1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22
23 #include "opp.h"
24
25 /*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30 LIST_HEAD(opp_tables);
31
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54 }
55
_find_opp_table_unlocked(struct device * dev)56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68 }
69
70 /**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
_find_opp_table(struct device * dev)81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95 }
96
97 /*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
assert_single_clk(struct opp_table * opp_table)104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 return !WARN_ON(opp_table->clk_count > 1);
107 }
108
109 /**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129 /**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142 {
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154 /**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
dev_pm_opp_get_power(struct dev_pm_opp * opp)163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179 /**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199 /**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return 0.
205 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217 /**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return 0.
225 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228 {
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249 /**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270 /**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
dev_pm_opp_get_max_clock_latency(struct device * dev)276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293 /**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
dev_pm_opp_get_max_volt_latency(struct device * dev)299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(&opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(uV);
356 put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363 /**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
dev_pm_opp_get_max_transition_latency(struct device * dev)371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378 /**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
_get_opp_count(struct opp_table * opp_table)403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418 }
419
420 /**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
dev_pm_opp_get_opp_count(struct device * dev)427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 return opp->rates[index];
451 }
452
_read_level(struct dev_pm_opp * opp,int index)453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 return opp->level;
456 }
457
_read_bw(struct dev_pm_opp * opp,int index)458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 return opp->bandwidth[index].peak;
461 }
462
463 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466 {
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473 }
474
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477 {
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484 }
485
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488 {
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494 }
495
496 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503 {
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528 }
529
530 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553 }
554
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559 {
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
566 }
567
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572 {
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
575 }
576
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581 {
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
584 }
585
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590 {
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
593 }
594
595 /**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620 {
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626 /**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649 {
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656 {
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 assert_single_clk);
659 }
660
661 /**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681 {
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686 /**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709 {
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714 /**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734 {
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739 /**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762 {
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767 /**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784 {
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789 /**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806 {
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 *level = temp;
812 return opp;
813 }
814 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
815
816 /**
817 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
818 * @dev: device for which we do this operation
819 * @bw: start bandwidth
820 * @index: which bandwidth to compare, in case of OPPs with several values
821 *
822 * Search for the matching floor *available* OPP from a starting bandwidth
823 * for a device.
824 *
825 * Return: matching *opp and refreshes *bw accordingly, else returns
826 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
827 * values can be:
828 * EINVAL: for bad pointer
829 * ERANGE: no match found for search
830 * ENODEV: if device not found in list of registered devices
831 *
832 * The callers are required to call dev_pm_opp_put() for the returned OPP after
833 * use.
834 */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)835 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
836 int index)
837 {
838 unsigned long temp = *bw;
839 struct dev_pm_opp *opp;
840
841 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
842 *bw = temp;
843 return opp;
844 }
845 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
846
847 /**
848 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
849 * @dev: device for which we do this operation
850 * @bw: start bandwidth
851 * @index: which bandwidth to compare, in case of OPPs with several values
852 *
853 * Search for the matching floor *available* OPP from a starting bandwidth
854 * for a device.
855 *
856 * Return: matching *opp and refreshes *bw accordingly, else returns
857 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
858 * values can be:
859 * EINVAL: for bad pointer
860 * ERANGE: no match found for search
861 * ENODEV: if device not found in list of registered devices
862 *
863 * The callers are required to call dev_pm_opp_put() for the returned OPP after
864 * use.
865 */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)866 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
867 unsigned int *bw, int index)
868 {
869 unsigned long temp = *bw;
870 struct dev_pm_opp *opp;
871
872 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
873 *bw = temp;
874 return opp;
875 }
876 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
877
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)878 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
879 struct dev_pm_opp_supply *supply)
880 {
881 int ret;
882
883 /* Regulator not available for device */
884 if (IS_ERR(reg)) {
885 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
886 PTR_ERR(reg));
887 return 0;
888 }
889
890 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
891 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
892
893 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
894 supply->u_volt, supply->u_volt_max);
895 if (ret)
896 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
897 __func__, supply->u_volt_min, supply->u_volt,
898 supply->u_volt_max, ret);
899
900 return ret;
901 }
902
903 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)904 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
905 struct dev_pm_opp *opp, void *data, bool scaling_down)
906 {
907 unsigned long *target = data;
908 unsigned long freq;
909 int ret;
910
911 /* One of target and opp must be available */
912 if (target) {
913 freq = *target;
914 } else if (opp) {
915 freq = opp->rates[0];
916 } else {
917 WARN_ON(1);
918 return -EINVAL;
919 }
920
921 ret = clk_set_rate(opp_table->clk, freq);
922 if (ret) {
923 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
924 ret);
925 } else {
926 opp_table->rate_clk_single = freq;
927 }
928
929 return ret;
930 }
931
932 /*
933 * Simple implementation for configuring multiple clocks. Configure clocks in
934 * the order in which they are present in the array while scaling up.
935 */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)936 int dev_pm_opp_config_clks_simple(struct device *dev,
937 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
938 bool scaling_down)
939 {
940 int ret, i;
941
942 if (scaling_down) {
943 for (i = opp_table->clk_count - 1; i >= 0; i--) {
944 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
945 if (ret) {
946 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
947 ret);
948 return ret;
949 }
950 }
951 } else {
952 for (i = 0; i < opp_table->clk_count; i++) {
953 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
954 if (ret) {
955 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
956 ret);
957 return ret;
958 }
959 }
960 }
961
962 return 0;
963 }
964 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
965
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)966 static int _opp_config_regulator_single(struct device *dev,
967 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
968 struct regulator **regulators, unsigned int count)
969 {
970 struct regulator *reg = regulators[0];
971 int ret;
972
973 /* This function only supports single regulator per device */
974 if (WARN_ON(count > 1)) {
975 dev_err(dev, "multiple regulators are not supported\n");
976 return -EINVAL;
977 }
978
979 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
980 if (ret)
981 return ret;
982
983 /*
984 * Enable the regulator after setting its voltages, otherwise it breaks
985 * some boot-enabled regulators.
986 */
987 if (unlikely(!new_opp->opp_table->enabled)) {
988 ret = regulator_enable(reg);
989 if (ret < 0)
990 dev_warn(dev, "Failed to enable regulator: %d", ret);
991 }
992
993 return 0;
994 }
995
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)996 static int _set_opp_bw(const struct opp_table *opp_table,
997 struct dev_pm_opp *opp, struct device *dev)
998 {
999 u32 avg, peak;
1000 int i, ret;
1001
1002 if (!opp_table->paths)
1003 return 0;
1004
1005 for (i = 0; i < opp_table->path_count; i++) {
1006 if (!opp) {
1007 avg = 0;
1008 peak = 0;
1009 } else {
1010 avg = opp->bandwidth[i].avg;
1011 peak = opp->bandwidth[i].peak;
1012 }
1013 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1014 if (ret) {
1015 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1016 opp ? "set" : "remove", i, ret);
1017 return ret;
1018 }
1019 }
1020
1021 return 0;
1022 }
1023
_set_performance_state(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)1024 static int _set_performance_state(struct device *dev, struct device *pd_dev,
1025 struct dev_pm_opp *opp, int i)
1026 {
1027 unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1028 int ret;
1029
1030 if (!pd_dev)
1031 return 0;
1032
1033 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
1034 if (ret) {
1035 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1036 dev_name(pd_dev), pstate, ret);
1037 }
1038
1039 return ret;
1040 }
1041
_opp_set_required_opps_generic(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1042 static int _opp_set_required_opps_generic(struct device *dev,
1043 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1044 {
1045 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1046 return -ENOENT;
1047 }
1048
_opp_set_required_opps_genpd(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1049 static int _opp_set_required_opps_genpd(struct device *dev,
1050 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1051 {
1052 struct device **genpd_virt_devs =
1053 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1054 int i, ret = 0;
1055
1056 /*
1057 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1058 * after it is freed from another thread.
1059 */
1060 mutex_lock(&opp_table->genpd_virt_dev_lock);
1061
1062 /* Scaling up? Set required OPPs in normal order, else reverse */
1063 if (!scaling_down) {
1064 for (i = 0; i < opp_table->required_opp_count; i++) {
1065 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1066 if (ret)
1067 break;
1068 }
1069 } else {
1070 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1071 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1072 if (ret)
1073 break;
1074 }
1075 }
1076
1077 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1078
1079 return ret;
1080 }
1081
1082 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1083 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1084 struct dev_pm_opp *opp, bool up)
1085 {
1086 /* required-opps not fully initialized yet */
1087 if (lazy_linking_pending(opp_table))
1088 return -EBUSY;
1089
1090 if (opp_table->set_required_opps)
1091 return opp_table->set_required_opps(dev, opp_table, opp, up);
1092
1093 return 0;
1094 }
1095
1096 /* Update set_required_opps handler */
_update_set_required_opps(struct opp_table * opp_table)1097 void _update_set_required_opps(struct opp_table *opp_table)
1098 {
1099 /* Already set */
1100 if (opp_table->set_required_opps)
1101 return;
1102
1103 /* All required OPPs will belong to genpd or none */
1104 if (opp_table->required_opp_tables[0]->is_genpd)
1105 opp_table->set_required_opps = _opp_set_required_opps_genpd;
1106 else
1107 opp_table->set_required_opps = _opp_set_required_opps_generic;
1108 }
1109
_find_current_opp(struct device * dev,struct opp_table * opp_table)1110 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1111 {
1112 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1113 unsigned long freq;
1114
1115 if (!IS_ERR(opp_table->clk)) {
1116 freq = clk_get_rate(opp_table->clk);
1117 opp = _find_freq_ceil(opp_table, &freq);
1118 }
1119
1120 /*
1121 * Unable to find the current OPP ? Pick the first from the list since
1122 * it is in ascending order, otherwise rest of the code will need to
1123 * make special checks to validate current_opp.
