = ARM_CP_NO_RAW,
3454       .access = PL0_RW, .accessfn = aa64_daif_access,
3455       .fieldoffset = offsetof(CPUARMState, daif),
3456       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3457     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3458       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3459       .access = PL0_RW, .type = ARM_CP_FPU,
3460       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3461     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3462       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3463       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3464       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3465     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3466       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3467       .access = PL0_R, .type = ARM_CP_NO_RAW,
3468       .fgt = FGT_DCZID_EL0,
3469       .readfn = aa64_dczid_read },
3470     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3472       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3473 #ifndef CONFIG_USER_ONLY
3474       /* Avoid overhead of an access check that always passes in user-mode */
3475       .accessfn = aa64_zva_access,
3476       .fgt = FGT_DCZVA,
3477 #endif
3478     },
3479     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3480       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3481       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3482     /*
3483      * Instruction cache ops. All of these except `IC IVAU` NOP because we
3484      * don't emulate caches.
3485      */
3486     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3487       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3488       .access = PL1_W, .type = ARM_CP_NOP,
3489       .fgt = FGT_ICIALLUIS,
3490       .accessfn = access_ticab },
3491     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3492       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3493       .access = PL1_W, .type = ARM_CP_NOP,
3494       .fgt = FGT_ICIALLU,
3495       .accessfn = access_tocu },
3496     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3497       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3498       .access = PL0_W,
3499       .fgt = FGT_ICIVAU,
3500       .accessfn = access_tocu,
3501 #ifdef CONFIG_USER_ONLY
3502       .type = ARM_CP_NO_RAW,
3503       .writefn = ic_ivau_write
3504 #else
3505       .type = ARM_CP_NOP
3506 #endif
3507     },
3508     /* Cache ops: all NOPs since we don't emulate caches */
3509     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3510       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3511       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
3512       .fgt = FGT_DCIVAC,
3513       .type = ARM_CP_NOP },
3514     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3515       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3516       .fgt = FGT_DCISW,
3517       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
3518     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3519       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3520       .access = PL0_W, .type = ARM_CP_NOP,
3521       .fgt = FGT_DCCVAC,
3522       .accessfn = aa64_cacheop_poc_access },
3523     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3524       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3525       .fgt = FGT_DCCSW,
3526       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
3527     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3528       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3529       .access = PL0_W, .type = ARM_CP_NOP,
3530       .fgt = FGT_DCCVAU,
3531       .accessfn = access_tocu },
3532     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3533       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3534       .access = PL0_W, .type = ARM_CP_NOP,
3535       .fgt = FGT_DCCIVAC,
3536       .accessfn = aa64_cacheop_poc_access },
3537     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3538       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3539       .fgt = FGT_DCCISW,
3540       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
3541     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3542       .type = ARM_CP_ALIAS,
3543       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3544       .access = PL1_RW, .resetvalue = 0,
3545       .fgt = FGT_PAR_EL1,
3546       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3547       .writefn = par_write },
3548     /* 32 bit cache operations */
3549     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3550       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
3551     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3552       .type = ARM_CP_NOP, .access = PL1_W },
3553     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3554       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
3555     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3556       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
3557     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3558       .type = ARM_CP_NOP, .access = PL1_W },
3559     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3560       .type = ARM_CP_NOP, .access = PL1_W },
3561     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3562       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
3563     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3564       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
3565     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3566       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
3567     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3568       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
3569     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3570       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
3571     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3572       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
3573     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3574       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
3575     /* MMU Domain access control / MPU write buffer control */
3576     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3577       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3578       .writefn = dacr_write, .raw_writefn = raw_write,
3579       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3580                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3581     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3582       .type = ARM_CP_ALIAS,
3583       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3584       .access = PL1_RW, .accessfn = access_nv1,
3585       .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
3586       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3587     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3588       .type = ARM_CP_ALIAS,
3589       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3590       .access = PL1_RW, .accessfn = access_nv1,
3591       .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
3592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3593     /*
3594      * We rely on the access checks not allowing the guest to write to the
3595      * state field when SPSel indicates that it's being used as the stack
3596      * pointer.
3597      */
3598     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3599       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3600       .access = PL1_RW, .accessfn = sp_el0_access,
3601       .type = ARM_CP_ALIAS,
3602       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3603     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3604       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3605       .nv2_redirect_offset = 0x240,
3606       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
3607       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3608     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3609       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3610       .type = ARM_CP_NO_RAW,
3611       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3612     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3613       .type = ARM_CP_ALIAS,
3614       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3615       .access = PL2_RW,
3616       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3617     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3618       .type = ARM_CP_ALIAS,
3619       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3620       .access = PL2_RW,
3621       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3622     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3623       .type = ARM_CP_ALIAS,
3624       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3625       .access = PL2_RW,
3626       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3627     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3628       .type = ARM_CP_ALIAS,
3629       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3630       .access = PL2_RW,
3631       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3632     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3633       .type = ARM_CP_IO,
3634       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3635       .resetvalue = 0,
3636       .access = PL3_RW,
3637       .writefn = mdcr_el3_write,
3638       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3639     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
3640       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3641       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3642       .writefn = sdcr_write,
3643       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3644 };
3645 
3646 /* These are present only when EL1 supports AArch32 */
3647 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
3648     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3649       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3650       .access = PL2_RW,
3651       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
3652       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
3653     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3654       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3655       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
3656       .writefn = dacr_write, .raw_writefn = raw_write,
3657       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3658     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3659       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3660       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
3661       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3662 };
3663 
do_hcr_write(CPUARMState * env,uint64_t value,uint64_t valid_mask)3664 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
3665 {
3666     ARMCPU *cpu = env_archcpu(env);
3667 
3668     if (arm_feature(env, ARM_FEATURE_V8)) {
3669         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
3670     } else {
3671         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
3672     }
3673 
3674     if (arm_feature(env, ARM_FEATURE_EL3)) {
3675         valid_mask &= ~HCR_HCD;
3676     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3677         /*
3678          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3679          * However, if we're using the SMC PSCI conduit then QEMU is
3680          * effectively acting like EL3 firmware and so the guest at
3681          * EL2 should retain the ability to prevent EL1 from being
3682          * able to make SMC calls into the ersatz firmware, so in
3683          * that case HCR.TSC should be read/write.
3684          */
3685         valid_mask &= ~HCR_TSC;
3686     }
3687 
3688     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3689         if (cpu_isar_feature(aa64_vh, cpu)) {
3690             valid_mask |= HCR_E2H;
3691         }
3692         if (cpu_isar_feature(aa64_ras, cpu)) {
3693             valid_mask |= HCR_TERR | HCR_TEA;
3694         }
3695         if (cpu_isar_feature(aa64_lor, cpu)) {
3696             valid_mask |= HCR_TLOR;
3697         }
3698         if (cpu_isar_feature(aa64_pauth, cpu)) {
3699             valid_mask |= HCR_API | HCR_APK;
3700         }
3701         if (cpu_isar_feature(aa64_mte, cpu)) {
3702             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
3703         }
3704         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
3705             valid_mask |= HCR_ENSCXT;
3706         }
3707         if (cpu_isar_feature(aa64_fwb, cpu)) {
3708             valid_mask |= HCR_FWB;
3709         }
3710         if (cpu_isar_feature(aa64_rme, cpu)) {
3711             valid_mask |= HCR_GPF;
3712         }
3713         if (cpu_isar_feature(aa64_nv, cpu)) {
3714             valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
3715         }
3716         if (cpu_isar_feature(aa64_nv2, cpu)) {
3717             valid_mask |= HCR_NV2;
3718         }
3719     }
3720 
3721     if (cpu_isar_feature(any_evt, cpu)) {
3722         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
3723     } else if (cpu_isar_feature(any_half_evt, cpu)) {
3724         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
3725     }
3726 
3727     /* Clear RES0 bits.  */
3728     value &= valid_mask;
3729 
3730     /* RW is RAO/WI if EL1 is AArch64 only */
3731     if (!cpu_isar_feature(aa64_aa32_el1, cpu)) {
3732         value |= HCR_RW;
3733     }
3734 
3735     /*
3736      * These bits change the MMU setup:
3737      * HCR_VM enables stage 2 translation
3738      * HCR_PTW forbids certain page-table setups
3739      * HCR_DC disables stage1 and enables stage2 translation
3740      * HCR_DCT enables tagging on (disabled) stage1 translation
3741      * HCR_FWB changes the interpretation of stage2 descriptor bits
3742      * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
3743      */
3744     if ((env->cp15.hcr_el2 ^ value) &
3745         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
3746         tlb_flush(CPU(cpu));
3747     }
3748     env->cp15.hcr_el2 = value;
3749 
3750     /*
3751      * Updates to VI and VF require us to update the status of
3752      * virtual interrupts, which are the logical OR of these bits
3753      * and the state of the input lines from the GIC. (This requires
3754      * that we have the BQL, which is done by marking the
3755      * reginfo structs as ARM_CP_IO.)
3756      * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
3757      * VFNMI, it is never possible for it to be taken immediately
3758      * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
3759      * at EL0 or EL1, and HCR can only be written at EL2.
3760      */
3761     g_assert(bql_locked());
3762     arm_cpu_update_virq(cpu);
3763     arm_cpu_update_vfiq(cpu);
3764     arm_cpu_update_vserr(cpu);
3765     if (cpu_isar_feature(aa64_nmi, cpu)) {
3766         arm_cpu_update_vinmi(cpu);
3767         arm_cpu_update_vfnmi(cpu);
3768     }
3769 }
3770 
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3771 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3772 {
3773     do_hcr_write(env, value, 0);
3774 }
3775 
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3776 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
3777                           uint64_t value)
3778 {
3779     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
3780     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
3781     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
3782 }
3783 
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3784 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
3785                          uint64_t value)
3786 {
3787     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
3788     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
3789     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
3790 }
3791 
hcr_reset(CPUARMState * env,const ARMCPRegInfo * ri)3792 static void hcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3793 {
3794     /* hcr_write will set the RES1 bits on an AArch64-only CPU */
3795     hcr_write(env, ri, 0);
3796 }
3797 
3798 /*
3799  * Return the effective value of HCR_EL2, at the given security state.
3800  * Bits that are not included here:
3801  * RW       (read from SCR_EL3.RW as needed)
3802  */
arm_hcr_el2_eff_secstate(CPUARMState * env,ARMSecuritySpace space)3803 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
3804 {
3805     uint64_t ret = env->cp15.hcr_el2;
3806 
3807     assert(space != ARMSS_Root);
3808 
3809     if (!arm_is_el2_enabled_secstate(env, space)) {
3810         /*
3811          * "This register has no effect if EL2 is not enabled in the
3812          * current Security state".  This is ARMv8.4-SecEL2 speak for
3813          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
3814          *
3815          * Prior to that, the language was "In an implementation that
3816          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
3817          * as if this field is 0 for all purposes other than a direct
3818          * read or write access of HCR_EL2".  With lots of enumeration
3819          * on a per-field basis.  In current QEMU, this is condition
3820          * is arm_is_secure_below_el3.
3821          *
3822          * Since the v8.4 language applies to the entire register, and
3823          * appears to be backward compatible, use that.
3824          */
3825         return 0;
3826     }
3827 
3828     /*
3829      * For a cpu that supports both aarch64 and aarch32, we can set bits
3830      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
3831      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
3832      */
3833     if (!arm_el_is_aa64(env, 2)) {
3834         uint64_t aa32_valid;
3835 
3836         /*
3837          * These bits are up-to-date as of ARMv8.6.
3838          * For HCR, it's easiest to list just the 2 bits that are invalid.
3839          * For HCR2, list those that are valid.
3840          */
3841         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
3842         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
3843                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
3844         ret &= aa32_valid;
3845     }
3846 
3847     if (ret & HCR_TGE) {
3848         /* These bits are up-to-date as of ARMv8.6.  */
3849         if (ret & HCR_E2H) {
3850             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
3851                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
3852                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
3853                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
3854                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
3855                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
3856         } else {
3857             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
3858         }
3859         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
3860                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
3861                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
3862                  HCR_TLOR);
3863     }
3864 
3865     return ret;
3866 }
3867 
arm_hcr_el2_eff(CPUARMState * env)3868 uint64_t arm_hcr_el2_eff(CPUARMState *env)
3869 {
3870     if (arm_feature(env, ARM_FEATURE_M)) {
3871         return 0;
3872     }
3873     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
3874 }
3875 
3876 /*
3877  * Corresponds to ARM pseudocode function ELIsInHost().
3878  */
el_is_in_host(CPUARMState * env,int el)3879 bool el_is_in_host(CPUARMState *env, int el)
3880 {
3881     uint64_t mask;
3882 
3883     /*
3884      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
3885      * Perform the simplest bit tests first, and validate EL2 afterward.
3886      */
3887     if (el & 1) {
3888         return false; /* EL1 or EL3 */
3889     }
3890 
3891     /*
3892      * Note that hcr_write() checks isar_feature_aa64_vh(),
3893      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
3894      */
3895     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
3896     if ((env->cp15.hcr_el2 & mask) != mask) {
3897         return false;
3898     }
3899 
3900     /* TGE and/or E2H set: double check those bits are currently legal. */
3901     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
3902 }
3903 
hcrx_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3904 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
3905                        uint64_t value)
3906 {
3907     ARMCPU *cpu = env_archcpu(env);
3908     uint64_t valid_mask = 0;
3909 
3910     /* FEAT_MOPS adds MSCEn and MCE2 */
3911     if (cpu_isar_feature(aa64_mops, cpu)) {
3912         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
3913     }
3914 
3915     /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
3916     if (cpu_isar_feature(aa64_nmi, cpu)) {
3917         valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
3918     }
3919     /* FEAT_CMOW adds CMOW */
3920     if (cpu_isar_feature(aa64_cmow, cpu)) {
3921         valid_mask |= HCRX_CMOW;
3922     }
3923     /* FEAT_XS adds FGTnXS, FnXS */
3924     if (cpu_isar_feature(aa64_xs, cpu)) {
3925         valid_mask |= HCRX_FGTNXS | HCRX_FNXS;
3926     }
3927 
3928     /* Clear RES0 bits.  */
3929     env->cp15.hcrx_el2 = value & valid_mask;
3930 
3931     /*
3932      * Updates to VINMI and VFNMI require us to update the status of
3933      * virtual NMI, which are the logical OR of these bits
3934      * and the state of the input lines from the GIC. (This requires
3935      * that we have the BQL, which is done by marking the
3936      * reginfo structs as ARM_CP_IO.)
3937      * Note that if a write to HCRX pends a VINMI or VFNMI it is never
3938      * possible for it to be taken immediately, because VINMI and
3939      * VFNMI are masked unless running at EL0 or EL1, and HCRX
3940      * can only be written at EL2.
3941      */
3942     if (cpu_isar_feature(aa64_nmi, cpu)) {
3943         g_assert(bql_locked());
3944         arm_cpu_update_vinmi(cpu);
3945         arm_cpu_update_vfnmi(cpu);
3946     }
3947 }
3948 
access_hxen(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3949 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
3950                                   bool isread)
3951 {
3952     if (arm_current_el(env) == 2
3953         && arm_feature(env, ARM_FEATURE_EL3)
3954         && !(env->cp15.scr_el3 & SCR_HXEN)) {
3955         return CP_ACCESS_TRAP_EL3;
3956     }
3957     return CP_ACCESS_OK;
3958 }
3959 
3960 static const ARMCPRegInfo hcrx_el2_reginfo = {
3961     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
3962     .type = ARM_CP_IO,
3963     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
3964     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
3965     .nv2_redirect_offset = 0xa0,
3966     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
3967 };
3968 
3969 /* Return the effective value of HCRX_EL2.  */
arm_hcrx_el2_eff(CPUARMState * env)3970 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
3971 {
3972     /*
3973      * The bits in this register behave as 0 for all purposes other than
3974      * direct reads of the register if SCR_EL3.HXEn is 0.
3975      * If EL2 is not enabled in the current security state, then the
3976      * bit may behave as if 0, or as if 1, depending on the bit.
3977      * For the moment, we treat the EL2-disabled case as taking
3978      * priority over the HXEn-disabled case. This is true for the only
3979      * bit for a feature which we implement where the answer is different
3980      * for the two cases (MSCEn for FEAT_MOPS).
3981      * This may need to be revisited for future bits.
3982      */
3983     if (!arm_is_el2_enabled(env)) {
3984         uint64_t hcrx = 0;
3985         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
3986             /* MSCEn behaves as 1 if EL2 is not enabled */
3987             hcrx |= HCRX_MSCEN;
3988         }
3989         return hcrx;
3990     }
3991     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
3992         return 0;
3993     }
3994     return env->cp15.hcrx_el2;
3995 }
3996 
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3997 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3998                            uint64_t value)
3999 {
4000     /*
4001      * For A-profile AArch32 EL3, if NSACR.CP10
4002      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4003      */
4004     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4005         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4006         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
4007         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
4008     }
4009     env->cp15.cptr_el[2] = value;
4010 }
4011 
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)4012 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4013 {
4014     /*
4015      * For A-profile AArch32 EL3, if NSACR.CP10
4016      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4017      */
4018     uint64_t value = env->cp15.cptr_el[2];
4019 
4020     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4021         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4022         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
4023     }
4024     return value;
4025 }
4026 
4027 static const ARMCPRegInfo el2_cp_reginfo[] = {
4028     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4029       .type = ARM_CP_IO,
4030       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4031       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4032       .nv2_redirect_offset = 0x78,
4033       .resetfn = hcr_reset,
4034       .writefn = hcr_write, .raw_writefn = raw_write },
4035     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4036       .type = ARM_CP_ALIAS | ARM_CP_IO,
4037       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4038       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4039       .writefn = hcr_writelow },
4040     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4041       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4042       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4043     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4044       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
4045       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4046       .access = PL2_RW,
4047       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4048     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4049       .type = ARM_CP_NV2_REDIRECT,
4050       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4051       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4052     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4053       .type = ARM_CP_NV2_REDIRECT,
4054       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4055       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4056     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4057       .type = ARM_CP_ALIAS,
4058       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4059       .access = PL2_RW,
4060       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4061     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4062       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
4063       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4064       .access = PL2_RW,
4065       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4066     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4067       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4068       .access = PL2_RW, .writefn = vbar_write,
4069       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4070       .resetvalue = 0 },
4071     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4072       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4073       .access = PL3_RW, .type = ARM_CP_ALIAS,
4074       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4075     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4076       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4077       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4078       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4079       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4080     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4081       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4082       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4083       .resetvalue = 0 },
4084     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4085       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4086       .access = PL2_RW, .type = ARM_CP_ALIAS,
4087       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4088     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4089       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4090       .access = PL2_RW, .type = ARM_CP_CONST,
4091       .resetvalue = 0 },
4092     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4093     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4094       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4095       .access = PL2_RW, .type = ARM_CP_CONST,
4096       .resetvalue = 0 },
4097     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4098       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4099       .access = PL2_RW, .type = ARM_CP_CONST,
4100       .resetvalue = 0 },
4101     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4102       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4103       .access = PL2_RW, .type = ARM_CP_CONST,
4104       .resetvalue = 0 },
4105     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4106       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4107       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
4108       .raw_writefn = raw_write,
4109       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4110     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4111       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4112       .type = ARM_CP_ALIAS,
4113       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4114       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
4115     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4116       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4117       .access = PL2_RW,
4118       .nv2_redirect_offset = 0x40,
4119       /* no .writefn needed as this can't cause an ASID change */
4120       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4121     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4122       .cp = 15, .opc1 = 6, .crm = 2,
4123       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4124       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4125       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4126       .writefn = vttbr_write, .raw_writefn = raw_write },
4127     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4128       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4129       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
4130       .nv2_redirect_offset = 0x20,
4131       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4132     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4133       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4134       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4135       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4136     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4137       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4138       .access = PL2_RW, .resetvalue = 0,
4139       .nv2_redirect_offset = 0x90,
4140       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4141     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4143       .access = PL2_RW, .resetvalue = 0,
4144       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
4145       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4146     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4147       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4148       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4149 #ifndef CONFIG_USER_ONLY
4150     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4151       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4152       /*
4153        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4154        * reset values as IMPDEF. We choose to reset to 3 to comply with
4155        * both ARMv7 and ARMv8.
4156        */
4157       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
4158       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
4159       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4160     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4161       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4162       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4163       .writefn = gt_cntvoff_write,
4164       .nv2_redirect_offset = 0x60,
4165       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4166     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4167       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4168       .writefn = gt_cntvoff_write,
4169       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4170     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4171       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4172       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4173       .type = ARM_CP_IO, .access = PL2_RW,
4174       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4175     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4176       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4177       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4178       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4179     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4180       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4181       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4182       .resetfn = gt_hyp_timer_reset,
4183       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4184     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4185       .type = ARM_CP_IO,
4186       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4187       .access = PL2_RW,
4188       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4189       .resetvalue = 0,
4190       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4191 #endif
4192     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4193       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4194       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4195       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4196     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4197       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4198       .access = PL2_RW,
4199       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4200     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4201       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4202       .access = PL2_RW,
4203       .nv2_redirect_offset = 0x80,
4204       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4205 };
4206 
4207 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4208     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4209       .type = ARM_CP_ALIAS | ARM_CP_IO,
4210       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4211       .access = PL2_RW,
4212       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4213       .writefn = hcr_writehigh },
4214 };
4215 
sel2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4216 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
4217                                   bool isread)
4218 {
4219     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
4220         return CP_ACCESS_OK;
4221     }
4222     return CP_ACCESS_UNDEFINED;
4223 }
4224 
4225 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
4226     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
4227       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
4228       .access = PL2_RW, .accessfn = sel2_access,
4229       .nv2_redirect_offset = 0x30,
4230       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
4231     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
4232       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
4233       .access = PL2_RW, .accessfn = sel2_access,
4234       .nv2_redirect_offset = 0x48,
4235       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
4236 #ifndef CONFIG_USER_ONLY
4237     /* Secure EL2 Physical Timer */
4238     { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64,
4239       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0,
4240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4241       .accessfn = gt_sel2timer_access,
4242       .readfn = gt_sec_pel2_tval_read,
4243       .writefn = gt_sec_pel2_tval_write,
4244       .resetfn = gt_sec_pel2_timer_reset,
4245     },
4246     { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64,
4247       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1,
4248       .type = ARM_CP_IO, .access = PL2_RW,
4249       .accessfn = gt_sel2timer_access,
4250       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl),
4251       .resetvalue = 0,
4252       .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write,
4253     },
4254     { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4255       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2,
4256       .type = ARM_CP_IO, .access = PL2_RW,
4257       .accessfn = gt_sel2timer_access,
4258       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval),
4259       .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write,
4260     },
4261     /* Secure EL2 Virtual Timer */
4262     { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64,
4263       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0,
4264       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4265       .accessfn = gt_sel2timer_access,
4266       .readfn = gt_sec_vel2_tval_read,
4267       .writefn = gt_sec_vel2_tval_write,
4268       .resetfn = gt_sec_vel2_timer_reset,
4269     },
4270     { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64,
4271       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1,
4272       .type = ARM_CP_IO, .access = PL2_RW,
4273       .accessfn = gt_sel2timer_access,
4274       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl),
4275       .resetvalue = 0,
4276       .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write,
4277     },
4278     { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4279       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2,
4280       .type = ARM_CP_IO, .access = PL2_RW,
4281       .accessfn = gt_sel2timer_access,
4282       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval),
4283       .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write,
4284     },
4285 #endif
4286 };
4287 
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4288 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4289                                    bool isread)
4290 {
4291     /*
4292      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4293      * At Secure EL1 it traps to EL3 or EL2.
