1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[16];
75 short *interfaces_nums;
76
77 struct usb_function function;
78 };
79
80
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125 };
126
127 struct ffs_epfile {
128 /* Protects ep->ep and ep->req. */
129 struct mutex mutex;
130
131 struct ffs_data *ffs;
132 struct ffs_ep *ep; /* P: ffs->eps_lock */
133
134 struct dentry *dentry;
135
136 /*
137 * Buffer for holding data from partial reads which may happen since
138 * we’re rounding user read requests to a multiple of a max packet size.
139 *
140 * The pointer is initialised with NULL value and may be set by
141 * __ffs_epfile_read_data function to point to a temporary buffer.
142 *
143 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 * data from said buffer and eventually free it. Importantly, while the
145 * function is using the buffer, it sets the pointer to NULL. This is
146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 * can never run concurrently (they are synchronised by epfile->mutex)
148 * so the latter will not assign a new value to the pointer.
149 *
150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
152 * value is crux of the synchronisation between ffs_func_eps_disable and
153 * __ffs_epfile_read_data.
154 *
155 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 * pointer back to its old value (as described above), but seeing as the
157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 * the buffer.
159 *
160 * == State transitions ==
161 *
162 * • ptr == NULL: (initial state)
163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 * ◦ __ffs_epfile_read_buffered: nop
165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 * ◦ reading finishes: n/a, not in ‘and reading’ state
167 * • ptr == DROP:
168 * ◦ __ffs_epfile_read_buffer_free: nop
169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 * ◦ reading finishes: n/a, not in ‘and reading’ state
172 * • ptr == buf:
173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
176 * is always called first
177 * ◦ reading finishes: n/a, not in ‘and reading’ state
178 * • ptr == NULL and reading:
179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
181 * ◦ __ffs_epfile_read_data: n/a, mutex is held
182 * ◦ reading finishes and …
183 * … all data read: free buf, go to ptr == NULL
184 * … otherwise: go to ptr == buf and reading
185 * • ptr == DROP and reading:
186 * ◦ __ffs_epfile_read_buffer_free: nop
187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
188 * ◦ __ffs_epfile_read_data: n/a, mutex is held
189 * ◦ reading finishes: free buf, go to ptr == DROP
190 */
191 struct ffs_buffer *read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193
194 char name[5];
195
196 unsigned char in; /* P: ffs->eps_lock */
197 unsigned char isoc; /* P: ffs->eps_lock */
198
199 unsigned char _pad;
200 };
201
202 struct ffs_buffer {
203 size_t length;
204 char *data;
205 char storage[];
206 };
207
208 /* ffs_io_data structure ***************************************************/
209
210 struct ffs_io_data {
211 bool aio;
212 bool read;
213
214 struct kiocb *kiocb;
215 struct iov_iter data;
216 const void *to_free;
217 char *buf;
218
219 struct mm_struct *mm;
220 struct work_struct work;
221
222 struct usb_ep *ep;
223 struct usb_request *req;
224 struct sg_table sgt;
225 bool use_sg;
226
227 struct ffs_data *ffs;
228
229 int status;
230 struct completion done;
231 };
232
233 struct ffs_desc_helper {
234 struct ffs_data *ffs;
235 unsigned interfaces_count;
236 unsigned eps_count;
237 };
238
239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
241
242 static struct dentry *
243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
244 const struct file_operations *fops);
245
246 /* Devices management *******************************************************/
247
248 DEFINE_MUTEX(ffs_lock);
249 EXPORT_SYMBOL_GPL(ffs_lock);
250
251 static struct ffs_dev *_ffs_find_dev(const char *name);
252 static struct ffs_dev *_ffs_alloc_dev(void);
253 static void _ffs_free_dev(struct ffs_dev *dev);
254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
255 static void ffs_release_dev(struct ffs_dev *ffs_dev);
256 static int ffs_ready(struct ffs_data *ffs);
257 static void ffs_closed(struct ffs_data *ffs);
258
259 /* Misc helper functions ****************************************************/
260
261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
262 __attribute__((warn_unused_result, nonnull));
263 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
264 __attribute__((warn_unused_result, nonnull));
265
266
267 /* Control file aka ep0 *****************************************************/
268
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
270 {
271 struct ffs_data *ffs = req->context;
272
273 complete(&ffs->ep0req_completion);
274 }
275
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
277 __releases(&ffs->ev.waitq.lock)
278 {
279 struct usb_request *req = ffs->ep0req;
280 int ret;
281
282 if (!req) {
283 spin_unlock_irq(&ffs->ev.waitq.lock);
284 return -EINVAL;
285 }
286
287 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
288
289 spin_unlock_irq(&ffs->ev.waitq.lock);
290
291 req->buf = data;
292 req->length = len;
293
294 /*
295 * UDC layer requires to provide a buffer even for ZLP, but should
296 * not use it at all. Let's provide some poisoned pointer to catch
297 * possible bug in the driver.
298 */
299 if (req->buf == NULL)
300 req->buf = (void *)0xDEADBABE;
301
302 reinit_completion(&ffs->ep0req_completion);
303
304 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
305 if (ret < 0)
306 return ret;
307
308 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
309 if (ret) {
310 usb_ep_dequeue(ffs->gadget->ep0, req);
311 return -EINTR;
312 }
313
314 ffs->setup_state = FFS_NO_SETUP;
315 return req->status ? req->status : req->actual;
316 }
317
__ffs_ep0_stall(struct ffs_data * ffs)318 static int __ffs_ep0_stall(struct ffs_data *ffs)
319 {
320 if (ffs->ev.can_stall) {
321 pr_vdebug("ep0 stall\n");
322 usb_ep_set_halt(ffs->gadget->ep0);
323 ffs->setup_state = FFS_NO_SETUP;
324 return -EL2HLT;
325 } else {
326 pr_debug("bogus ep0 stall!\n");
327 return -ESRCH;
328 }
329 }
330
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
332 size_t len, loff_t *ptr)
333 {
334 struct ffs_data *ffs = file->private_data;
335 ssize_t ret;
336 char *data;
337
338 /* Fast check if setup was canceled */
339 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
340 return -EIDRM;
341
342 /* Acquire mutex */
343 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
344 if (ret < 0)
345 return ret;
346
347 /* Check state */
348 switch (ffs->state) {
349 case FFS_READ_DESCRIPTORS:
350 case FFS_READ_STRINGS:
351 /* Copy data */
352 if (len < 16) {
353 ret = -EINVAL;
354 break;
355 }
356
357 data = ffs_prepare_buffer(buf, len);
358 if (IS_ERR(data)) {
359 ret = PTR_ERR(data);
360 break;
361 }
362
363 /* Handle data */
364 if (ffs->state == FFS_READ_DESCRIPTORS) {
365 pr_info("read descriptors\n");
366 ret = __ffs_data_got_descs(ffs, data, len);
367 if (ret < 0)
368 break;
369
370 ffs->state = FFS_READ_STRINGS;
371 ret = len;
372 } else {
373 pr_info("read strings\n");
374 ret = __ffs_data_got_strings(ffs, data, len);
375 if (ret < 0)
376 break;
377
378 ret = ffs_epfiles_create(ffs);
379 if (ret) {
380 ffs->state = FFS_CLOSING;
381 break;
382 }
383
384 ffs->state = FFS_ACTIVE;
385 mutex_unlock(&ffs->mutex);
386
387 ret = ffs_ready(ffs);
388 if (ret < 0) {
389 ffs->state = FFS_CLOSING;
390 return ret;
391 }
392
393 return len;
394 }
395 break;
396
397 case FFS_ACTIVE:
398 data = NULL;
399 /*
400 * We're called from user space, we can use _irq
401 * rather then _irqsave
402 */
403 spin_lock_irq(&ffs->ev.waitq.lock);
404 switch (ffs_setup_state_clear_cancelled(ffs)) {
405 case FFS_SETUP_CANCELLED:
406 ret = -EIDRM;
407 goto done_spin;
408
409 case FFS_NO_SETUP:
410 ret = -ESRCH;
411 goto done_spin;
412
413 case FFS_SETUP_PENDING:
414 break;
415 }
416
417 /* FFS_SETUP_PENDING */
418 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
419 spin_unlock_irq(&ffs->ev.waitq.lock);
420 ret = __ffs_ep0_stall(ffs);
421 break;
422 }
423
424 /* FFS_SETUP_PENDING and not stall */
425 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
426
427 spin_unlock_irq(&ffs->ev.waitq.lock);
428
429 data = ffs_prepare_buffer(buf, len);
430 if (IS_ERR(data)) {
431 ret = PTR_ERR(data);
432 break;
433 }
434
435 spin_lock_irq(&ffs->ev.waitq.lock);
436
437 /*
438 * We are guaranteed to be still in FFS_ACTIVE state
439 * but the state of setup could have changed from
440 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
441 * to check for that. If that happened we copied data
442 * from user space in vain but it's unlikely.