1124 */
1125 if (IS_ERR(opp)) {
1126 mutex_lock(&opp_table->lock);
1127 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1128 dev_pm_opp_get(opp);
1129 mutex_unlock(&opp_table->lock);
1130 }
1131
1132 opp_table->current_opp = opp;
1133 }
1134
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1135 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1136 {
1137 int ret;
1138
1139 if (!opp_table->enabled)
1140 return 0;
1141
1142 /*
1143 * Some drivers need to support cases where some platforms may
1144 * have OPP table for the device, while others don't and
1145 * opp_set_rate() just needs to behave like clk_set_rate().
1146 */
1147 if (!_get_opp_count(opp_table))
1148 return 0;
1149
1150 ret = _set_opp_bw(opp_table, NULL, dev);
1151 if (ret)
1152 return ret;
1153
1154 if (opp_table->regulators)
1155 regulator_disable(opp_table->regulators[0]);
1156
1157 ret = _set_required_opps(dev, opp_table, NULL, false);
1158
1159 opp_table->enabled = false;
1160 return ret;
1161 }
1162
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1163 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1164 struct dev_pm_opp *opp, void *clk_data, bool forced)
1165 {
1166 struct dev_pm_opp *old_opp;
1167 int scaling_down, ret;
1168
1169 if (unlikely(!opp))
1170 return _disable_opp_table(dev, opp_table);
1171
1172 /* Find the currently set OPP if we don't know already */
1173 if (unlikely(!opp_table->current_opp))
1174 _find_current_opp(dev, opp_table);
1175
1176 old_opp = opp_table->current_opp;
1177
1178 /* Return early if nothing to do */
1179 if (!forced && old_opp == opp && opp_table->enabled) {
1180 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1181 return 0;
1182 }
1183
1184 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1185 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1186 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1187 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1188
1189 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1190 if (scaling_down == -1)
1191 scaling_down = 0;
1192
1193 /* Scaling up? Configure required OPPs before frequency */
1194 if (!scaling_down) {
1195 ret = _set_required_opps(dev, opp_table, opp, true);
1196 if (ret) {
1197 dev_err(dev, "Failed to set required opps: %d\n", ret);
1198 return ret;
1199 }
1200
1201 ret = _set_opp_bw(opp_table, opp, dev);
1202 if (ret) {
1203 dev_err(dev, "Failed to set bw: %d\n", ret);
1204 return ret;
1205 }
1206
1207 if (opp_table->config_regulators) {
1208 ret = opp_table->config_regulators(dev, old_opp, opp,
1209 opp_table->regulators,
1210 opp_table->regulator_count);
1211 if (ret) {
1212 dev_err(dev, "Failed to set regulator voltages: %d\n",
1213 ret);
1214 return ret;
1215 }
1216 }
1217 }
1218
1219 if (opp_table->config_clks) {
1220 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1221 if (ret)
1222 return ret;
1223 }
1224
1225 /* Scaling down? Configure required OPPs after frequency */
1226 if (scaling_down) {
1227 if (opp_table->config_regulators) {
1228 ret = opp_table->config_regulators(dev, old_opp, opp,
1229 opp_table->regulators,
1230 opp_table->regulator_count);
1231 if (ret) {
1232 dev_err(dev, "Failed to set regulator voltages: %d\n",
1233 ret);
1234 return ret;
1235 }
1236 }
1237
1238 ret = _set_opp_bw(opp_table, opp, dev);
1239 if (ret) {
1240 dev_err(dev, "Failed to set bw: %d\n", ret);
1241 return ret;
1242 }
1243
1244 ret = _set_required_opps(dev, opp_table, opp, false);
1245 if (ret) {
1246 dev_err(dev, "Failed to set required opps: %d\n", ret);
1247 return ret;
1248 }
1249 }
1250
1251 opp_table->enabled = true;
1252 dev_pm_opp_put(old_opp);
1253
1254 /* Make sure current_opp doesn't get freed */
1255 dev_pm_opp_get(opp);
1256 opp_table->current_opp = opp;
1257
1258 return ret;
1259 }
1260
1261 /**
1262 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1263 * @dev: device for which we do this operation
1264 * @target_freq: frequency to achieve
1265 *
1266 * This configures the power-supplies to the levels specified by the OPP
1267 * corresponding to the target_freq, and programs the clock to a value <=
1268 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1269 * provided by the opp, should have already rounded to the target OPP's
1270 * frequency.
1271 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1272 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1273 {
1274 struct opp_table *opp_table;
1275 unsigned long freq = 0, temp_freq;
1276 struct dev_pm_opp *opp = NULL;
1277 bool forced = false;
1278 int ret;
1279
1280 opp_table = _find_opp_table(dev);
1281 if (IS_ERR(opp_table)) {
1282 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1283 return PTR_ERR(opp_table);
1284 }
1285
1286 if (target_freq) {
1287 /*
1288 * For IO devices which require an OPP on some platforms/SoCs
1289 * while just needing to scale the clock on some others
1290 * we look for empty OPP tables with just a clock handle and
1291 * scale only the clk. This makes dev_pm_opp_set_rate()
1292 * equivalent to a clk_set_rate()
1293 */
1294 if (!_get_opp_count(opp_table)) {
1295 ret = opp_table->config_clks(dev, opp_table, NULL,
1296 &target_freq, false);
1297 goto put_opp_table;
1298 }
1299
1300 freq = clk_round_rate(opp_table->clk, target_freq);
1301 if ((long)freq <= 0)
1302 freq = target_freq;
1303
1304 /*
1305 * The clock driver may support finer resolution of the
1306 * frequencies than the OPP table, don't update the frequency we
1307 * pass to clk_set_rate() here.
1308 */
1309 temp_freq = freq;
1310 opp = _find_freq_ceil(opp_table, &temp_freq);
1311 if (IS_ERR(opp)) {
1312 ret = PTR_ERR(opp);
1313 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1314 __func__, freq, ret);
1315 goto put_opp_table;
1316 }
1317
1318 /*
1319 * An OPP entry specifies the highest frequency at which other
1320 * properties of the OPP entry apply. Even if the new OPP is
1321 * same as the old one, we may still reach here for a different
1322 * value of the frequency. In such a case, do not abort but
1323 * configure the hardware to the desired frequency forcefully.
1324 */
1325 forced = opp_table->rate_clk_single != freq;
1326 }
1327
1328 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1329
1330 if (freq)
1331 dev_pm_opp_put(opp);
1332
1333 put_opp_table:
1334 dev_pm_opp_put_opp_table(opp_table);
1335 return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1338
1339 /**
1340 * dev_pm_opp_set_opp() - Configure device for OPP
1341 * @dev: device for which we do this operation
1342 * @opp: OPP to set to
1343 *
1344 * This configures the device based on the properties of the OPP passed to this
1345 * routine.
1346 *
1347 * Return: 0 on success, a negative error number otherwise.
1348 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1349 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1350 {
1351 struct opp_table *opp_table;
1352 int ret;
1353
1354 opp_table = _find_opp_table(dev);
1355 if (IS_ERR(opp_table)) {
1356 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1357 return PTR_ERR(opp_table);
1358 }
1359
1360 ret = _set_opp(dev, opp_table, opp, NULL, false);
1361 dev_pm_opp_put_opp_table(opp_table);
1362
1363 return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1366
1367 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1368 static void _remove_opp_dev(struct opp_device *opp_dev,
1369 struct opp_table *opp_table)
1370 {
1371 opp_debug_unregister(opp_dev, opp_table);
1372 list_del(&opp_dev->node);
1373 kfree(opp_dev);
1374 }
1375
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1376 struct opp_device *_add_opp_dev(const struct device *dev,
1377 struct opp_table *opp_table)
1378 {
1379 struct opp_device *opp_dev;
1380
1381 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1382 if (!opp_dev)
1383 return NULL;
1384
1385 /* Initialize opp-dev */
1386 opp_dev->dev = dev;
1387
1388 mutex_lock(&opp_table->lock);
1389 list_add(&opp_dev->node, &opp_table->dev_list);
1390 mutex_unlock(&opp_table->lock);
1391
1392 /* Create debugfs entries for the opp_table */
1393 opp_debug_register(opp_dev, opp_table);
1394
1395 return opp_dev;
1396 }
1397
_allocate_opp_table(struct device * dev,int index)1398 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1399 {
1400 struct opp_table *opp_table;
1401 struct opp_device *opp_dev;
1402 int ret;
1403
1404 /*
1405 * Allocate a new OPP table. In the infrequent case where a new
1406 * device is needed to be added, we pay this penalty.