4294      */
4295     if (arm_current_el(env) == 3) {
4296         return CP_ACCESS_OK;
4297     }
4298     if (arm_is_secure_below_el3(env)) {
4299         if (env->cp15.scr_el3 & SCR_EEL2) {
4300             return CP_ACCESS_TRAP_EL2;
4301         }
4302         return CP_ACCESS_TRAP_EL3;
4303     }
4304     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4305     if (isread) {
4306         return CP_ACCESS_OK;
4307     }
4308     return CP_ACCESS_UNDEFINED;
4309 }
4310 
4311 static const ARMCPRegInfo el3_cp_reginfo[] = {
4312     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4313       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4314       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4315       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
4316     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
4317       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4318       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4319       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4320       .writefn = scr_write, .raw_writefn = raw_write },
4321     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4322       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4323       .access = PL3_RW, .resetvalue = 0,
4324       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4325     { .name = "SDER",
4326       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4327       .access = PL3_RW, .resetvalue = 0,
4328       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4329     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4330       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4331       .writefn = vbar_write, .resetvalue = 0,
4332       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4333     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4334       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4335       .access = PL3_RW, .resetvalue = 0,
4336       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4337     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4338       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4339       .access = PL3_RW,
4340       /* no .writefn needed as this can't cause an ASID change */
4341       .resetvalue = 0,
4342       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4343     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4344       .type = ARM_CP_ALIAS,
4345       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4346       .access = PL3_RW,
4347       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4348     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4349       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4350       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4351     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4352       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4353       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4354     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4355       .type = ARM_CP_ALIAS,
4356       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4357       .access = PL3_RW,
4358       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4359     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4360       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4361       .access = PL3_RW, .writefn = vbar_write,
4362       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4363       .resetvalue = 0 },
4364     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4365       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4366       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4367       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4368     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4369       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4370       .access = PL3_RW, .resetvalue = 0,
4371       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4372     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4373       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4374       .access = PL3_RW, .type = ARM_CP_CONST,
4375       .resetvalue = 0 },
4376     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4377       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4378       .access = PL3_RW, .type = ARM_CP_CONST,
4379       .resetvalue = 0 },
4380     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4381       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4382       .access = PL3_RW, .type = ARM_CP_CONST,
4383       .resetvalue = 0 },
4384 };
4385 
4386 #ifndef CONFIG_USER_ONLY
4387 
e2h_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4388 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
4389                                  bool isread)
4390 {
4391     if (arm_current_el(env) == 1) {
4392         /* This must be a FEAT_NV access */
4393         return CP_ACCESS_OK;
4394     }
4395     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
4396         return CP_ACCESS_UNDEFINED;
4397     }
4398     return CP_ACCESS_OK;
4399 }
4400 
access_el1nvpct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4401 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
4402                                       bool isread)
4403 {
4404     if (arm_current_el(env) == 1) {
4405         /* This must be a FEAT_NV access with NVx == 101 */
4406         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
4407             return CP_ACCESS_TRAP_EL2;
4408         }
4409     }
4410     return e2h_access(env, ri, isread);
4411 }
4412 
access_el1nvvct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4413 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
4414                                       bool isread)
4415 {
4416     if (arm_current_el(env) == 1) {
4417         /* This must be a FEAT_NV access with NVx == 101 */
4418         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
4419             return CP_ACCESS_TRAP_EL2;
4420         }
4421     }
4422     return e2h_access(env, ri, isread);
4423 }
4424 
4425 /* Test if system register redirection is to occur in the current state.  */
redirect_for_e2h(CPUARMState * env)4426 static bool redirect_for_e2h(CPUARMState *env)
4427 {
4428     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
4429 }
4430 
el2_e2h_read(CPUARMState * env,const ARMCPRegInfo * ri)4431 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
4432 {
4433     CPReadFn *readfn;
4434 
4435     if (redirect_for_e2h(env)) {
4436         /* Switch to the saved EL2 version of the register.  */
4437         ri = ri->opaque;
4438         readfn = ri->readfn;
4439     } else {
4440         readfn = ri->orig_readfn;
4441     }
4442     if (readfn == NULL) {
4443         readfn = raw_read;
4444     }
4445     return readfn(env, ri);
4446 }
4447 
el2_e2h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4448 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
4449                           uint64_t value)
4450 {
4451     CPWriteFn *writefn;
4452 
4453     if (redirect_for_e2h(env)) {
4454         /* Switch to the saved EL2 version of the register.  */
4455         ri = ri->opaque;
4456         writefn = ri->writefn;
4457     } else {
4458         writefn = ri->orig_writefn;
4459     }
4460     if (writefn == NULL) {
4461         writefn = raw_write;
4462     }
4463     writefn(env, ri, value);
4464 }
4465 
el2_e2h_e12_read(CPUARMState * env,const ARMCPRegInfo * ri)4466 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
4467 {
4468     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
4469     return ri->orig_readfn(env, ri->opaque);
4470 }
4471 
el2_e2h_e12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4472 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4473                               uint64_t value)
4474 {
4475     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
4476     return ri->orig_writefn(env, ri->opaque, value);
4477 }
4478 
el2_e2h_e12_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4479 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
4480                                          const ARMCPRegInfo *ri,
4481                                          bool isread)
4482 {
4483     if (arm_current_el(env) == 1) {
4484         /*
4485          * This must be a FEAT_NV access (will either trap or redirect
4486          * to memory). None of the registers with _EL12 aliases want to
4487          * apply their trap controls for this kind of access, so don't
4488          * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
4489          */
4490         return CP_ACCESS_OK;
4491     }
4492     /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
4493     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
4494         return CP_ACCESS_UNDEFINED;
4495     }
4496     if (ri->orig_accessfn) {
4497         return ri->orig_accessfn(env, ri->opaque, isread);
4498     }
4499     return CP_ACCESS_OK;
4500 }
4501 
define_arm_vh_e2h_redirects_aliases(ARMCPU * cpu)4502 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
4503 {
4504     struct E2HAlias {
4505         uint32_t src_key, dst_key, new_key;
4506         const char *src_name, *dst_name, *new_name;
4507         bool (*feature)(const ARMISARegisters *id);
4508     };
4509 
4510 #define K(op0, op1, crn, crm, op2) \
4511     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
4512 
4513     static const struct E2HAlias aliases[] = {
4514         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
4515           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
4516         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
4517           "CPACR", "CPTR_EL2", "CPACR_EL12" },
4518         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
4519           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
4520         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
4521           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
4522         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
4523           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
4524         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
4525           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
4526         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
4527           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
4528         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
4529           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
4530         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
4531           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
4532         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
4533           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
4534         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
4535           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
4536         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
4537           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
4538         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
4539           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
4540         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
4541           "VBAR", "VBAR_EL2", "VBAR_EL12" },
4542         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
4543           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
4544         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
4545           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
4546 
4547         /*
4548          * Note that redirection of ZCR is mentioned in the description
4549          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
4550          * not in the summary table.
4551          */
4552         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
4553           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
4554         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
4555           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
4556 
4557         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
4558           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
4559 
4560         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
4561           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
4562           isar_feature_aa64_scxtnum },
4563 
4564         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
4565         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
4566     };
4567 #undef K
4568 
4569     size_t i;
4570 
4571     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
4572         const struct E2HAlias *a = &aliases[i];
4573         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
4574         bool ok;
4575 
4576         if (a->feature && !a->feature(&cpu->isar)) {
4577             continue;
4578         }
4579 
4580         src_reg = g_hash_table_lookup(cpu->cp_regs,
4581                                       (gpointer)(uintptr_t)a->src_key);
4582         dst_reg = g_hash_table_lookup(cpu->cp_regs,
4583                                       (gpointer)(uintptr_t)a->dst_key);
4584         g_assert(src_reg != NULL);
4585         g_assert(dst_reg != NULL);
4586 
4587         /* Cross-compare names to detect typos in the keys.  */
4588         g_assert(strcmp(src_reg->name, a->src_name) == 0);
4589         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
4590 
4591         /* None of the core system registers use opaque; we will.  */
4592         g_assert(src_reg->opaque == NULL);
4593 
4594         /* Create alias before redirection so we dup the right data. */
4595         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
4596 
4597         new_reg->name = a->new_name;
4598         new_reg->type |= ARM_CP_ALIAS;
4599         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
4600         new_reg->access &= PL2_RW | PL3_RW;
4601         /* The new_reg op fields are as per new_key, not the target reg */
4602         new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
4603             >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
4604         new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
4605             >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
4606         new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
4607             >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
4608         new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
4609             >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
4610         new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
4611             >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
4612         new_reg->opaque = src_reg;
4613         new_reg->orig_readfn = src_reg->readfn ?: raw_read;
4614         new_reg->orig_writefn = src_reg->writefn ?: raw_write;
4615         new_reg->orig_accessfn = src_reg->accessfn;
4616         if (!new_reg->raw_readfn) {
4617             new_reg->raw_readfn = raw_read;
4618         }
4619         if (!new_reg->raw_writefn) {
4620             new_reg->raw_writefn = raw_write;
4621         }
4622         new_reg->readfn = el2_e2h_e12_read;
4623         new_reg->writefn = el2_e2h_e12_write;
4624         new_reg->accessfn = el2_e2h_e12_access;
4625 
4626         /*
4627          * If the _EL1 register is redirected to memory by FEAT_NV2,
4628          * then it shares the offset with the _EL12 register,
4629          * and which one is redirected depends on HCR_EL2.NV1.
4630          */
4631         if (new_reg->nv2_redirect_offset) {
4632             assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
4633             new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
4634             new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
4635         }
4636 
4637         ok = g_hash_table_insert(cpu->cp_regs,
4638                                  (gpointer)(uintptr_t)a->new_key, new_reg);
4639         g_assert(ok);
4640 
4641         src_reg->opaque = dst_reg;
4642         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
4643         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
4644         if (!src_reg->raw_readfn) {
4645             src_reg->raw_readfn = raw_read;
4646         }
4647         if (!src_reg->raw_writefn) {
4648             src_reg->raw_writefn = raw_write;
4649         }
4650         src_reg->readfn = el2_e2h_read;
4651         src_reg->writefn = el2_e2h_write;
4652     }
4653 }
4654 #endif
4655 
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4656 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4657                                      bool isread)
4658 {
4659     int cur_el = arm_current_el(env);
4660 
4661     if (cur_el < 2) {
4662         uint64_t hcr = arm_hcr_el2_eff(env);
4663 
4664         if (cur_el == 0) {
4665             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4666                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
4667                     return CP_ACCESS_TRAP_EL2;
4668                 }
4669             } else {
4670                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4671                     return CP_ACCESS_TRAP_EL1;
4672                 }
4673                 if (hcr & HCR_TID2) {
4674                     return CP_ACCESS_TRAP_EL2;
4675                 }
4676             }
4677         } else if (hcr & HCR_TID2) {
4678             return CP_ACCESS_TRAP_EL2;
4679         }
4680     }
4681 
4682     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
4683         return CP_ACCESS_TRAP_EL2;
4684     }
4685 
4686     return CP_ACCESS_OK;
4687 }
4688 
4689 /*
4690  * Check for traps to RAS registers, which are controlled
4691  * by HCR_EL2.TERR and SCR_EL3.TERR.
4692  */
access_terr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4693 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
4694                                   bool isread)
4695 {
4696     int el = arm_current_el(env);
4697 
4698     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
4699         return CP_ACCESS_TRAP_EL2;
4700     }
4701     if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) {
4702         return CP_ACCESS_TRAP_EL3;
4703     }
4704     return CP_ACCESS_OK;
4705 }
4706 
disr_read(CPUARMState * env,const ARMCPRegInfo * ri)4707 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4708 {
4709     int el = arm_current_el(env);
4710 
4711     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
4712         return env->cp15.vdisr_el2;
4713     }
4714     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
4715         return 0; /* RAZ/WI */
4716     }
4717     return env->cp15.disr_el1;
4718 }
4719 
disr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)4720 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4721 {
4722     int el = arm_current_el(env);
4723 
4724     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
4725         env->cp15.vdisr_el2 = val;
4726         return;
4727     }
4728     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
4729         return; /* RAZ/WI */
4730     }
4731     env->cp15.disr_el1 = val;
4732 }
4733 
4734 /*
4735  * Minimal RAS implementation with no Error Records.
4736  * Which means that all of the Error Record registers:
4737  *   ERXADDR_EL1
4738  *   ERXCTLR_EL1
4739  *   ERXFR_EL1
4740  *   ERXMISC0_EL1
4741  *   ERXMISC1_EL1
4742  *   ERXMISC2_EL1
4743  *   ERXMISC3_EL1
4744  *   ERXPFGCDN_EL1  (RASv1p1)
4745  *   ERXPFGCTL_EL1  (RASv1p1)
4746  *   ERXPFGF_EL1    (RASv1p1)
4747  *   ERXSTATUS_EL1
4748  * and
4749  *   ERRSELR_EL1
4750  * may generate UNDEFINED, which is the effect we get by not
4751  * listing them at all.
4752  *
4753  * These registers have fine-grained trap bits, but UNDEF-to-EL1
4754  * is higher priority than FGT-to-EL2 so we do not need to list them
4755  * in order to check for an FGT.
4756  */
4757 static const ARMCPRegInfo minimal_ras_reginfo[] = {
4758     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
4759       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
4760       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
4761       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
4762     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
4763       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
4764       .access = PL1_R, .accessfn = access_terr,
4765       .fgt = FGT_ERRIDR_EL1,
4766       .type = ARM_CP_CONST, .resetvalue = 0 },
4767     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
4768       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
4769       .nv2_redirect_offset = 0x500,
4770       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
4771     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
4772       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
4773       .nv2_redirect_offset = 0x508,
4774       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
4775 };
4776 
4777 /*
4778  * Return the exception level to which exceptions should be taken
4779  * via SVEAccessTrap.  This excludes the check for whether the exception
4780  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
4781  * be found by testing 0 < fp_exception_el < sve_exception_el.
4782  *
4783  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
4784  * pseudocode does *not* separate out the FP trap checks, but has them
4785  * all in one function.
4786  */
sve_exception_el(CPUARMState * env,int el)4787 int sve_exception_el(CPUARMState *env, int el)
4788 {
4789 #ifndef CONFIG_USER_ONLY
4790     if (el <= 1 && !el_is_in_host(env, el)) {
4791         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
4792         case 1:
4793             if (el != 0) {
4794                 break;
4795             }
4796             /* fall through */
4797         case 0:
4798         case 2:
4799             return 1;
4800         }
4801     }
4802 
4803     if (el <= 2 && arm_is_el2_enabled(env)) {
4804         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
4805         if (env->cp15.hcr_el2 & HCR_E2H) {
4806             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
4807             case 1:
4808                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
4809                     break;
4810                 }
4811                 /* fall through */
4812             case 0:
4813             case 2:
4814                 return 2;
4815             }
4816         } else {
4817             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
4818                 return 2;
4819             }
4820         }
4821     }
4822 
4823     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
4824     if (arm_feature(env, ARM_FEATURE_EL3)
4825         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
4826         return 3;
4827     }
4828 #endif
4829     return 0;
4830 }
4831 
4832 /*
4833  * Return the exception level to which exceptions should be taken for SME.
4834  * C.f. the ARM pseudocode function CheckSMEAccess.
4835  */
sme_exception_el(CPUARMState * env,int el)4836 int sme_exception_el(CPUARMState *env, int el)
4837 {
4838 #ifndef CONFIG_USER_ONLY
4839     if (el <= 1 && !el_is_in_host(env, el)) {
4840         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
4841         case 1:
4842             if (el != 0) {
4843                 break;
4844             }
4845             /* fall through */
4846         case 0:
4847         case 2:
4848             return 1;
4849         }
4850     }
4851 
4852     if (el <= 2 && arm_is_el2_enabled(env)) {
4853         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
4854         if (env->cp15.hcr_el2 & HCR_E2H) {
4855             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
4856             case 1:
4857                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
4858                     break;
4859                 }
4860                 /* fall through */
4861             case 0:
4862             case 2:
4863                 return 2;
4864             }
4865         } else {
4866             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
4867                 return 2;
4868             }
4869         }
4870     }
4871 
4872     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
4873     if (arm_feature(env, ARM_FEATURE_EL3)
4874         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
4875         return 3;
4876     }
4877 #endif
4878     return 0;
4879 }
4880 
4881 /*
4882  * Given that SVE is enabled, return the vector length for EL.
4883  */
sve_vqm1_for_el_sm(CPUARMState * env,int el,bool sm)4884 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
4885 {
4886     ARMCPU *cpu = env_archcpu(env);
4887     uint64_t *cr = env->vfp.zcr_el;
4888     uint32_t map = cpu->sve_vq.map;
4889     uint32_t len = ARM_MAX_VQ - 1;
4890 
4891     if (sm) {
4892         cr = env->vfp.smcr_el;
4893         map = cpu->sme_vq.map;
4894     }
4895 
4896     if (el <= 1 && !el_is_in_host(env, el)) {
4897         len = MIN(len, 0xf & (uint32_t)cr[1]);
4898     }
4899     if (el <= 2 && arm_is_el2_enabled(env)) {
4900         len = MIN(len, 0xf & (uint32_t)cr[2]);
4901     }
4902     if (arm_feature(env, ARM_FEATURE_EL3)) {
4903         len = MIN(len, 0xf & (uint32_t)cr[3]);
4904     }
4905 
4906     map &= MAKE_64BIT_MASK(0, len + 1);
4907     if (map != 0) {
4908         return 31 - clz32(map);
4909     }
4910 
4911     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
4912     assert(sm);
4913     return ctz32(cpu->sme_vq.map);
4914 }
4915 
sve_vqm1_for_el(CPUARMState * env,int el)4916 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
4917 {
4918     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
4919 }
4920 
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4921 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4922                       uint64_t value)
4923 {
4924     int cur_el = arm_current_el(env);
4925     int old_len = sve_vqm1_for_el(env, cur_el);
4926     int new_len;
4927 
4928     /* Bits other than [3:0] are RAZ/WI.  */
4929     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
4930     raw_write(env, ri, value & 0xf);
4931 
4932     /*
4933      * Because we arrived here, we know both FP and SVE are enabled;
4934      * otherwise we would have trapped access to the ZCR_ELn register.
4935      */
4936     new_len = sve_vqm1_for_el(env, cur_el);
4937     if (new_len < old_len) {
4938         aarch64_sve_narrow_vq(env, new_len + 1);
4939     }
4940 }
4941 
4942 static const ARMCPRegInfo zcr_reginfo[] = {
4943     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4944       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4945       .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
4946       .access = PL1_RW, .type = ARM_CP_SVE,
4947       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4948       .writefn = zcr_write, .raw_writefn = raw_write },
4949     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4950       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4951       .access = PL2_RW, .type = ARM_CP_SVE,
4952       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4953       .writefn = zcr_write, .raw_writefn = raw_write },
4954     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4955       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4956       .access = PL3_RW, .type = ARM_CP_SVE,
4957       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4958       .writefn = zcr_write, .raw_writefn = raw_write },
4959 };
4960 
access_tpidr2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4961 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
4962                                     bool isread)
4963 {
4964     int el = arm_current_el(env);
4965 
4966     if (el == 0) {
4967         uint64_t sctlr = arm_sctlr(env, el);
4968         if (!(sctlr & SCTLR_EnTP2)) {
4969             return CP_ACCESS_TRAP_EL1;
4970         }
4971     }
4972     /* TODO: FEAT_FGT */
4973     if (el < 3
4974         && arm_feature(env, ARM_FEATURE_EL3)
4975         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
4976         return CP_ACCESS_TRAP_EL3;
4977     }
4978     return CP_ACCESS_OK;
4979 }
4980 
access_smprimap(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4981 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
4982                                       bool isread)
4983 {
4984     /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
4985     if (arm_current_el(env) == 2
4986         && arm_feature(env, ARM_FEATURE_EL3)
4987         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
4988         return CP_ACCESS_TRAP_EL3;
4989     }
4990     return CP_ACCESS_OK;
4991 }
4992 
access_smpri(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4993 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
4994                                    bool isread)
4995 {
4996     if (arm_current_el(env) < 3
4997         && arm_feature(env, ARM_FEATURE_EL3)
4998         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
4999         return CP_ACCESS_TRAP_EL3;
5000     }
5001     return CP_ACCESS_OK;
5002 }
5003 
5004 /* ResetSVEState */
arm_reset_sve_state(CPUARMState * env)5005 static void arm_reset_sve_state(CPUARMState *env)
5006 {
5007     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
5008     /* Recall that FFR is stored as pregs[16]. */
5009     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
5010     vfp_set_fpsr(env, 0x0800009f);
5011 }
5012 
aarch64_set_svcr(CPUARMState * env,uint64_t new,uint64_t mask)5013 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
5014 {
5015     uint64_t change = (env->svcr ^ new) & mask;
5016 
5017     if (change == 0) {
5018         return;
5019     }
5020     env->svcr ^= change;
5021 
5022     if (change & R_SVCR_SM_MASK) {
5023         arm_reset_sve_state(env);
5024     }
5025 
5026     /*
5027      * ResetSMEState.
5028      *
5029      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
5030      * on enable: while disabled, the storage is inaccessible and the
5031      * value does not matter.  We're not saving the storage in vmstate
5032      * when disabled either.
5033      */
5034     if (change & new & R_SVCR_ZA_MASK) {
5035         memset(&env->za_state, 0, sizeof(env->za_state));
5036     }
5037 
5038     if (tcg_enabled()) {
5039         arm_rebuild_hflags(env);
5040     }
5041 }
5042 
svcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5043 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5044                        uint64_t value)
5045 {
5046     aarch64_set_svcr(env, value, -1);
5047 }
5048 
smcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5049 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5050                        uint64_t value)
5051 {
5052     int cur_el = arm_current_el(env);
5053     int old_len = sve_vqm1_for_el(env, cur_el);
5054     uint64_t valid_mask = R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
5055     int new_len;
5056 
5057     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
5058     if (cpu_isar_feature(aa64_sme2, env_archcpu(env))) {
5059         valid_mask |= R_SMCR_EZT0_MASK;
5060     }
5061     value &= valid_mask;
5062     raw_write(env, ri, value);
5063 
5064     /*
5065      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
5066      * when SVL is widened (old values kept, or zeros).  Choose to keep the
5067      * current values for simplicity.  But for QEMU internals, we must still
5068      * apply the narrower SVL to the Zregs and Pregs -- see the comment
5069      * above aarch64_sve_narrow_vq.
5070      */
5071     new_len = sve_vqm1_for_el(env, cur_el);
5072     if (new_len < old_len) {
5073         aarch64_sve_narrow_vq(env, new_len + 1);
5074     }
5075 }
5076 
5077 static const ARMCPRegInfo sme_reginfo[] = {
5078     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
5079       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
5080       .access = PL0_RW, .accessfn = access_tpidr2,
5081       .fgt = FGT_NTPIDR2_EL0,
5082       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
5083     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
5084       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
5085       .access = PL0_RW, .type = ARM_CP_SME,
5086       .fieldoffset = offsetof(CPUARMState, svcr),
5087       .writefn = svcr_write, .raw_writefn = raw_write },
5088     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
5089       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
5090       .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
5091       .access = PL1_RW, .type = ARM_CP_SME,
5092       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
5093       .writefn = smcr_write, .raw_writefn = raw_write },
5094     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
5095       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
5096       .access = PL2_RW, .type = ARM_CP_SME,
5097       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
5098       .writefn = smcr_write, .raw_writefn = raw_write },
5099     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
5100       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
5101       .access = PL3_RW, .type = ARM_CP_SME,
5102       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
5103       .writefn = smcr_write, .raw_writefn = raw_write },
5104     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
5106       .access = PL1_R, .accessfn = access_aa64_tid1,
5107       /*
5108        * IMPLEMENTOR = 0 (software)
5109        * REVISION    = 0 (implementation defined)
5110        * SMPS        = 0 (no streaming execution priority in QEMU)
5111        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
5112        */
5113       .type = ARM_CP_CONST, .resetvalue = 0, },
5114     /*
5115      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
5116      */
5117     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
5118       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
5119       .access = PL1_RW, .accessfn = access_smpri,
5120       .fgt = FGT_NSMPRI_EL1,
5121       .type = ARM_CP_CONST, .resetvalue = 0 },
5122     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
5123       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
5124       .nv2_redirect_offset = 0x1f8,
5125       .access = PL2_RW, .accessfn = access_smprimap,
5126       .type = ARM_CP_CONST, .resetvalue = 0 },
5127 };
5128 
gpccr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5129 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5130                         uint64_t value)
5131 {
5132     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
5133     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
5134         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
5135         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
5136 
5137     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
5138 }
5139 
gpccr_reset(CPUARMState * env,const ARMCPRegInfo * ri)5140 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
5141 {
5142     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
5143                                      env_archcpu(env)->reset_l0gptsz);
5144 }
5145 
5146 static const ARMCPRegInfo rme_reginfo[] = {
5147     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
5148       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
5149       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
5150       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
5151     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
5152       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
5153       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
5154     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
5155       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
5156       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
5157     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
5158       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
5159       .access = PL3_W, .type = ARM_CP_NOP },
5160 };
5161 
5162 static const ARMCPRegInfo rme_mte_reginfo[] = {
5163     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
5164       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
5165       .access = PL3_W, .type = ARM_CP_NOP },
5166 };
5167 
aa64_allint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5168 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
5169                               uint64_t value)
5170 {
5171     env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
5172 }
5173 
aa64_allint_read(CPUARMState * env,const ARMCPRegInfo * ri)5174 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
5175 {
5176     return env->pstate & PSTATE_ALLINT;
5177 }
5178 
aa64_allint_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5179 static CPAccessResult aa64_allint_access(CPUARMState *env,
5180                                          const ARMCPRegInfo *ri, bool isread)
5181 {
5182     if (!isread && arm_current_el(env) == 1 &&
5183         (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
5184         return CP_ACCESS_TRAP_EL2;
5185     }
5186     return CP_ACCESS_OK;
5187 }
5188 
5189 static const ARMCPRegInfo nmi_reginfo[] = {
5190     { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
5191       .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
5192       .type = ARM_CP_NO_RAW,
5193       .access = PL1_RW, .accessfn = aa64_allint_access,
5194       .fieldoffset = offsetof(CPUARMState, pstate),
5195       .writefn = aa64_allint_write, .readfn = aa64_allint_read,
5196       .resetfn = arm_cp_reset_ignore },
5197 };
5198 
5199 #ifndef CONFIG_USER_ONLY
5200 /*
5201  * We don't know until after realize whether there's a GICv3
5202  * attached, and that is what registers the gicv3 sysregs.
5203  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5204  * at runtime.