443 *
444 * For sure we are not in FFS_NO_SETUP since this is
445 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
446 * transition can be performed and it's protected by
447 * mutex.
448 */
449 if (ffs_setup_state_clear_cancelled(ffs) ==
450 FFS_SETUP_CANCELLED) {
451 ret = -EIDRM;
452 done_spin:
453 spin_unlock_irq(&ffs->ev.waitq.lock);
454 } else {
455 /* unlocks spinlock */
456 ret = __ffs_ep0_queue_wait(ffs, data, len);
457 }
458 kfree(data);
459 break;
460
461 default:
462 ret = -EBADFD;
463 break;
464 }
465
466 mutex_unlock(&ffs->mutex);
467 return ret;
468 }
469
470 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)471 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
472 size_t n)
473 __releases(&ffs->ev.waitq.lock)
474 {
475 /*
476 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
477 * size of ffs->ev.types array (which is four) so that's how much space
478 * we reserve.
479 */
480 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
481 const size_t size = n * sizeof *events;
482 unsigned i = 0;
483
484 memset(events, 0, size);
485
486 do {
487 events[i].type = ffs->ev.types[i];
488 if (events[i].type == FUNCTIONFS_SETUP) {
489 events[i].u.setup = ffs->ev.setup;
490 ffs->setup_state = FFS_SETUP_PENDING;
491 }
492 } while (++i < n);
493
494 ffs->ev.count -= n;
495 if (ffs->ev.count)
496 memmove(ffs->ev.types, ffs->ev.types + n,
497 ffs->ev.count * sizeof *ffs->ev.types);
498
499 spin_unlock_irq(&ffs->ev.waitq.lock);
500 mutex_unlock(&ffs->mutex);
501
502 return copy_to_user(buf, events, size) ? -EFAULT : size;
503 }
504
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)505 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
506 size_t len, loff_t *ptr)
507 {
508 struct ffs_data *ffs = file->private_data;
509 char *data = NULL;
510 size_t n;
511 int ret;
512
513 /* Fast check if setup was canceled */
514 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
515 return -EIDRM;
516
517 /* Acquire mutex */
518 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
519 if (ret < 0)
520 return ret;
521
522 /* Check state */
523 if (ffs->state != FFS_ACTIVE) {
524 ret = -EBADFD;
525 goto done_mutex;
526 }
527
528 /*
529 * We're called from user space, we can use _irq rather then
530 * _irqsave
531 */
532 spin_lock_irq(&ffs->ev.waitq.lock);
533
534 switch (ffs_setup_state_clear_cancelled(ffs)) {
535 case FFS_SETUP_CANCELLED:
536 ret = -EIDRM;
537 break;
538
539 case FFS_NO_SETUP:
540 n = len / sizeof(struct usb_functionfs_event);
541 if (!n) {
542 ret = -EINVAL;
543 break;
544 }
545
546 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
547 ret = -EAGAIN;
548 break;
549 }
550
551 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
552 ffs->ev.count)) {
553 ret = -EINTR;
554 break;
555 }
556
557 /* unlocks spinlock */
558 return __ffs_ep0_read_events(ffs, buf,
559 min(n, (size_t)ffs->ev.count));
560
561 case FFS_SETUP_PENDING:
562 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
563 spin_unlock_irq(&ffs->ev.waitq.lock);
564 ret = __ffs_ep0_stall(ffs);
565 goto done_mutex;
566 }
567
568 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
569
570 spin_unlock_irq(&ffs->ev.waitq.lock);
571
572 if (len) {
573 data = kmalloc(len, GFP_KERNEL);
574 if (!data) {
575 ret = -ENOMEM;
576 goto done_mutex;
577 }
578 }
579
580 spin_lock_irq(&ffs->ev.waitq.lock);
581
582 /* See ffs_ep0_write() */
583 if (ffs_setup_state_clear_cancelled(ffs) ==
584 FFS_SETUP_CANCELLED) {
585 ret = -EIDRM;
586 break;
587 }
588
589 /* unlocks spinlock */
590 ret = __ffs_ep0_queue_wait(ffs, data, len);
591 if ((ret > 0) && (copy_to_user(buf, data, len)))
592 ret = -EFAULT;
593 goto done_mutex;
594
595 default:
596 ret = -EBADFD;
597 break;
598 }
599
600 spin_unlock_irq(&ffs->ev.waitq.lock);
601 done_mutex:
602 mutex_unlock(&ffs->mutex);
603 kfree(data);
604 return ret;
605 }
606
ffs_ep0_open(struct inode * inode,struct file * file)607 static int ffs_ep0_open(struct inode *inode, struct file *file)
608 {
609 struct ffs_data *ffs = inode->i_private;
610
611 if (ffs->state == FFS_CLOSING)
612 return -EBUSY;
613
614 file->private_data = ffs;
615 ffs_data_opened(ffs);
616
617 return stream_open(inode, file);
618 }
619
ffs_ep0_release(struct inode * inode,struct file * file)620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 struct ffs_data *ffs = file->private_data;
623
624 ffs_data_closed(ffs);
625
626 return 0;
627 }
628
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)629 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
630 {
631 struct ffs_data *ffs = file->private_data;
632 struct usb_gadget *gadget = ffs->gadget;
633 long ret;
634
635 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
636 struct ffs_function *func = ffs->func;
637 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
638 } else if (gadget && gadget->ops->ioctl) {
639 ret = gadget->ops->ioctl(gadget, code, value);
640 } else {
641 ret = -ENOTTY;
642 }
643
644 return ret;
645 }
646
ffs_ep0_poll(struct file * file,poll_table * wait)647 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
648 {
649 struct ffs_data *ffs = file->private_data;
650 __poll_t mask = EPOLLWRNORM;
651 int ret;
652
653 poll_wait(file, &ffs->ev.waitq, wait);
654
655 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
656 if (ret < 0)
657 return mask;
658
659 switch (ffs->state) {
660 case FFS_READ_DESCRIPTORS:
661 case FFS_READ_STRINGS:
662 mask |= EPOLLOUT;
663 break;
664
665 case FFS_ACTIVE:
666 switch (ffs->setup_state) {
667 case FFS_NO_SETUP:
668 if (ffs->ev.count)
669 mask |= EPOLLIN;
670 break;
671
672 case FFS_SETUP_PENDING:
673 case FFS_SETUP_CANCELLED:
674 mask |= (EPOLLIN | EPOLLOUT);
675 break;
676 }
677 break;
678
679 case FFS_CLOSING:
680 break;
681 case FFS_DEACTIVATED:
682 break;
683 }
684
685 mutex_unlock(&ffs->mutex);
686
687 return mask;
688 }
689
690 static const struct file_operations ffs_ep0_operations = {
691 .llseek = no_llseek,
692
693 .open = ffs_ep0_open,
694 .write = ffs_ep0_write,
695 .read = ffs_ep0_read,
696 .release = ffs_ep0_release,
697 .unlocked_ioctl = ffs_ep0_ioctl,
698 .poll = ffs_ep0_poll,
699 };
700
701
702 /* "Normal" endpoints operations ********************************************/
703
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)704 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
705 {
706 struct ffs_io_data *io_data = req->context;
707
708 if (req->status)
709 io_data->status = req->status;
710 else
711 io_data->status = req->actual;
712
713 complete(&io_data->done);
714 }
715
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 ssize_t ret = copy_to_iter(data, data_len, iter);
719 if (ret == data_len)
720 return ret;
721
722 if (iov_iter_count(iter))
723 return -EFAULT;
724
725 /*
726 * Dear user space developer!
727 *
728 * TL;DR: To stop getting below error message in your kernel log, change
729 * user space code using functionfs to align read buffers to a max
730 * packet size.
731 *
732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 * packet size. When unaligned buffer is passed to functionfs, it
734 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 *
736 * Unfortunately, this means that host may send more data than was
737 * requested in read(2) system call. f_fs doesn’t know what to do with
738 * that excess data so it simply drops it.
739 *
740 * Was the buffer aligned in the first place, no such problem would
741 * happen.