1407 */
1408 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1409 if (!opp_table)
1410 return ERR_PTR(-ENOMEM);
1411
1412 mutex_init(&opp_table->lock);
1413 mutex_init(&opp_table->genpd_virt_dev_lock);
1414 INIT_LIST_HEAD(&opp_table->dev_list);
1415 INIT_LIST_HEAD(&opp_table->lazy);
1416
1417 opp_table->clk = ERR_PTR(-ENODEV);
1418
1419 /* Mark regulator count uninitialized */
1420 opp_table->regulator_count = -1;
1421
1422 opp_dev = _add_opp_dev(dev, opp_table);
1423 if (!opp_dev) {
1424 ret = -ENOMEM;
1425 goto err;
1426 }
1427
1428 _of_init_opp_table(opp_table, dev, index);
1429
1430 /* Find interconnect path(s) for the device */
1431 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1432 if (ret) {
1433 if (ret == -EPROBE_DEFER)
1434 goto remove_opp_dev;
1435
1436 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1437 __func__, ret);
1438 }
1439
1440 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1441 INIT_LIST_HEAD(&opp_table->opp_list);
1442 kref_init(&opp_table->kref);
1443
1444 return opp_table;
1445
1446 remove_opp_dev:
1447 _of_clear_opp_table(opp_table);
1448 _remove_opp_dev(opp_dev, opp_table);
1449 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1450 mutex_destroy(&opp_table->lock);
1451 err:
1452 kfree(opp_table);
1453 return ERR_PTR(ret);
1454 }
1455
_get_opp_table_kref(struct opp_table * opp_table)1456 void _get_opp_table_kref(struct opp_table *opp_table)
1457 {
1458 kref_get(&opp_table->kref);
1459 }
1460
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1461 static struct opp_table *_update_opp_table_clk(struct device *dev,
1462 struct opp_table *opp_table,
1463 bool getclk)
1464 {
1465 int ret;
1466
1467 /*
1468 * Return early if we don't need to get clk or we have already done it
1469 * earlier.
1470 */
1471 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1472 opp_table->clks)
1473 return opp_table;
1474
1475 /* Find clk for the device */
1476 opp_table->clk = clk_get(dev, NULL);
1477
1478 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1479 if (!ret) {
1480 opp_table->config_clks = _opp_config_clk_single;
1481 opp_table->clk_count = 1;
1482 return opp_table;
1483 }
1484
1485 if (ret == -ENOENT) {
1486 /*
1487 * There are few platforms which don't want the OPP core to
1488 * manage device's clock settings. In such cases neither the
1489 * platform provides the clks explicitly to us, nor the DT
1490 * contains a valid clk entry. The OPP nodes in DT may still
1491 * contain "opp-hz" property though, which we need to parse and
1492 * allow the platform to find an OPP based on freq later on.
1493 *
1494 * This is a simple solution to take care of such corner cases,
1495 * i.e. make the clk_count 1, which lets us allocate space for
1496 * frequency in opp->rates and also parse the entries in DT.
1497 */
1498 opp_table->clk_count = 1;
1499
1500 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1501 return opp_table;
1502 }
1503
1504 dev_pm_opp_put_opp_table(opp_table);
1505 dev_err_probe(dev, ret, "Couldn't find clock\n");
1506
1507 return ERR_PTR(ret);
1508 }
1509
1510 /*
1511 * We need to make sure that the OPP table for a device doesn't get added twice,
1512 * if this routine gets called in parallel with the same device pointer.
1513 *
1514 * The simplest way to enforce that is to perform everything (find existing
1515 * table and if not found, create a new one) under the opp_table_lock, so only
1516 * one creator gets access to the same. But that expands the critical section
1517 * under the lock and may end up causing circular dependencies with frameworks
1518 * like debugfs, interconnect or clock framework as they may be direct or
1519 * indirect users of OPP core.
1520 *
1521 * And for that reason we have to go for a bit tricky implementation here, which
1522 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1523 * of adding an OPP table and others should wait for it to finish.
1524 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1525 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1526 bool getclk)
1527 {
1528 struct opp_table *opp_table;
1529
1530 again:
1531 mutex_lock(&opp_table_lock);
1532
1533 opp_table = _find_opp_table_unlocked(dev);
1534 if (!IS_ERR(opp_table))
1535 goto unlock;
1536
1537 /*
1538 * The opp_tables list or an OPP table's dev_list is getting updated by
1539 * another user, wait for it to finish.
1540 */
1541 if (unlikely(opp_tables_busy)) {
1542 mutex_unlock(&opp_table_lock);
1543 cpu_relax();
1544 goto again;
1545 }
1546
1547 opp_tables_busy = true;
1548 opp_table = _managed_opp(dev, index);
1549
1550 /* Drop the lock to reduce the size of critical section */
1551 mutex_unlock(&opp_table_lock);
1552
1553 if (opp_table) {
1554 if (!_add_opp_dev(dev, opp_table)) {
1555 dev_pm_opp_put_opp_table(opp_table);
1556 opp_table = ERR_PTR(-ENOMEM);
1557 }
1558
1559 mutex_lock(&opp_table_lock);
1560 } else {
1561 opp_table = _allocate_opp_table(dev, index);
1562
1563 mutex_lock(&opp_table_lock);
1564 if (!IS_ERR(opp_table))
1565 list_add(&opp_table->node, &opp_tables);
1566 }
1567
1568 opp_tables_busy = false;
1569
1570 unlock:
1571 mutex_unlock(&opp_table_lock);
1572
1573 return _update_opp_table_clk(dev, opp_table, getclk);
1574 }
1575
_add_opp_table(struct device * dev,bool getclk)1576 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1577 {
1578 return _add_opp_table_indexed(dev, 0, getclk);
1579 }
1580
dev_pm_opp_get_opp_table(struct device * dev)1581 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1582 {
1583 return _find_opp_table(dev);
1584 }
1585 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1586
_opp_table_kref_release(struct kref * kref)1587 static void _opp_table_kref_release(struct kref *kref)
1588 {
1589 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1590 struct opp_device *opp_dev, *temp;
1591 int i;
1592
1593 /* Drop the lock as soon as we can */
1594 list_del(&opp_table->node);
1595 mutex_unlock(&opp_table_lock);
1596
1597 if (opp_table->current_opp)
1598 dev_pm_opp_put(opp_table->current_opp);
1599
1600 _of_clear_opp_table(opp_table);
1601
1602 /* Release automatically acquired single clk */
1603 if (!IS_ERR(opp_table->clk))
1604 clk_put(opp_table->clk);
1605
1606 if (opp_table->paths) {
1607 for (i = 0; i < opp_table->path_count; i++)
1608 icc_put(opp_table->paths[i]);
1609 kfree(opp_table->paths);
1610 }
1611
1612 WARN_ON(!list_empty(&opp_table->opp_list));
1613
1614 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1615 _remove_opp_dev(opp_dev, opp_table);
1616
1617 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1618 mutex_destroy(&opp_table->lock);
1619 kfree(opp_table);
1620 }
1621
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1622 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1623 {
1624 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1625 &opp_table_lock);
1626 }
1627 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1628
_opp_free(struct dev_pm_opp * opp)1629 void _opp_free(struct dev_pm_opp *opp)
1630 {
1631 kfree(opp);
1632 }
1633
_opp_kref_release(struct kref * kref)1634 static void _opp_kref_release(struct kref *kref)
1635 {
1636 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1637 struct opp_table *opp_table = opp->opp_table;
1638
1639 list_del(&opp->node);
1640 mutex_unlock(&opp_table->lock);
1641
1642 /*
1643 * Notify the changes in the availability of the operable
1644 * frequency/voltage list.
1645 */
1646 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1647 _of_clear_opp(opp_table, opp);
1648 opp_debug_remove_one(opp);
1649 kfree(opp);
1650 }
1651
dev_pm_opp_get(struct dev_pm_opp * opp)1652 void dev_pm_opp_get(struct dev_pm_opp *opp)
1653 {
1654 kref_get(&opp->kref);
1655 }
1656
dev_pm_opp_put(struct dev_pm_opp * opp)1657 void dev_pm_opp_put(struct dev_pm_opp *opp)
1658 {
1659 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1660 }
1661 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1662
1663 /**
1664 * dev_pm_opp_remove() - Remove an OPP from OPP table
1665 * @dev: device for which we do this operation
1666 * @freq: OPP to remove with matching 'freq'
1667 *
1668 * This function removes an opp from the opp table.