5205  */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)5206 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5207 {
5208     ARMCPU *cpu = env_archcpu(env);
5209     uint64_t pfr1 = GET_IDREG(&cpu->isar, ID_PFR1);
5210 
5211     if (env->gicv3state) {
5212         pfr1 |= 1 << 28;
5213     }
5214     return pfr1;
5215 }
5216 
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)5217 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5218 {
5219     ARMCPU *cpu = env_archcpu(env);
5220     uint64_t pfr0 = GET_IDREG(&cpu->isar, ID_AA64PFR0);
5221 
5222     if (env->gicv3state) {
5223         pfr0 |= 1 << 24;
5224     }
5225     return pfr0;
5226 }
5227 #endif
5228 
5229 /*
5230  * Shared logic between LORID and the rest of the LOR* registers.
5231  * Secure state exclusion has already been dealt with.
5232  */
access_lor_ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5233 static CPAccessResult access_lor_ns(CPUARMState *env,
5234                                     const ARMCPRegInfo *ri, bool isread)
5235 {
5236     int el = arm_current_el(env);
5237 
5238     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5239         return CP_ACCESS_TRAP_EL2;
5240     }
5241     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5242         return CP_ACCESS_TRAP_EL3;
5243     }
5244     return CP_ACCESS_OK;
5245 }
5246 
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5247 static CPAccessResult access_lor_other(CPUARMState *env,
5248                                        const ARMCPRegInfo *ri, bool isread)
5249 {
5250     if (arm_is_secure_below_el3(env)) {
5251         /* UNDEF if SCR_EL3.NS == 0 */
5252         return CP_ACCESS_UNDEFINED;
5253     }
5254     return access_lor_ns(env, ri, isread);
5255 }
5256 
5257 /*
5258  * A trivial implementation of ARMv8.1-LOR leaves all of these
5259  * registers fixed at 0, which indicates that there are zero
5260  * supported Limited Ordering regions.
5261  */
5262 static const ARMCPRegInfo lor_reginfo[] = {
5263     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
5264       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
5265       .access = PL1_RW, .accessfn = access_lor_other,
5266       .fgt = FGT_LORSA_EL1,
5267       .type = ARM_CP_CONST, .resetvalue = 0 },
5268     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
5269       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
5270       .access = PL1_RW, .accessfn = access_lor_other,
5271       .fgt = FGT_LOREA_EL1,
5272       .type = ARM_CP_CONST, .resetvalue = 0 },
5273     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
5274       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
5275       .access = PL1_RW, .accessfn = access_lor_other,
5276       .fgt = FGT_LORN_EL1,
5277       .type = ARM_CP_CONST, .resetvalue = 0 },
5278     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
5279       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
5280       .access = PL1_RW, .accessfn = access_lor_other,
5281       .fgt = FGT_LORC_EL1,
5282       .type = ARM_CP_CONST, .resetvalue = 0 },
5283     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
5284       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
5285       .access = PL1_R, .accessfn = access_lor_ns,
5286       .fgt = FGT_LORID_EL1,
5287       .type = ARM_CP_CONST, .resetvalue = 0 },
5288 };
5289 
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5290 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5291                                    bool isread)
5292 {
5293     int el = arm_current_el(env);
5294 
5295     if (el < 2 &&
5296         arm_is_el2_enabled(env) &&
5297         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5298         return CP_ACCESS_TRAP_EL2;
5299     }
5300     if (el < 3 &&
5301         arm_feature(env, ARM_FEATURE_EL3) &&
5302         !(env->cp15.scr_el3 & SCR_APK)) {
5303         return CP_ACCESS_TRAP_EL3;
5304     }
5305     return CP_ACCESS_OK;
5306 }
5307 
5308 static const ARMCPRegInfo pauth_reginfo[] = {
5309     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5310       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5311       .access = PL1_RW, .accessfn = access_pauth,
5312       .fgt = FGT_APDAKEY,
5313       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5314     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5315       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5316       .access = PL1_RW, .accessfn = access_pauth,
5317       .fgt = FGT_APDAKEY,
5318       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5319     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5320       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5321       .access = PL1_RW, .accessfn = access_pauth,
5322       .fgt = FGT_APDBKEY,
5323       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5324     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5325       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5326       .access = PL1_RW, .accessfn = access_pauth,
5327       .fgt = FGT_APDBKEY,
5328       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5329     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5330       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5331       .access = PL1_RW, .accessfn = access_pauth,
5332       .fgt = FGT_APGAKEY,
5333       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5334     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5335       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5336       .access = PL1_RW, .accessfn = access_pauth,
5337       .fgt = FGT_APGAKEY,
5338       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5339     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5340       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5341       .access = PL1_RW, .accessfn = access_pauth,
5342       .fgt = FGT_APIAKEY,
5343       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5344     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5345       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5346       .access = PL1_RW, .accessfn = access_pauth,
5347       .fgt = FGT_APIAKEY,
5348       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5349     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5350       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5351       .access = PL1_RW, .accessfn = access_pauth,
5352       .fgt = FGT_APIBKEY,
5353       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5354     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5355       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5356       .access = PL1_RW, .accessfn = access_pauth,
5357       .fgt = FGT_APIBKEY,
5358       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5359 };
5360 
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)5361 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5362 {
5363     Error *err = NULL;
5364     uint64_t ret;
5365 
5366     /* Success sets NZCV = 0000.  */
5367     env->NF = env->CF = env->VF = 0, env->ZF = 1;
5368 
5369     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5370         /*
5371          * ??? Failed, for unknown reasons in the crypto subsystem.
5372          * The best we can do is log the reason and return the
5373          * timed-out indication to the guest.  There is no reason
5374          * we know to expect this failure to be transitory, so the
5375          * guest may well hang retrying the operation.
5376          */
5377         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5378                       ri->name, error_get_pretty(err));
5379         error_free(err);
5380 
5381         env->ZF = 0; /* NZCF = 0100 */
5382         return 0;
5383     }
5384     return ret;
5385 }
5386 
5387 /* We do not support re-seeding, so the two registers operate the same.  */
5388 static const ARMCPRegInfo rndr_reginfo[] = {
5389     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5390       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5391       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5392       .access = PL0_R, .readfn = rndr_readfn },
5393     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5394       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5395       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5396       .access = PL0_R, .readfn = rndr_readfn },
5397 };
5398 
dccvap_writefn(CPUARMState * env,const ARMCPRegInfo * opaque,uint64_t value)5399 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
5400                           uint64_t value)
5401 {
5402 #ifdef CONFIG_TCG
5403     ARMCPU *cpu = env_archcpu(env);
5404     /* CTR_EL0 System register -> DminLine, bits [19:16] */
5405     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
5406     uint64_t vaddr_in = (uint64_t) value;
5407     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
5408     void *haddr;
5409     int mem_idx = arm_env_mmu_index(env);
5410 
5411     /* This won't be crossing page boundaries */
5412     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
5413     if (haddr) {
5414 #ifndef CONFIG_USER_ONLY
5415 
5416         ram_addr_t offset;
5417         MemoryRegion *mr;
5418 
5419         /* RCU lock is already being held */
5420         mr = memory_region_from_host(haddr, &offset);
5421 
5422         if (mr) {
5423             memory_region_writeback(mr, offset, dline_size);
5424         }
5425 #endif /*CONFIG_USER_ONLY*/
5426     }
5427 #else
5428     /* Handled by hardware accelerator. */
5429     g_assert_not_reached();
5430 #endif /* CONFIG_TCG */
5431 }
5432 
5433 static const ARMCPRegInfo dcpop_reg[] = {
5434     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
5435       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
5436       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
5437       .fgt = FGT_DCCVAP,
5438       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
5439 };
5440 
5441 static const ARMCPRegInfo dcpodp_reg[] = {
5442     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
5443       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
5444       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
5445       .fgt = FGT_DCCVADP,
5446       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
5447 };
5448 
access_aa64_tid5(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5449 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
5450                                        bool isread)
5451 {
5452     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
5453         return CP_ACCESS_TRAP_EL2;
5454     }
5455 
5456     return CP_ACCESS_OK;
5457 }
5458 
access_mte(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5459 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
5460                                  bool isread)
5461 {
5462     int el = arm_current_el(env);
5463     if (el < 2 && arm_is_el2_enabled(env)) {
5464         uint64_t hcr = arm_hcr_el2_eff(env);
5465         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
5466             return CP_ACCESS_TRAP_EL2;
5467         }
5468     }
5469     if (el < 3 &&
5470         arm_feature(env, ARM_FEATURE_EL3) &&
5471         !(env->cp15.scr_el3 & SCR_ATA)) {
5472         return CP_ACCESS_TRAP_EL3;
5473     }
5474     return CP_ACCESS_OK;
5475 }
5476 
access_tfsr_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5477 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
5478                                       bool isread)
5479 {
5480     CPAccessResult nv1 = access_nv1(env, ri, isread);
5481 
5482     if (nv1 != CP_ACCESS_OK) {
5483         return nv1;
5484     }
5485     return access_mte(env, ri, isread);
5486 }
5487 
access_tfsr_el2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5488 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
5489                                       bool isread)
5490 {
5491     /*
5492      * TFSR_EL2: similar to generic access_mte(), but we need to
5493      * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
5494      * if NV2 is enabled then we will redirect this to TFSR_EL1
5495      * after doing the HCR and SCR ATA traps; otherwise this will
5496      * be a trap to EL2 and the HCR/SCR traps do not apply.
5497      */
5498     int el = arm_current_el(env);
5499 
5500     if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
5501         return CP_ACCESS_OK;
5502     }
5503     if (el < 2 && arm_is_el2_enabled(env)) {
5504         uint64_t hcr = arm_hcr_el2_eff(env);
5505         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
5506             return CP_ACCESS_TRAP_EL2;
5507         }
5508     }
5509     if (el < 3 &&
5510         arm_feature(env, ARM_FEATURE_EL3) &&
5511         !(env->cp15.scr_el3 & SCR_ATA)) {
5512         return CP_ACCESS_TRAP_EL3;
5513     }
5514     return CP_ACCESS_OK;
5515 }
5516 
tco_read(CPUARMState * env,const ARMCPRegInfo * ri)5517 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
5518 {
5519     return env->pstate & PSTATE_TCO;
5520 }
5521 
tco_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)5522 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5523 {
5524     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
5525 }
5526 
5527 static const ARMCPRegInfo mte_reginfo[] = {
5528     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
5529       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
5530       .access = PL1_RW, .accessfn = access_mte,
5531       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
5532     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
5533       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
5534       .access = PL1_RW, .accessfn = access_tfsr_el1,
5535       .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
5536       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
5537     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
5538       .type = ARM_CP_NV2_REDIRECT,
5539       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
5540       .access = PL2_RW, .accessfn = access_tfsr_el2,
5541       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
5542     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
5543       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
5544       .access = PL3_RW,
5545       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
5546     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
5547       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
5548       .access = PL1_RW, .accessfn = access_mte,
5549       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
5550     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
5551       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
5552       .access = PL1_RW, .accessfn = access_mte,
5553       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
5554     { .name = "TCO", .state = ARM_CP_STATE_AA64,
5555       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
5556       .type = ARM_CP_NO_RAW,
5557       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
5558     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
5559       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
5560       .type = ARM_CP_NOP, .access = PL1_W,
5561       .fgt = FGT_DCIVAC,
5562       .accessfn = aa64_cacheop_poc_access },
5563     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
5564       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
5565       .fgt = FGT_DCISW,
5566       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5567     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
5568       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
5569       .type = ARM_CP_NOP, .access = PL1_W,
5570       .fgt = FGT_DCIVAC,
5571       .accessfn = aa64_cacheop_poc_access },
5572     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
5573       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
5574       .fgt = FGT_DCISW,
5575       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5576     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
5577       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
5578       .fgt = FGT_DCCSW,
5579       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5580     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
5581       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
5582       .fgt = FGT_DCCSW,
5583       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5584     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
5585       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
5586       .fgt = FGT_DCCISW,
5587       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5588     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
5589       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
5590       .fgt = FGT_DCCISW,
5591       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5592 };
5593 
5594 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
5595     { .name = "TCO", .state = ARM_CP_STATE_AA64,
5596       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
5597       .type = ARM_CP_CONST, .access = PL0_RW, },
5598 };
5599 
5600 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
5601     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
5602       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
5603       .type = ARM_CP_NOP, .access = PL0_W,
5604       .fgt = FGT_DCCVAC,
5605       .accessfn = aa64_cacheop_poc_access },
5606     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
5607       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
5608       .type = ARM_CP_NOP, .access = PL0_W,
5609       .fgt = FGT_DCCVAC,
5610       .accessfn = aa64_cacheop_poc_access },
5611     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
5612       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
5613       .type = ARM_CP_NOP, .access = PL0_W,
5614       .fgt = FGT_DCCVAP,
5615       .accessfn = aa64_cacheop_poc_access },
5616     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
5617       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
5618       .type = ARM_CP_NOP, .access = PL0_W,
5619       .fgt = FGT_DCCVAP,
5620       .accessfn = aa64_cacheop_poc_access },
5621     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
5622       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
5623       .type = ARM_CP_NOP, .access = PL0_W,
5624       .fgt = FGT_DCCVADP,
5625       .accessfn = aa64_cacheop_poc_access },
5626     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
5627       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
5628       .type = ARM_CP_NOP, .access = PL0_W,
5629       .fgt = FGT_DCCVADP,
5630       .accessfn = aa64_cacheop_poc_access },
5631     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
5632       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
5633       .type = ARM_CP_NOP, .access = PL0_W,
5634       .fgt = FGT_DCCIVAC,
5635       .accessfn = aa64_cacheop_poc_access },
5636     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
5637       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
5638       .type = ARM_CP_NOP, .access = PL0_W,
5639       .fgt = FGT_DCCIVAC,
5640       .accessfn = aa64_cacheop_poc_access },
5641     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
5642       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
5643       .access = PL0_W, .type = ARM_CP_DC_GVA,
5644 #ifndef CONFIG_USER_ONLY
5645       /* Avoid overhead of an access check that always passes in user-mode */
5646       .accessfn = aa64_zva_access,
5647       .fgt = FGT_DCZVA,
5648 #endif
5649     },
5650     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
5651       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
5652       .access = PL0_W, .type = ARM_CP_DC_GZVA,
5653 #ifndef CONFIG_USER_ONLY
5654       /* Avoid overhead of an access check that always passes in user-mode */
5655       .accessfn = aa64_zva_access,
5656       .fgt = FGT_DCZVA,
5657 #endif
5658     },
5659 };
5660 
access_scxtnum(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5661 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
5662                                      bool isread)
5663 {
5664     uint64_t hcr = arm_hcr_el2_eff(env);
5665     int el = arm_current_el(env);
5666 
5667     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
5668         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
5669             if (hcr & HCR_TGE) {
5670                 return CP_ACCESS_TRAP_EL2;
5671             }
5672             return CP_ACCESS_TRAP_EL1;
5673         }
5674     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
5675         return CP_ACCESS_TRAP_EL2;
5676     }
5677     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
5678         return CP_ACCESS_TRAP_EL2;
5679     }
5680     if (el < 3
5681         && arm_feature(env, ARM_FEATURE_EL3)
5682         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
5683         return CP_ACCESS_TRAP_EL3;
5684     }
5685     return CP_ACCESS_OK;
5686 }
5687 
access_scxtnum_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5688 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
5689                                          const ARMCPRegInfo *ri,
5690                                          bool isread)
5691 {
5692     CPAccessResult nv1 = access_nv1(env, ri, isread);
5693 
5694     if (nv1 != CP_ACCESS_OK) {
5695         return nv1;
5696     }
5697     return access_scxtnum(env, ri, isread);
5698 }
5699 
5700 static const ARMCPRegInfo scxtnum_reginfo[] = {
5701     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
5702       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
5703       .access = PL0_RW, .accessfn = access_scxtnum,
5704       .fgt = FGT_SCXTNUM_EL0,
5705       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
5706     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
5707       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
5708       .access = PL1_RW, .accessfn = access_scxtnum_el1,
5709       .fgt = FGT_SCXTNUM_EL1,
5710       .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
5711       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
5712     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
5713       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
5714       .access = PL2_RW, .accessfn = access_scxtnum,
5715       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
5716     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
5717       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
5718       .access = PL3_RW,
5719       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
5720 };
5721 
access_fgt(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5722 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
5723                                  bool isread)
5724 {
5725     if (arm_current_el(env) == 2 &&
5726         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
5727         return CP_ACCESS_TRAP_EL3;
5728     }
5729     return CP_ACCESS_OK;
5730 }
5731 
5732 static const ARMCPRegInfo fgt_reginfo[] = {
5733     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
5734       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5735       .nv2_redirect_offset = 0x1b8,
5736       .access = PL2_RW, .accessfn = access_fgt,
5737       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
5738     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
5739       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
5740       .nv2_redirect_offset = 0x1c0,
5741       .access = PL2_RW, .accessfn = access_fgt,
5742       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
5743     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
5744       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
5745       .nv2_redirect_offset = 0x1d0,
5746       .access = PL2_RW, .accessfn = access_fgt,
5747       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
5748     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
5749       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
5750       .nv2_redirect_offset = 0x1d8,
5751       .access = PL2_RW, .accessfn = access_fgt,
5752       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
5753     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
5754       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
5755       .nv2_redirect_offset = 0x1c8,
5756       .access = PL2_RW, .accessfn = access_fgt,
5757       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
5758 };
5759 
vncr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5760 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5761                        uint64_t value)
5762 {
5763     /*
5764      * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
5765      * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
5766      * about the RESS bits at the top -- we choose the "generate an EL2
5767      * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
5768      * the ptw.c code detect the resulting invalid address).
5769      */
5770     env->cp15.vncr_el2 = value & ~0xfffULL;
5771 }
5772 
5773 static const ARMCPRegInfo nv2_reginfo[] = {
5774     { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
5776       .access = PL2_RW,
5777       .writefn = vncr_write,
5778       .nv2_redirect_offset = 0xb0,
5779       .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
5780 };
5781 
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5782 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5783                                      bool isread)
5784 {
5785     int el = arm_current_el(env);
5786 
5787     if (el == 0) {
5788         uint64_t sctlr = arm_sctlr(env, el);
5789         if (!(sctlr & SCTLR_EnRCTX)) {
5790             return CP_ACCESS_TRAP_EL1;
5791         }
5792     } else if (el == 1) {
5793         uint64_t hcr = arm_hcr_el2_eff(env);
5794         if (hcr & HCR_NV) {
5795             return CP_ACCESS_TRAP_EL2;
5796         }
5797     }
5798     return CP_ACCESS_OK;
5799 }
5800 
5801 static const ARMCPRegInfo predinv_reginfo[] = {
5802     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5803       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5804       .fgt = FGT_CFPRCTX,
5805       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5806     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5807       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5808       .fgt = FGT_DVPRCTX,
5809       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5810     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5811       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5812       .fgt = FGT_CPPRCTX,
5813       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5814     /*
5815      * Note the AArch32 opcodes have a different OPC1.
5816      */
5817     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5818       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5819       .fgt = FGT_CFPRCTX,
5820       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5821     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5822       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5823       .fgt = FGT_DVPRCTX,
5824       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5825     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5826       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5827       .fgt = FGT_CPPRCTX,
5828       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5829 };
5830 
ccsidr2_read(CPUARMState * env,const ARMCPRegInfo * ri)5831 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5832 {
5833     /* Read the high 32 bits of the current CCSIDR */
5834     return extract64(ccsidr_read(env, ri), 32, 32);
5835 }
5836 
5837 static const ARMCPRegInfo ccsidr2_reginfo[] = {
5838     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
5839       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
5840       .access = PL1_R,
5841       .accessfn = access_tid4,
5842       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
5843 };
5844 
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5845 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5846                                        bool isread)
5847 {
5848     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
5849         return CP_ACCESS_TRAP_EL2;
5850     }
5851 
5852     return CP_ACCESS_OK;
5853 }
5854 
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5855 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
5856                                        bool isread)
5857 {
5858     if (arm_feature(env, ARM_FEATURE_V8)) {
5859         return access_aa64_tid3(env, ri, isread);
5860     }
5861 
5862     return CP_ACCESS_OK;
5863 }
5864 
access_jazelle(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5865 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
5866                                      bool isread)
5867 {
5868     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
5869         return CP_ACCESS_TRAP_EL2;
5870     }
5871 
5872     return CP_ACCESS_OK;
5873 }
5874 
access_joscr_jmcr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5875 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
5876                                         const ARMCPRegInfo *ri, bool isread)
5877 {
5878     /*
5879      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
5880      * in v7A, not in v8A.
5881      */
5882     if (!arm_feature(env, ARM_FEATURE_V8) &&
5883         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
5884         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
5885         return CP_ACCESS_TRAP_EL2;
5886     }
5887     return CP_ACCESS_OK;
5888 }
5889 
5890 static const ARMCPRegInfo jazelle_regs[] = {
5891     { .name = "JIDR",
5892       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
5893       .access = PL1_R, .accessfn = access_jazelle,
5894       .type = ARM_CP_CONST, .resetvalue = 0 },
5895     { .name = "JOSCR",
5896       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
5897       .accessfn = access_joscr_jmcr,
5898       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5899     { .name = "JMCR",
5900       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
5901       .accessfn = access_joscr_jmcr,
5902       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5903 };
5904 
5905 static const ARMCPRegInfo contextidr_el2 = {
5906     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
5907     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
5908     .access = PL2_RW,
5909     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
5910 };
5911 
5912 static const ARMCPRegInfo vhe_reginfo[] = {
5913     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
5914       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
5915       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
5916       .raw_writefn = raw_write,
5917       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
5918 #ifndef CONFIG_USER_ONLY
5919     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5920       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
5921       .fieldoffset =
5922         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
5923       .type = ARM_CP_IO, .access = PL2_RW,
5924       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
5925     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5926       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
5927       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5928       .resetfn = gt_hv_timer_reset,
5929       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
5930     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5931       .type = ARM_CP_IO,
5932       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
5933       .access = PL2_RW,
5934       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
5935       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
5936     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
5937       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
5938       .type = ARM_CP_IO | ARM_CP_ALIAS,
5939       .access = PL2_RW, .accessfn = access_el1nvpct,
5940       .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
5941       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
5942       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
5943     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
5944       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
5945       .type = ARM_CP_IO | ARM_CP_ALIAS,
5946       .access = PL2_RW, .accessfn = access_el1nvvct,
5947       .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
5948       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
5949       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
5950     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
5951       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
5952       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
5953       .access = PL2_RW, .accessfn = e2h_access,
5954       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
5955     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
5956       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
5957       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
5958       .access = PL2_RW, .accessfn = e2h_access,
5959       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
5960     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
5961       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
5962       .type = ARM_CP_IO | ARM_CP_ALIAS,
5963       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
5964       .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
5965       .access = PL2_RW, .accessfn = access_el1nvpct,
5966       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
5967     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
5968       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
5969       .type = ARM_CP_IO | ARM_CP_ALIAS,
5970       .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
5971       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
5972       .access = PL2_RW, .accessfn = access_el1nvvct,
5973       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
5974 #endif
5975 };
5976 
5977 /*
5978  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
5979  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
5980  * is non-zero, which is never for ARMv7, optionally in ARMv8
5981  * and mandatorily for ARMv8.2 and up.
5982  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
5983  * implementation is RAZ/WI we can ignore this detail, as we
5984  * do for ACTLR.
5985  */
5986 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
5987     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
5988       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
5989       .access = PL1_RW, .accessfn = access_tacr,
5990       .type = ARM_CP_CONST, .resetvalue = 0 },
5991     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
5992       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
5993       .access = PL2_RW, .type = ARM_CP_CONST,
5994       .resetvalue = 0 },
5995 };
5996 
register_cp_regs_for_features(ARMCPU * cpu)5997 void register_cp_regs_for_features(ARMCPU *cpu)
5998 {
5999     /* Register all the coprocessor registers based on feature bits */
6000     CPUARMState *env = &cpu->env;
6001     ARMISARegisters *isar = &cpu->isar;
6002 
6003     if (arm_feature(env, ARM_FEATURE_M)) {
6004         /* M profile has no coprocessor registers */
6005         return;
6006     }
6007 
6008     define_arm_cp_regs(cpu, cp_reginfo);
6009     if (!arm_feature(env, ARM_FEATURE_V8)) {
6010         /*
6011          * Must go early as it is full of wildcards that may be
6012          * overridden by later definitions.
6013          */
6014         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6015     }
6016 
6017 #ifndef CONFIG_USER_ONLY
6018     if (tcg_enabled()) {
6019         define_tlb_insn_regs(cpu);
6020         define_at_insn_regs(cpu);
6021     }
6022 #endif
6023 
6024     if (arm_feature(env, ARM_FEATURE_V6)) {
6025         /* The ID registers all have impdef reset values */
6026         ARMCPRegInfo v6_idregs[] = {
6027             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6028               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6029               .access = PL1_R, .type = ARM_CP_CONST,
6030               .accessfn = access_aa32_tid3,
6031               .resetvalue = GET_IDREG(isar, ID_PFR0)},
6032             /*
6033              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6034              * the value of the GIC field until after we define these regs.