742 *
743 * Data may be dropped only in AIO reads. Synchronous reads are handled
744 * by splitting a request into multiple parts. This splitting may still
745 * be a problem though so it’s likely best to align the buffer
746 * regardless of it being AIO or not..
747 *
748 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
750 * affected.
751 */
752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 "Align read buffer size to max packet size to avoid the problem.\n",
754 data_len, ret);
755
756 return ret;
757 }
758
759 /*
760 * allocate a virtually contiguous buffer and create a scatterlist describing it
761 * @sg_table - pointer to a place to be filled with sg_table contents
762 * @size - required buffer size
763 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 struct page **pages;
767 void *vaddr, *ptr;
768 unsigned int n_pages;
769 int i;
770
771 vaddr = vmalloc(sz);
772 if (!vaddr)
773 return NULL;
774
775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 if (!pages) {
778 vfree(vaddr);
779
780 return NULL;
781 }
782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 pages[i] = vmalloc_to_page(ptr);
784
785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 kvfree(pages);
787 vfree(vaddr);
788
789 return NULL;
790 }
791 kvfree(pages);
792
793 return vaddr;
794 }
795
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 size_t data_len)
798 {
799 if (io_data->use_sg)
800 return ffs_build_sg_list(&io_data->sgt, data_len);
801
802 return kmalloc(data_len, GFP_KERNEL);
803 }
804
ffs_free_buffer(struct ffs_io_data * io_data)805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 if (!io_data->buf)
808 return;
809
810 if (io_data->use_sg) {
811 sg_free_table(&io_data->sgt);
812 vfree(io_data->buf);
813 } else {
814 kfree(io_data->buf);
815 }
816 }
817
ffs_user_copy_worker(struct work_struct * work)818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 work);
822 int ret = io_data->status;
823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
824 unsigned long flags;
825
826 if (io_data->read && ret > 0) {
827 kthread_use_mm(io_data->mm);
828 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
829 kthread_unuse_mm(io_data->mm);
830 }
831
832 io_data->kiocb->ki_complete(io_data->kiocb, ret);
833
834 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
835 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
836
837 spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
838 usb_ep_free_request(io_data->ep, io_data->req);
839 io_data->req = NULL;
840 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
841
842 if (io_data->read)
843 kfree(io_data->to_free);
844 ffs_free_buffer(io_data);
845 kfree(io_data);
846 }
847
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)848 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
849 struct usb_request *req)
850 {
851 struct ffs_io_data *io_data = req->context;
852 struct ffs_data *ffs = io_data->ffs;
853
854 io_data->status = req->status ? req->status : req->actual;
855
856 INIT_WORK(&io_data->work, ffs_user_copy_worker);
857 queue_work(ffs->io_completion_wq, &io_data->work);
858 }
859
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)860 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
861 {
862 /*
863 * See comment in struct ffs_epfile for full read_buffer pointer
864 * synchronisation story.
865 */
866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
867 if (buf && buf != READ_BUFFER_DROP)
868 kfree(buf);
869 }
870
871 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)872 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
873 struct iov_iter *iter)
874 {
875 /*
876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
877 * the buffer while we are using it. See comment in struct ffs_epfile
878 * for full read_buffer pointer synchronisation story.
879 */
880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
881 ssize_t ret;
882 if (!buf || buf == READ_BUFFER_DROP)
883 return 0;
884
885 ret = copy_to_iter(buf->data, buf->length, iter);
886 if (buf->length == ret) {
887 kfree(buf);
888 return ret;
889 }
890
891 if (iov_iter_count(iter)) {
892 ret = -EFAULT;
893 } else {
894 buf->length -= ret;
895 buf->data += ret;
896 }
897
898 if (cmpxchg(&epfile->read_buffer, NULL, buf))
899 kfree(buf);
900
901 return ret;
902 }
903
904 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)905 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
906 void *data, int data_len,
907 struct iov_iter *iter)
908 {
909 struct ffs_buffer *buf;
910
911 ssize_t ret = copy_to_iter(data, data_len, iter);
912 if (data_len == ret)
913 return ret;
914
915 if (iov_iter_count(iter))
916 return -EFAULT;
917
918 /* See ffs_copy_to_iter for more context. */
919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
920 data_len, ret);
921
922 data_len -= ret;
923 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
924 if (!buf)
925 return -ENOMEM;
926 buf->length = data_len;
927 buf->data = buf->storage;
928 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
929
930 /*
931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
932 * ffs_func_eps_disable has been called in the meanwhile). See comment
933 * in struct ffs_epfile for full read_buffer pointer synchronisation
934 * story.
935 */
936 if (cmpxchg(&epfile->read_buffer, NULL, buf))
937 kfree(buf);
938
939 return ret;
940 }
941
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)942 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
943 {
944 struct ffs_epfile *epfile = file->private_data;
945 struct usb_request *req;
946 struct ffs_ep *ep;
947 char *data = NULL;
948 ssize_t ret, data_len = -EINVAL;
949 int halt;
950
951 /* Are we still active? */
952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
953 return -ENODEV;
954
955 /* Wait for endpoint to be enabled */
956 ep = epfile->ep;
957 if (!ep) {
958 if (file->f_flags & O_NONBLOCK)
959 return -EAGAIN;
960
961 ret = wait_event_interruptible(
962 epfile->ffs->wait, (ep = epfile->ep));
963 if (ret)
964 return -EINTR;
965 }
966
967 /* Do we halt? */
968 halt = (!io_data->read == !epfile->in);
969 if (halt && epfile->isoc)
970 return -EINVAL;
971
972 /* We will be using request and read_buffer */
973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
974 if (ret)
975 goto error;
976
977 /* Allocate & copy */
978 if (!halt) {
979 struct usb_gadget *gadget;
980
981 /*
982 * Do we have buffered data from previous partial read? Check
983 * that for synchronous case only because we do not have
984 * facility to ‘wake up’ a pending asynchronous read and push
985 * buffered data to it which we would need to make things behave
986 * consistently.
987 */
988 if (!io_data->aio && io_data->read) {
989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
990 if (ret)
991 goto error_mutex;
992 }
993
994 /*
995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
996 * before the waiting completes, so do not assign to 'gadget'
997 * earlier
998 */
999 gadget = epfile->ffs->gadget;
1000
1001 spin_lock_irq(&epfile->ffs->eps_lock);
1002 /* In the meantime, endpoint got disabled or changed. */
1003 if (epfile->ep != ep) {
1004 ret = -ESHUTDOWN;
1005 goto error_lock;
1006 }
1007 data_len = iov_iter_count(&io_data->data);
1008 /*
1009 * Controller may require buffer size to be aligned to
1010 * maxpacketsize of an out endpoint.
1011 */
1012 if (io_data->read)
1013 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1014
1015 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1016 spin_unlock_irq(&epfile->ffs->eps_lock);
1017
1018 data = ffs_alloc_buffer(io_data, data_len);
1019 if (!data) {
1020 ret = -ENOMEM;
1021 goto error_mutex;
1022 }
1023 if (!io_data->read &&
1024 !copy_from_iter_full(data, data_len, &io_data->data)) {
1025 ret = -EFAULT;
1026 goto error_mutex;
1027 }
1028 }
1029
1030 spin_lock_irq(&epfile->ffs->eps_lock);
1031
1032 if (epfile->ep != ep) {
1033 /* In the meantime, endpoint got disabled or changed. */
1034 ret = -ESHUTDOWN;
1035 } else if (halt) {
1036 ret = usb_ep_set_halt(ep->ep);
1037 if (!ret)
1038 ret = -EBADMSG;
1039 } else if (data_len == -EINVAL) {
1040 /*
1041 * Sanity Check: even though data_len can't be used
1042 * uninitialized at the time I write this comment, some
1043 * compilers complain about this situation.
1044 * In order to keep the code clean from warnings, data_len is
1045 * being initialized to -EINVAL during its declaration, which
1046 * means we can't rely on compiler anymore to warn no future
1047 * changes won't result in data_len being used uninitialized.
1048 * For such reason, we're adding this redundant sanity check
1049 * here.