1669 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1670 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1671 {
1672 struct dev_pm_opp *opp = NULL, *iter;
1673 struct opp_table *opp_table;
1674
1675 opp_table = _find_opp_table(dev);
1676 if (IS_ERR(opp_table))
1677 return;
1678
1679 if (!assert_single_clk(opp_table))
1680 goto put_table;
1681
1682 mutex_lock(&opp_table->lock);
1683
1684 list_for_each_entry(iter, &opp_table->opp_list, node) {
1685 if (iter->rates[0] == freq) {
1686 opp = iter;
1687 break;
1688 }
1689 }
1690
1691 mutex_unlock(&opp_table->lock);
1692
1693 if (opp) {
1694 dev_pm_opp_put(opp);
1695
1696 /* Drop the reference taken by dev_pm_opp_add() */
1697 dev_pm_opp_put_opp_table(opp_table);
1698 } else {
1699 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1700 __func__, freq);
1701 }
1702
1703 put_table:
1704 /* Drop the reference taken by _find_opp_table() */
1705 dev_pm_opp_put_opp_table(opp_table);
1706 }
1707 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1708
_opp_get_next(struct opp_table * opp_table,bool dynamic)1709 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1710 bool dynamic)
1711 {
1712 struct dev_pm_opp *opp = NULL, *temp;
1713
1714 mutex_lock(&opp_table->lock);
1715 list_for_each_entry(temp, &opp_table->opp_list, node) {
1716 /*
1717 * Refcount must be dropped only once for each OPP by OPP core,
1718 * do that with help of "removed" flag.
1719 */
1720 if (!temp->removed && dynamic == temp->dynamic) {
1721 opp = temp;
1722 break;
1723 }
1724 }
1725
1726 mutex_unlock(&opp_table->lock);
1727 return opp;
1728 }
1729
1730 /*
1731 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1732 * happen lock less to avoid circular dependency issues. This routine must be
1733 * called without the opp_table->lock held.
1734 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1735 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1736 {
1737 struct dev_pm_opp *opp;
1738
1739 while ((opp = _opp_get_next(opp_table, dynamic))) {
1740 opp->removed = true;
1741 dev_pm_opp_put(opp);
1742
1743 /* Drop the references taken by dev_pm_opp_add() */
1744 if (dynamic)
1745 dev_pm_opp_put_opp_table(opp_table);
1746 }
1747 }
1748
_opp_remove_all_static(struct opp_table * opp_table)1749 bool _opp_remove_all_static(struct opp_table *opp_table)
1750 {
1751 mutex_lock(&opp_table->lock);
1752
1753 if (!opp_table->parsed_static_opps) {
1754 mutex_unlock(&opp_table->lock);
1755 return false;
1756 }
1757
1758 if (--opp_table->parsed_static_opps) {
1759 mutex_unlock(&opp_table->lock);
1760 return true;
1761 }
1762
1763 mutex_unlock(&opp_table->lock);
1764
1765 _opp_remove_all(opp_table, false);
1766 return true;
1767 }
1768
1769 /**
1770 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1771 * @dev: device for which we do this operation
1772 *
1773 * This function removes all dynamically created OPPs from the opp table.
1774 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1775 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1776 {
1777 struct opp_table *opp_table;
1778
1779 opp_table = _find_opp_table(dev);
1780 if (IS_ERR(opp_table))
1781 return;
1782
1783 _opp_remove_all(opp_table, true);
1784
1785 /* Drop the reference taken by _find_opp_table() */
1786 dev_pm_opp_put_opp_table(opp_table);
1787 }
1788 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1789
_opp_allocate(struct opp_table * opp_table)1790 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1791 {
1792 struct dev_pm_opp *opp;
1793 int supply_count, supply_size, icc_size, clk_size;
1794
1795 /* Allocate space for at least one supply */
1796 supply_count = opp_table->regulator_count > 0 ?
1797 opp_table->regulator_count : 1;
1798 supply_size = sizeof(*opp->supplies) * supply_count;
1799 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1800 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1801
1802 /* allocate new OPP node and supplies structures */
1803 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1804 if (!opp)
1805 return NULL;
1806
1807 /* Put the supplies, bw and clock at the end of the OPP structure */
1808 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1809
1810 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1811
1812 if (icc_size)
1813 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1814
1815 INIT_LIST_HEAD(&opp->node);
1816
1817 return opp;
1818 }
1819
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1820 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1821 struct opp_table *opp_table)
1822 {
1823 struct regulator *reg;
1824 int i;
1825
1826 if (!opp_table->regulators)
1827 return true;
1828
1829 for (i = 0; i < opp_table->regulator_count; i++) {
1830 reg = opp_table->regulators[i];
1831
1832 if (!regulator_is_supported_voltage(reg,
1833 opp->supplies[i].u_volt_min,
1834 opp->supplies[i].u_volt_max)) {
1835 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1836 __func__, opp->supplies[i].u_volt_min,
1837 opp->supplies[i].u_volt_max);
1838 return false;
1839 }
1840 }
1841
1842 return true;
1843 }
1844
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1845 static int _opp_compare_rate(struct opp_table *opp_table,
1846 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1847 {
1848 int i;
1849
1850 for (i = 0; i < opp_table->clk_count; i++) {
1851 if (opp1->rates[i] != opp2->rates[i])
1852 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1853 }
1854
1855 /* Same rates for both OPPs */
1856 return 0;
1857 }
1858
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1859 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1860 struct dev_pm_opp *opp2)
1861 {
1862 int i;
1863
1864 for (i = 0; i < opp_table->path_count; i++) {
1865 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1866 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1867 }
1868
1869 /* Same bw for both OPPs */
1870 return 0;
1871 }
1872
1873 /*
1874 * Returns
1875 * 0: opp1 == opp2
1876 * 1: opp1 > opp2
1877 * -1: opp1 < opp2
1878 */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1879 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1880 struct dev_pm_opp *opp2)
1881 {
1882 int ret;
1883
1884 ret = _opp_compare_rate(opp_table, opp1, opp2);
1885 if (ret)
1886 return ret;
1887
1888 ret = _opp_compare_bw(opp_table, opp1, opp2);
1889 if (ret)
1890 return ret;
1891
1892 if (opp1->level != opp2->level)
1893 return opp1->level < opp2->level ? -1 : 1;
1894
1895 /* Duplicate OPPs */
1896 return 0;
1897 }
1898
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1899 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1900 struct opp_table *opp_table,
1901 struct list_head **head)
1902 {
1903 struct dev_pm_opp *opp;
1904 int opp_cmp;
1905
1906 /*
1907 * Insert new OPP in order of increasing frequency and discard if
1908 * already present.
1909 *
1910 * Need to use &opp_table->opp_list in the condition part of the 'for'
1911 * loop, don't replace it with head otherwise it will become an infinite
1912 * loop.
1913 */
1914 list_for_each_entry(opp, &opp_table->opp_list, node) {
1915 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1916 if (opp_cmp > 0) {
1917 *head = &opp->node;
1918 continue;
1919 }
1920
1921 if (opp_cmp < 0)
1922 return 0;
1923
1924 /* Duplicate OPPs */
1925 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1926 __func__, opp->rates[0], opp->supplies[0].u_volt,
1927 opp->available, new_opp->rates[0],
1928 new_opp->supplies[0].u_volt, new_opp->available);
1929
1930 /* Should we compare voltages for all regulators here ? */
1931 return opp->available &&
1932 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1933 }
1934
1935 return 0;
1936 }
1937
_required_opps_available(struct dev_pm_opp * opp,int count)1938 void _required_opps_available(struct dev_pm_opp *opp, int count)
1939 {
1940 int i;
1941
1942 for (i = 0; i < count; i++) {
1943 if (opp->required_opps[i]->available)
1944 continue;
1945
1946 opp->available = false;
1947 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1948 __func__, opp->required_opps[i]->np, opp->rates[0]);
1949 return;
1950 }
1951 }
1952
1953 /*
1954 * Returns:
1955 * 0: On success. And appropriate error message for duplicate OPPs.
1956 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1957 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1958 * sure we don't print error messages unnecessarily if different parts of
1959 * kernel try to initialize the OPP table.
1960 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1961 * should be considered an error by the callers of _opp_add().
1962 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1963 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1964 struct opp_table *opp_table)
1965 {
1966 struct list_head *head;
1967 int ret;
1968
1969 mutex_lock(&opp_table->lock);
1970 head = &opp_table->opp_list;
1971
1972 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1973 if (ret) {
1974 mutex_unlock(&opp_table->lock);
1975 return ret;
1976 }
1977
1978 list_add(&new_opp->node, head);
1979 mutex_unlock(&opp_table->lock);
1980
1981 new_opp->opp_table = opp_table;
1982 kref_init(&new_opp->kref);
1983
1984 opp_debug_create_one(new_opp, opp_table);
1985
1986 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1987 new_opp->available = false;
1988 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1989 __func__, new_opp->rates[0]);
1990 }
1991
1992 /* required-opps not fully initialized yet */
1993 if (lazy_linking_pending(opp_table))
1994 return 0;
1995
1996 _required_opps_available(new_opp, opp_table->required_opp_count);
1997
1998 return 0;
1999 }
2000
2001 /**
2002 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2003 * @opp_table: OPP table
2004 * @dev: device for which we do this operation
2005 * @freq: Frequency in Hz for this OPP
2006 * @u_volt: Voltage in uVolts for this OPP
2007 * @dynamic: Dynamically added OPPs.