6035              */
6036             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6038               .access = PL1_R, .type = ARM_CP_NO_RAW,
6039               .accessfn = access_aa32_tid3,
6040 #ifdef CONFIG_USER_ONLY
6041               .type = ARM_CP_CONST,
6042               .resetvalue = GET_IDREG(isar, ID_PFR1),
6043 #else
6044               .type = ARM_CP_NO_RAW,
6045               .accessfn = access_aa32_tid3,
6046               .readfn = id_pfr1_read,
6047               .writefn = arm_cp_write_ignore
6048 #endif
6049             },
6050             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6051               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6052               .access = PL1_R, .type = ARM_CP_CONST,
6053               .accessfn = access_aa32_tid3,
6054               .resetvalue = GET_IDREG(isar, ID_DFR0)},
6055             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6056               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6057               .access = PL1_R, .type = ARM_CP_CONST,
6058               .accessfn = access_aa32_tid3,
6059               .resetvalue = GET_IDREG(isar, ID_AFR0)},
6060             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6061               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6062               .access = PL1_R, .type = ARM_CP_CONST,
6063               .accessfn = access_aa32_tid3,
6064               .resetvalue = GET_IDREG(isar, ID_MMFR0)},
6065             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6067               .access = PL1_R, .type = ARM_CP_CONST,
6068               .accessfn = access_aa32_tid3,
6069               .resetvalue = GET_IDREG(isar, ID_MMFR1)},
6070             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6071               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6072               .access = PL1_R, .type = ARM_CP_CONST,
6073               .accessfn = access_aa32_tid3,
6074               .resetvalue = GET_IDREG(isar, ID_MMFR2)},
6075             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6076               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6077               .access = PL1_R, .type = ARM_CP_CONST,
6078               .accessfn = access_aa32_tid3,
6079               .resetvalue = GET_IDREG(isar, ID_MMFR3)},
6080             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6081               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6082               .access = PL1_R, .type = ARM_CP_CONST,
6083               .accessfn = access_aa32_tid3,
6084               .resetvalue = GET_IDREG(isar, ID_ISAR0)},
6085             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6086               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6087               .access = PL1_R, .type = ARM_CP_CONST,
6088               .accessfn = access_aa32_tid3,
6089               .resetvalue = GET_IDREG(isar, ID_ISAR1)},
6090             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6091               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6092               .access = PL1_R, .type = ARM_CP_CONST,
6093               .accessfn = access_aa32_tid3,
6094               .resetvalue = GET_IDREG(isar, ID_ISAR2)},
6095             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6096               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6097               .access = PL1_R, .type = ARM_CP_CONST,
6098               .accessfn = access_aa32_tid3,
6099               .resetvalue = GET_IDREG(isar, ID_ISAR3) },
6100             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6101               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6102               .access = PL1_R, .type = ARM_CP_CONST,
6103               .accessfn = access_aa32_tid3,
6104               .resetvalue = GET_IDREG(isar, ID_ISAR4) },
6105             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6107               .access = PL1_R, .type = ARM_CP_CONST,
6108               .accessfn = access_aa32_tid3,
6109               .resetvalue = GET_IDREG(isar, ID_ISAR5) },
6110             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6111               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6112               .access = PL1_R, .type = ARM_CP_CONST,
6113               .accessfn = access_aa32_tid3,
6114               .resetvalue = GET_IDREG(isar, ID_MMFR4)},
6115             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6116               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6117               .access = PL1_R, .type = ARM_CP_CONST,
6118               .accessfn = access_aa32_tid3,
6119               .resetvalue = GET_IDREG(isar, ID_ISAR6) },
6120         };
6121         define_arm_cp_regs(cpu, v6_idregs);
6122         define_arm_cp_regs(cpu, v6_cp_reginfo);
6123     } else {
6124         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6125     }
6126     if (arm_feature(env, ARM_FEATURE_V6K)) {
6127         define_arm_cp_regs(cpu, v6k_cp_reginfo);
6128     }
6129     if (arm_feature(env, ARM_FEATURE_V7)) {
6130         ARMCPRegInfo clidr = {
6131             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6132             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6133             .access = PL1_R, .type = ARM_CP_CONST,
6134             .accessfn = access_tid4,
6135             .fgt = FGT_CLIDR_EL1,
6136             .resetvalue = GET_IDREG(isar, CLIDR)
6137         };
6138         define_one_arm_cp_reg(cpu, &clidr);
6139         define_arm_cp_regs(cpu, v7_cp_reginfo);
6140         define_debug_regs(cpu);
6141     } else {
6142         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6143     }
6144     if (arm_feature(env, ARM_FEATURE_V8)) {
6145         /*
6146          * v8 ID registers, which all have impdef reset values.
6147          * Note that within the ID register ranges the unused slots
6148          * must all RAZ, not UNDEF; future architecture versions may
6149          * define new registers here.
6150          * ID registers which are AArch64 views of the AArch32 ID registers
6151          * which already existed in v6 and v7 are handled elsewhere,
6152          * in v6_idregs[].
6153          */
6154         int i;
6155         ARMCPRegInfo v8_idregs[] = {
6156             /*
6157              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
6158              * emulation because we don't know the right value for the
6159              * GIC field until after we define these regs.
6160              */
6161             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6162               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6163               .access = PL1_R,
6164 #ifdef CONFIG_USER_ONLY
6165               .type = ARM_CP_CONST,
6166               .resetvalue = GET_IDREG(isar, ID_AA64PFR0)
6167 #else
6168               .type = ARM_CP_NO_RAW,
6169               .accessfn = access_aa64_tid3,
6170               .readfn = id_aa64pfr0_read,
6171               .writefn = arm_cp_write_ignore
6172 #endif
6173             },
6174             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6175               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6176               .access = PL1_R, .type = ARM_CP_CONST,
6177               .accessfn = access_aa64_tid3,
6178               .resetvalue = GET_IDREG(isar, ID_AA64PFR1)},
6179             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6180               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6181               .access = PL1_R, .type = ARM_CP_CONST,
6182               .accessfn = access_aa64_tid3,
6183               .resetvalue = 0 },
6184             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6185               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6186               .access = PL1_R, .type = ARM_CP_CONST,
6187               .accessfn = access_aa64_tid3,
6188               .resetvalue = 0 },
6189             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6190               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6191               .access = PL1_R, .type = ARM_CP_CONST,
6192               .accessfn = access_aa64_tid3,
6193               .resetvalue = GET_IDREG(isar, ID_AA64ZFR0)},
6194             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
6195               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6196               .access = PL1_R, .type = ARM_CP_CONST,
6197               .accessfn = access_aa64_tid3,
6198               .resetvalue = GET_IDREG(isar, ID_AA64SMFR0)},
6199             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6200               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6201               .access = PL1_R, .type = ARM_CP_CONST,
6202               .accessfn = access_aa64_tid3,
6203               .resetvalue = 0 },
6204             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6205               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6206               .access = PL1_R, .type = ARM_CP_CONST,
6207               .accessfn = access_aa64_tid3,
6208               .resetvalue = 0 },
6209             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6210               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6211               .access = PL1_R, .type = ARM_CP_CONST,
6212               .accessfn = access_aa64_tid3,
6213               .resetvalue = GET_IDREG(isar, ID_AA64DFR0) },
6214             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6215               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6216               .access = PL1_R, .type = ARM_CP_CONST,
6217               .accessfn = access_aa64_tid3,
6218               .resetvalue = GET_IDREG(isar, ID_AA64DFR1) },
6219             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6220               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6221               .access = PL1_R, .type = ARM_CP_CONST,
6222               .accessfn = access_aa64_tid3,
6223               .resetvalue = 0 },
6224             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6225               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6226               .access = PL1_R, .type = ARM_CP_CONST,
6227               .accessfn = access_aa64_tid3,
6228               .resetvalue = 0 },
6229             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6230               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6231               .access = PL1_R, .type = ARM_CP_CONST,
6232               .accessfn = access_aa64_tid3,
6233               .resetvalue = GET_IDREG(isar, ID_AA64AFR0) },
6234             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6235               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6236               .access = PL1_R, .type = ARM_CP_CONST,
6237               .accessfn = access_aa64_tid3,
6238               .resetvalue = GET_IDREG(isar, ID_AA64AFR1) },
6239             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6240               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6241               .access = PL1_R, .type = ARM_CP_CONST,
6242               .accessfn = access_aa64_tid3,
6243               .resetvalue = 0 },
6244             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6245               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6246               .access = PL1_R, .type = ARM_CP_CONST,
6247               .accessfn = access_aa64_tid3,
6248               .resetvalue = 0 },
6249             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6250               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6251               .access = PL1_R, .type = ARM_CP_CONST,
6252               .accessfn = access_aa64_tid3,
6253               .resetvalue = GET_IDREG(isar, ID_AA64ISAR0)},
6254             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6255               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6256               .access = PL1_R, .type = ARM_CP_CONST,
6257               .accessfn = access_aa64_tid3,
6258               .resetvalue = GET_IDREG(isar, ID_AA64ISAR1)},
6259             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
6260               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6261               .access = PL1_R, .type = ARM_CP_CONST,
6262               .accessfn = access_aa64_tid3,
6263               .resetvalue = GET_IDREG(isar, ID_AA64ISAR2)},
6264             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6265               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6266               .access = PL1_R, .type = ARM_CP_CONST,
6267               .accessfn = access_aa64_tid3,
6268               .resetvalue = 0 },
6269             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6270               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6271               .access = PL1_R, .type = ARM_CP_CONST,
6272               .accessfn = access_aa64_tid3,
6273               .resetvalue = 0 },
6274             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6275               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6276               .access = PL1_R, .type = ARM_CP_CONST,
6277               .accessfn = access_aa64_tid3,
6278               .resetvalue = 0 },
6279             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6280               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6281               .access = PL1_R, .type = ARM_CP_CONST,
6282               .accessfn = access_aa64_tid3,
6283               .resetvalue = 0 },
6284             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6285               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6286               .access = PL1_R, .type = ARM_CP_CONST,
6287               .accessfn = access_aa64_tid3,
6288               .resetvalue = 0 },
6289             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6290               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6291               .access = PL1_R, .type = ARM_CP_CONST,
6292               .accessfn = access_aa64_tid3,
6293               .resetvalue = GET_IDREG(isar, ID_AA64MMFR0)},
6294             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6295               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6296               .access = PL1_R, .type = ARM_CP_CONST,
6297               .accessfn = access_aa64_tid3,
6298               .resetvalue = GET_IDREG(isar, ID_AA64MMFR1) },
6299             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
6300               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6301               .access = PL1_R, .type = ARM_CP_CONST,
6302               .accessfn = access_aa64_tid3,
6303               .resetvalue = GET_IDREG(isar, ID_AA64MMFR2) },
6304             { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
6305               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6306               .access = PL1_R, .type = ARM_CP_CONST,
6307               .accessfn = access_aa64_tid3,
6308               .resetvalue = GET_IDREG(isar, ID_AA64MMFR3) },
6309             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6310               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6311               .access = PL1_R, .type = ARM_CP_CONST,
6312               .accessfn = access_aa64_tid3,
6313               .resetvalue = 0 },
6314             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6315               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6316               .access = PL1_R, .type = ARM_CP_CONST,
6317               .accessfn = access_aa64_tid3,
6318               .resetvalue = 0 },
6319             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6320               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6321               .access = PL1_R, .type = ARM_CP_CONST,
6322               .accessfn = access_aa64_tid3,
6323               .resetvalue = 0 },
6324             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6325               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6326               .access = PL1_R, .type = ARM_CP_CONST,
6327               .accessfn = access_aa64_tid3,
6328               .resetvalue = 0 },
6329             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6330               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6331               .access = PL1_R, .type = ARM_CP_CONST,
6332               .accessfn = access_aa64_tid3,
6333               .resetvalue = cpu->isar.mvfr0 },
6334             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6335               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6336               .access = PL1_R, .type = ARM_CP_CONST,
6337               .accessfn = access_aa64_tid3,
6338               .resetvalue = cpu->isar.mvfr1 },
6339             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6340               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6341               .access = PL1_R, .type = ARM_CP_CONST,
6342               .accessfn = access_aa64_tid3,
6343               .resetvalue = cpu->isar.mvfr2 },
6344             /*
6345              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
6346              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
6347              * as RAZ, since it is in the "reserved for future ID
6348              * registers, RAZ" part of the AArch32 encoding space.
6349              */
6350             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
6351               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6352               .access = PL1_R, .type = ARM_CP_CONST,
6353               .accessfn = access_aa64_tid3,
6354               .resetvalue = 0 },
6355             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
6356               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6357               .access = PL1_R, .type = ARM_CP_CONST,
6358               .accessfn = access_aa64_tid3,
6359               .resetvalue = 0 },
6360             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
6361               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6362               .access = PL1_R, .type = ARM_CP_CONST,
6363               .accessfn = access_aa64_tid3,
6364               .resetvalue = 0 },
6365             /*
6366              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
6367              * they're also RAZ for AArch64, and in v8 are gradually
6368              * being filled with AArch64-view-of-AArch32-ID-register
6369              * for new ID registers.
6370              */
6371             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
6372               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6373               .access = PL1_R, .type = ARM_CP_CONST,
6374               .accessfn = access_aa64_tid3,
6375               .resetvalue = 0 },
6376             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
6377               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6378               .access = PL1_R, .type = ARM_CP_CONST,
6379               .accessfn = access_aa64_tid3,
6380               .resetvalue = GET_IDREG(isar, ID_PFR2)},
6381             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
6382               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6383               .access = PL1_R, .type = ARM_CP_CONST,
6384               .accessfn = access_aa64_tid3,
6385               .resetvalue = GET_IDREG(isar, ID_DFR1)},
6386             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
6387               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6388               .access = PL1_R, .type = ARM_CP_CONST,
6389               .accessfn = access_aa64_tid3,
6390               .resetvalue = GET_IDREG(isar, ID_MMFR5)},
6391             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
6392               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6393               .access = PL1_R, .type = ARM_CP_CONST,
6394               .accessfn = access_aa64_tid3,
6395               .resetvalue = 0 },
6396         };
6397 #ifdef CONFIG_USER_ONLY
6398         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6399             { .name = "ID_AA64PFR0_EL1",
6400               .exported_bits = R_ID_AA64PFR0_FP_MASK |
6401                                R_ID_AA64PFR0_ADVSIMD_MASK |
6402                                R_ID_AA64PFR0_SVE_MASK |
6403                                R_ID_AA64PFR0_DIT_MASK,
6404               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
6405                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
6406             { .name = "ID_AA64PFR1_EL1",
6407               .exported_bits = R_ID_AA64PFR1_BT_MASK |
6408                                R_ID_AA64PFR1_SSBS_MASK |
6409                                R_ID_AA64PFR1_MTE_MASK |
6410                                R_ID_AA64PFR1_SME_MASK },
6411             { .name = "ID_AA64PFR*_EL1_RESERVED",
6412               .is_glob = true },
6413             { .name = "ID_AA64ZFR0_EL1",
6414               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
6415                                R_ID_AA64ZFR0_AES_MASK |
6416                                R_ID_AA64ZFR0_BITPERM_MASK |
6417                                R_ID_AA64ZFR0_BFLOAT16_MASK |
6418                                R_ID_AA64ZFR0_B16B16_MASK |
6419                                R_ID_AA64ZFR0_SHA3_MASK |
6420                                R_ID_AA64ZFR0_SM4_MASK |
6421                                R_ID_AA64ZFR0_I8MM_MASK |
6422                                R_ID_AA64ZFR0_F32MM_MASK |
6423                                R_ID_AA64ZFR0_F64MM_MASK },
6424             { .name = "ID_AA64SMFR0_EL1",
6425               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
6426                                R_ID_AA64SMFR0_BI32I32_MASK |
6427                                R_ID_AA64SMFR0_B16F32_MASK |
6428                                R_ID_AA64SMFR0_F16F32_MASK |
6429                                R_ID_AA64SMFR0_I8I32_MASK |
6430                                R_ID_AA64SMFR0_F16F16_MASK |
6431                                R_ID_AA64SMFR0_B16B16_MASK |
6432                                R_ID_AA64SMFR0_I16I32_MASK |
6433                                R_ID_AA64SMFR0_F64F64_MASK |
6434                                R_ID_AA64SMFR0_I16I64_MASK |
6435                                R_ID_AA64SMFR0_SMEVER_MASK |
6436                                R_ID_AA64SMFR0_FA64_MASK },
6437             { .name = "ID_AA64MMFR0_EL1",
6438               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
6439               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
6440                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
6441             { .name = "ID_AA64MMFR1_EL1",
6442               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
6443             { .name = "ID_AA64MMFR2_EL1",
6444               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
6445             { .name = "ID_AA64MMFR3_EL1",
6446               .exported_bits = 0 },
6447             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6448               .is_glob = true },
6449             { .name = "ID_AA64DFR0_EL1",
6450               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
6451             { .name = "ID_AA64DFR1_EL1" },
6452             { .name = "ID_AA64DFR*_EL1_RESERVED",
6453               .is_glob = true },
6454             { .name = "ID_AA64AFR*",
6455               .is_glob = true },
6456             { .name = "ID_AA64ISAR0_EL1",
6457               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
6458                                R_ID_AA64ISAR0_SHA1_MASK |
6459                                R_ID_AA64ISAR0_SHA2_MASK |
6460                                R_ID_AA64ISAR0_CRC32_MASK |
6461                                R_ID_AA64ISAR0_ATOMIC_MASK |
6462                                R_ID_AA64ISAR0_RDM_MASK |
6463                                R_ID_AA64ISAR0_SHA3_MASK |
6464                                R_ID_AA64ISAR0_SM3_MASK |
6465                                R_ID_AA64ISAR0_SM4_MASK |
6466                                R_ID_AA64ISAR0_DP_MASK |
6467                                R_ID_AA64ISAR0_FHM_MASK |
6468                                R_ID_AA64ISAR0_TS_MASK |
6469                                R_ID_AA64ISAR0_RNDR_MASK },
6470             { .name = "ID_AA64ISAR1_EL1",
6471               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
6472                                R_ID_AA64ISAR1_APA_MASK |
6473                                R_ID_AA64ISAR1_API_MASK |
6474                                R_ID_AA64ISAR1_JSCVT_MASK |
6475                                R_ID_AA64ISAR1_FCMA_MASK |
6476                                R_ID_AA64ISAR1_LRCPC_MASK |
6477                                R_ID_AA64ISAR1_GPA_MASK |
6478                                R_ID_AA64ISAR1_GPI_MASK |
6479                                R_ID_AA64ISAR1_FRINTTS_MASK |
6480                                R_ID_AA64ISAR1_SB_MASK |
6481                                R_ID_AA64ISAR1_BF16_MASK |
6482                                R_ID_AA64ISAR1_DGH_MASK |
6483                                R_ID_AA64ISAR1_I8MM_MASK },
6484             { .name = "ID_AA64ISAR2_EL1",
6485               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
6486                                R_ID_AA64ISAR2_RPRES_MASK |
6487                                R_ID_AA64ISAR2_GPA3_MASK |
6488                                R_ID_AA64ISAR2_APA3_MASK |
6489                                R_ID_AA64ISAR2_MOPS_MASK |
6490                                R_ID_AA64ISAR2_BC_MASK |
6491                                R_ID_AA64ISAR2_RPRFM_MASK |
6492                                R_ID_AA64ISAR2_CSSC_MASK },
6493             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6494               .is_glob = true },
6495         };
6496         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6497 #endif
6498         /*
6499          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
6500          * TODO: For RMR, a write with bit 1 set should do something with
6501          * cpu_reset(). In the meantime, "the bit is strictly a request",
6502          * so we are in spec just ignoring writes.
6503          */
6504         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6505             !arm_feature(env, ARM_FEATURE_EL2)) {
6506             ARMCPRegInfo el1_reset_regs[] = {
6507                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
6508                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6509                   .access = PL1_R,
6510                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
6511                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
6512                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
6513                   .access = PL1_RW, .type = ARM_CP_CONST,
6514                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
6515             };
6516             define_arm_cp_regs(cpu, el1_reset_regs);
6517         }
6518         define_arm_cp_regs(cpu, v8_idregs);
6519         define_arm_cp_regs(cpu, v8_cp_reginfo);
6520         if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
6521             define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
6522         }
6523 
6524         for (i = 4; i < 16; i++) {
6525             /*
6526              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
6527              * For pre-v8 cores there are RAZ patterns for these in
6528              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
6529              * v8 extends the "must RAZ" part of the ID register space
6530              * to also cover c0, 0, c{8-15}, {0-7}.
6531              * These are STATE_AA32 because in the AArch64 sysreg space
6532              * c4-c7 is where the AArch64 ID registers live (and we've
6533              * already defined those in v8_idregs[]), and c8-c15 are not
6534              * "must RAZ" for AArch64.
6535              */
6536             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
6537             ARMCPRegInfo v8_aa32_raz_idregs = {
6538                 .name = name,
6539                 .state = ARM_CP_STATE_AA32,
6540                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
6541                 .access = PL1_R, .type = ARM_CP_CONST,
6542                 .accessfn = access_aa64_tid3,
6543                 .resetvalue = 0 };
6544             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
6545         }
6546     }
6547 
6548     /*
6549      * Register the base EL2 cpregs.
6550      * Pre v8, these registers are implemented only as part of the
6551      * Virtualization Extensions (EL2 present).  Beginning with v8,
6552      * if EL2 is missing but EL3 is enabled, mostly these become
6553      * RES0 from EL3, with some specific exceptions.
6554      */
6555     if (arm_feature(env, ARM_FEATURE_EL2)
6556         || (arm_feature(env, ARM_FEATURE_EL3)
6557             && arm_feature(env, ARM_FEATURE_V8))) {
6558         uint64_t vmpidr_def = mpidr_read_val(env);
6559         ARMCPRegInfo vpidr_regs[] = {
6560             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6561               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6562               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6563               .resetvalue = cpu->midr,
6564               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
6565               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6566             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6567               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6568               .access = PL2_RW, .resetvalue = cpu->midr,
6569               .type = ARM_CP_EL3_NO_EL2_C_NZ,
6570               .nv2_redirect_offset = 0x88,
6571               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6572             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6573               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6574               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6575               .resetvalue = vmpidr_def,
6576               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
6577               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6578             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6579               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6580               .access = PL2_RW, .resetvalue = vmpidr_def,
6581               .type = ARM_CP_EL3_NO_EL2_C_NZ,
6582               .nv2_redirect_offset = 0x50,
6583               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6584         };
6585         /*
6586          * The only field of MDCR_EL2 that has a defined architectural reset
6587          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
6588          */
6589         ARMCPRegInfo mdcr_el2 = {
6590             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
6591             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
6592             .writefn = mdcr_el2_write,
6593             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
6594             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
6595         };
6596         define_one_arm_cp_reg(cpu, &mdcr_el2);
6597         define_arm_cp_regs(cpu, vpidr_regs);
6598         define_arm_cp_regs(cpu, el2_cp_reginfo);
6599         if (arm_feature(env, ARM_FEATURE_V8)) {
6600             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6601         }
6602         if (cpu_isar_feature(aa64_sel2, cpu)) {
6603             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
6604         }
6605         /*
6606          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
6607          * See commentary near RMR_EL1.