1050 */
1051 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1052 ret = -EINVAL;
1053 } else if (!io_data->aio) {
1054 bool interrupted = false;
1055
1056 req = ep->req;
1057 if (io_data->use_sg) {
1058 req->buf = NULL;
1059 req->sg = io_data->sgt.sgl;
1060 req->num_sgs = io_data->sgt.nents;
1061 } else {
1062 req->buf = data;
1063 req->num_sgs = 0;
1064 }
1065 req->length = data_len;
1066
1067 io_data->buf = data;
1068
1069 init_completion(&io_data->done);
1070 req->context = io_data;
1071 req->complete = ffs_epfile_io_complete;
1072
1073 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1074 if (ret < 0)
1075 goto error_lock;
1076
1077 spin_unlock_irq(&epfile->ffs->eps_lock);
1078
1079 if (wait_for_completion_interruptible(&io_data->done)) {
1080 spin_lock_irq(&epfile->ffs->eps_lock);
1081 if (epfile->ep != ep) {
1082 ret = -ESHUTDOWN;
1083 goto error_lock;
1084 }
1085 /*
1086 * To avoid race condition with ffs_epfile_io_complete,
1087 * dequeue the request first then check
1088 * status. usb_ep_dequeue API should guarantee no race
1089 * condition with req->complete callback.
1090 */
1091 usb_ep_dequeue(ep->ep, req);
1092 spin_unlock_irq(&epfile->ffs->eps_lock);
1093 wait_for_completion(&io_data->done);
1094 interrupted = io_data->status < 0;
1095 }
1096
1097 if (interrupted)
1098 ret = -EINTR;
1099 else if (io_data->read && io_data->status > 0)
1100 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1101 &io_data->data);
1102 else
1103 ret = io_data->status;
1104 goto error_mutex;
1105 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1106 ret = -ENOMEM;
1107 } else {
1108 if (io_data->use_sg) {
1109 req->buf = NULL;
1110 req->sg = io_data->sgt.sgl;
1111 req->num_sgs = io_data->sgt.nents;
1112 } else {
1113 req->buf = data;
1114 req->num_sgs = 0;
1115 }
1116 req->length = data_len;
1117
1118 io_data->buf = data;
1119 io_data->ep = ep->ep;
1120 io_data->req = req;
1121 io_data->ffs = epfile->ffs;
1122
1123 req->context = io_data;
1124 req->complete = ffs_epfile_async_io_complete;
1125
1126 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1127 if (ret) {
1128 io_data->req = NULL;
1129 usb_ep_free_request(ep->ep, req);
1130 goto error_lock;
1131 }
1132
1133 ret = -EIOCBQUEUED;
1134 /*
1135 * Do not kfree the buffer in this function. It will be freed
1136 * by ffs_user_copy_worker.
1137 */
1138 data = NULL;
1139 }
1140
1141 error_lock:
1142 spin_unlock_irq(&epfile->ffs->eps_lock);
1143 error_mutex:
1144 mutex_unlock(&epfile->mutex);
1145 error:
1146 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1147 ffs_free_buffer(io_data);
1148 return ret;
1149 }
1150
1151 static int
ffs_epfile_open(struct inode * inode,struct file * file)1152 ffs_epfile_open(struct inode *inode, struct file *file)
1153 {
1154 struct ffs_epfile *epfile = inode->i_private;
1155
1156 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1157 return -ENODEV;
1158
1159 file->private_data = epfile;
1160 ffs_data_opened(epfile->ffs);
1161
1162 return stream_open(inode, file);
1163 }
1164
ffs_aio_cancel(struct kiocb * kiocb)1165 static int ffs_aio_cancel(struct kiocb *kiocb)
1166 {
1167 struct ffs_io_data *io_data = kiocb->private;
1168 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1169 unsigned long flags;
1170 int value;
1171
1172 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1173
1174 if (io_data && io_data->ep && io_data->req)
1175 value = usb_ep_dequeue(io_data->ep, io_data->req);
1176 else
1177 value = -EINVAL;
1178
1179 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1180
1181 return value;
1182 }
1183
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1184 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1185 {
1186 struct ffs_io_data io_data, *p = &io_data;
1187 ssize_t res;
1188
1189 if (!is_sync_kiocb(kiocb)) {
1190 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1191 if (!p)
1192 return -ENOMEM;
1193 p->aio = true;
1194 } else {
1195 memset(p, 0, sizeof(*p));
1196 p->aio = false;
1197 }
1198
1199 p->read = false;
1200 p->kiocb = kiocb;
1201 p->data = *from;
1202 p->mm = current->mm;
1203
1204 kiocb->private = p;
1205
1206 if (p->aio)
1207 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1208
1209 res = ffs_epfile_io(kiocb->ki_filp, p);
1210 if (res == -EIOCBQUEUED)
1211 return res;
1212 if (p->aio)
1213 kfree(p);
1214 else
1215 *from = p->data;
1216 return res;
1217 }
1218
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1219 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1220 {
1221 struct ffs_io_data io_data, *p = &io_data;
1222 ssize_t res;
1223
1224 if (!is_sync_kiocb(kiocb)) {
1225 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1226 if (!p)
1227 return -ENOMEM;
1228 p->aio = true;
1229 } else {
1230 memset(p, 0, sizeof(*p));
1231 p->aio = false;
1232 }
1233
1234 p->read = true;
1235 p->kiocb = kiocb;
1236 if (p->aio) {
1237 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1238 if (!iter_is_ubuf(&p->data) && !p->to_free) {
1239 kfree(p);
1240 return -ENOMEM;
1241 }
1242 } else {
1243 p->data = *to;
1244 p->to_free = NULL;
1245 }
1246 p->mm = current->mm;
1247
1248 kiocb->private = p;
1249
1250 if (p->aio)
1251 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1252
1253 res = ffs_epfile_io(kiocb->ki_filp, p);
1254 if (res == -EIOCBQUEUED)
1255 return res;
1256
1257 if (p->aio) {
1258 kfree(p->to_free);
1259 kfree(p);
1260 } else {
1261 *to = p->data;
1262 }
1263 return res;
1264 }
1265
1266 static int
ffs_epfile_release(struct inode * inode,struct file * file)1267 ffs_epfile_release(struct inode *inode, struct file *file)
1268 {
1269 struct ffs_epfile *epfile = inode->i_private;
1270
1271 __ffs_epfile_read_buffer_free(epfile);
1272 ffs_data_closed(epfile->ffs);
1273
1274 return 0;
1275 }
1276
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1277 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1278 unsigned long value)
1279 {
1280 struct ffs_epfile *epfile = file->private_data;
1281 struct ffs_ep *ep;
1282 int ret;
1283
1284 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1285 return -ENODEV;
1286
1287 /* Wait for endpoint to be enabled */
1288 ep = epfile->ep;
1289 if (!ep) {
1290 if (file->f_flags & O_NONBLOCK)
1291 return -EAGAIN;
1292
1293 ret = wait_event_interruptible(
1294 epfile->ffs->wait, (ep = epfile->ep));
1295 if (ret)
1296 return -EINTR;
1297 }
1298
1299 spin_lock_irq(&epfile->ffs->eps_lock);
1300
1301 /* In the meantime, endpoint got disabled or changed. */
1302 if (epfile->ep != ep) {
1303 spin_unlock_irq(&epfile->ffs->eps_lock);
1304 return -ESHUTDOWN;
1305 }
1306
1307 switch (code) {
1308 case FUNCTIONFS_FIFO_STATUS:
1309 ret = usb_ep_fifo_status(epfile->ep->ep);
1310 break;
1311 case FUNCTIONFS_FIFO_FLUSH:
1312 usb_ep_fifo_flush(epfile->ep->ep);
1313 ret = 0;
1314 break;
1315 case FUNCTIONFS_CLEAR_HALT:
1316 ret = usb_ep_clear_halt(epfile->ep->ep);
1317 break;
1318 case FUNCTIONFS_ENDPOINT_REVMAP:
1319 ret = epfile->ep->num;
1320 break;
1321 case FUNCTIONFS_ENDPOINT_DESC:
1322 {
1323 int desc_idx;
1324 struct usb_endpoint_descriptor desc1, *desc;
1325
1326 switch (epfile->ffs->gadget->speed) {
1327 case USB_SPEED_SUPER:
1328 case USB_SPEED_SUPER_PLUS:
1329 desc_idx = 2;
1330 break;
1331 case USB_SPEED_HIGH:
1332 desc_idx = 1;
1333 break;
1334 default:
1335 desc_idx = 0;
1336 }
1337
1338 desc = epfile->ep->descs[desc_idx];
1339 memcpy(&desc1, desc, desc->bLength);
1340
1341 spin_unlock_irq(&epfile->ffs->eps_lock);
1342 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1343 if (ret)
1344 ret = -EFAULT;
1345 return ret;
1346 }
1347 default:
1348 ret = -ENOTTY;
1349 }
1350 spin_unlock_irq(&epfile->ffs->eps_lock);
1351
1352 return ret;
1353 }
1354
1355 static const struct file_operations ffs_epfile_operations = {
1356 .llseek = no_llseek,
1357
1358 .open = ffs_epfile_open,
1359 .write_iter = ffs_epfile_write_iter,
1360 .read_iter = ffs_epfile_read_iter,
1361 .release = ffs_epfile_release,
1362 .unlocked_ioctl = ffs_epfile_ioctl,
1363 .compat_ioctl = compat_ptr_ioctl,
1364 };
1365
1366
1367 /* File system and super block operations ***********************************/
1368
1369 /*
1370 * Mounting the file system creates a controller file, used first for
1371 * function configuration then later for event monitoring.