2008 *
2009 * This function adds an opp definition to the opp table and returns status.
2010 * The opp is made available by default and it can be controlled using
2011 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2012 *
2013 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2014 * and freed by dev_pm_opp_of_remove_table.
2015 *
2016 * Return:
2017 * 0 On success OR
2018 * Duplicate OPPs (both freq and volt are same) and opp->available
2019 * -EEXIST Freq are same and volt are different OR
2020 * Duplicate OPPs (both freq and volt are same) and !opp->available
2021 * -ENOMEM Memory allocation failure
2022 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)2023 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2024 unsigned long freq, long u_volt, bool dynamic)
2025 {
2026 struct dev_pm_opp *new_opp;
2027 unsigned long tol;
2028 int ret;
2029
2030 if (!assert_single_clk(opp_table))
2031 return -EINVAL;
2032
2033 new_opp = _opp_allocate(opp_table);
2034 if (!new_opp)
2035 return -ENOMEM;
2036
2037 /* populate the opp table */
2038 new_opp->rates[0] = freq;
2039 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2040 new_opp->supplies[0].u_volt = u_volt;
2041 new_opp->supplies[0].u_volt_min = u_volt - tol;
2042 new_opp->supplies[0].u_volt_max = u_volt + tol;
2043 new_opp->available = true;
2044 new_opp->dynamic = dynamic;
2045
2046 ret = _opp_add(dev, new_opp, opp_table);
2047 if (ret) {
2048 /* Don't return error for duplicate OPPs */
2049 if (ret == -EBUSY)
2050 ret = 0;
2051 goto free_opp;
2052 }
2053
2054 /*
2055 * Notify the changes in the availability of the operable
2056 * frequency/voltage list.
2057 */
2058 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2059 return 0;
2060
2061 free_opp:
2062 _opp_free(new_opp);
2063
2064 return ret;
2065 }
2066
2067 /**
2068 * _opp_set_supported_hw() - Set supported platforms
2069 * @dev: Device for which supported-hw has to be set.
2070 * @versions: Array of hierarchy of versions to match.
2071 * @count: Number of elements in the array.
2072 *
2073 * This is required only for the V2 bindings, and it enables a platform to
2074 * specify the hierarchy of versions it supports. OPP layer will then enable
2075 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2076 * property.
2077 */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2078 static int _opp_set_supported_hw(struct opp_table *opp_table,
2079 const u32 *versions, unsigned int count)
2080 {
2081 /* Another CPU that shares the OPP table has set the property ? */
2082 if (opp_table->supported_hw)
2083 return 0;
2084
2085 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2086 GFP_KERNEL);
2087 if (!opp_table->supported_hw)
2088 return -ENOMEM;
2089
2090 opp_table->supported_hw_count = count;
2091
2092 return 0;
2093 }
2094
2095 /**
2096 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2097 * @opp_table: OPP table returned by _opp_set_supported_hw().
2098 *
2099 * This is required only for the V2 bindings, and is called for a matching
2100 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2101 * will not be freed.
2102 */
_opp_put_supported_hw(struct opp_table * opp_table)2103 static void _opp_put_supported_hw(struct opp_table *opp_table)
2104 {
2105 if (opp_table->supported_hw) {
2106 kfree(opp_table->supported_hw);
2107 opp_table->supported_hw = NULL;
2108 opp_table->supported_hw_count = 0;
2109 }
2110 }
2111
2112 /**
2113 * _opp_set_prop_name() - Set prop-extn name
2114 * @dev: Device for which the prop-name has to be set.
2115 * @name: name to postfix to properties.
2116 *
2117 * This is required only for the V2 bindings, and it enables a platform to
2118 * specify the extn to be used for certain property names. The properties to
2119 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2120 * should postfix the property name with -<name> while looking for them.
2121 */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2122 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2123 {
2124 /* Another CPU that shares the OPP table has set the property ? */
2125 if (!opp_table->prop_name) {
2126 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2127 if (!opp_table->prop_name)
2128 return -ENOMEM;
2129 }
2130
2131 return 0;
2132 }
2133
2134 /**
2135 * _opp_put_prop_name() - Releases resources blocked for prop-name
2136 * @opp_table: OPP table returned by _opp_set_prop_name().
2137 *
2138 * This is required only for the V2 bindings, and is called for a matching
2139 * _opp_set_prop_name(). Until this is called, the opp_table structure
2140 * will not be freed.
2141 */
_opp_put_prop_name(struct opp_table * opp_table)2142 static void _opp_put_prop_name(struct opp_table *opp_table)
2143 {
2144 if (opp_table->prop_name) {
2145 kfree(opp_table->prop_name);
2146 opp_table->prop_name = NULL;
2147 }
2148 }
2149
2150 /**
2151 * _opp_set_regulators() - Set regulator names for the device
2152 * @dev: Device for which regulator name is being set.
2153 * @names: Array of pointers to the names of the regulator.
2154 * @count: Number of regulators.
2155 *
2156 * In order to support OPP switching, OPP layer needs to know the name of the
2157 * device's regulators, as the core would be required to switch voltages as
2158 * well.
2159 *
2160 * This must be called before any OPPs are initialized for the device.
2161 */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2162 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163 const char * const names[])
2164 {
2165 const char * const *temp = names;
2166 struct regulator *reg;
2167 int count = 0, ret, i;
2168
2169 /* Count number of regulators */
2170 while (*temp++)
2171 count++;
2172
2173 if (!count)
2174 return -EINVAL;
2175
2176 /* Another CPU that shares the OPP table has set the regulators ? */
2177 if (opp_table->regulators)
2178 return 0;
2179
2180 opp_table->regulators = kmalloc_array(count,
2181 sizeof(*opp_table->regulators),
2182 GFP_KERNEL);
2183 if (!opp_table->regulators)
2184 return -ENOMEM;
2185
2186 for (i = 0; i < count; i++) {
2187 reg = regulator_get_optional(dev, names[i]);
2188 if (IS_ERR(reg)) {
2189 ret = dev_err_probe(dev, PTR_ERR(reg),
2190 "%s: no regulator (%s) found\n",
2191 __func__, names[i]);
2192 goto free_regulators;
2193 }
2194
2195 opp_table->regulators[i] = reg;
2196 }
2197
2198 opp_table->regulator_count = count;
2199
2200 /* Set generic config_regulators() for single regulators here */
2201 if (count == 1)
2202 opp_table->config_regulators = _opp_config_regulator_single;
2203
2204 return 0;
2205
2206 free_regulators:
2207 while (i != 0)
2208 regulator_put(opp_table->regulators[--i]);
2209
2210 kfree(opp_table->regulators);
2211 opp_table->regulators = NULL;
2212 opp_table->regulator_count = -1;
2213
2214 return ret;
2215 }
2216
2217 /**
2218 * _opp_put_regulators() - Releases resources blocked for regulator
2219 * @opp_table: OPP table returned from _opp_set_regulators().
2220 */
_opp_put_regulators(struct opp_table * opp_table)2221 static void _opp_put_regulators(struct opp_table *opp_table)
2222 {
2223 int i;
2224
2225 if (!opp_table->regulators)
2226 return;
2227
2228 if (opp_table->enabled) {
2229 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230 regulator_disable(opp_table->regulators[i]);
2231 }
2232
2233 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2234 regulator_put(opp_table->regulators[i]);
2235
2236 kfree(opp_table->regulators);
2237 opp_table->regulators = NULL;
2238 opp_table->regulator_count = -1;
2239 }
2240
_put_clks(struct opp_table * opp_table,int count)2241 static void _put_clks(struct opp_table *opp_table, int count)
2242 {
2243 int i;
2244
2245 for (i = count - 1; i >= 0; i--)
2246 clk_put(opp_table->clks[i]);
2247
2248 kfree(opp_table->clks);
2249 opp_table->clks = NULL;
2250 }
2251
2252 /**
2253 * _opp_set_clknames() - Set clk names for the device
2254 * @dev: Device for which clk names is being set.
2255 * @names: Clk names.
2256 *
2257 * In order to support OPP switching, OPP layer needs to get pointers to the
2258 * clocks for the device. Simple cases work fine without using this routine
2259 * (i.e. by passing connection-id as NULL), but for a device with multiple
2260 * clocks available, the OPP core needs to know the exact names of the clks to
2261 * use.
2262 *
2263 * This must be called before any OPPs are initialized for the device.
2264 */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2265 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2266 const char * const names[],
2267 config_clks_t config_clks)
2268 {
2269 const char * const *temp = names;
2270 int count = 0, ret, i;
2271 struct clk *clk;
2272
2273 /* Count number of clks */
2274 while (*temp++)
2275 count++;
2276
2277 /*
2278 * This is a special case where we have a single clock, whose connection
2279 * id name is NULL, i.e. first two entries are NULL in the array.