6608          */
6609         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6610             static const ARMCPRegInfo el2_reset_regs[] = {
6611                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6612                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6613                   .access = PL2_R,
6614                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
6615                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
6616                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6617                   .access = PL2_R,
6618                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
6619                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
6620                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
6621                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
6622             };
6623             define_arm_cp_regs(cpu, el2_reset_regs);
6624         }
6625     }
6626 
6627     /* Register the base EL3 cpregs. */
6628     if (arm_feature(env, ARM_FEATURE_EL3)) {
6629         define_arm_cp_regs(cpu, el3_cp_reginfo);
6630         ARMCPRegInfo el3_regs[] = {
6631             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6632               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6633               .access = PL3_R,
6634               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
6635             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
6636               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
6637               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
6638             { .name = "RMR", .state = ARM_CP_STATE_AA32,
6639               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
6640               .access = PL3_RW, .type = ARM_CP_CONST,
6641               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
6642             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6643               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6644               .access = PL3_RW,
6645               .raw_writefn = raw_write, .writefn = sctlr_write,
6646               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6647               .resetvalue = cpu->reset_sctlr },
6648         };
6649 
6650         define_arm_cp_regs(cpu, el3_regs);
6651     }
6652     /*
6653      * The behaviour of NSACR is sufficiently various that we don't
6654      * try to describe it in a single reginfo:
6655      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6656      *     reads as constant 0xc00 from NS EL1 and NS EL2
6657      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6658      *  if v7 without EL3, register doesn't exist
6659      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6660      */
6661     if (arm_feature(env, ARM_FEATURE_EL3)) {
6662         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6663             static const ARMCPRegInfo nsacr = {
6664                 .name = "NSACR", .type = ARM_CP_CONST,
6665                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6666                 .access = PL1_RW, .accessfn = nsacr_access,
6667                 .resetvalue = 0xc00
6668             };
6669             define_one_arm_cp_reg(cpu, &nsacr);
6670         } else {
6671             static const ARMCPRegInfo nsacr = {
6672                 .name = "NSACR",
6673                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6674                 .access = PL3_RW | PL1_R,
6675                 .resetvalue = 0,
6676                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6677             };
6678             define_one_arm_cp_reg(cpu, &nsacr);
6679         }
6680     } else {
6681         if (arm_feature(env, ARM_FEATURE_V8)) {
6682             static const ARMCPRegInfo nsacr = {
6683                 .name = "NSACR", .type = ARM_CP_CONST,
6684                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6685                 .access = PL1_R,
6686                 .resetvalue = 0xc00
6687             };
6688             define_one_arm_cp_reg(cpu, &nsacr);
6689         }
6690     }
6691 
6692     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6693         if (arm_feature(env, ARM_FEATURE_V6)) {
6694             /* PMSAv6 not implemented */
6695             assert(arm_feature(env, ARM_FEATURE_V7));
6696             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6697             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6698         } else {
6699             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6700         }
6701     } else {
6702         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6703         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6704         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
6705         if (cpu_isar_feature(aa32_hpd, cpu)) {
6706             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6707         }
6708     }
6709     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6710         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6711     }
6712     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6713         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6714     }
6715     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
6716         define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
6717     }
6718 #ifndef CONFIG_USER_ONLY
6719     if (cpu_isar_feature(aa64_ecv, cpu)) {
6720         define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
6721     }
6722 #endif
6723     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6724         ARMCPRegInfo vapa_cp_reginfo[] = {
6725             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
6726               .access = PL1_RW, .resetvalue = 0,
6727               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
6728                                      offsetoflow32(CPUARMState, cp15.par_ns) },
6729               .writefn = par_write},
6730         };
6731 
6732         /*
6733          * When LPAE exists this 32-bit PAR register is an alias of the
6734          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
6735          */
6736         if (arm_feature(env, ARM_FEATURE_LPAE)) {
6737             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
6738         }
6739         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6740     }
6741     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6742         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6743     }
6744     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6745         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6746     }
6747     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6748         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6749     }
6750     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6751         define_arm_cp_regs(cpu, omap_cp_reginfo);
6752     }
6753     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6754         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6755     }
6756     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6757         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6758     }
6759     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6760         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6761     }
6762     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6763         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6764     }
6765     if (cpu_isar_feature(aa32_jazelle, cpu)) {
6766         define_arm_cp_regs(cpu, jazelle_regs);
6767     }
6768     /*
6769      * Slightly awkwardly, the OMAP and StrongARM cores need all of
6770      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6771      * be read-only (ie write causes UNDEF exception).
6772      */
6773     {
6774         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6775             /*
6776              * Pre-v8 MIDR space.
6777              * Note that the MIDR isn't a simple constant register because
6778              * of the TI925 behaviour where writes to another register can
6779              * cause the MIDR value to change.
6780              *
6781              * Unimplemented registers in the c15 0 0 0 space default to
6782              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6783              * and friends override accordingly.
6784              */
6785             { .name = "MIDR",
6786               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6787               .access = PL1_R, .resetvalue = cpu->midr,
6788               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6789               .readfn = midr_read,
6790               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6791               .type = ARM_CP_OVERRIDE },
6792             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6793             { .name = "DUMMY",
6794               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6795               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6796             { .name = "DUMMY",
6797               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6798               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6799             { .name = "DUMMY",
6800               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6801               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6802             { .name = "DUMMY",
6803               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6804               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6805             { .name = "DUMMY",
6806               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6807               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6808         };
6809         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6810             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6811               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6812               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6813               .fgt = FGT_MIDR_EL1,
6814               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6815               .readfn = midr_read },
6816             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
6817             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6818               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6819               .access = PL1_R, .resetvalue = cpu->midr },
6820             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6821               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6822               .access = PL1_R,
6823               .accessfn = access_aa64_tid1,
6824               .fgt = FGT_REVIDR_EL1,
6825               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6826         };
6827         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
6828             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
6829             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6830             .access = PL1_R, .resetvalue = cpu->midr
6831         };
6832         ARMCPRegInfo id_cp_reginfo[] = {
6833             /* These are common to v8 and pre-v8 */
6834             { .name = "CTR",
6835               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6836               .access = PL1_R, .accessfn = ctr_el0_access,
6837               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6838             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6839               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6840               .access = PL0_R, .accessfn = ctr_el0_access,
6841               .fgt = FGT_CTR_EL0,
6842               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6843             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6844             { .name = "TCMTR",
6845               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6846               .access = PL1_R,
6847               .accessfn = access_aa32_tid1,
6848               .type = ARM_CP_CONST, .resetvalue = 0 },
6849         };
6850         /* TLBTR is specific to VMSA */
6851         ARMCPRegInfo id_tlbtr_reginfo = {
6852               .name = "TLBTR",
6853               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6854               .access = PL1_R,
6855               .accessfn = access_aa32_tid1,
6856               .type = ARM_CP_CONST, .resetvalue = 0,
6857         };
6858         /* MPUIR is specific to PMSA V6+ */
6859         ARMCPRegInfo id_mpuir_reginfo = {
6860               .name = "MPUIR",
6861               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6862               .access = PL1_R, .type = ARM_CP_CONST,
6863               .resetvalue = cpu->pmsav7_dregion << 8
6864         };
6865         /* HMPUIR is specific to PMSA V8 */
6866         ARMCPRegInfo id_hmpuir_reginfo = {
6867             .name = "HMPUIR",
6868             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
6869             .access = PL2_R, .type = ARM_CP_CONST,
6870             .resetvalue = cpu->pmsav8r_hdregion
6871         };
6872         static const ARMCPRegInfo crn0_wi_reginfo = {
6873             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6874             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6875             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6876         };
6877 #ifdef CONFIG_USER_ONLY
6878         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6879             { .name = "MIDR_EL1",
6880               .exported_bits = R_MIDR_EL1_REVISION_MASK |
6881                                R_MIDR_EL1_PARTNUM_MASK |
6882                                R_MIDR_EL1_ARCHITECTURE_MASK |
6883                                R_MIDR_EL1_VARIANT_MASK |
6884                                R_MIDR_EL1_IMPLEMENTER_MASK },
6885             { .name = "REVIDR_EL1" },
6886         };
6887         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6888 #endif
6889         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6890             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6891             size_t i;
6892             /*
6893              * Register the blanket "writes ignored" value first to cover the
6894              * whole space. Then update the specific ID registers to allow write
6895              * access, so that they ignore writes rather than causing them to
6896              * UNDEF.
6897              */
6898             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6899             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
6900                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
6901             }
6902             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
6903                 id_cp_reginfo[i].access = PL1_RW;
6904             }
6905             id_mpuir_reginfo.access = PL1_RW;
6906             id_tlbtr_reginfo.access = PL1_RW;
6907         }
6908         if (arm_feature(env, ARM_FEATURE_V8)) {
6909             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6910             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6911                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
6912             }
6913         } else {
6914             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6915         }
6916         define_arm_cp_regs(cpu, id_cp_reginfo);
6917         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6918             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6919         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
6920                    arm_feature(env, ARM_FEATURE_V8)) {
6921             uint32_t i = 0;
6922             char *tmp_string;
6923 
6924             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6925             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
6926             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
6927 
6928             /* Register alias is only valid for first 32 indexes */
6929             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
6930                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
6931                 uint8_t opc1 = extract32(i, 4, 1);
6932                 uint8_t opc2 = extract32(i, 0, 1) << 2;
6933 
6934                 tmp_string = g_strdup_printf("PRBAR%u", i);
6935                 ARMCPRegInfo tmp_prbarn_reginfo = {
6936                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
6937                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
6938                     .access = PL1_RW, .resetvalue = 0,
6939                     .accessfn = access_tvm_trvm,
6940                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
6941                 };
6942                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
6943                 g_free(tmp_string);
6944 
6945                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
6946                 tmp_string = g_strdup_printf("PRLAR%u", i);
6947                 ARMCPRegInfo tmp_prlarn_reginfo = {
6948                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
6949                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
6950                     .access = PL1_RW, .resetvalue = 0,
6951                     .accessfn = access_tvm_trvm,
6952                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
6953                 };
6954                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
6955                 g_free(tmp_string);
6956             }
6957 
6958             /* Register alias is only valid for first 32 indexes */
6959             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
6960                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
6961                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
6962                 uint8_t opc2 = extract32(i, 0, 1) << 2;
6963 
6964                 tmp_string = g_strdup_printf("HPRBAR%u", i);
6965                 ARMCPRegInfo tmp_hprbarn_reginfo = {
6966                     .name = tmp_string,
6967                     .type = ARM_CP_NO_RAW,
6968                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
6969                     .access = PL2_RW, .resetvalue = 0,
6970                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
6971                 };
6972                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
6973                 g_free(tmp_string);
6974 
6975                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
6976                 tmp_string = g_strdup_printf("HPRLAR%u", i);
6977                 ARMCPRegInfo tmp_hprlarn_reginfo = {
6978                     .name = tmp_string,
6979                     .type = ARM_CP_NO_RAW,
6980                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
6981                     .access = PL2_RW, .resetvalue = 0,
6982                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
6983                 };
6984                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
6985                 g_free(tmp_string);
6986             }
6987         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6988             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6989         }
6990     }
6991 
6992     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6993         ARMCPRegInfo mpidr_cp_reginfo[] = {
6994             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6995               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6996               .fgt = FGT_MPIDR_EL1,
6997               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6998         };
6999 #ifdef CONFIG_USER_ONLY
7000         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7001             { .name = "MPIDR_EL1",
7002               .fixed_bits = 0x0000000080000000 },
7003         };
7004         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7005 #endif
7006         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7007     }
7008 
7009     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7010         ARMCPRegInfo auxcr_reginfo[] = {
7011             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7012               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7013               .access = PL1_RW, .accessfn = access_tacr,
7014               .nv2_redirect_offset = 0x118,
7015               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7016             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7017               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7018               .access = PL2_RW, .type = ARM_CP_CONST,
7019               .resetvalue = 0 },
7020             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7021               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7022               .access = PL3_RW, .type = ARM_CP_CONST,
7023               .resetvalue = 0 },
7024         };
7025         define_arm_cp_regs(cpu, auxcr_reginfo);
7026         if (cpu_isar_feature(aa32_ac2, cpu)) {
7027             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
7028         }
7029     }
7030 
7031     if (arm_feature(env, ARM_FEATURE_CBAR)) {
7032         /*
7033          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7034          * There are two flavours:
7035          *  (1) older 32-bit only cores have a simple 32-bit CBAR
7036          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7037          *      32-bit register visible to AArch32 at a different encoding
7038          *      to the "flavour 1" register and with the bits rearranged to
7039          *      be able to squash a 64-bit address into the 32-bit view.
7040          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7041          * in future if we support AArch32-only configs of some of the
7042          * AArch64 cores we might need to add a specific feature flag
7043          * to indicate cores with "flavour 2" CBAR.
7044          */
7045         if (arm_feature(env, ARM_FEATURE_V8)) {
7046             /* 32 bit view is [31:18] 0...0 [43:32]. */
7047             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7048                 | extract64(cpu->reset_cbar, 32, 12);
7049             ARMCPRegInfo cbar_reginfo[] = {
7050                 { .name = "CBAR",
7051                   .type = ARM_CP_CONST,
7052                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7053                   .access = PL1_R, .resetvalue = cbar32 },
7054                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7055                   .type = ARM_CP_CONST,
7056                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7057                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
7058             };
7059             /* We don't implement a r/w 64 bit CBAR currently */
7060             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7061             define_arm_cp_regs(cpu, cbar_reginfo);
7062         } else {
7063             ARMCPRegInfo cbar = {
7064                 .name = "CBAR",
7065                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7066                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
7067                 .fieldoffset = offsetof(CPUARMState,
7068                                         cp15.c15_config_base_address)
7069             };
7070             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7071                 cbar.access = PL1_R;
7072                 cbar.fieldoffset = 0;
7073                 cbar.type = ARM_CP_CONST;
7074             }
7075             define_one_arm_cp_reg(cpu, &cbar);
7076         }
7077     }
7078 
7079     if (arm_feature(env, ARM_FEATURE_VBAR)) {
7080         static const ARMCPRegInfo vbar_cp_reginfo[] = {
7081             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7082               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7083               .access = PL1_RW, .writefn = vbar_write,
7084               .accessfn = access_nv1,
7085               .fgt = FGT_VBAR_EL1,
7086               .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
7087               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7088                                      offsetof(CPUARMState, cp15.vbar_ns) },
7089               .resetvalue = 0 },
7090         };
7091         define_arm_cp_regs(cpu, vbar_cp_reginfo);
7092     }
7093 
7094     /* Generic registers whose values depend on the implementation */
7095     {
7096         ARMCPRegInfo sctlr = {
7097             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7098             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7099             .access = PL1_RW, .accessfn = access_tvm_trvm,
7100             .fgt = FGT_SCTLR_EL1,
7101             .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
7102             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7103                                    offsetof(CPUARMState, cp15.sctlr_ns) },
7104             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7105             .raw_writefn = raw_write,
7106         };
7107         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7108             /*
7109              * Normally we would always end the TB on an SCTLR write, but Linux
7110              * arch/arm/mach-pxa/sleep.S expects two instructions following
7111              * an MMU enable to execute from cache.  Imitate this behaviour.
7112              */
7113             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7114         }
7115         define_one_arm_cp_reg(cpu, &sctlr);
7116 
7117         if (arm_feature(env, ARM_FEATURE_PMSA) &&
7118             arm_feature(env, ARM_FEATURE_V8)) {
7119             ARMCPRegInfo vsctlr = {
7120                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
7121                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
7122                 .access = PL2_RW, .resetvalue = 0x0,
7123                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
7124             };
7125             define_one_arm_cp_reg(cpu, &vsctlr);
7126         }
7127     }
7128 
7129     if (cpu_isar_feature(aa64_lor, cpu)) {
7130         define_arm_cp_regs(cpu, lor_reginfo);
7131     }
7132     if (cpu_isar_feature(aa64_pan, cpu)) {
7133         define_one_arm_cp_reg(cpu, &pan_reginfo);
7134     }
7135     if (cpu_isar_feature(aa64_uao, cpu)) {
7136         define_one_arm_cp_reg(cpu, &uao_reginfo);
7137     }
7138 
7139     if (cpu_isar_feature(aa64_dit, cpu)) {
7140         define_one_arm_cp_reg(cpu, &dit_reginfo);
7141     }
7142     if (cpu_isar_feature(aa64_ssbs, cpu)) {
7143         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
7144     }
7145     if (cpu_isar_feature(any_ras, cpu)) {
7146         define_arm_cp_regs(cpu, minimal_ras_reginfo);
7147     }
7148 
7149     if (cpu_isar_feature(aa64_vh, cpu) ||
7150         cpu_isar_feature(aa64_debugv8p2, cpu)) {
7151         define_one_arm_cp_reg(cpu, &contextidr_el2);
7152     }
7153     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7154         define_arm_cp_regs(cpu, vhe_reginfo);
7155     }
7156 
7157     if (cpu_isar_feature(aa64_sve, cpu)) {
7158         define_arm_cp_regs(cpu, zcr_reginfo);
7159     }
7160 
7161     if (cpu_isar_feature(aa64_hcx, cpu)) {
7162         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
7163     }
7164 
7165     if (cpu_isar_feature(aa64_sme, cpu)) {
7166         define_arm_cp_regs(cpu, sme_reginfo);
7167     }
7168     if (cpu_isar_feature(aa64_pauth, cpu)) {
7169         define_arm_cp_regs(cpu, pauth_reginfo);
7170     }
7171     if (cpu_isar_feature(aa64_rndr, cpu)) {
7172         define_arm_cp_regs(cpu, rndr_reginfo);
7173     }
7174     /* Data Cache clean instructions up to PoP */
7175     if (cpu_isar_feature(aa64_dcpop, cpu)) {
7176         define_one_arm_cp_reg(cpu, dcpop_reg);
7177 
7178         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7179             define_one_arm_cp_reg(cpu, dcpodp_reg);
7180         }
7181     }
7182 
7183     /*
7184      * If full MTE is enabled, add all of the system registers.
7185      * If only "instructions available at EL0" are enabled,
7186      * then define only a RAZ/WI version of PSTATE.TCO.
7187      */
7188     if (cpu_isar_feature(aa64_mte, cpu)) {
7189         ARMCPRegInfo gmid_reginfo = {
7190             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7191             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7192             .access = PL1_R, .accessfn = access_aa64_tid5,
7193             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
7194         };
7195         define_one_arm_cp_reg(cpu, &gmid_reginfo);
7196         define_arm_cp_regs(cpu, mte_reginfo);
7197         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
7198     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
7199         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
7200         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
7201     }
7202 
7203     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
7204         define_arm_cp_regs(cpu, scxtnum_reginfo);
7205     }
7206 
7207     if (cpu_isar_feature(aa64_fgt, cpu)) {
7208         define_arm_cp_regs(cpu, fgt_reginfo);
7209     }
7210 
7211     if (cpu_isar_feature(aa64_rme, cpu)) {
7212         define_arm_cp_regs(cpu, rme_reginfo);
7213         if (cpu_isar_feature(aa64_mte, cpu)) {
7214             define_arm_cp_regs(cpu, rme_mte_reginfo);
7215         }
7216     }
7217 
7218     if (cpu_isar_feature(aa64_nv2, cpu)) {
7219         define_arm_cp_regs(cpu, nv2_reginfo);
7220     }
7221 
7222     if (cpu_isar_feature(aa64_nmi, cpu)) {
7223         define_arm_cp_regs(cpu, nmi_reginfo);
7224     }
7225 
7226     if (cpu_isar_feature(any_predinv, cpu)) {
7227         define_arm_cp_regs(cpu, predinv_reginfo);
7228     }
7229 
7230     if (cpu_isar_feature(any_ccidx, cpu)) {
7231         define_arm_cp_regs(cpu, ccsidr2_reginfo);
7232     }
7233 
7234     define_pm_cpregs(cpu);
7235 
7236 #ifndef CONFIG_USER_ONLY
7237     /*
7238      * Register redirections and aliases must be done last,
7239      * after the registers from the other extensions have been defined.
7240      */
7241     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7242         define_arm_vh_e2h_redirects_aliases(cpu);
7243     }
7244 #endif
7245 }
7246 
7247 /*
7248  * Private utility function for define_one_arm_cp_reg_with_opaque():
7249  * add a single reginfo struct to the hash table.
7250  */
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,CPState state,CPSecureState secstate,int crm,int opc1,int opc2,const char * name)7251 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7252                                    void *opaque, CPState state,
7253                                    CPSecureState secstate,
7254                                    int crm, int opc1, int opc2,
7255                                    const char *name)
7256 {
7257     CPUARMState *env = &cpu->env;
7258     uint32_t key;
7259     ARMCPRegInfo *r2;
7260     bool is64 = r->type & ARM_CP_64BIT;
7261     bool ns = secstate & ARM_CP_SECSTATE_NS;
7262     int cp = r->cp;
7263     size_t name_len;
7264     bool make_const;
7265 
7266     switch (state) {
7267     case ARM_CP_STATE_AA32:
7268         /* We assume it is a cp15 register if the .cp field is left unset. */
7269         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
7270             cp = 15;
7271         }
7272         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
7273         break;
7274     case ARM_CP_STATE_AA64:
7275         /*
7276          * To allow abbreviation of ARMCPRegInfo definitions, we treat
7277          * cp == 0 as equivalent to the value for "standard guest-visible
7278          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
7279          * in their AArch64 view (the .cp value may be non-zero for the
7280          * benefit of the AArch32 view).
7281          */
7282         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7283             cp = CP_REG_ARM64_SYSREG_CP;
7284         }
7285         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
7286         break;
7287     default:
7288         g_assert_not_reached();
7289     }
7290 
7291     /* Overriding of an existing definition must be explicitly requested. */
7292     if (!(r->type & ARM_CP_OVERRIDE)) {
7293         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
7294         if (oldreg) {
7295             assert(oldreg->type & ARM_CP_OVERRIDE);
7296         }
7297     }
7298 
7299     /*
7300      * Eliminate registers that are not present because the EL is missing.
7301      * Doing this here makes it easier to put all registers for a given
7302      * feature into the same ARMCPRegInfo array and define them all at once.
7303      */
7304     make_const = false;
7305     if (arm_feature(env, ARM_FEATURE_EL3)) {
7306         /*
7307          * An EL2 register without EL2 but with EL3 is (usually) RES0.
7308          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
7309          */
7310         int min_el = ctz32(r->access) / 2;
7311         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
7312             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
7313                 return;
7314             }
7315             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
7316         }
7317     } else {
7318         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
7319                                  ? PL2_RW : PL1_RW);
7320         if ((r->access & max_el) == 0) {
7321             return;
7322         }
7323     }
7324 
7325     /* Combine cpreg and name into one allocation. */
7326     name_len = strlen(name) + 1;
7327     r2 = g_malloc(sizeof(*r2) + name_len);
7328     *r2 = *r;
7329     r2->name = memcpy(r2 + 1, name, name_len);
7330 
7331     /*
7332      * Update fields to match the instantiation, overwiting wildcards
7333      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
7334      */
7335     r2->cp = cp;
7336     r2->crm = crm;
7337     r2->opc1 = opc1;
7338     r2->opc2 = opc2;
7339     r2->state = state;
7340     r2->secure = secstate;
7341     if (opaque) {
7342         r2->opaque = opaque;
7343     }
7344 
7345     if (make_const) {
7346         /* This should not have been a very special register to begin. */
7347         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
7348         assert(old_special == 0 || old_special == ARM_CP_NOP);
7349         /*
7350          * Set the special function to CONST, retaining the other flags.
7351          * This is important for e.g. ARM_CP_SVE so that we still
7352          * take the SVE trap if CPTR_EL3.EZ == 0.
7353          */
7354         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
7355         /*
7356          * Usually, these registers become RES0, but there are a few
7357          * special cases like VPIDR_EL2 which have a constant non-zero
7358          * value with writes ignored.
7359          */
7360         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
7361             r2->resetvalue = 0;
7362         }
7363         /*
7364          * ARM_CP_CONST has precedence, so removing the callbacks and
7365          * offsets are not strictly necessary, but it is potentially
7366          * less confusing to debug later.
7367          */
7368         r2->readfn = NULL;
7369         r2->writefn = NULL;
7370         r2->raw_readfn = NULL;
7371         r2->raw_writefn = NULL;
7372         r2->resetfn = NULL;
7373         r2->fieldoffset = 0;
7374         r2->bank_fieldoffsets[0] = 0;
7375         r2->bank_fieldoffsets[1] = 0;
7376     } else {
7377         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
7378 
7379         if (isbanked) {
7380             /*
7381              * Register is banked (using both entries in array).
7382              * Overwriting fieldoffset as the array is only used to define
7383              * banked registers but later only fieldoffset is used.
7384              */
7385             r2->fieldoffset = r->bank_fieldoffsets[ns];
7386         }
7387         if (state == ARM_CP_STATE_AA32) {
7388             if (isbanked) {
7389                 /*
7390                  * If the register is banked then we don't need to migrate or
7391                  * reset the 32-bit instance in certain cases:
7392                  *
7393                  * 1) If the register has both 32-bit and 64-bit instances
7394                  *    then we can count on the 64-bit instance taking care
7395                  *    of the non-secure bank.
7396                  * 2) If ARMv8 is enabled then we can count on a 64-bit
7397                  *    version taking care of the secure bank.  This requires
7398                  *    that separate 32 and 64-bit definitions are provided.
7399                  */
7400                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7401                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
7402                     r2->type |= ARM_CP_ALIAS;
7403                 }
7404             } else if ((secstate != r->secure) && !ns) {
7405                 /*
7406                  * The register is not banked so we only want to allow
7407                  * migration of the non-secure instance.
7408                  */
7409                 r2->type |= ARM_CP_ALIAS;
7410             }
7411 
7412             if (HOST_BIG_ENDIAN &&
7413                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
7414                 r2->fieldoffset += sizeof(uint32_t);
7415             }
7416         }
7417     }
7418 
7419     /*
7420      * By convention, for wildcarded registers only the first
7421      * entry is used for migration; the others are marked as
7422      * ALIAS so we don't try to transfer the register
7423      * multiple times. Special registers (ie NOP/WFI) are
7424      * never migratable and not even raw-accessible.
7425      */
7426     if (r2->type & ARM_CP_SPECIAL_MASK) {
7427         r2->type |= ARM_CP_NO_RAW;
7428     }
7429     if (((r->crm == CP_ANY) && crm != 0) ||
7430         ((r->opc1 == CP_ANY) && opc1 != 0) ||
7431         ((r->opc2 == CP_ANY) && opc2 != 0)) {
7432         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7433     }
7434 
7435     /*
7436      * Check that raw accesses are either forbidden or handled. Note that
7437      * we can't assert this earlier because the setup of fieldoffset for
7438      * banked registers has to be done first.
7439      */
7440     if (!(r2->type & ARM_CP_NO_RAW)) {
7441         assert(!raw_accessors_invalid(r2));
7442     }
7443 
7444     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
7445 }
7446 
7447 
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)7448 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7449                                        const ARMCPRegInfo *r, void *opaque)
7450 {
7451     /*
7452      * Define implementations of coprocessor registers.