1372 */
1373
1374 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1375 ffs_sb_make_inode(struct super_block *sb, void *data,
1376 const struct file_operations *fops,
1377 const struct inode_operations *iops,
1378 struct ffs_file_perms *perms)
1379 {
1380 struct inode *inode;
1381
1382 inode = new_inode(sb);
1383
1384 if (inode) {
1385 struct timespec64 ts = inode_set_ctime_current(inode);
1386
1387 inode->i_ino = get_next_ino();
1388 inode->i_mode = perms->mode;
1389 inode->i_uid = perms->uid;
1390 inode->i_gid = perms->gid;
1391 inode->i_atime = ts;
1392 inode->i_mtime = ts;
1393 inode->i_private = data;
1394 if (fops)
1395 inode->i_fop = fops;
1396 if (iops)
1397 inode->i_op = iops;
1398 }
1399
1400 return inode;
1401 }
1402
1403 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1404 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1405 const char *name, void *data,
1406 const struct file_operations *fops)
1407 {
1408 struct ffs_data *ffs = sb->s_fs_info;
1409 struct dentry *dentry;
1410 struct inode *inode;
1411
1412 dentry = d_alloc_name(sb->s_root, name);
1413 if (!dentry)
1414 return NULL;
1415
1416 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1417 if (!inode) {
1418 dput(dentry);
1419 return NULL;
1420 }
1421
1422 d_add(dentry, inode);
1423 return dentry;
1424 }
1425
1426 /* Super block */
1427 static const struct super_operations ffs_sb_operations = {
1428 .statfs = simple_statfs,
1429 .drop_inode = generic_delete_inode,
1430 };
1431
1432 struct ffs_sb_fill_data {
1433 struct ffs_file_perms perms;
1434 umode_t root_mode;
1435 const char *dev_name;
1436 bool no_disconnect;
1437 struct ffs_data *ffs_data;
1438 };
1439
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1440 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1441 {
1442 struct ffs_sb_fill_data *data = fc->fs_private;
1443 struct inode *inode;
1444 struct ffs_data *ffs = data->ffs_data;
1445
1446 ffs->sb = sb;
1447 data->ffs_data = NULL;
1448 sb->s_fs_info = ffs;
1449 sb->s_blocksize = PAGE_SIZE;
1450 sb->s_blocksize_bits = PAGE_SHIFT;
1451 sb->s_magic = FUNCTIONFS_MAGIC;
1452 sb->s_op = &ffs_sb_operations;
1453 sb->s_time_gran = 1;
1454
1455 /* Root inode */
1456 data->perms.mode = data->root_mode;
1457 inode = ffs_sb_make_inode(sb, NULL,
1458 &simple_dir_operations,
1459 &simple_dir_inode_operations,
1460 &data->perms);
1461 sb->s_root = d_make_root(inode);
1462 if (!sb->s_root)
1463 return -ENOMEM;
1464
1465 /* EP0 file */
1466 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1467 return -ENOMEM;
1468
1469 return 0;
1470 }
1471
1472 enum {
1473 Opt_no_disconnect,
1474 Opt_rmode,
1475 Opt_fmode,
1476 Opt_mode,
1477 Opt_uid,
1478 Opt_gid,
1479 };
1480
1481 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1482 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1483 fsparam_u32 ("rmode", Opt_rmode),
1484 fsparam_u32 ("fmode", Opt_fmode),
1485 fsparam_u32 ("mode", Opt_mode),
1486 fsparam_u32 ("uid", Opt_uid),
1487 fsparam_u32 ("gid", Opt_gid),
1488 {}
1489 };
1490
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1491 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1492 {
1493 struct ffs_sb_fill_data *data = fc->fs_private;
1494 struct fs_parse_result result;
1495 int opt;
1496
1497 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1498 if (opt < 0)
1499 return opt;
1500
1501 switch (opt) {
1502 case Opt_no_disconnect:
1503 data->no_disconnect = result.boolean;
1504 break;
1505 case Opt_rmode:
1506 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1507 break;
1508 case Opt_fmode:
1509 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1510 break;
1511 case Opt_mode:
1512 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1513 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1514 break;
1515
1516 case Opt_uid:
1517 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1518 if (!uid_valid(data->perms.uid))
1519 goto unmapped_value;
1520 break;
1521 case Opt_gid:
1522 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1523 if (!gid_valid(data->perms.gid))
1524 goto unmapped_value;
1525 break;
1526
1527 default:
1528 return -ENOPARAM;
1529 }
1530
1531 return 0;
1532
1533 unmapped_value:
1534 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1535 }
1536
1537 /*
1538 * Set up the superblock for a mount.
1539 */
ffs_fs_get_tree(struct fs_context * fc)1540 static int ffs_fs_get_tree(struct fs_context *fc)
1541 {
1542 struct ffs_sb_fill_data *ctx = fc->fs_private;
1543 struct ffs_data *ffs;
1544 int ret;
1545
1546 if (!fc->source)
1547 return invalf(fc, "No source specified");
1548
1549 ffs = ffs_data_new(fc->source);
1550 if (!ffs)
1551 return -ENOMEM;
1552 ffs->file_perms = ctx->perms;
1553 ffs->no_disconnect = ctx->no_disconnect;
1554
1555 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1556 if (!ffs->dev_name) {
1557 ffs_data_put(ffs);
1558 return -ENOMEM;
1559 }
1560
1561 ret = ffs_acquire_dev(ffs->dev_name, ffs);
1562 if (ret) {
1563 ffs_data_put(ffs);
1564 return ret;
1565 }
1566
1567 ctx->ffs_data = ffs;
1568 return get_tree_nodev(fc, ffs_sb_fill);
1569 }
1570
ffs_fs_free_fc(struct fs_context * fc)1571 static void ffs_fs_free_fc(struct fs_context *fc)
1572 {
1573 struct ffs_sb_fill_data *ctx = fc->fs_private;
1574
1575 if (ctx) {
1576 if (ctx->ffs_data) {
1577 ffs_data_put(ctx->ffs_data);
1578 }
1579
1580 kfree(ctx);
1581 }
1582 }
1583
1584 static const struct fs_context_operations ffs_fs_context_ops = {
1585 .free = ffs_fs_free_fc,
1586 .parse_param = ffs_fs_parse_param,
1587 .get_tree = ffs_fs_get_tree,
1588 };
1589
ffs_fs_init_fs_context(struct fs_context * fc)1590 static int ffs_fs_init_fs_context(struct fs_context *fc)
1591 {
1592 struct ffs_sb_fill_data *ctx;
1593
1594 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1595 if (!ctx)
1596 return -ENOMEM;
1597
1598 ctx->perms.mode = S_IFREG | 0600;
1599 ctx->perms.uid = GLOBAL_ROOT_UID;
1600 ctx->perms.gid = GLOBAL_ROOT_GID;
1601 ctx->root_mode = S_IFDIR | 0500;
1602 ctx->no_disconnect = false;
1603
1604 fc->fs_private = ctx;
1605 fc->ops = &ffs_fs_context_ops;
1606 return 0;
1607 }
1608
1609 static void
ffs_fs_kill_sb(struct super_block * sb)1610 ffs_fs_kill_sb(struct super_block *sb)
1611 {
1612 kill_litter_super(sb);
1613 if (sb->s_fs_info)
1614 ffs_data_closed(sb->s_fs_info);
1615 }
1616
1617 static struct file_system_type ffs_fs_type = {
1618 .owner = THIS_MODULE,
1619 .name = "functionfs",
1620 .init_fs_context = ffs_fs_init_fs_context,
1621 .parameters = ffs_fs_fs_parameters,
1622 .kill_sb = ffs_fs_kill_sb,
1623 };
1624 MODULE_ALIAS_FS("functionfs");
1625
1626
1627 /* Driver's main init/cleanup functions *************************************/
1628
functionfs_init(void)1629 static int functionfs_init(void)
1630 {
1631 int ret;
1632
1633 ret = register_filesystem(&ffs_fs_type);
1634 if (!ret)
1635 pr_info("file system registered\n");
1636 else
1637 pr_err("failed registering file system (%d)\n", ret);
1638
1639 return ret;
1640 }
1641
functionfs_cleanup(void)1642 static void functionfs_cleanup(void)
1643 {
1644 pr_info("unloading\n");
1645 unregister_filesystem(&ffs_fs_type);
1646 }
1647
1648
1649 /* ffs_data and ffs_function construction and destruction code **************/
1650
1651 static void ffs_data_clear(struct ffs_data *ffs);
1652 static void ffs_data_reset(struct ffs_data *ffs);
1653
ffs_data_get(struct ffs_data * ffs)1654 static void ffs_data_get(struct ffs_data *ffs)
1655 {