2280 */
2281 if (!count && !names[1])
2282 count = 1;
2283
2284 /* Fail early for invalid configurations */
2285 if (!count || (!config_clks && count > 1))
2286 return -EINVAL;
2287
2288 /* Another CPU that shares the OPP table has set the clkname ? */
2289 if (opp_table->clks)
2290 return 0;
2291
2292 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2293 GFP_KERNEL);
2294 if (!opp_table->clks)
2295 return -ENOMEM;
2296
2297 /* Find clks for the device */
2298 for (i = 0; i < count; i++) {
2299 clk = clk_get(dev, names[i]);
2300 if (IS_ERR(clk)) {
2301 ret = dev_err_probe(dev, PTR_ERR(clk),
2302 "%s: Couldn't find clock with name: %s\n",
2303 __func__, names[i]);
2304 goto free_clks;
2305 }
2306
2307 opp_table->clks[i] = clk;
2308 }
2309
2310 opp_table->clk_count = count;
2311 opp_table->config_clks = config_clks;
2312
2313 /* Set generic single clk set here */
2314 if (count == 1) {
2315 if (!opp_table->config_clks)
2316 opp_table->config_clks = _opp_config_clk_single;
2317
2318 /*
2319 * We could have just dropped the "clk" field and used "clks"
2320 * everywhere. Instead we kept the "clk" field around for
2321 * following reasons:
2322 *
2323 * - avoiding clks[0] everywhere else.
2324 * - not running single clk helpers for multiple clk usecase by
2325 * mistake.
2326 *
2327 * Since this is single-clk case, just update the clk pointer
2328 * too.
2329 */
2330 opp_table->clk = opp_table->clks[0];
2331 }
2332
2333 return 0;
2334
2335 free_clks:
2336 _put_clks(opp_table, i);
2337 return ret;
2338 }
2339
2340 /**
2341 * _opp_put_clknames() - Releases resources blocked for clks.
2342 * @opp_table: OPP table returned from _opp_set_clknames().
2343 */
_opp_put_clknames(struct opp_table * opp_table)2344 static void _opp_put_clknames(struct opp_table *opp_table)
2345 {
2346 if (!opp_table->clks)
2347 return;
2348
2349 opp_table->config_clks = NULL;
2350 opp_table->clk = ERR_PTR(-ENODEV);
2351
2352 _put_clks(opp_table, opp_table->clk_count);
2353 }
2354
2355 /**
2356 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2357 * @dev: Device for which the helper is getting registered.
2358 * @config_regulators: Custom set regulator helper.
2359 *
2360 * This is useful to support platforms with multiple regulators per device.
2361 *
2362 * This must be called before any OPPs are initialized for the device.
2363 */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2364 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2365 struct device *dev, config_regulators_t config_regulators)
2366 {
2367 /* Another CPU that shares the OPP table has set the helper ? */
2368 if (!opp_table->config_regulators)
2369 opp_table->config_regulators = config_regulators;
2370
2371 return 0;
2372 }
2373
2374 /**
2375 * _opp_put_config_regulators_helper() - Releases resources blocked for
2376 * config_regulators helper.
2377 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2378 *
2379 * Release resources blocked for platform specific config_regulators helper.
2380 */
_opp_put_config_regulators_helper(struct opp_table * opp_table)2381 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2382 {
2383 if (opp_table->config_regulators)
2384 opp_table->config_regulators = NULL;
2385 }
2386
_detach_genpd(struct opp_table * opp_table)2387 static void _detach_genpd(struct opp_table *opp_table)
2388 {
2389 int index;
2390
2391 if (!opp_table->genpd_virt_devs)
2392 return;
2393
2394 for (index = 0; index < opp_table->required_opp_count; index++) {
2395 if (!opp_table->genpd_virt_devs[index])
2396 continue;
2397
2398 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2399 opp_table->genpd_virt_devs[index] = NULL;
2400 }
2401
2402 kfree(opp_table->genpd_virt_devs);
2403 opp_table->genpd_virt_devs = NULL;
2404 }
2405
2406 /**
2407 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2408 * @dev: Consumer device for which the genpd is getting attached.
2409 * @names: Null terminated array of pointers containing names of genpd to attach.
2410 * @virt_devs: Pointer to return the array of virtual devices.
2411 *
2412 * Multiple generic power domains for a device are supported with the help of
2413 * virtual genpd devices, which are created for each consumer device - genpd
2414 * pair. These are the device structures which are attached to the power domain
2415 * and are required by the OPP core to set the performance state of the genpd.
2416 * The same API also works for the case where single genpd is available and so
2417 * we don't need to support that separately.
2418 *
2419 * This helper will normally be called by the consumer driver of the device
2420 * "dev", as only that has details of the genpd names.
2421 *
2422 * This helper needs to be called once with a list of all genpd to attach.
2423 * Otherwise the original device structure will be used instead by the OPP core.
2424 *
2425 * The order of entries in the names array must match the order in which
2426 * "required-opps" are added in DT.
2427 */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2428 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2429 const char * const *names, struct device ***virt_devs)
2430 {
2431 struct device *virt_dev;
2432 int index = 0, ret = -EINVAL;
2433 const char * const *name = names;
2434
2435 if (opp_table->genpd_virt_devs)
2436 return 0;
2437
2438 /*
2439 * If the genpd's OPP table isn't already initialized, parsing of the
2440 * required-opps fail for dev. We should retry this after genpd's OPP
2441 * table is added.
2442 */
2443 if (!opp_table->required_opp_count)
2444 return -EPROBE_DEFER;
2445
2446 mutex_lock(&opp_table->genpd_virt_dev_lock);
2447
2448 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2449 sizeof(*opp_table->genpd_virt_devs),
2450 GFP_KERNEL);
2451 if (!opp_table->genpd_virt_devs)
2452 goto unlock;
2453
2454 while (*name) {
2455 if (index >= opp_table->required_opp_count) {
2456 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2457 *name, opp_table->required_opp_count, index);
2458 goto err;
2459 }
2460
2461 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2462 if (IS_ERR_OR_NULL(virt_dev)) {
2463 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2464 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2465 goto err;
2466 }
2467
2468 opp_table->genpd_virt_devs[index] = virt_dev;
2469 index++;
2470 name++;
2471 }
2472
2473 if (virt_devs)
2474 *virt_devs = opp_table->genpd_virt_devs;
2475 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2476
2477 return 0;
2478
2479 err:
2480 _detach_genpd(opp_table);
2481 unlock:
2482 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2483 return ret;
2484
2485 }
2486
2487 /**
2488 * _opp_detach_genpd() - Detach genpd(s) from the device.
2489 * @opp_table: OPP table returned by _opp_attach_genpd().
2490 *
2491 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2492 * OPP table.
2493 */
_opp_detach_genpd(struct opp_table * opp_table)2494 static void _opp_detach_genpd(struct opp_table *opp_table)
2495 {
2496 /*
2497 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2498 * used in parallel.
2499 */
2500 mutex_lock(&opp_table->genpd_virt_dev_lock);
2501 _detach_genpd(opp_table);
2502 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2503 }
2504
_opp_clear_config(struct opp_config_data * data)2505 static void _opp_clear_config(struct opp_config_data *data)
2506 {
2507 if (data->flags & OPP_CONFIG_GENPD)
2508 _opp_detach_genpd(data->opp_table);
2509 if (data->flags & OPP_CONFIG_REGULATOR)
2510 _opp_put_regulators(data->opp_table);
2511 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2512 _opp_put_supported_hw(data->opp_table);
2513 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2514 _opp_put_config_regulators_helper(data->opp_table);
2515 if (data->flags & OPP_CONFIG_PROP_NAME)
2516 _opp_put_prop_name(data->opp_table);
2517 if (data->flags & OPP_CONFIG_CLK)
2518 _opp_put_clknames(data->opp_table);
2519
2520 dev_pm_opp_put_opp_table(data->opp_table);
2521 kfree(data);
2522 }
2523
2524 /**
2525 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2526 * @dev: Device for which configuration is being set.
2527 * @config: OPP configuration.
2528 *
2529 * This allows all device OPP configurations to be performed at once.
2530 *
2531 * This must be called before any OPPs are initialized for the device. This may
2532 * be called multiple times for the same OPP table, for example once for each
2533 * CPU that share the same table. This must be balanced by the same number of
2534 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2535 *
2536 * This returns a token to the caller, which must be passed to
2537 * dev_pm_opp_clear_config() to free the resources later. The value of the
2538 * returned token will be >= 1 for success and negative for errors. The minimum
2539 * value of 1 is chosen here to make it easy for callers to manage the resource.