7453      * We store these in a hashtable because typically
7454      * there are less than 150 registers in a space which
7455      * is 16*16*16*8*8 = 262144 in size.
7456      * Wildcarding is supported for the crm, opc1 and opc2 fields.
7457      * If a register is defined twice then the second definition is
7458      * used, so this can be used to define some generic registers and
7459      * then override them with implementation specific variations.
7460      * At least one of the original and the second definition should
7461      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7462      * against accidental use.
7463      *
7464      * The state field defines whether the register is to be
7465      * visible in the AArch32 or AArch64 execution state. If the
7466      * state is set to ARM_CP_STATE_BOTH then we synthesise a
7467      * reginfo structure for the AArch32 view, which sees the lower
7468      * 32 bits of the 64 bit register.
7469      *
7470      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7471      * be wildcarded. AArch64 registers are always considered to be 64
7472      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7473      * the register, if any.
7474      */
7475     int crm, opc1, opc2;
7476     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7477     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7478     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7479     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7480     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7481     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7482     CPState state;
7483 
7484     /* 64 bit registers have only CRm and Opc1 fields */
7485     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7486     /* op0 only exists in the AArch64 encodings */
7487     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7488     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7489     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7490     /*
7491      * This API is only for Arm's system coprocessors (14 and 15) or
7492      * (M-profile or v7A-and-earlier only) for implementation defined
7493      * coprocessors in the range 0..7.  Our decode assumes this, since
7494      * 8..13 can be used for other insns including VFP and Neon. See
7495      * valid_cp() in translate.c.  Assert here that we haven't tried
7496      * to use an invalid coprocessor number.
7497      */
7498     switch (r->state) {
7499     case ARM_CP_STATE_BOTH:
7500         /* 0 has a special meaning, but otherwise the same rules as AA32. */
7501         if (r->cp == 0) {
7502             break;
7503         }
7504         /* fall through */
7505     case ARM_CP_STATE_AA32:
7506         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
7507             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
7508             assert(r->cp >= 14 && r->cp <= 15);
7509         } else {
7510             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
7511         }
7512         break;
7513     case ARM_CP_STATE_AA64:
7514         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
7515         break;
7516     default:
7517         g_assert_not_reached();
7518     }
7519     /*
7520      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
7521      * encodes a minimum access level for the register. We roll this
7522      * runtime check into our general permission check code, so check
7523      * here that the reginfo's specified permissions are strict enough
7524      * to encompass the generic architectural permission check.
7525      */
7526     if (r->state != ARM_CP_STATE_AA32) {
7527         CPAccessRights mask;
7528         switch (r->opc1) {
7529         case 0:
7530             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7531             mask = PL0U_R | PL1_RW;
7532             break;
7533         case 1: case 2:
7534             /* min_EL EL1 */
7535             mask = PL1_RW;
7536             break;
7537         case 3:
7538             /* min_EL EL0 */
7539             mask = PL0_RW;
7540             break;
7541         case 4:
7542         case 5:
7543             /* min_EL EL2 */
7544             mask = PL2_RW;
7545             break;
7546         case 6:
7547             /* min_EL EL3 */
7548             mask = PL3_RW;
7549             break;
7550         case 7:
7551             /* min_EL EL1, secure mode only (we don't check the latter) */
7552             mask = PL1_RW;
7553             break;
7554         default:
7555             /* broken reginfo with out-of-range opc1 */
7556             g_assert_not_reached();
7557         }
7558         /* assert our permissions are not too lax (stricter is fine) */
7559         assert((r->access & ~mask) == 0);
7560     }
7561 
7562     /*
7563      * Check that the register definition has enough info to handle
7564      * reads and writes if they are permitted.
7565      */
7566     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
7567         if (r->access & PL3_R) {
7568             assert((r->fieldoffset ||
7569                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7570                    r->readfn);
7571         }
7572         if (r->access & PL3_W) {
7573             assert((r->fieldoffset ||
7574                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7575                    r->writefn);
7576         }
7577     }
7578 
7579     for (crm = crmmin; crm <= crmmax; crm++) {
7580         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7581             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7582                 for (state = ARM_CP_STATE_AA32;
7583                      state <= ARM_CP_STATE_AA64; state++) {
7584                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7585                         continue;
7586                     }
7587                     if ((r->type & ARM_CP_ADD_TLBI_NXS) &&
7588                         cpu_isar_feature(aa64_xs, cpu)) {
7589                         /*
7590                          * This is a TLBI insn which has an NXS variant. The
7591                          * NXS variant is at the same encoding except that
7592                          * crn is +1, and has the same behaviour except for
7593                          * fine-grained trapping. Add the NXS insn here and
7594                          * then fall through to add the normal register.
7595                          * add_cpreg_to_hashtable() copies the cpreg struct
7596                          * and name that it is passed, so it's OK to use
7597                          * a local struct here.
7598                          */
7599                         ARMCPRegInfo nxs_ri = *r;
7600                         g_autofree char *name = g_strdup_printf("%sNXS", r->name);
7601 
7602                         assert(state == ARM_CP_STATE_AA64);
7603                         assert(nxs_ri.crn < 0xf);
7604                         nxs_ri.crn++;
7605                         if (nxs_ri.fgt) {
7606                             nxs_ri.fgt |= R_FGT_NXS_MASK;
7607                         }
7608                         add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state,
7609                                                ARM_CP_SECSTATE_NS,
7610                                                crm, opc1, opc2, name);
7611                     }
7612                     if (state == ARM_CP_STATE_AA32) {
7613                         /*
7614                          * Under AArch32 CP registers can be common
7615                          * (same for secure and non-secure world) or banked.
7616                          */
7617                         char *name;
7618 
7619                         switch (r->secure) {
7620                         case ARM_CP_SECSTATE_S:
7621                         case ARM_CP_SECSTATE_NS:
7622                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7623                                                    r->secure, crm, opc1, opc2,
7624                                                    r->name);
7625                             break;
7626                         case ARM_CP_SECSTATE_BOTH:
7627                             name = g_strdup_printf("%s_S", r->name);
7628                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7629                                                    ARM_CP_SECSTATE_S,
7630                                                    crm, opc1, opc2, name);
7631                             g_free(name);
7632                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7633                                                    ARM_CP_SECSTATE_NS,
7634                                                    crm, opc1, opc2, r->name);
7635                             break;
7636                         default:
7637                             g_assert_not_reached();
7638                         }
7639                     } else {
7640                         /*
7641                          * AArch64 registers get mapped to non-secure instance
7642                          * of AArch32
7643                          */
7644                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7645                                                ARM_CP_SECSTATE_NS,
7646                                                crm, opc1, opc2, r->name);
7647                     }
7648                 }
7649             }
7650         }
7651     }
7652 }
7653 
7654 /* Define a whole list of registers */
define_arm_cp_regs_with_opaque_len(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque,size_t len)7655 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
7656                                         void *opaque, size_t len)
7657 {
7658     size_t i;
7659     for (i = 0; i < len; ++i) {
7660         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
7661     }
7662 }
7663 
7664 /*
7665  * Modify ARMCPRegInfo for access from userspace.
7666  *
7667  * This is a data driven modification directed by
7668  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7669  * user-space cannot alter any values and dynamic values pertaining to
7670  * execution state are hidden from user space view anyway.
7671  */
modify_arm_cp_regs_with_len(ARMCPRegInfo * regs,size_t regs_len,const ARMCPRegUserSpaceInfo * mods,size_t mods_len)7672 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
7673                                  const ARMCPRegUserSpaceInfo *mods,
7674                                  size_t mods_len)
7675 {
7676     for (size_t mi = 0; mi < mods_len; ++mi) {
7677         const ARMCPRegUserSpaceInfo *m = mods + mi;
7678         GPatternSpec *pat = NULL;
7679 
7680         if (m->is_glob) {
7681             pat = g_pattern_spec_new(m->name);
7682         }
7683         for (size_t ri = 0; ri < regs_len; ++ri) {
7684             ARMCPRegInfo *r = regs + ri;
7685 
7686             if (pat && g_pattern_match_string(pat, r->name)) {
7687                 r->type = ARM_CP_CONST;
7688                 r->access = PL0U_R;
7689                 r->resetvalue = 0;
7690                 /* continue */
7691             } else if (strcmp(r->name, m->name) == 0) {
7692                 r->type = ARM_CP_CONST;
7693                 r->access = PL0U_R;
7694                 r->resetvalue &= m->exported_bits;
7695                 r->resetvalue |= m->fixed_bits;
7696                 break;
7697             }
7698         }
7699         if (pat) {
7700             g_pattern_spec_free(pat);
7701         }
7702     }
7703 }
7704 
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)7705 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7706 {
7707     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
7708 }
7709 
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7710 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7711                          uint64_t value)
7712 {
7713     /* Helper coprocessor write function for write-ignore registers */
7714 }
7715 
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)7716 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7717 {
7718     /* Helper coprocessor write function for read-as-zero registers */
7719     return 0;
7720 }
7721 
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)7722 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7723 {
7724     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7725 }
7726 
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)7727 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7728 {
7729     /*
7730      * Return true if it is not valid for us to switch to
7731      * this CPU mode (ie all the UNPREDICTABLE cases in
7732      * the ARM ARM CPSRWriteByInstr pseudocode).
7733      */
7734 
7735     /* Changes to or from Hyp via MSR and CPS are illegal. */
7736     if (write_type == CPSRWriteByInstr &&
7737         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7738          mode == ARM_CPU_MODE_HYP)) {
7739         return 1;
7740     }
7741 
7742     switch (mode) {
7743     case ARM_CPU_MODE_USR:
7744         return 0;
7745     case ARM_CPU_MODE_SYS:
7746     case ARM_CPU_MODE_SVC:
7747     case ARM_CPU_MODE_ABT:
7748     case ARM_CPU_MODE_UND:
7749     case ARM_CPU_MODE_IRQ:
7750     case ARM_CPU_MODE_FIQ:
7751         /*
7752          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
7753          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7754          */
7755         /*
7756          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7757          * and CPS are treated as illegal mode changes.
7758          */
7759         if (write_type == CPSRWriteByInstr &&
7760             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7761             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7762             return 1;
7763         }
7764         return 0;
7765     case ARM_CPU_MODE_HYP:
7766         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
7767     case ARM_CPU_MODE_MON:
7768         return arm_current_el(env) < 3;
7769     default:
7770         return 1;
7771     }
7772 }
7773 
cpsr_read(CPUARMState * env)7774 uint32_t cpsr_read(CPUARMState *env)
7775 {
7776     int ZF;
7777     ZF = (env->ZF == 0);
7778     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7779         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7780         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7781         | ((env->condexec_bits & 0xfc) << 8)
7782         | (env->GE << 16) | (env->daif & CPSR_AIF);
7783 }
7784 
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)7785 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7786                 CPSRWriteType write_type)
7787 {
7788     uint32_t changed_daif;
7789     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
7790         (mask & (CPSR_M | CPSR_E | CPSR_IL));
7791 
7792     if (mask & CPSR_NZCV) {
7793         env->ZF = (~val) & CPSR_Z;
7794         env->NF = val;
7795         env->CF = (val >> 29) & 1;
7796         env->VF = (val << 3) & 0x80000000;
7797     }
7798     if (mask & CPSR_Q) {
7799         env->QF = ((val & CPSR_Q) != 0);
7800     }
7801     if (mask & CPSR_T) {
7802         env->thumb = ((val & CPSR_T) != 0);
7803     }
7804     if (mask & CPSR_IT_0_1) {
7805         env->condexec_bits &= ~3;
7806         env->condexec_bits |= (val >> 25) & 3;
7807     }
7808     if (mask & CPSR_IT_2_7) {
7809         env->condexec_bits &= 3;
7810         env->condexec_bits |= (val >> 8) & 0xfc;
7811     }
7812     if (mask & CPSR_GE) {
7813         env->GE = (val >> 16) & 0xf;
7814     }
7815 
7816     /*
7817      * In a V7 implementation that includes the security extensions but does
7818      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7819      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7820      * bits respectively.
7821      *
7822      * In a V8 implementation, it is permitted for privileged software to
7823      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7824      */
7825     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7826         arm_feature(env, ARM_FEATURE_EL3) &&
7827         !arm_feature(env, ARM_FEATURE_EL2) &&
7828         !arm_is_secure(env)) {
7829 
7830         changed_daif = (env->daif ^ val) & mask;
7831 
7832         if (changed_daif & CPSR_A) {
7833             /*
7834              * Check to see if we are allowed to change the masking of async
7835              * abort exceptions from a non-secure state.
7836              */
7837             if (!(env->cp15.scr_el3 & SCR_AW)) {
7838                 qemu_log_mask(LOG_GUEST_ERROR,
7839                               "Ignoring attempt to switch CPSR_A flag from "
7840                               "non-secure world with SCR.AW bit clear\n");
7841                 mask &= ~CPSR_A;
7842             }
7843         }
7844 
7845         if (changed_daif & CPSR_F) {
7846             /*
7847              * Check to see if we are allowed to change the masking of FIQ
7848              * exceptions from a non-secure state.
7849              */
7850             if (!(env->cp15.scr_el3 & SCR_FW)) {
7851                 qemu_log_mask(LOG_GUEST_ERROR,
7852                               "Ignoring attempt to switch CPSR_F flag from "
7853                               "non-secure world with SCR.FW bit clear\n");
7854                 mask &= ~CPSR_F;
7855             }
7856 
7857             /*
7858              * Check whether non-maskable FIQ (NMFI) support is enabled.
7859              * If this bit is set software is not allowed to mask
7860              * FIQs, but is allowed to set CPSR_F to 0.
7861              */
7862             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7863                 (val & CPSR_F)) {
7864                 qemu_log_mask(LOG_GUEST_ERROR,
7865                               "Ignoring attempt to enable CPSR_F flag "
7866                               "(non-maskable FIQ [NMFI] support enabled)\n");
7867                 mask &= ~CPSR_F;
7868             }
7869         }
7870     }
7871 
7872     env->daif &= ~(CPSR_AIF & mask);
7873     env->daif |= val & CPSR_AIF & mask;
7874 
7875     if (write_type != CPSRWriteRaw &&
7876         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7877         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7878             /*
7879              * Note that we can only get here in USR mode if this is a
7880              * gdb stub write; for this case we follow the architectural
7881              * behaviour for guest writes in USR mode of ignoring an attempt
7882              * to switch mode. (Those are caught by translate.c for writes
7883              * triggered by guest instructions.)
7884              */
7885             mask &= ~CPSR_M;
7886         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7887             /*
7888              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7889              * v7, and has defined behaviour in v8:
7890              *  + leave CPSR.M untouched
7891              *  + allow changes to the other CPSR fields
7892              *  + set PSTATE.IL
7893              * For user changes via the GDB stub, we don't set PSTATE.IL,
7894              * as this would be unnecessarily harsh for a user error.
7895              */
7896             mask &= ~CPSR_M;
7897             if (write_type != CPSRWriteByGDBStub &&
7898                 arm_feature(env, ARM_FEATURE_V8)) {
7899                 mask |= CPSR_IL;
7900                 val |= CPSR_IL;
7901             }
7902             qemu_log_mask(LOG_GUEST_ERROR,
7903                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7904                           aarch32_mode_name(env->uncached_cpsr),
7905                           aarch32_mode_name(val));
7906         } else {
7907             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7908                           write_type == CPSRWriteExceptionReturn ?
7909                           "Exception return from AArch32" :
7910                           "AArch32 mode switch from",
7911                           aarch32_mode_name(env->uncached_cpsr),
7912                           aarch32_mode_name(val), env->regs[15]);
7913             switch_mode(env, val & CPSR_M);
7914         }
7915     }
7916     mask &= ~CACHED_CPSR_BITS;
7917     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7918     if (tcg_enabled() && rebuild_hflags) {
7919         arm_rebuild_hflags(env);
7920     }
7921 }
7922 
7923 #ifdef CONFIG_USER_ONLY
7924 
switch_mode(CPUARMState * env,int mode)7925 static void switch_mode(CPUARMState *env, int mode)
7926 {
7927     ARMCPU *cpu = env_archcpu(env);
7928 
7929     if (mode != ARM_CPU_MODE_USR) {
7930         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7931     }
7932 }
7933 
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)7934 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7935                                  uint32_t cur_el, bool secure)
7936 {
7937     return 1;
7938 }
7939 
aarch64_sync_64_to_32(CPUARMState * env)7940 void aarch64_sync_64_to_32(CPUARMState *env)
7941 {
7942     g_assert_not_reached();
7943 }
7944 
7945 #else
7946 
switch_mode(CPUARMState * env,int mode)7947 static void switch_mode(CPUARMState *env, int mode)
7948 {
7949     int old_mode;
7950     int i;
7951 
7952     old_mode = env->uncached_cpsr & CPSR_M;
7953     if (mode == old_mode) {
7954         return;
7955     }
7956 
7957     if (old_mode == ARM_CPU_MODE_FIQ) {
7958         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7959         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7960     } else if (mode == ARM_CPU_MODE_FIQ) {
7961         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7962         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7963     }
7964 
7965     i = bank_number(old_mode);
7966     env->banked_r13[i] = env->regs[13];
7967     env->banked_spsr[i] = env->spsr;
7968 
7969     i = bank_number(mode);
7970     env->regs[13] = env->banked_r13[i];
7971     env->spsr = env->banked_spsr[i];
7972 
7973     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7974     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7975 }
7976 
7977 /*
7978  * Physical Interrupt Target EL Lookup Table
7979  *
7980  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7981  *
7982  * The below multi-dimensional table is used for looking up the target
7983  * exception level given numerous condition criteria.  Specifically, the
7984  * target EL is based on SCR and HCR routing controls as well as the
7985  * currently executing EL and secure state.
7986  *
7987  *    Dimensions:
7988  *    target_el_table[2][2][2][2][2][4]
7989  *                    |  |  |  |  |  +--- Current EL
7990  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7991  *                    |  |  |  +--------- HCR mask override
7992  *                    |  |  +------------ SCR exec state control
7993  *                    |  +--------------- SCR mask override
7994  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7995  *
7996  *    The table values are as such:
7997  *    0-3 = EL0-EL3
7998  *     -1 = Cannot occur
7999  *
8000  * The ARM ARM target EL table includes entries indicating that an "exception
8001  * is not taken".  The two cases where this is applicable are:
8002  *    1) An exception is taken from EL3 but the SCR does not have the exception
8003  *    routed to EL3.
8004  *    2) An exception is taken from EL2 but the HCR does not have the exception
8005  *    routed to EL2.
8006  * In these two cases, the below table contain a target of EL1.  This value is
8007  * returned as it is expected that the consumer of the table data will check
8008  * for "target EL >= current EL" to ensure the exception is not taken.
8009  *
8010  *            SCR     HCR
8011  *         64  EA     AMO                 From
8012  *        BIT IRQ     IMO      Non-secure         Secure
8013  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
8014  */
8015 static const int8_t target_el_table[2][2][2][2][2][4] = {
8016     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8017        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
8018       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8019        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
8020      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8021        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
8022       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8023        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
8024     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
8025        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
8026       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
8027        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
8028      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8029        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
8030       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
8031        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
8032 };
8033 
8034 /*
8035  * Determine the target EL for physical exceptions
8036  */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)8037 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8038                                  uint32_t cur_el, bool secure)
8039 {
8040     CPUARMState *env = cpu_env(cs);
8041     bool rw;
8042     bool scr;
8043     bool hcr;
8044     int target_el;
8045     /* Is the highest EL AArch64? */
8046     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8047     uint64_t hcr_el2;
8048 
8049     if (arm_feature(env, ARM_FEATURE_EL3)) {
8050         rw = arm_scr_rw_eff(env);
8051     } else {
8052         /*
8053          * Either EL2 is the highest EL (and so the EL2 register width
8054          * is given by is64); or there is no EL2 or EL3, in which case
8055          * the value of 'rw' does not affect the table lookup anyway.
8056          */
8057         rw = is64;
8058     }
8059 
8060     hcr_el2 = arm_hcr_el2_eff(env);
8061     switch (excp_idx) {
8062     case EXCP_IRQ:
8063     case EXCP_NMI:
8064         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8065         hcr = hcr_el2 & HCR_IMO;
8066         break;
8067     case EXCP_FIQ:
8068         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8069         hcr = hcr_el2 & HCR_FMO;
8070         break;
8071     default:
8072         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8073         hcr = hcr_el2 & HCR_AMO;
8074         break;
8075     };
8076 
8077     /*
8078      * For these purposes, TGE and AMO/IMO/FMO both force the
8079      * interrupt to EL2.  Fold TGE into the bit extracted above.
8080      */
8081     hcr |= (hcr_el2 & HCR_TGE) != 0;
8082 
8083     /* Perform a table-lookup for the target EL given the current state */
8084     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8085 
8086     assert(target_el > 0);
8087 
8088     return target_el;
8089 }
8090 
arm_log_exception(CPUState * cs)8091 void arm_log_exception(CPUState *cs)
8092 {
8093     int idx = cs->exception_index;
8094 
8095     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8096         const char *exc = NULL;
8097         static const char * const excnames[] = {
8098             [EXCP_UDEF] = "Undefined Instruction",
8099             [EXCP_SWI] = "SVC",
8100             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8101             [EXCP_DATA_ABORT] = "Data Abort",
8102             [EXCP_IRQ] = "IRQ",
8103             [EXCP_FIQ] = "FIQ",
8104             [EXCP_BKPT] = "Breakpoint",
8105             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8106             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8107             [EXCP_HVC] = "Hypervisor Call",
8108             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8109             [EXCP_SMC] = "Secure Monitor Call",
8110             [EXCP_VIRQ] = "Virtual IRQ",
8111             [EXCP_VFIQ] = "Virtual FIQ",
8112             [EXCP_SEMIHOST] = "Semihosting call",
8113             [EXCP_NOCP] = "v7M NOCP UsageFault",
8114             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8115             [EXCP_STKOF] = "v8M STKOF UsageFault",
8116             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8117             [EXCP_LSERR] = "v8M LSERR UsageFault",
8118             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8119             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
8120             [EXCP_VSERR] = "Virtual SERR",
8121             [EXCP_GPC] = "Granule Protection Check",
8122             [EXCP_NMI] = "NMI",
8123             [EXCP_VINMI] = "Virtual IRQ NMI",
8124             [EXCP_VFNMI] = "Virtual FIQ NMI",
8125             [EXCP_MON_TRAP] = "Monitor Trap",
8126         };
8127 
8128         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8129             exc = excnames[idx];
8130         }
8131         if (!exc) {
8132             exc = "unknown";
8133         }
8134         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
8135                       idx, exc, cs->cpu_index);
8136     }
8137 }
8138 
8139 /*
8140  * Function used to synchronize QEMU's AArch64 register set with AArch32
8141  * register set.  This is necessary when switching between AArch32 and AArch64
8142  * execution state.
8143  */
aarch64_sync_32_to_64(CPUARMState * env)8144 void aarch64_sync_32_to_64(CPUARMState *env)
8145 {
8146     int i;
8147     uint32_t mode = env->uncached_cpsr & CPSR_M;
8148 
8149     /* We can blanket copy R[0:7] to X[0:7] */
8150     for (i = 0; i < 8; i++) {
8151         env->xregs[i] = env->regs[i];
8152     }
8153 
8154     /*
8155      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8156      * Otherwise, they come from the banked user regs.
8157      */
8158     if (mode == ARM_CPU_MODE_FIQ) {
8159         for (i = 8; i < 13; i++) {
8160             env->xregs[i] = env->usr_regs[i - 8];
8161         }
8162     } else {
8163         for (i = 8; i < 13; i++) {
8164             env->xregs[i] = env->regs[i];
8165         }
8166     }
8167 
8168     /*
8169      * Registers x13-x23 are the various mode SP and FP registers. Registers
8170      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8171      * from the mode banked register.
8172      */
8173     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8174         env->xregs[13] = env->regs[13];
8175         env->xregs[14] = env->regs[14];
8176     } else {
8177         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8178         /* HYP is an exception in that it is copied from r14 */
8179         if (mode == ARM_CPU_MODE_HYP) {
8180             env->xregs[14] = env->regs[14];
8181         } else {
8182             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8183         }
8184     }
8185 
8186     if (mode == ARM_CPU_MODE_HYP) {
8187         env->xregs[15] = env->regs[13];
8188     } else {
8189         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8190     }
8191 
8192     if (mode == ARM_CPU_MODE_IRQ) {
8193         env->xregs[16] = env->regs[14];
8194         env->xregs[17] = env->regs[13];
8195     } else {
8196         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8197         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8198     }
8199 
8200     if (mode == ARM_CPU_MODE_SVC) {
8201         env->xregs[18] = env->regs[14];
8202         env->xregs[19] = env->regs[13];
8203     } else {
8204         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8205         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8206     }
8207 
8208     if (mode == ARM_CPU_MODE_ABT) {
8209         env->xregs[20] = env->regs[14];
8210         env->xregs[21] = env->regs[13];
8211     } else {
8212         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8213         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8214     }
8215 
8216     if (mode == ARM_CPU_MODE_UND) {
8217         env->xregs[22] = env->regs[14];
8218         env->xregs[23] = env->regs[13];
8219     } else {
8220         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8221         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8222     }
8223 
8224     /*
8225      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8226      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
8227      * FIQ bank for r8-r14.