1656 refcount_inc(&ffs->ref);
1657 }
1658
ffs_data_opened(struct ffs_data * ffs)1659 static void ffs_data_opened(struct ffs_data *ffs)
1660 {
1661 refcount_inc(&ffs->ref);
1662 if (atomic_add_return(1, &ffs->opened) == 1 &&
1663 ffs->state == FFS_DEACTIVATED) {
1664 ffs->state = FFS_CLOSING;
1665 ffs_data_reset(ffs);
1666 }
1667 }
1668
ffs_data_put(struct ffs_data * ffs)1669 static void ffs_data_put(struct ffs_data *ffs)
1670 {
1671 if (refcount_dec_and_test(&ffs->ref)) {
1672 pr_info("%s(): freeing\n", __func__);
1673 ffs_data_clear(ffs);
1674 ffs_release_dev(ffs->private_data);
1675 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1676 swait_active(&ffs->ep0req_completion.wait) ||
1677 waitqueue_active(&ffs->wait));
1678 destroy_workqueue(ffs->io_completion_wq);
1679 kfree(ffs->dev_name);
1680 kfree(ffs);
1681 }
1682 }
1683
ffs_data_closed(struct ffs_data * ffs)1684 static void ffs_data_closed(struct ffs_data *ffs)
1685 {
1686 struct ffs_epfile *epfiles;
1687 unsigned long flags;
1688
1689 if (atomic_dec_and_test(&ffs->opened)) {
1690 if (ffs->no_disconnect) {
1691 ffs->state = FFS_DEACTIVATED;
1692 spin_lock_irqsave(&ffs->eps_lock, flags);
1693 epfiles = ffs->epfiles;
1694 ffs->epfiles = NULL;
1695 spin_unlock_irqrestore(&ffs->eps_lock,
1696 flags);
1697
1698 if (epfiles)
1699 ffs_epfiles_destroy(epfiles,
1700 ffs->eps_count);
1701
1702 if (ffs->setup_state == FFS_SETUP_PENDING)
1703 __ffs_ep0_stall(ffs);
1704 } else {
1705 ffs->state = FFS_CLOSING;
1706 ffs_data_reset(ffs);
1707 }
1708 }
1709 if (atomic_read(&ffs->opened) < 0) {
1710 ffs->state = FFS_CLOSING;
1711 ffs_data_reset(ffs);
1712 }
1713
1714 ffs_data_put(ffs);
1715 }
1716
ffs_data_new(const char * dev_name)1717 static struct ffs_data *ffs_data_new(const char *dev_name)
1718 {
1719 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1720 if (!ffs)
1721 return NULL;
1722
1723 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1724 if (!ffs->io_completion_wq) {
1725 kfree(ffs);
1726 return NULL;
1727 }
1728
1729 refcount_set(&ffs->ref, 1);
1730 atomic_set(&ffs->opened, 0);
1731 ffs->state = FFS_READ_DESCRIPTORS;
1732 mutex_init(&ffs->mutex);
1733 spin_lock_init(&ffs->eps_lock);
1734 init_waitqueue_head(&ffs->ev.waitq);
1735 init_waitqueue_head(&ffs->wait);
1736 init_completion(&ffs->ep0req_completion);
1737
1738 /* XXX REVISIT need to update it in some places, or do we? */
1739 ffs->ev.can_stall = 1;
1740
1741 return ffs;
1742 }
1743
ffs_data_clear(struct ffs_data * ffs)1744 static void ffs_data_clear(struct ffs_data *ffs)
1745 {
1746 struct ffs_epfile *epfiles;
1747 unsigned long flags;
1748
1749 ffs_closed(ffs);
1750
1751 BUG_ON(ffs->gadget);
1752
1753 spin_lock_irqsave(&ffs->eps_lock, flags);
1754 epfiles = ffs->epfiles;
1755 ffs->epfiles = NULL;
1756 spin_unlock_irqrestore(&ffs->eps_lock, flags);
1757
1758 /*
1759 * potential race possible between ffs_func_eps_disable
1760 * & ffs_epfile_release therefore maintaining a local
1761 * copy of epfile will save us from use-after-free.
1762 */
1763 if (epfiles) {
1764 ffs_epfiles_destroy(epfiles, ffs->eps_count);
1765 ffs->epfiles = NULL;
1766 }
1767
1768 if (ffs->ffs_eventfd) {
1769 eventfd_ctx_put(ffs->ffs_eventfd);
1770 ffs->ffs_eventfd = NULL;
1771 }
1772
1773 kfree(ffs->raw_descs_data);
1774 kfree(ffs->raw_strings);
1775 kfree(ffs->stringtabs);
1776 }
1777
ffs_data_reset(struct ffs_data * ffs)1778 static void ffs_data_reset(struct ffs_data *ffs)
1779 {
1780 ffs_data_clear(ffs);
1781
1782 ffs->raw_descs_data = NULL;
1783 ffs->raw_descs = NULL;
1784 ffs->raw_strings = NULL;
1785 ffs->stringtabs = NULL;
1786
1787 ffs->raw_descs_length = 0;
1788 ffs->fs_descs_count = 0;
1789 ffs->hs_descs_count = 0;
1790 ffs->ss_descs_count = 0;
1791
1792 ffs->strings_count = 0;
1793 ffs->interfaces_count = 0;
1794 ffs->eps_count = 0;
1795
1796 ffs->ev.count = 0;
1797
1798 ffs->state = FFS_READ_DESCRIPTORS;
1799 ffs->setup_state = FFS_NO_SETUP;
1800 ffs->flags = 0;
1801
1802 ffs->ms_os_descs_ext_prop_count = 0;
1803 ffs->ms_os_descs_ext_prop_name_len = 0;
1804 ffs->ms_os_descs_ext_prop_data_len = 0;
1805 }
1806
1807
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1808 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1809 {
1810 struct usb_gadget_strings **lang;
1811 int first_id;
1812
1813 if (WARN_ON(ffs->state != FFS_ACTIVE
1814 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1815 return -EBADFD;
1816
1817 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1818 if (first_id < 0)
1819 return first_id;
1820
1821 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1822 if (!ffs->ep0req)
1823 return -ENOMEM;
1824 ffs->ep0req->complete = ffs_ep0_complete;
1825 ffs->ep0req->context = ffs;
1826
1827 lang = ffs->stringtabs;
1828 if (lang) {
1829 for (; *lang; ++lang) {
1830 struct usb_string *str = (*lang)->strings;
1831 int id = first_id;
1832 for (; str->s; ++id, ++str)
1833 str->id = id;
1834 }
1835 }
1836
1837 ffs->gadget = cdev->gadget;
1838 ffs_data_get(ffs);
1839 return 0;
1840 }
1841
functionfs_unbind(struct ffs_data * ffs)1842 static void functionfs_unbind(struct ffs_data *ffs)
1843 {
1844 if (!WARN_ON(!ffs->gadget)) {
1845 /* dequeue before freeing ep0req */
1846 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1847 mutex_lock(&ffs->mutex);
1848 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1849 ffs->ep0req = NULL;
1850 ffs->gadget = NULL;
1851 clear_bit(FFS_FL_BOUND, &ffs->flags);
1852 mutex_unlock(&ffs->mutex);
1853 ffs_data_put(ffs);
1854 }
1855 }
1856
ffs_epfiles_create(struct ffs_data * ffs)1857 static int ffs_epfiles_create(struct ffs_data *ffs)
1858 {
1859 struct ffs_epfile *epfile, *epfiles;
1860 unsigned i, count;
1861
1862 count = ffs->eps_count;
1863 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1864 if (!epfiles)
1865 return -ENOMEM;
1866
1867 epfile = epfiles;
1868 for (i = 1; i <= count; ++i, ++epfile) {
1869 epfile->ffs = ffs;
1870 mutex_init(&epfile->mutex);
1871 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1872 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1873 else
1874 sprintf(epfile->name, "ep%u", i);
1875 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1876 epfile,
1877 &ffs_epfile_operations);
1878 if (!epfile->dentry) {
1879 ffs_epfiles_destroy(epfiles, i - 1);
1880 return -ENOMEM;
1881 }
1882 }
1883
1884 ffs->epfiles = epfiles;
1885 return 0;
1886 }
1887
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1888 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1889 {
1890 struct ffs_epfile *epfile = epfiles;
1891
1892 for (; count; --count, ++epfile) {
1893 BUG_ON(mutex_is_locked(&epfile->mutex));
1894 if (epfile->dentry) {
1895 d_delete(epfile->dentry);
1896 dput(epfile->dentry);
1897 epfile->dentry = NULL;
1898 }
1899 }
1900
1901 kfree(epfiles);
1902 }
1903
ffs_func_eps_disable(struct ffs_function * func)1904 static void ffs_func_eps_disable(struct ffs_function *func)
1905 {
1906 struct ffs_ep *ep;
1907 struct ffs_epfile *epfile;
1908 unsigned short count;
1909 unsigned long flags;
1910
1911 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1912 count = func->ffs->eps_count;
1913 epfile = func->ffs->epfiles;
1914 ep = func->eps;
1915 while (count--) {
1916 /* pending requests get nuked */
1917 if (ep->ep)
1918 usb_ep_disable(ep->ep);
1919 ++ep;
1920
1921 if (epfile) {
1922 epfile->ep = NULL;
1923 __ffs_epfile_read_buffer_free(epfile);
1924 ++epfile;
1925 }
1926 }
1927 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1928 }