2540 */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2541 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2542 {
2543 struct opp_table *opp_table;
2544 struct opp_config_data *data;
2545 unsigned int id;
2546 int ret;
2547
2548 data = kmalloc(sizeof(*data), GFP_KERNEL);
2549 if (!data)
2550 return -ENOMEM;
2551
2552 opp_table = _add_opp_table(dev, false);
2553 if (IS_ERR(opp_table)) {
2554 kfree(data);
2555 return PTR_ERR(opp_table);
2556 }
2557
2558 data->opp_table = opp_table;
2559 data->flags = 0;
2560
2561 /* This should be called before OPPs are initialized */
2562 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2563 ret = -EBUSY;
2564 goto err;
2565 }
2566
2567 /* Configure clocks */
2568 if (config->clk_names) {
2569 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2570 config->config_clks);
2571 if (ret)
2572 goto err;
2573
2574 data->flags |= OPP_CONFIG_CLK;
2575 } else if (config->config_clks) {
2576 /* Don't allow config callback without clocks */
2577 ret = -EINVAL;
2578 goto err;
2579 }
2580
2581 /* Configure property names */
2582 if (config->prop_name) {
2583 ret = _opp_set_prop_name(opp_table, config->prop_name);
2584 if (ret)
2585 goto err;
2586
2587 data->flags |= OPP_CONFIG_PROP_NAME;
2588 }
2589
2590 /* Configure config_regulators helper */
2591 if (config->config_regulators) {
2592 ret = _opp_set_config_regulators_helper(opp_table, dev,
2593 config->config_regulators);
2594 if (ret)
2595 goto err;
2596
2597 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2598 }
2599
2600 /* Configure supported hardware */
2601 if (config->supported_hw) {
2602 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2603 config->supported_hw_count);
2604 if (ret)
2605 goto err;
2606
2607 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2608 }
2609
2610 /* Configure supplies */
2611 if (config->regulator_names) {
2612 ret = _opp_set_regulators(opp_table, dev,
2613 config->regulator_names);
2614 if (ret)
2615 goto err;
2616
2617 data->flags |= OPP_CONFIG_REGULATOR;
2618 }
2619
2620 /* Attach genpds */
2621 if (config->genpd_names) {
2622 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2623 config->virt_devs);
2624 if (ret)
2625 goto err;
2626
2627 data->flags |= OPP_CONFIG_GENPD;
2628 }
2629
2630 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2631 GFP_KERNEL);
2632 if (ret)
2633 goto err;
2634
2635 return id;
2636
2637 err:
2638 _opp_clear_config(data);
2639 return ret;
2640 }
2641 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2642
2643 /**
2644 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2645 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2646 *
2647 * This allows all device OPP configurations to be cleared at once. This must be
2648 * called once for each call made to dev_pm_opp_set_config(), in order to free
2649 * the OPPs properly.
2650 *
2651 * Currently the first call itself ends up freeing all the OPP configurations,
2652 * while the later ones only drop the OPP table reference. This works well for
2653 * now as we would never want to use an half initialized OPP table and want to
2654 * remove the configurations together.
2655 */
dev_pm_opp_clear_config(int token)2656 void dev_pm_opp_clear_config(int token)
2657 {
2658 struct opp_config_data *data;
2659
2660 /*
2661 * This lets the callers call this unconditionally and keep their code
2662 * simple.
2663 */
2664 if (unlikely(token <= 0))
2665 return;
2666
2667 data = xa_erase(&opp_configs, token);
2668 if (WARN_ON(!data))
2669 return;
2670
2671 _opp_clear_config(data);
2672 }
2673 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2674
devm_pm_opp_config_release(void * token)2675 static void devm_pm_opp_config_release(void *token)
2676 {
2677 dev_pm_opp_clear_config((unsigned long)token);
2678 }
2679
2680 /**
2681 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2682 * @dev: Device for which configuration is being set.
2683 * @config: OPP configuration.
2684 *
2685 * This allows all device OPP configurations to be performed at once.
2686 * This is a resource-managed variant of dev_pm_opp_set_config().
2687 *
2688 * Return: 0 on success and errorno otherwise.
2689 */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2690 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2691 {
2692 int token = dev_pm_opp_set_config(dev, config);
2693
2694 if (token < 0)
2695 return token;
2696
2697 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2698 (void *) ((unsigned long) token));
2699 }
2700 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2701
2702 /**
2703 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2704 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the @src_table.
2706 * @src_opp: OPP from the @src_table.
2707 *
2708 * This function returns the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the @src_opp (present in @src_table).
2710 *
2711 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2712 * use.
2713 *
2714 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2715 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2716 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2717 struct opp_table *dst_table,
2718 struct dev_pm_opp *src_opp)
2719 {
2720 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2721 int i;
2722
2723 if (!src_table || !dst_table || !src_opp ||
2724 !src_table->required_opp_tables)
2725 return ERR_PTR(-EINVAL);
2726
2727 /* required-opps not fully initialized yet */
2728 if (lazy_linking_pending(src_table))
2729 return ERR_PTR(-EBUSY);
2730
2731 for (i = 0; i < src_table->required_opp_count; i++) {
2732 if (src_table->required_opp_tables[i] == dst_table) {
2733 mutex_lock(&src_table->lock);
2734
2735 list_for_each_entry(opp, &src_table->opp_list, node) {
2736 if (opp == src_opp) {
2737 dest_opp = opp->required_opps[i];
2738 dev_pm_opp_get(dest_opp);
2739 break;
2740 }
2741 }
2742
2743 mutex_unlock(&src_table->lock);
2744 break;
2745 }
2746 }
2747
2748 if (IS_ERR(dest_opp)) {
2749 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2750 src_table, dst_table);
2751 }
2752
2753 return dest_opp;
2754 }
2755 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2756
2757 /**
2758 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2759 * @src_table: OPP table which has dst_table as one of its required OPP table.
2760 * @dst_table: Required OPP table of the src_table.
2761 * @pstate: Current performance state of the src_table.
2762 *
2763 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2764 * "required-opps" property of the OPP (present in @src_table) which has
2765 * performance state set to @pstate.
2766 *
2767 * Return: Zero or positive performance state on success, otherwise negative
2768 * value on errors.
2769 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2770 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2771 struct opp_table *dst_table,
2772 unsigned int pstate)
2773 {
2774 struct dev_pm_opp *opp;
2775 int dest_pstate = -EINVAL;
2776 int i;
2777
2778 /*
2779 * Normally the src_table will have the "required_opps" property set to
2780 * point to one of the OPPs in the dst_table, but in some cases the
2781 * genpd and its master have one to one mapping of performance states
2782 * and so none of them have the "required-opps" property set. Return the
2783 * pstate of the src_table as it is in such cases.
2784 */
2785 if (!src_table || !src_table->required_opp_count)
2786 return pstate;
2787
2788 /* Both OPP tables must belong to genpds */
2789 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2790 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2791 return -EINVAL;
2792 }
2793
2794 /* required-opps not fully initialized yet */
2795 if (lazy_linking_pending(src_table))
2796 return -EBUSY;
2797
2798 for (i = 0; i < src_table->required_opp_count; i++) {
2799 if (src_table->required_opp_tables[i]->np == dst_table->np)
2800 break;
2801 }
2802
2803 if (unlikely(i == src_table->required_opp_count)) {
2804 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2805 __func__, src_table, dst_table);
2806 return -EINVAL;
2807 }
2808
2809 mutex_lock(&src_table->lock);
2810
2811 list_for_each_entry(opp, &src_table->opp_list, node) {
2812 if (opp->level == pstate) {
2813 dest_pstate = opp->required_opps[i]->level;
2814 goto unlock;
2815 }
2816 }
2817
2818 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2819 dst_table);
2820
2821 unlock:
2822 mutex_unlock(&src_table->lock);
2823
2824 return dest_pstate;
2825 }
2826
2827 /**
2828 * dev_pm_opp_add() - Add an OPP table from a table definitions
2829 * @dev: device for which we do this operation
2830 * @freq: Frequency in Hz for this OPP
2831 * @u_volt: Voltage in uVolts for this OPP
2832 *
2833 * This function adds an opp definition to the opp table and returns status.
2834 * The opp is made available by default and it can be controlled using
2835 * dev_pm_opp_enable/disable functions.
2836 *
2837 * Return:
2838 * 0 On success OR
2839 * Duplicate OPPs (both freq and volt are same) and opp->available
2840 * -EEXIST Freq are same and volt are different OR
2841 * Duplicate OPPs (both freq and volt are same) and !opp->available
2842 * -ENOMEM Memory allocation failure
2843 */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2844 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2845 {
2846 struct opp_table *opp_table;
2847 int ret;
2848
2849 opp_table = _add_opp_table(dev, true);
2850 if (IS_ERR(opp_table))
2851 return PTR_ERR(opp_table);
2852
2853 /* Fix regulator count for dynamic OPPs */
2854 opp_table->regulator_count = 1;
2855
2856 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2857 if (ret)
2858 dev_pm_opp_put_opp_table(opp_table);
2859
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2863
2864 /**
2865 * _opp_set_availability() - helper to set the availability of an opp
2866 * @dev: device for which we do this operation
2867 * @freq: OPP frequency to modify availability
2868 * @availability_req: availability status requested for this opp
2869 *
2870 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2871 * which is isolated here.