8228      */
8229     if (mode == ARM_CPU_MODE_FIQ) {
8230         for (i = 24; i < 31; i++) {
8231             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
8232         }
8233     } else {
8234         for (i = 24; i < 29; i++) {
8235             env->xregs[i] = env->fiq_regs[i - 24];
8236         }
8237         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8238         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8239     }
8240 
8241     env->pc = env->regs[15];
8242 }
8243 
8244 /*
8245  * Function used to synchronize QEMU's AArch32 register set with AArch64
8246  * register set.  This is necessary when switching between AArch32 and AArch64
8247  * execution state.
8248  */
aarch64_sync_64_to_32(CPUARMState * env)8249 void aarch64_sync_64_to_32(CPUARMState *env)
8250 {
8251     int i;
8252     uint32_t mode = env->uncached_cpsr & CPSR_M;
8253 
8254     /* We can blanket copy X[0:7] to R[0:7] */
8255     for (i = 0; i < 8; i++) {
8256         env->regs[i] = env->xregs[i];
8257     }
8258 
8259     /*
8260      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8261      * Otherwise, we copy x8-x12 into the banked user regs.
8262      */
8263     if (mode == ARM_CPU_MODE_FIQ) {
8264         for (i = 8; i < 13; i++) {
8265             env->usr_regs[i - 8] = env->xregs[i];
8266         }
8267     } else {
8268         for (i = 8; i < 13; i++) {
8269             env->regs[i] = env->xregs[i];
8270         }
8271     }
8272 
8273     /*
8274      * Registers r13 & r14 depend on the current mode.
8275      * If we are in a given mode, we copy the corresponding x registers to r13
8276      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
8277      * for the mode.
8278      */
8279     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8280         env->regs[13] = env->xregs[13];
8281         env->regs[14] = env->xregs[14];
8282     } else {
8283         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8284 
8285         /*
8286          * HYP is an exception in that it does not have its own banked r14 but
8287          * shares the USR r14
8288          */
8289         if (mode == ARM_CPU_MODE_HYP) {
8290             env->regs[14] = env->xregs[14];
8291         } else {
8292             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8293         }
8294     }
8295 
8296     if (mode == ARM_CPU_MODE_HYP) {
8297         env->regs[13] = env->xregs[15];
8298     } else {
8299         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8300     }
8301 
8302     if (mode == ARM_CPU_MODE_IRQ) {
8303         env->regs[14] = env->xregs[16];
8304         env->regs[13] = env->xregs[17];
8305     } else {
8306         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8307         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8308     }
8309 
8310     if (mode == ARM_CPU_MODE_SVC) {
8311         env->regs[14] = env->xregs[18];
8312         env->regs[13] = env->xregs[19];
8313     } else {
8314         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8315         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8316     }
8317 
8318     if (mode == ARM_CPU_MODE_ABT) {
8319         env->regs[14] = env->xregs[20];
8320         env->regs[13] = env->xregs[21];
8321     } else {
8322         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8323         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8324     }
8325 
8326     if (mode == ARM_CPU_MODE_UND) {
8327         env->regs[14] = env->xregs[22];
8328         env->regs[13] = env->xregs[23];
8329     } else {
8330         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8331         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8332     }
8333 
8334     /*
8335      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8336      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8337      * FIQ bank for r8-r14.
8338      */
8339     if (mode == ARM_CPU_MODE_FIQ) {
8340         for (i = 24; i < 31; i++) {
8341             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8342         }
8343     } else {
8344         for (i = 24; i < 29; i++) {
8345             env->fiq_regs[i - 24] = env->xregs[i];
8346         }
8347         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8348         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8349     }
8350 
8351     env->regs[15] = env->pc;
8352 }
8353 
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)8354 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8355                                    uint32_t mask, uint32_t offset,
8356                                    uint32_t newpc)
8357 {
8358     int new_el;
8359 
8360     /* Change the CPU state so as to actually take the exception. */
8361     switch_mode(env, new_mode);
8362 
8363     /*
8364      * For exceptions taken to AArch32 we must clear the SS bit in both
8365      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8366      */
8367     env->pstate &= ~PSTATE_SS;
8368     env->spsr = cpsr_read(env);
8369     /* Clear IT bits.  */
8370     env->condexec_bits = 0;
8371     /* Switch to the new mode, and to the correct instruction set.  */
8372     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8373 
8374     /* This must be after mode switching. */
8375     new_el = arm_current_el(env);
8376 
8377     /* Set new mode endianness */
8378     env->uncached_cpsr &= ~CPSR_E;
8379     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
8380         env->uncached_cpsr |= CPSR_E;
8381     }
8382     /* J and IL must always be cleared for exception entry */
8383     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8384     env->daif |= mask;
8385 
8386     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
8387         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
8388             env->uncached_cpsr |= CPSR_SSBS;
8389         } else {
8390             env->uncached_cpsr &= ~CPSR_SSBS;
8391         }
8392     }
8393 
8394     if (new_mode == ARM_CPU_MODE_HYP) {
8395         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8396         env->elr_el[2] = env->regs[15];
8397     } else {
8398         /* CPSR.PAN is normally preserved preserved unless...  */
8399         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
8400             switch (new_el) {
8401             case 3:
8402                 if (!arm_is_secure_below_el3(env)) {
8403                     /* ... the target is EL3, from non-secure state.  */
8404                     env->uncached_cpsr &= ~CPSR_PAN;
8405                     break;
8406                 }
8407                 /* ... the target is EL3, from secure state ... */
8408                 /* fall through */
8409             case 1:
8410                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
8411                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
8412                     env->uncached_cpsr |= CPSR_PAN;
8413                 }
8414                 break;
8415             }
8416         }
8417         /*
8418          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8419          * and we should just guard the thumb mode on V4
8420          */
8421         if (arm_feature(env, ARM_FEATURE_V4T)) {
8422             env->thumb =
8423                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8424         }
8425         env->regs[14] = env->regs[15] + offset;
8426     }
8427     env->regs[15] = newpc;
8428 
8429     if (tcg_enabled()) {
8430         arm_rebuild_hflags(env);
8431     }
8432 }
8433 
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)8434 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8435 {
8436     /*
8437      * Handle exception entry to Hyp mode; this is sufficiently
8438      * different to entry to other AArch32 modes that we handle it
8439      * separately here.
8440      *
8441      * The vector table entry used is always the 0x14 Hyp mode entry point,
8442      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
8443      * The offset applied to the preferred return address is always zero
8444      * (see DDI0487C.a section G1.12.3).
8445      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8446      */
8447     uint32_t addr, mask;
8448     ARMCPU *cpu = ARM_CPU(cs);
8449     CPUARMState *env = &cpu->env;
8450 
8451     switch (cs->exception_index) {
8452     case EXCP_UDEF:
8453         addr = 0x04;
8454         break;
8455     case EXCP_SWI:
8456         addr = 0x08;
8457         break;
8458     case EXCP_BKPT:
8459         /* Fall through to prefetch abort.  */
8460     case EXCP_PREFETCH_ABORT:
8461         env->cp15.ifar_s = env->exception.vaddress;
8462         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8463                       (uint32_t)env->exception.vaddress);
8464         addr = 0x0c;
8465         break;
8466     case EXCP_DATA_ABORT:
8467         env->cp15.dfar_s = env->exception.vaddress;
8468         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8469                       (uint32_t)env->exception.vaddress);
8470         addr = 0x10;
8471         break;
8472     case EXCP_IRQ:
8473         addr = 0x18;
8474         break;
8475     case EXCP_FIQ:
8476         addr = 0x1c;
8477         break;
8478     case EXCP_HVC:
8479         addr = 0x08;
8480         break;
8481     case EXCP_HYP_TRAP:
8482         addr = 0x14;
8483         break;
8484     default:
8485         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8486     }
8487 
8488     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8489         if (!arm_feature(env, ARM_FEATURE_V8)) {
8490             /*
8491              * QEMU syndrome values are v8-style. v7 has the IL bit
8492              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8493              * If this is a v7 CPU, squash the IL bit in those cases.
8494              */
8495             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8496                 (cs->exception_index == EXCP_DATA_ABORT &&
8497                  !(env->exception.syndrome & ARM_EL_ISV)) ||
8498                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8499                 env->exception.syndrome &= ~ARM_EL_IL;
8500             }
8501         }
8502         env->cp15.esr_el[2] = env->exception.syndrome;
8503     }
8504 
8505     if (arm_current_el(env) != 2 && addr < 0x14) {
8506         addr = 0x14;
8507     }
8508 
8509     mask = 0;
8510     if (!(env->cp15.scr_el3 & SCR_EA)) {
8511         mask |= CPSR_A;
8512     }
8513     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8514         mask |= CPSR_I;
8515     }
8516     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8517         mask |= CPSR_F;
8518     }
8519 
8520     addr += env->cp15.hvbar;
8521 
8522     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8523 }
8524 
arm_cpu_do_interrupt_aarch32(CPUState * cs)8525 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8526 {
8527     ARMCPU *cpu = ARM_CPU(cs);
8528     CPUARMState *env = &cpu->env;
8529     uint32_t addr;
8530     uint32_t mask;
8531     int new_mode;
8532     uint32_t offset;
8533     uint32_t moe;
8534 
8535     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8536     switch (syn_get_ec(env->exception.syndrome)) {
8537     case EC_BREAKPOINT:
8538     case EC_BREAKPOINT_SAME_EL:
8539         moe = 1;
8540         break;
8541     case EC_WATCHPOINT:
8542     case EC_WATCHPOINT_SAME_EL:
8543         moe = 10;
8544         break;
8545     case EC_AA32_BKPT:
8546         moe = 3;
8547         break;
8548     case EC_VECTORCATCH:
8549         moe = 5;
8550         break;
8551     default:
8552         moe = 0;
8553         break;
8554     }
8555 
8556     if (moe) {
8557         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8558     }
8559 
8560     if (env->exception.target_el == 2) {
8561         /* Debug exceptions are reported differently on AArch32 */
8562         switch (syn_get_ec(env->exception.syndrome)) {
8563         case EC_BREAKPOINT:
8564         case EC_BREAKPOINT_SAME_EL:
8565         case EC_AA32_BKPT:
8566         case EC_VECTORCATCH:
8567             env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
8568                                                      0, 0, 0x22);
8569             break;
8570         case EC_WATCHPOINT:
8571             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
8572                                                  EC_DATAABORT);
8573             break;
8574         case EC_WATCHPOINT_SAME_EL:
8575             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
8576                                                  EC_DATAABORT_SAME_EL);
8577             break;
8578         }
8579         arm_cpu_do_interrupt_aarch32_hyp(cs);
8580         return;
8581     }
8582 
8583     switch (cs->exception_index) {
8584     case EXCP_UDEF:
8585         new_mode = ARM_CPU_MODE_UND;
8586         addr = 0x04;
8587         mask = CPSR_I;
8588         if (env->thumb) {
8589             offset = 2;
8590         } else {
8591             offset = 4;
8592         }
8593         break;
8594     case EXCP_SWI:
8595         new_mode = ARM_CPU_MODE_SVC;
8596         addr = 0x08;
8597         mask = CPSR_I;
8598         /* The PC already points to the next instruction.  */
8599         offset = 0;
8600         break;
8601     case EXCP_BKPT:
8602         /* Fall through to prefetch abort.  */
8603     case EXCP_PREFETCH_ABORT:
8604         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8605         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8606         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8607                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8608         new_mode = ARM_CPU_MODE_ABT;
8609         addr = 0x0c;
8610         mask = CPSR_A | CPSR_I;
8611         offset = 4;
8612         break;
8613     case EXCP_DATA_ABORT:
8614         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8615         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8616         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8617                       env->exception.fsr,
8618                       (uint32_t)env->exception.vaddress);
8619         new_mode = ARM_CPU_MODE_ABT;
8620         addr = 0x10;
8621         mask = CPSR_A | CPSR_I;
8622         offset = 8;
8623         break;
8624     case EXCP_IRQ:
8625         new_mode = ARM_CPU_MODE_IRQ;
8626         addr = 0x18;
8627         /* Disable IRQ and imprecise data aborts.  */
8628         mask = CPSR_A | CPSR_I;
8629         offset = 4;
8630         if (env->cp15.scr_el3 & SCR_IRQ) {
8631             /* IRQ routed to monitor mode */
8632             new_mode = ARM_CPU_MODE_MON;
8633             mask |= CPSR_F;
8634         }
8635         break;
8636     case EXCP_FIQ:
8637         new_mode = ARM_CPU_MODE_FIQ;
8638         addr = 0x1c;
8639         /* Disable FIQ, IRQ and imprecise data aborts.  */
8640         mask = CPSR_A | CPSR_I | CPSR_F;
8641         if (env->cp15.scr_el3 & SCR_FIQ) {
8642             /* FIQ routed to monitor mode */
8643             new_mode = ARM_CPU_MODE_MON;
8644         }
8645         offset = 4;
8646         break;
8647     case EXCP_VIRQ:
8648         new_mode = ARM_CPU_MODE_IRQ;
8649         addr = 0x18;
8650         /* Disable IRQ and imprecise data aborts.  */
8651         mask = CPSR_A | CPSR_I;
8652         offset = 4;
8653         break;
8654     case EXCP_VFIQ:
8655         new_mode = ARM_CPU_MODE_FIQ;
8656         addr = 0x1c;
8657         /* Disable FIQ, IRQ and imprecise data aborts.  */
8658         mask = CPSR_A | CPSR_I | CPSR_F;
8659         offset = 4;
8660         break;
8661     case EXCP_VSERR:
8662         {
8663             /*
8664              * Note that this is reported as a data abort, but the DFAR
8665              * has an UNKNOWN value.  Construct the SError syndrome from
8666              * AET and ExT fields.
8667              */
8668             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
8669 
8670             if (extended_addresses_enabled(env)) {
8671                 env->exception.fsr = arm_fi_to_lfsc(&fi);
8672             } else {
8673                 env->exception.fsr = arm_fi_to_sfsc(&fi);
8674             }
8675             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
8676             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8677             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
8678                           env->exception.fsr);
8679 
8680             new_mode = ARM_CPU_MODE_ABT;
8681             addr = 0x10;
8682             mask = CPSR_A | CPSR_I;
8683             offset = 8;
8684         }
8685         break;
8686     case EXCP_SMC:
8687         new_mode = ARM_CPU_MODE_MON;
8688         addr = 0x08;
8689         mask = CPSR_A | CPSR_I | CPSR_F;
8690         offset = 0;
8691         break;
8692     case EXCP_MON_TRAP:
8693         new_mode = ARM_CPU_MODE_MON;
8694         addr = 0x04;
8695         mask = CPSR_A | CPSR_I | CPSR_F;
8696         if (env->thumb) {
8697             offset = 2;
8698         } else {
8699             offset = 4;
8700         }
8701         break;
8702     default:
8703         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8704         return; /* Never happens.  Keep compiler happy.  */
8705     }
8706 
8707     if (new_mode == ARM_CPU_MODE_MON) {
8708         addr += env->cp15.mvbar;
8709     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8710         /* High vectors. When enabled, base address cannot be remapped. */
8711         addr += 0xffff0000;
8712     } else {
8713         /*
8714          * ARM v7 architectures provide a vector base address register to remap
8715          * the interrupt vector table.
8716          * This register is only followed in non-monitor mode, and is banked.
8717          * Note: only bits 31:5 are valid.
8718          */
8719         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8720     }
8721 
8722     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8723         env->cp15.scr_el3 &= ~SCR_NS;
8724     }
8725 
8726     take_aarch32_exception(env, new_mode, mask, offset, addr);
8727 }
8728 
aarch64_regnum(CPUARMState * env,int aarch32_reg)8729 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
8730 {
8731     /*
8732      * Return the register number of the AArch64 view of the AArch32
8733      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
8734      * be that of the AArch32 mode the exception came from.
8735      */
8736     int mode = env->uncached_cpsr & CPSR_M;
8737 
8738     switch (aarch32_reg) {
8739     case 0 ... 7:
8740         return aarch32_reg;
8741     case 8 ... 12:
8742         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
8743     case 13:
8744         switch (mode) {
8745         case ARM_CPU_MODE_USR:
8746         case ARM_CPU_MODE_SYS:
8747             return 13;
8748         case ARM_CPU_MODE_HYP:
8749             return 15;
8750         case ARM_CPU_MODE_IRQ:
8751             return 17;
8752         case ARM_CPU_MODE_SVC:
8753             return 19;
8754         case ARM_CPU_MODE_ABT:
8755             return 21;
8756         case ARM_CPU_MODE_UND:
8757             return 23;
8758         case ARM_CPU_MODE_FIQ:
8759             return 29;
8760         default:
8761             g_assert_not_reached();
8762         }
8763     case 14:
8764         switch (mode) {
8765         case ARM_CPU_MODE_USR:
8766         case ARM_CPU_MODE_SYS:
8767         case ARM_CPU_MODE_HYP:
8768             return 14;
8769         case ARM_CPU_MODE_IRQ:
8770             return 16;
8771         case ARM_CPU_MODE_SVC:
8772             return 18;
8773         case ARM_CPU_MODE_ABT:
8774             return 20;
8775         case ARM_CPU_MODE_UND:
8776             return 22;
8777         case ARM_CPU_MODE_FIQ:
8778             return 30;
8779         default:
8780             g_assert_not_reached();
8781         }
8782     case 15:
8783         return 31;
8784     default:
8785         g_assert_not_reached();
8786     }
8787 }
8788 
cpsr_read_for_spsr_elx(CPUARMState * env)8789 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
8790 {
8791     uint32_t ret = cpsr_read(env);
8792 
8793     /* Move DIT to the correct location for SPSR_ELx */
8794     if (ret & CPSR_DIT) {
8795         ret &= ~CPSR_DIT;
8796         ret |= PSTATE_DIT;
8797     }
8798     /* Merge PSTATE.SS into SPSR_ELx */
8799     ret |= env->pstate & PSTATE_SS;
8800 
8801     return ret;
8802 }
8803 
syndrome_is_sync_extabt(uint32_t syndrome)8804 static bool syndrome_is_sync_extabt(uint32_t syndrome)
8805 {
8806     /* Return true if this syndrome value is a synchronous external abort */
8807     switch (syn_get_ec(syndrome)) {
8808     case EC_INSNABORT:
8809     case EC_INSNABORT_SAME_EL:
8810     case EC_DATAABORT:
8811     case EC_DATAABORT_SAME_EL:
8812         /* Look at fault status code for all the synchronous ext abort cases */
8813         switch (syndrome & 0x3f) {
8814         case 0x10:
8815         case 0x13:
8816         case 0x14:
8817         case 0x15:
8818         case 0x16:
8819         case 0x17:
8820             return true;
8821         default:
8822             return false;
8823         }
8824     default:
8825         return false;
8826     }
8827 }
8828 
8829 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)8830 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8831 {
8832     ARMCPU *cpu = ARM_CPU(cs);
8833     CPUARMState *env = &cpu->env;
8834     unsigned int new_el = env->exception.target_el;
8835     vaddr addr = env->cp15.vbar_el[new_el];
8836     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8837     unsigned int old_mode;
8838     unsigned int cur_el = arm_current_el(env);
8839     int rt;
8840 
8841     if (tcg_enabled()) {
8842         /*
8843          * Note that new_el can never be 0.  If cur_el is 0, then
8844          * el0_a64 is is_a64(), else el0_a64 is ignored.
8845          */
8846         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8847     }
8848 
8849     if (cur_el < new_el) {
8850         /*
8851          * Entry vector offset depends on whether the implemented EL
8852          * immediately lower than the target level is using AArch32 or AArch64
8853          */
8854         bool is_aa64;
8855         uint64_t hcr;
8856 
8857         switch (new_el) {
8858         case 3:
8859             is_aa64 = arm_scr_rw_eff(env);
8860             break;
8861         case 2:
8862             hcr = arm_hcr_el2_eff(env);
8863             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
8864                 is_aa64 = (hcr & HCR_RW) != 0;
8865                 break;
8866             }
8867             /* fall through */
8868         case 1:
8869             is_aa64 = is_a64(env);
8870             break;
8871         default:
8872             g_assert_not_reached();
8873         }
8874 
8875         if (is_aa64) {
8876             addr += 0x400;
8877         } else {
8878             addr += 0x600;
8879         }
8880     } else if (pstate_read(env) & PSTATE_SP) {
8881         addr += 0x200;
8882     }
8883 
8884     switch (cs->exception_index) {
8885     case EXCP_GPC:
8886         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
8887                       env->cp15.mfar_el3);
8888         /* fall through */
8889     case EXCP_PREFETCH_ABORT:
8890     case EXCP_DATA_ABORT:
8891         /*
8892          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
8893          * to be taken to the SError vector entrypoint.
8894          */
8895         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
8896             syndrome_is_sync_extabt(env->exception.syndrome)) {
8897             addr += 0x180;
8898         }
8899         env->cp15.far_el[new_el] = env->exception.vaddress;
8900         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8901                       env->cp15.far_el[new_el]);
8902         /* fall through */
8903     case EXCP_BKPT:
8904     case EXCP_UDEF:
8905     case EXCP_SWI:
8906     case EXCP_HVC:
8907     case EXCP_HYP_TRAP:
8908     case EXCP_SMC:
8909         switch (syn_get_ec(env->exception.syndrome)) {
8910         case EC_ADVSIMDFPACCESSTRAP:
8911             /*
8912              * QEMU internal FP/SIMD syndromes from AArch32 include the
8913              * TA and coproc fields which are only exposed if the exception
8914              * is taken to AArch32 Hyp mode. Mask them out to get a valid
8915              * AArch64 format syndrome.
8916              */
8917             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8918             break;
8919         case EC_CP14RTTRAP:
8920         case EC_CP15RTTRAP:
8921         case EC_CP14DTTRAP:
8922             /*
8923              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
8924              * the raw register field from the insn; when taking this to
8925              * AArch64 we must convert it to the AArch64 view of the register
8926              * number. Notice that we read a 4-bit AArch32 register number and
8927              * write back a 5-bit AArch64 one.
8928              */
8929             rt = extract32(env->exception.syndrome, 5, 4);
8930             rt = aarch64_regnum(env, rt);
8931             env->exception.syndrome = deposit32(env->exception.syndrome,
8932                                                 5, 5, rt);
8933             break;
8934         case EC_CP15RRTTRAP:
8935         case EC_CP14RRTTRAP:
8936             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
8937             rt = extract32(env->exception.syndrome, 5, 4);
8938             rt = aarch64_regnum(env, rt);
8939             env->exception.syndrome = deposit32(env->exception.syndrome,
8940                                                 5, 5, rt);
8941             rt = extract32(env->exception.syndrome, 10, 4);
8942             rt = aarch64_regnum(env, rt);
8943             env->exception.syndrome = deposit32(env->exception.syndrome,
8944                                                 10, 5, rt);
8945             break;
8946         }
8947         env->cp15.esr_el[new_el] = env->exception.syndrome;
8948         break;
8949     case EXCP_IRQ:
8950     case EXCP_VIRQ:
8951     case EXCP_NMI:
8952     case EXCP_VINMI:
8953         addr += 0x80;
8954         break;
8955     case EXCP_FIQ:
8956     case EXCP_VFIQ:
8957     case EXCP_VFNMI:
8958         addr += 0x100;
8959         break;
8960     case EXCP_VSERR:
8961         addr += 0x180;
8962         /* Construct the SError syndrome from IDS and ISS fields. */
8963         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
8964         env->cp15.esr_el[new_el] = env->exception.syndrome;
8965         break;
8966     default:
8967         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8968     }
8969 
8970     if (is_a64(env)) {
8971         old_mode = pstate_read(env);
8972         aarch64_save_sp(env, arm_current_el(env));
8973         env->elr_el[new_el] = env->pc;
8974 
8975         if (cur_el == 1 && new_el == 1) {
8976             uint64_t hcr = arm_hcr_el2_eff(env);
8977             if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
8978                 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
8979                 /*
8980                  * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
8981                  * by setting M[3:2] to 0b10.