1929
ffs_func_eps_enable(struct ffs_function * func)1930 static int ffs_func_eps_enable(struct ffs_function *func)
1931 {
1932 struct ffs_data *ffs;
1933 struct ffs_ep *ep;
1934 struct ffs_epfile *epfile;
1935 unsigned short count;
1936 unsigned long flags;
1937 int ret = 0;
1938
1939 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1940 ffs = func->ffs;
1941 ep = func->eps;
1942 epfile = ffs->epfiles;
1943 count = ffs->eps_count;
1944 while(count--) {
1945 ep->ep->driver_data = ep;
1946
1947 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1948 if (ret) {
1949 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1950 __func__, ep->ep->name, ret);
1951 break;
1952 }
1953
1954 ret = usb_ep_enable(ep->ep);
1955 if (!ret) {
1956 epfile->ep = ep;
1957 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1958 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1959 } else {
1960 break;
1961 }
1962
1963 ++ep;
1964 ++epfile;
1965 }
1966
1967 wake_up_interruptible(&ffs->wait);
1968 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1969
1970 return ret;
1971 }
1972
1973
1974 /* Parsing and building descriptors and strings *****************************/
1975
1976 /*
1977 * This validates if data pointed by data is a valid USB descriptor as
1978 * well as record how many interfaces, endpoints and strings are
1979 * required by given configuration. Returns address after the
1980 * descriptor or NULL if data is invalid.
1981 */
1982
1983 enum ffs_entity_type {
1984 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1985 };
1986
1987 enum ffs_os_desc_type {
1988 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1989 };
1990
1991 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1992 u8 *valuep,
1993 struct usb_descriptor_header *desc,
1994 void *priv);
1995
1996 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1997 struct usb_os_desc_header *h, void *data,
1998 unsigned len, void *priv);
1999
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2000 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2001 ffs_entity_callback entity,
2002 void *priv, int *current_class)
2003 {
2004 struct usb_descriptor_header *_ds = (void *)data;
2005 u8 length;
2006 int ret;
2007
2008 /* At least two bytes are required: length and type */
2009 if (len < 2) {
2010 pr_vdebug("descriptor too short\n");
2011 return -EINVAL;
2012 }
2013
2014 /* If we have at least as many bytes as the descriptor takes? */
2015 length = _ds->bLength;
2016 if (len < length) {
2017 pr_vdebug("descriptor longer then available data\n");
2018 return -EINVAL;
2019 }
2020
2021 #define __entity_check_INTERFACE(val) 1
2022 #define __entity_check_STRING(val) (val)
2023 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2024 #define __entity(type, val) do { \
2025 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2026 if (!__entity_check_ ##type(val)) { \
2027 pr_vdebug("invalid entity's value\n"); \
2028 return -EINVAL; \
2029 } \
2030 ret = entity(FFS_ ##type, &val, _ds, priv); \
2031 if (ret < 0) { \
2032 pr_debug("entity " #type "(%02x); ret = %d\n", \
2033 (val), ret); \
2034 return ret; \
2035 } \
2036 } while (0)
2037
2038 /* Parse descriptor depending on type. */
2039 switch (_ds->bDescriptorType) {
2040 case USB_DT_DEVICE:
2041 case USB_DT_CONFIG:
2042 case USB_DT_STRING:
2043 case USB_DT_DEVICE_QUALIFIER:
2044 /* function can't have any of those */
2045 pr_vdebug("descriptor reserved for gadget: %d\n",
2046 _ds->bDescriptorType);
2047 return -EINVAL;
2048
2049 case USB_DT_INTERFACE: {
2050 struct usb_interface_descriptor *ds = (void *)_ds;
2051 pr_vdebug("interface descriptor\n");
2052 if (length != sizeof *ds)
2053 goto inv_length;
2054
2055 __entity(INTERFACE, ds->bInterfaceNumber);
2056 if (ds->iInterface)
2057 __entity(STRING, ds->iInterface);
2058 *current_class = ds->bInterfaceClass;
2059 }
2060 break;
2061
2062 case USB_DT_ENDPOINT: {
2063 struct usb_endpoint_descriptor *ds = (void *)_ds;
2064 pr_vdebug("endpoint descriptor\n");
2065 if (length != USB_DT_ENDPOINT_SIZE &&
2066 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2067 goto inv_length;
2068 __entity(ENDPOINT, ds->bEndpointAddress);
2069 }
2070 break;
2071
2072 case USB_TYPE_CLASS | 0x01:
2073 if (*current_class == USB_INTERFACE_CLASS_HID) {
2074 pr_vdebug("hid descriptor\n");
2075 if (length != sizeof(struct hid_descriptor))
2076 goto inv_length;
2077 break;
2078 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2079 pr_vdebug("ccid descriptor\n");
2080 if (length != sizeof(struct ccid_descriptor))
2081 goto inv_length;
2082 break;
2083 } else {
2084 pr_vdebug("unknown descriptor: %d for class %d\n",
2085 _ds->bDescriptorType, *current_class);
2086 return -EINVAL;
2087 }
2088
2089 case USB_DT_OTG:
2090 if (length != sizeof(struct usb_otg_descriptor))
2091 goto inv_length;
2092 break;
2093
2094 case USB_DT_INTERFACE_ASSOCIATION: {
2095 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2096 pr_vdebug("interface association descriptor\n");
2097 if (length != sizeof *ds)
2098 goto inv_length;
2099 if (ds->iFunction)
2100 __entity(STRING, ds->iFunction);
2101 }
2102 break;
2103
2104 case USB_DT_SS_ENDPOINT_COMP:
2105 pr_vdebug("EP SS companion descriptor\n");
2106 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2107 goto inv_length;
2108 break;
2109
2110 case USB_DT_OTHER_SPEED_CONFIG:
2111 case USB_DT_INTERFACE_POWER:
2112 case USB_DT_DEBUG:
2113 case USB_DT_SECURITY:
2114 case USB_DT_CS_RADIO_CONTROL:
2115 /* TODO */
2116 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2117 return -EINVAL;
2118
2119 default:
2120 /* We should never be here */
2121 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2122 return -EINVAL;
2123
2124 inv_length:
2125 pr_vdebug("invalid length: %d (descriptor %d)\n",
2126 _ds->bLength, _ds->bDescriptorType);
2127 return -EINVAL;
2128 }
2129
2130 #undef __entity
2131 #undef __entity_check_DESCRIPTOR
2132 #undef __entity_check_INTERFACE
2133 #undef __entity_check_STRING
2134 #undef __entity_check_ENDPOINT
2135
2136 return length;
2137 }
2138
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2139 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2140 ffs_entity_callback entity, void *priv)
2141 {
2142 const unsigned _len = len;
2143 unsigned long num = 0;
2144 int current_class = -1;
2145
2146 for (;;) {
2147 int ret;
2148
2149 if (num == count)
2150 data = NULL;
2151
2152 /* Record "descriptor" entity */
2153 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2154 if (ret < 0) {
2155 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2156 num, ret);
2157 return ret;
2158 }
2159
2160 if (!data)
2161 return _len - len;
2162
2163 ret = ffs_do_single_desc(data, len, entity, priv,
2164 ¤t_class);
2165 if (ret < 0) {
2166 pr_debug("%s returns %d\n", __func__, ret);
2167 return ret;
2168 }
2169
2170 len -= ret;
2171 data += ret;
2172 ++num;
2173 }
2174 }
2175
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2176 static int __ffs_data_do_entity(enum ffs_entity_type type,
2177 u8 *valuep, struct usb_descriptor_header *desc,
2178 void *priv)
2179 {
2180 struct ffs_desc_helper *helper = priv;
2181 struct usb_endpoint_descriptor *d;
2182
2183 switch (type) {
2184 case FFS_DESCRIPTOR:
2185 break;
2186
2187 case FFS_INTERFACE:
2188 /*
2189 * Interfaces are indexed from zero so if we
2190 * encountered interface "n" then there are at least
2191 * "n+1" interfaces.