2872 *
2873 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2874 * copy operation, returns 0 if no modification was done OR modification was
2875 * successful.
2876 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2877 static int _opp_set_availability(struct device *dev, unsigned long freq,
2878 bool availability_req)
2879 {
2880 struct opp_table *opp_table;
2881 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2882 int r = 0;
2883
2884 /* Find the opp_table */
2885 opp_table = _find_opp_table(dev);
2886 if (IS_ERR(opp_table)) {
2887 r = PTR_ERR(opp_table);
2888 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2889 return r;
2890 }
2891
2892 if (!assert_single_clk(opp_table)) {
2893 r = -EINVAL;
2894 goto put_table;
2895 }
2896
2897 mutex_lock(&opp_table->lock);
2898
2899 /* Do we have the frequency? */
2900 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2901 if (tmp_opp->rates[0] == freq) {
2902 opp = tmp_opp;
2903 break;
2904 }
2905 }
2906
2907 if (IS_ERR(opp)) {
2908 r = PTR_ERR(opp);
2909 goto unlock;
2910 }
2911
2912 /* Is update really needed? */
2913 if (opp->available == availability_req)
2914 goto unlock;
2915
2916 opp->available = availability_req;
2917
2918 dev_pm_opp_get(opp);
2919 mutex_unlock(&opp_table->lock);
2920
2921 /* Notify the change of the OPP availability */
2922 if (availability_req)
2923 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2924 opp);
2925 else
2926 blocking_notifier_call_chain(&opp_table->head,
2927 OPP_EVENT_DISABLE, opp);
2928
2929 dev_pm_opp_put(opp);
2930 goto put_table;
2931
2932 unlock:
2933 mutex_unlock(&opp_table->lock);
2934 put_table:
2935 dev_pm_opp_put_opp_table(opp_table);
2936 return r;
2937 }
2938
2939 /**
2940 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2941 * @dev: device for which we do this operation
2942 * @freq: OPP frequency to adjust voltage of
2943 * @u_volt: new OPP target voltage
2944 * @u_volt_min: new OPP min voltage
2945 * @u_volt_max: new OPP max voltage
2946 *
2947 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2948 * copy operation, returns 0 if no modifcation was done OR modification was
2949 * successful.
2950 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2951 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2952 unsigned long u_volt, unsigned long u_volt_min,
2953 unsigned long u_volt_max)
2954
2955 {
2956 struct opp_table *opp_table;
2957 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2958 int r = 0;
2959
2960 /* Find the opp_table */
2961 opp_table = _find_opp_table(dev);
2962 if (IS_ERR(opp_table)) {
2963 r = PTR_ERR(opp_table);
2964 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2965 return r;
2966 }
2967
2968 if (!assert_single_clk(opp_table)) {
2969 r = -EINVAL;
2970 goto put_table;
2971 }
2972
2973 mutex_lock(&opp_table->lock);
2974
2975 /* Do we have the frequency? */
2976 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2977 if (tmp_opp->rates[0] == freq) {
2978 opp = tmp_opp;
2979 break;
2980 }
2981 }
2982
2983 if (IS_ERR(opp)) {
2984 r = PTR_ERR(opp);
2985 goto adjust_unlock;
2986 }
2987
2988 /* Is update really needed? */
2989 if (opp->supplies->u_volt == u_volt)
2990 goto adjust_unlock;
2991
2992 opp->supplies->u_volt = u_volt;
2993 opp->supplies->u_volt_min = u_volt_min;
2994 opp->supplies->u_volt_max = u_volt_max;
2995
2996 dev_pm_opp_get(opp);
2997 mutex_unlock(&opp_table->lock);
2998
2999 /* Notify the voltage change of the OPP */
3000 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3001 opp);
3002
3003 dev_pm_opp_put(opp);
3004 goto put_table;
3005
3006 adjust_unlock:
3007 mutex_unlock(&opp_table->lock);
3008 put_table:
3009 dev_pm_opp_put_opp_table(opp_table);
3010 return r;
3011 }
3012 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3013
3014 /**
3015 * dev_pm_opp_enable() - Enable a specific OPP
3016 * @dev: device for which we do this operation
3017 * @freq: OPP frequency to enable
3018 *
3019 * Enables a provided opp. If the operation is valid, this returns 0, else the
3020 * corresponding error value. It is meant to be used for users an OPP available
3021 * after being temporarily made unavailable with dev_pm_opp_disable.
3022 *
3023 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3024 * copy operation, returns 0 if no modification was done OR modification was
3025 * successful.
3026 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)3027 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3028 {
3029 return _opp_set_availability(dev, freq, true);
3030 }
3031 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3032
3033 /**
3034 * dev_pm_opp_disable() - Disable a specific OPP
3035 * @dev: device for which we do this operation
3036 * @freq: OPP frequency to disable
3037 *
3038 * Disables a provided opp. If the operation is valid, this returns
3039 * 0, else the corresponding error value. It is meant to be a temporary
3040 * control by users to make this OPP not available until the circumstances are
3041 * right to make it available again (with a call to dev_pm_opp_enable).
3042 *
3043 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3044 * copy operation, returns 0 if no modification was done OR modification was
3045 * successful.
3046 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3047 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3048 {
3049 return _opp_set_availability(dev, freq, false);
3050 }
3051 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3052
3053 /**
3054 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3055 * @dev: Device for which notifier needs to be registered
3056 * @nb: Notifier block to be registered
3057 *
3058 * Return: 0 on success or a negative error value.
3059 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3060 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3061 {
3062 struct opp_table *opp_table;
3063 int ret;
3064
3065 opp_table = _find_opp_table(dev);
3066 if (IS_ERR(opp_table))
3067 return PTR_ERR(opp_table);
3068
3069 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3070
3071 dev_pm_opp_put_opp_table(opp_table);
3072
3073 return ret;
3074 }
3075 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3076
3077 /**
3078 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3079 * @dev: Device for which notifier needs to be unregistered
3080 * @nb: Notifier block to be unregistered
3081 *
3082 * Return: 0 on success or a negative error value.
3083 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3084 int dev_pm_opp_unregister_notifier(struct device *dev,
3085 struct notifier_block *nb)
3086 {
3087 struct opp_table *opp_table;
3088 int ret;
3089
3090 opp_table = _find_opp_table(dev);
3091 if (IS_ERR(opp_table))
3092 return PTR_ERR(opp_table);
3093
3094 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3095
3096 dev_pm_opp_put_opp_table(opp_table);
3097
3098 return ret;
3099 }
3100 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3101
3102 /**
3103 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3104 * @dev: device pointer used to lookup OPP table.
3105 *
3106 * Free both OPPs created using static entries present in DT and the
3107 * dynamically added entries.
3108 */
dev_pm_opp_remove_table(struct device * dev)3109 void dev_pm_opp_remove_table(struct device *dev)
3110 {
3111 struct opp_table *opp_table;
3112
3113 /* Check for existing table for 'dev' */
3114 opp_table = _find_opp_table(dev);
3115 if (IS_ERR(opp_table)) {
3116 int error = PTR_ERR(opp_table);
3117
3118 if (error != -ENODEV)
3119 WARN(1, "%s: opp_table: %d\n",
3120 IS_ERR_OR_NULL(dev) ?
3121 "Invalid device" : dev_name(dev),
3122 error);
3123 return;
3124 }
3125
3126 /*
3127 * Drop the extra reference only if the OPP table was successfully added
3128 * with dev_pm_opp_of_add_table() earlier.
3129 **/
3130 if (_opp_remove_all_static(opp_table))
3131 dev_pm_opp_put_opp_table(opp_table);
3132
3133 /* Drop reference taken by _find_opp_table() */
3134 dev_pm_opp_put_opp_table(opp_table);
3135 }
3136 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3137
3138 /**
3139 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3140 * @dev: device for which we do this operation
3141 *
3142 * Sync voltage state of the OPP table regulators.
3143 *
3144 * Return: 0 on success or a negative error value.
3145 */
dev_pm_opp_sync_regulators(struct device * dev)3146 int dev_pm_opp_sync_regulators(struct device *dev)
3147 {
3148 struct opp_table *opp_table;
3149 struct regulator *reg;
3150 int i, ret = 0;
3151
3152 /* Device may not have OPP table */
3153 opp_table = _find_opp_table(dev);
3154 if (IS_ERR(opp_table))
3155 return 0;
3156
3157 /* Regulator may not be required for the device */
3158 if (unlikely(!opp_table->regulators))
3159 goto put_table;
3160
3161 /* Nothing to sync if voltage wasn't changed */
3162 if (!opp_table->enabled)
3163 goto put_table;
3164
3165 for (i = 0; i < opp_table->regulator_count; i++) {
3166 reg = opp_table->regulators[i];
3167 ret = regulator_sync_voltage(reg);
3168 if (ret)
3169 break;
3170 }
3171 put_table:
3172 /* Drop reference taken by _find_opp_table() */
3173 dev_pm_opp_put_opp_table(opp_table);
3174
3175 return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3178