8982                  * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
8983                  * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
8984                  */
8985                 old_mode = deposit32(old_mode, 2, 2, 2);
8986             }
8987         }
8988     } else {
8989         old_mode = cpsr_read_for_spsr_elx(env);
8990         env->elr_el[new_el] = env->regs[15];
8991 
8992         aarch64_sync_32_to_64(env);
8993 
8994         env->condexec_bits = 0;
8995     }
8996     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
8997 
8998     qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
8999     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9000                   env->elr_el[new_el]);
9001 
9002     if (cpu_isar_feature(aa64_pan, cpu)) {
9003         /* The value of PSTATE.PAN is normally preserved, except when ... */
9004         new_mode |= old_mode & PSTATE_PAN;
9005         switch (new_el) {
9006         case 2:
9007             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9008             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9009                 != (HCR_E2H | HCR_TGE)) {
9010                 break;
9011             }
9012             /* fall through */
9013         case 1:
9014             /* ... the target is EL1 ... */
9015             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9016             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9017                 new_mode |= PSTATE_PAN;
9018             }
9019             break;
9020         }
9021     }
9022     if (cpu_isar_feature(aa64_mte, cpu)) {
9023         new_mode |= PSTATE_TCO;
9024     }
9025 
9026     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9027         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
9028             new_mode |= PSTATE_SSBS;
9029         } else {
9030             new_mode &= ~PSTATE_SSBS;
9031         }
9032     }
9033 
9034     if (cpu_isar_feature(aa64_nmi, cpu)) {
9035         if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
9036             new_mode |= PSTATE_ALLINT;
9037         } else {
9038             new_mode &= ~PSTATE_ALLINT;
9039         }
9040     }
9041 
9042     pstate_write(env, PSTATE_DAIF | new_mode);
9043     env->aarch64 = true;
9044     aarch64_restore_sp(env, new_el);
9045 
9046     if (tcg_enabled()) {
9047         helper_rebuild_hflags_a64(env, new_el);
9048     }
9049 
9050     env->pc = addr;
9051 
9052     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9053                   new_el, env->pc, pstate_read(env));
9054 }
9055 
9056 /*
9057  * Do semihosting call and set the appropriate return value. All the
9058  * permission and validity checks have been done at translate time.
9059  *
9060  * We only see semihosting exceptions in TCG only as they are not
9061  * trapped to the hypervisor in KVM.
9062  */
9063 #ifdef CONFIG_TCG
tcg_handle_semihosting(CPUState * cs)9064 static void tcg_handle_semihosting(CPUState *cs)
9065 {
9066     ARMCPU *cpu = ARM_CPU(cs);
9067     CPUARMState *env = &cpu->env;
9068 
9069     if (is_a64(env)) {
9070         qemu_log_mask(CPU_LOG_INT,
9071                       "...handling as semihosting call 0x%" PRIx64 "\n",
9072                       env->xregs[0]);
9073         do_common_semihosting(cs);
9074         env->pc += 4;
9075     } else {
9076         qemu_log_mask(CPU_LOG_INT,
9077                       "...handling as semihosting call 0x%x\n",
9078                       env->regs[0]);
9079         do_common_semihosting(cs);
9080         env->regs[15] += env->thumb ? 2 : 4;
9081     }
9082 }
9083 #endif
9084 
9085 /*
9086  * Handle a CPU exception for A and R profile CPUs.
9087  * Do any appropriate logging, handle PSCI calls, and then hand off
9088  * to the AArch64-entry or AArch32-entry function depending on the
9089  * target exception level's register width.
9090  *
9091  * Note: this is used for both TCG (as the do_interrupt tcg op),
9092  *       and KVM to re-inject guest debug exceptions, and to
9093  *       inject a Synchronous-External-Abort.
9094  */
arm_cpu_do_interrupt(CPUState * cs)9095 void arm_cpu_do_interrupt(CPUState *cs)
9096 {
9097     ARMCPU *cpu = ARM_CPU(cs);
9098     CPUARMState *env = &cpu->env;
9099     unsigned int new_el = env->exception.target_el;
9100 
9101     assert(!arm_feature(env, ARM_FEATURE_M));
9102 
9103     arm_log_exception(cs);
9104     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9105                   new_el);
9106     if (qemu_loglevel_mask(CPU_LOG_INT)
9107         && !excp_is_internal(cs->exception_index)) {
9108         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9109                       syn_get_ec(env->exception.syndrome),
9110                       env->exception.syndrome);
9111     }
9112 
9113     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
9114         arm_handle_psci_call(cpu);
9115         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9116         return;
9117     }
9118 
9119     /*
9120      * Semihosting semantics depend on the register width of the code
9121      * that caused the exception, not the target exception level, so
9122      * must be handled here.
9123      */
9124 #ifdef CONFIG_TCG
9125     if (cs->exception_index == EXCP_SEMIHOST) {
9126         tcg_handle_semihosting(cs);
9127         return;
9128     }
9129 #endif
9130 
9131     /*
9132      * Hooks may change global state so BQL should be held, also the
9133      * BQL needs to be held for any modification of
9134      * cs->interrupt_request.
9135      */
9136     g_assert(bql_locked());
9137 
9138     arm_call_pre_el_change_hook(cpu);
9139 
9140     assert(!excp_is_internal(cs->exception_index));
9141     if (arm_el_is_aa64(env, new_el)) {
9142         arm_cpu_do_interrupt_aarch64(cs);
9143     } else {
9144         arm_cpu_do_interrupt_aarch32(cs);
9145     }
9146 
9147     arm_call_el_change_hook(cpu);
9148 
9149     if (!kvm_enabled()) {
9150         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9151     }
9152 }
9153 #endif /* !CONFIG_USER_ONLY */
9154 
arm_sctlr(CPUARMState * env,int el)9155 uint64_t arm_sctlr(CPUARMState *env, int el)
9156 {
9157     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */
9158     if (el == 0) {
9159         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9160         switch (mmu_idx) {
9161         case ARMMMUIdx_E20_0:
9162             el = 2;
9163             break;
9164         case ARMMMUIdx_E30_0:
9165             el = 3;
9166             break;
9167         default:
9168             el = 1;
9169             break;
9170         }
9171     }
9172     return env->cp15.sctlr_el[el];
9173 }
9174 
aa64_va_parameter_tbi(uint64_t tcr,ARMMMUIdx mmu_idx)9175 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
9176 {
9177     if (regime_has_2_ranges(mmu_idx)) {
9178         return extract64(tcr, 37, 2);
9179     } else if (regime_is_stage2(mmu_idx)) {
9180         return 0; /* VTCR_EL2 */
9181     } else {
9182         /* Replicate the single TBI bit so we always have 2 bits.  */
9183         return extract32(tcr, 20, 1) * 3;
9184     }
9185 }
9186 
aa64_va_parameter_tbid(uint64_t tcr,ARMMMUIdx mmu_idx)9187 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
9188 {
9189     if (regime_has_2_ranges(mmu_idx)) {
9190         return extract64(tcr, 51, 2);
9191     } else if (regime_is_stage2(mmu_idx)) {
9192         return 0; /* VTCR_EL2 */
9193     } else {
9194         /* Replicate the single TBID bit so we always have 2 bits.  */
9195         return extract32(tcr, 29, 1) * 3;
9196     }
9197 }
9198 
aa64_va_parameter_tcma(uint64_t tcr,ARMMMUIdx mmu_idx)9199 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
9200 {
9201     if (regime_has_2_ranges(mmu_idx)) {
9202         return extract64(tcr, 57, 2);
9203     } else {
9204         /* Replicate the single TCMA bit so we always have 2 bits.  */
9205         return extract32(tcr, 30, 1) * 3;
9206     }
9207 }
9208 
tg0_to_gran_size(int tg)9209 static ARMGranuleSize tg0_to_gran_size(int tg)
9210 {
9211     switch (tg) {
9212     case 0:
9213         return Gran4K;
9214     case 1:
9215         return Gran64K;
9216     case 2:
9217         return Gran16K;
9218     default:
9219         return GranInvalid;
9220     }
9221 }
9222 
tg1_to_gran_size(int tg)9223 static ARMGranuleSize tg1_to_gran_size(int tg)
9224 {
9225     switch (tg) {
9226     case 1:
9227         return Gran16K;
9228     case 2:
9229         return Gran4K;
9230     case 3:
9231         return Gran64K;
9232     default:
9233         return GranInvalid;
9234     }
9235 }
9236 
have4k(ARMCPU * cpu,bool stage2)9237 static inline bool have4k(ARMCPU *cpu, bool stage2)
9238 {
9239     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
9240         : cpu_isar_feature(aa64_tgran4, cpu);
9241 }
9242 
have16k(ARMCPU * cpu,bool stage2)9243 static inline bool have16k(ARMCPU *cpu, bool stage2)
9244 {
9245     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
9246         : cpu_isar_feature(aa64_tgran16, cpu);
9247 }
9248 
have64k(ARMCPU * cpu,bool stage2)9249 static inline bool have64k(ARMCPU *cpu, bool stage2)
9250 {
9251     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
9252         : cpu_isar_feature(aa64_tgran64, cpu);
9253 }
9254 
sanitize_gran_size(ARMCPU * cpu,ARMGranuleSize gran,bool stage2)9255 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
9256                                          bool stage2)
9257 {
9258     switch (gran) {
9259     case Gran4K:
9260         if (have4k(cpu, stage2)) {
9261             return gran;
9262         }
9263         break;
9264     case Gran16K:
9265         if (have16k(cpu, stage2)) {
9266             return gran;
9267         }
9268         break;
9269     case Gran64K:
9270         if (have64k(cpu, stage2)) {
9271             return gran;
9272         }
9273         break;
9274     case GranInvalid:
9275         break;
9276     }
9277     /*
9278      * If the guest selects a granule size that isn't implemented,
9279      * the architecture requires that we behave as if it selected one
9280      * that is (with an IMPDEF choice of which one to pick). We choose
9281      * to implement the smallest supported granule size.
9282      */
9283     if (have4k(cpu, stage2)) {
9284         return Gran4K;
9285     }
9286     if (have16k(cpu, stage2)) {
9287         return Gran16K;
9288     }
9289     assert(have64k(cpu, stage2));
9290     return Gran64K;
9291 }
9292 
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data,bool el1_is_aa32)9293 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9294                                    ARMMMUIdx mmu_idx, bool data,
9295                                    bool el1_is_aa32)
9296 {
9297     uint64_t tcr = regime_tcr(env, mmu_idx);
9298     bool epd, hpd, tsz_oob, ds, ha, hd;
9299     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
9300     ARMGranuleSize gran;
9301     ARMCPU *cpu = env_archcpu(env);
9302     bool stage2 = regime_is_stage2(mmu_idx);
9303 
9304     if (!regime_has_2_ranges(mmu_idx)) {
9305         select = 0;
9306         tsz = extract32(tcr, 0, 6);
9307         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
9308         if (stage2) {
9309             /* VTCR_EL2 */
9310             hpd = false;
9311         } else {
9312             hpd = extract32(tcr, 24, 1);
9313         }
9314         epd = false;
9315         sh = extract32(tcr, 12, 2);
9316         ps = extract32(tcr, 16, 3);
9317         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
9318         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
9319         ds = extract64(tcr, 32, 1);
9320     } else {
9321         bool e0pd;
9322 
9323         /*
9324          * Bit 55 is always between the two regions, and is canonical for
9325          * determining if address tagging is enabled.
9326          */
9327         select = extract64(va, 55, 1);
9328         if (!select) {
9329             tsz = extract32(tcr, 0, 6);
9330             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
9331             epd = extract32(tcr, 7, 1);
9332             sh = extract32(tcr, 12, 2);
9333             hpd = extract64(tcr, 41, 1);
9334             e0pd = extract64(tcr, 55, 1);
9335         } else {
9336             tsz = extract32(tcr, 16, 6);
9337             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
9338             epd = extract32(tcr, 23, 1);
9339             sh = extract32(tcr, 28, 2);
9340             hpd = extract64(tcr, 42, 1);
9341             e0pd = extract64(tcr, 56, 1);
9342         }
9343         ps = extract64(tcr, 32, 3);
9344         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
9345         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
9346         ds = extract64(tcr, 59, 1);
9347 
9348         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
9349             regime_is_user(env, mmu_idx)) {
9350             epd = true;
9351         }
9352     }
9353 
9354     gran = sanitize_gran_size(cpu, gran, stage2);
9355 
9356     if (cpu_isar_feature(aa64_st, cpu)) {
9357         max_tsz = 48 - (gran == Gran64K);
9358     } else {
9359         max_tsz = 39;
9360     }
9361 
9362     /*
9363      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
9364      * adjust the effective value of DS, as documented.
9365      */
9366     min_tsz = 16;
9367     if (gran == Gran64K) {
9368         if (cpu_isar_feature(aa64_lva, cpu)) {
9369             min_tsz = 12;
9370         }
9371         ds = false;
9372     } else if (ds) {
9373         if (regime_is_stage2(mmu_idx)) {
9374             if (gran == Gran16K) {
9375                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
9376             } else {
9377                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
9378             }
9379         } else {
9380             if (gran == Gran16K) {
9381                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
9382             } else {
9383                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
9384             }
9385         }
9386         if (ds) {
9387             min_tsz = 12;
9388         }
9389     }
9390 
9391     if (stage2 && el1_is_aa32) {
9392         /*
9393          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
9394          * are loosened: a configured IPA of 40 bits is permitted even if
9395          * the implemented PA is less than that (and so a 40 bit IPA would
9396          * fault for an AArch64 EL1). See R_DTLMN.
9397          */
9398         min_tsz = MIN(min_tsz, 24);
9399     }
9400 
9401     if (tsz > max_tsz) {
9402         tsz = max_tsz;
9403         tsz_oob = true;
9404     } else if (tsz < min_tsz) {
9405         tsz = min_tsz;
9406         tsz_oob = true;
9407     } else {
9408         tsz_oob = false;
9409     }
9410 
9411     /* Present TBI as a composite with TBID.  */
9412     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
9413     if (!data) {
9414         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
9415     }
9416     tbi = (tbi >> select) & 1;
9417 
9418     return (ARMVAParameters) {
9419         .tsz = tsz,
9420         .ps = ps,
9421         .sh = sh,
9422         .select = select,
9423         .tbi = tbi,
9424         .epd = epd,
9425         .hpd = hpd,
9426         .tsz_oob = tsz_oob,
9427         .ds = ds,
9428         .ha = ha,
9429         .hd = ha && hd,
9430         .gran = gran,
9431     };
9432 }
9433 
9434 
9435 /*
9436  * Return the exception level to which FP-disabled exceptions should
9437  * be taken, or 0 if FP is enabled.
9438  */
fp_exception_el(CPUARMState * env,int cur_el)9439 int fp_exception_el(CPUARMState *env, int cur_el)
9440 {
9441 #ifndef CONFIG_USER_ONLY
9442     uint64_t hcr_el2;
9443 
9444     /*
9445      * CPACR and the CPTR registers don't exist before v6, so FP is
9446      * always accessible
9447      */
9448     if (!arm_feature(env, ARM_FEATURE_V6)) {
9449         return 0;
9450     }
9451 
9452     if (arm_feature(env, ARM_FEATURE_M)) {
9453         /* CPACR can cause a NOCP UsageFault taken to current security state */
9454         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
9455             return 1;
9456         }
9457 
9458         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
9459             if (!extract32(env->v7m.nsacr, 10, 1)) {
9460                 /* FP insns cause a NOCP UsageFault taken to Secure */
9461                 return 3;
9462             }
9463         }
9464 
9465         return 0;
9466     }
9467 
9468     hcr_el2 = arm_hcr_el2_eff(env);
9469 
9470     /*
9471      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
9472      * 0, 2 : trap EL0 and EL1/PL1 accesses
9473      * 1    : trap only EL0 accesses
9474      * 3    : trap no accesses
9475      * This register is ignored if E2H+TGE are both set.
9476      */
9477     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9478         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
9479 
9480         switch (fpen) {
9481         case 1:
9482             if (cur_el != 0) {
9483                 break;
9484             }
9485             /* fall through */
9486         case 0:
9487         case 2:
9488             /* Trap from Secure PL0 or PL1 to Secure PL1. */
9489             if (!arm_el_is_aa64(env, 3)
9490                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
9491                 return 3;
9492             }
9493             if (cur_el <= 1) {
9494                 return 1;
9495             }
9496             break;
9497         }
9498     }
9499 
9500     /*
9501      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
9502      * to control non-secure access to the FPU. It doesn't have any
9503      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
9504      */
9505     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
9506          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
9507         if (!extract32(env->cp15.nsacr, 10, 1)) {
9508             /* FP insns act as UNDEF */
9509             return cur_el == 2 ? 2 : 1;
9510         }
9511     }
9512 
9513     /*
9514      * CPTR_EL2 is present in v7VE or v8, and changes format
9515      * with HCR_EL2.E2H (regardless of TGE).
9516      */
9517     if (cur_el <= 2) {
9518         if (hcr_el2 & HCR_E2H) {
9519             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
9520             case 1:
9521                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
9522                     break;
9523                 }
9524                 /* fall through */
9525             case 0:
9526             case 2:
9527                 return 2;
9528             }
9529         } else if (arm_is_el2_enabled(env)) {
9530             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
9531                 return 2;
9532             }
9533         }
9534     }
9535 
9536     /* CPTR_EL3 : present in v8 */
9537     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
9538         /* Trap all FP ops to EL3 */
9539         return 3;
9540     }
9541 #endif
9542     return 0;
9543 }
9544 
9545 /* Return the exception level we're running at if this is our mmu_idx */
arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)9546 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
9547 {
9548     if (mmu_idx & ARM_MMU_IDX_M) {
9549         return mmu_idx & ARM_MMU_IDX_M_PRIV;
9550     }
9551 
9552     switch (mmu_idx) {
9553     case ARMMMUIdx_E10_0:
9554     case ARMMMUIdx_E20_0:
9555     case ARMMMUIdx_E30_0:
9556         return 0;
9557     case ARMMMUIdx_E10_1:
9558     case ARMMMUIdx_E10_1_PAN:
9559         return 1;
9560     case ARMMMUIdx_E2:
9561     case ARMMMUIdx_E20_2:
9562     case ARMMMUIdx_E20_2_PAN:
9563         return 2;
9564     case ARMMMUIdx_E3:
9565     case ARMMMUIdx_E30_3_PAN:
9566         return 3;
9567     default:
9568         g_assert_not_reached();
9569     }
9570 }
9571 
9572 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)9573 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
9574 {
9575     g_assert_not_reached();
9576 }
9577 #endif
9578 
arm_mmu_idx_el(CPUARMState * env,int el)9579 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
9580 {
9581     ARMMMUIdx idx;
9582     uint64_t hcr;
9583 
9584     if (arm_feature(env, ARM_FEATURE_M)) {
9585         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
9586     }
9587 
9588     /* See ARM pseudo-function ELIsInHost.  */
9589     switch (el) {
9590     case 0:
9591         hcr = arm_hcr_el2_eff(env);
9592         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
9593             idx = ARMMMUIdx_E20_0;
9594         } else if (arm_is_secure_below_el3(env) &&
9595                    !arm_el_is_aa64(env, 3)) {
9596             idx = ARMMMUIdx_E30_0;
9597         } else {
9598             idx = ARMMMUIdx_E10_0;
9599         }
9600         break;
9601     case 1:
9602         if (arm_pan_enabled(env)) {
9603             idx = ARMMMUIdx_E10_1_PAN;
9604         } else {
9605             idx = ARMMMUIdx_E10_1;
9606         }
9607         break;
9608     case 2:
9609         /* Note that TGE does not apply at EL2.  */
9610         if (arm_hcr_el2_eff(env) & HCR_E2H) {
9611             if (arm_pan_enabled(env)) {
9612                 idx = ARMMMUIdx_E20_2_PAN;
9613             } else {
9614                 idx = ARMMMUIdx_E20_2;
9615             }
9616         } else {
9617             idx = ARMMMUIdx_E2;
9618         }
9619         break;
9620     case 3:
9621         if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) {
9622             return ARMMMUIdx_E30_3_PAN;
9623         }
9624         return ARMMMUIdx_E3;
9625     default:
9626         g_assert_not_reached();
9627     }
9628 
9629     return idx;
9630 }
9631 
arm_mmu_idx(CPUARMState * env)9632 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
9633 {
9634     return arm_mmu_idx_el(env, arm_current_el(env));
9635 }
9636 
9637 /*
9638  * The manual says that when SVE is enabled and VQ is widened the
9639  * implementation is allowed to zero the previously inaccessible
9640  * portion of the registers.  The corollary to that is that when
9641  * SVE is enabled and VQ is narrowed we are also allowed to zero
9642  * the now inaccessible portion of the registers.
9643  *
9644  * The intent of this is that no predicate bit beyond VQ is ever set.
9645  * Which means that some operations on predicate registers themselves
9646  * may operate on full uint64_t or even unrolled across the maximum
9647  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
9648  * may well be cheaper than conditionals to restrict the operation
9649  * to the relevant portion of a uint16_t[16].
9650  */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)9651 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
9652 {
9653     int i, j;
9654     uint64_t pmask;
9655 
9656     assert(vq >= 1 && vq <= ARM_MAX_VQ);
9657     assert(vq <= env_archcpu(env)->sve_max_vq);
9658 
9659     /* Zap the high bits of the zregs.  */
9660     for (i = 0; i < 32; i++) {
9661         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
9662     }
9663 
9664     /* Zap the high bits of the pregs and ffr.  */
9665     pmask = 0;
9666     if (vq & 3) {
9667         pmask = ~(-1ULL << (16 * (vq & 3)));
9668     }
9669     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
9670         for (i = 0; i < 17; ++i) {
9671             env->vfp.pregs[i].p[j] &= pmask;
9672         }
9673         pmask = 0;
9674     }
9675 }
9676 
sve_vqm1_for_el_sm_ena(CPUARMState * env,int el,bool sm)9677 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
9678 {
9679     int exc_el;
9680 
9681     if (sm) {
9682         exc_el = sme_exception_el(env, el);
9683     } else {
9684         exc_el = sve_exception_el(env, el);
9685     }
9686     if (exc_el) {
9687         return 0; /* disabled */
9688     }
9689     return sve_vqm1_for_el_sm(env, el, sm);
9690 }
9691 
9692 /*
9693  * Notice a change in SVE vector size when changing EL.
9694  */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)9695 void aarch64_sve_change_el(CPUARMState *env, int old_el,
9696                            int new_el, bool el0_a64)
9697 {
9698     ARMCPU *cpu = env_archcpu(env);
9699     int old_len, new_len;
9700     bool old_a64, new_a64, sm;
9701 
9702     /* Nothing to do if no SVE.  */
9703     if (!cpu_isar_feature(aa64_sve, cpu)) {
9704         return;
9705     }
9706 
9707     /* Nothing to do if FP is disabled in either EL.  */
9708     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
9709         return;
9710     }
9711 
9712     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
9713     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
9714 
9715     /*
9716      * Both AArch64.TakeException and AArch64.ExceptionReturn
9717      * invoke ResetSVEState when taking an exception from, or
9718      * returning to, AArch32 state when PSTATE.SM is enabled.
9719      */
9720     sm = FIELD_EX64(env->svcr, SVCR, SM);
9721     if (old_a64 != new_a64 && sm) {
9722         arm_reset_sve_state(env);
9723         return;
9724     }
9725 
9726     /*
9727      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
9728      * at ELx, or not available because the EL is in AArch32 state, then
9729      * for all purposes other than a direct read, the ZCR_ELx.LEN field
9730      * has an effective value of 0".
9731      *
9732      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
9733      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
9734      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
9735      * we already have the correct register contents when encountering the
9736      * vq0->vq0 transition between EL0->EL1.
9737      */
9738     old_len = new_len = 0;
9739     if (old_a64) {
9740         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
9741     }
9742     if (new_a64) {
9743         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
9744     }
9745 
9746     /* When changing vector length, clear inaccessible state.  */
9747     if (new_len < old_len) {
9748         aarch64_sve_narrow_vq(env, new_len + 1);
9749     }
9750 }
9751 
9752 #ifndef CONFIG_USER_ONLY
arm_security_space(CPUARMState * env)9753 ARMSecuritySpace arm_security_space(CPUARMState *env)
9754 {
9755     if (arm_feature(env, ARM_FEATURE_M)) {
9756         return arm_secure_to_space(env->v7m.secure);
9757     }
9758 
9759     /*
9760      * If EL3 is not supported then the secure state is implementation
9761      * defined, in which case QEMU defaults to non-secure.
9762      */
9763     if (!arm_feature(env, ARM_FEATURE_EL3)) {
9764         return ARMSS_NonSecure;
9765     }
9766 
9767     /* Check for AArch64 EL3 or AArch32 Mon. */
9768     if (is_a64(env)) {
9769         if (extract32(env->pstate, 2, 2) == 3) {
9770             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
9771                 return ARMSS_Root;
9772             } else {
9773                 return ARMSS_Secure;
9774             }
9775         }
9776     } else {
9777         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9778             return ARMSS_Secure;
9779         }
9780     }
9781 
9782     return arm_security_space_below_el3(env);
9783 }
9784 
arm_security_space_below_el3(CPUARMState * env)9785 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
9786 {
9787     assert(!arm_feature(env, ARM_FEATURE_M));
9788 
9789     /*
9790      * If EL3 is not supported then the secure state is implementation
9791      * defined, in which case QEMU defaults to non-secure.
9792      */
9793     if (!arm_feature(env, ARM_FEATURE_EL3)) {
9794         return ARMSS_NonSecure;
9795     }
9796 
9797     /*
9798      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
9799      * Ignoring NSE when !NS retains consistency without having to
9800      * modify other predicates.
9801      */
9802     if (!(env->cp15.scr_el3 & SCR_NS)) {
9803         return ARMSS_Secure;
9804     } else if (env->cp15.scr_el3 & SCR_NSE) {
9805         return ARMSS_Realm;
9806     } else {
9807         return ARMSS_NonSecure;
9808     }
9809 }
9810 #endif /* !CONFIG_USER_ONLY */
9811