2192 */
2193 if (*valuep >= helper->interfaces_count)
2194 helper->interfaces_count = *valuep + 1;
2195 break;
2196
2197 case FFS_STRING:
2198 /*
2199 * Strings are indexed from 1 (0 is reserved
2200 * for languages list)
2201 */
2202 if (*valuep > helper->ffs->strings_count)
2203 helper->ffs->strings_count = *valuep;
2204 break;
2205
2206 case FFS_ENDPOINT:
2207 d = (void *)desc;
2208 helper->eps_count++;
2209 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2210 return -EINVAL;
2211 /* Check if descriptors for any speed were already parsed */
2212 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2213 helper->ffs->eps_addrmap[helper->eps_count] =
2214 d->bEndpointAddress;
2215 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2216 d->bEndpointAddress)
2217 return -EINVAL;
2218 break;
2219 }
2220
2221 return 0;
2222 }
2223
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2224 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2225 struct usb_os_desc_header *desc)
2226 {
2227 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2228 u16 w_index = le16_to_cpu(desc->wIndex);
2229
2230 if (bcd_version == 0x1) {
2231 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2232 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2233 } else if (bcd_version != 0x100) {
2234 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2235 bcd_version);
2236 return -EINVAL;
2237 }
2238 switch (w_index) {
2239 case 0x4:
2240 *next_type = FFS_OS_DESC_EXT_COMPAT;
2241 break;
2242 case 0x5:
2243 *next_type = FFS_OS_DESC_EXT_PROP;
2244 break;
2245 default:
2246 pr_vdebug("unsupported os descriptor type: %d", w_index);
2247 return -EINVAL;
2248 }
2249
2250 return sizeof(*desc);
2251 }
2252
2253 /*
2254 * Process all extended compatibility/extended property descriptors
2255 * of a feature descriptor
2256 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2257 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2258 enum ffs_os_desc_type type,
2259 u16 feature_count,
2260 ffs_os_desc_callback entity,
2261 void *priv,
2262 struct usb_os_desc_header *h)
2263 {
2264 int ret;
2265 const unsigned _len = len;
2266
2267 /* loop over all ext compat/ext prop descriptors */
2268 while (feature_count--) {
2269 ret = entity(type, h, data, len, priv);
2270 if (ret < 0) {
2271 pr_debug("bad OS descriptor, type: %d\n", type);
2272 return ret;
2273 }
2274 data += ret;
2275 len -= ret;
2276 }
2277 return _len - len;
2278 }
2279
2280 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2281 static int __must_check ffs_do_os_descs(unsigned count,
2282 char *data, unsigned len,
2283 ffs_os_desc_callback entity, void *priv)
2284 {
2285 const unsigned _len = len;
2286 unsigned long num = 0;
2287
2288 for (num = 0; num < count; ++num) {
2289 int ret;
2290 enum ffs_os_desc_type type;
2291 u16 feature_count;
2292 struct usb_os_desc_header *desc = (void *)data;
2293
2294 if (len < sizeof(*desc))
2295 return -EINVAL;
2296
2297 /*
2298 * Record "descriptor" entity.
2299 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2300 * Move the data pointer to the beginning of extended
2301 * compatibilities proper or extended properties proper
2302 * portions of the data
2303 */
2304 if (le32_to_cpu(desc->dwLength) > len)
2305 return -EINVAL;
2306
2307 ret = __ffs_do_os_desc_header(&type, desc);
2308 if (ret < 0) {
2309 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2310 num, ret);
2311 return ret;
2312 }
2313 /*
2314 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2315 */
2316 feature_count = le16_to_cpu(desc->wCount);
2317 if (type == FFS_OS_DESC_EXT_COMPAT &&
2318 (feature_count > 255 || desc->Reserved))
2319 return -EINVAL;
2320 len -= ret;
2321 data += ret;
2322
2323 /*
2324 * Process all function/property descriptors
2325 * of this Feature Descriptor
2326 */
2327 ret = ffs_do_single_os_desc(data, len, type,
2328 feature_count, entity, priv, desc);
2329 if (ret < 0) {
2330 pr_debug("%s returns %d\n", __func__, ret);
2331 return ret;
2332 }
2333
2334 len -= ret;
2335 data += ret;
2336 }
2337 return _len - len;
2338 }
2339
2340 /*
2341 * Validate contents of the buffer from userspace related to OS descriptors.
2342 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2343 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2344 struct usb_os_desc_header *h, void *data,
2345 unsigned len, void *priv)
2346 {
2347 struct ffs_data *ffs = priv;
2348 u8 length;
2349
2350 switch (type) {
2351 case FFS_OS_DESC_EXT_COMPAT: {
2352 struct usb_ext_compat_desc *d = data;
2353 int i;
2354
2355 if (len < sizeof(*d) ||
2356 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2357 return -EINVAL;
2358 if (d->Reserved1 != 1) {
2359 /*
2360 * According to the spec, Reserved1 must be set to 1
2361 * but older kernels incorrectly rejected non-zero
2362 * values. We fix it here to avoid returning EINVAL
2363 * in response to values we used to accept.
2364 */
2365 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2366 d->Reserved1 = 1;
2367 }
2368 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2369 if (d->Reserved2[i])
2370 return -EINVAL;
2371
2372 length = sizeof(struct usb_ext_compat_desc);
2373 }
2374 break;
2375 case FFS_OS_DESC_EXT_PROP: {
2376 struct usb_ext_prop_desc *d = data;
2377 u32 type, pdl;
2378 u16 pnl;
2379
2380 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2381 return -EINVAL;
2382 length = le32_to_cpu(d->dwSize);
2383 if (len < length)
2384 return -EINVAL;
2385 type = le32_to_cpu(d->dwPropertyDataType);
2386 if (type < USB_EXT_PROP_UNICODE ||
2387 type > USB_EXT_PROP_UNICODE_MULTI) {
2388 pr_vdebug("unsupported os descriptor property type: %d",
2389 type);
2390 return -EINVAL;
2391 }
2392 pnl = le16_to_cpu(d->wPropertyNameLength);
2393 if (length < 14 + pnl) {
2394 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2395 length, pnl, type);
2396 return -EINVAL;
2397 }
2398 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2399 if (length != 14 + pnl + pdl) {
2400 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2401 length, pnl, pdl, type);
2402 return -EINVAL;
2403 }
2404 ++ffs->ms_os_descs_ext_prop_count;
2405 /* property name reported to the host as "WCHAR"s */
2406 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2407 ffs->ms_os_descs_ext_prop_data_len += pdl;
2408 }
2409 break;
2410 default:
2411 pr_vdebug("unknown descriptor: %d\n", type);
2412 return -EINVAL;
2413 }
2414 return length;
2415 }
2416
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2417 static int __ffs_data_got_descs(struct ffs_data *ffs,
2418 char *const _data, size_t len)
2419 {
2420 char *data = _data, *raw_descs;
2421 unsigned os_descs_count = 0, counts[3], flags;
2422 int ret = -EINVAL, i;
2423 struct ffs_desc_helper helper;
2424
2425 if (get_unaligned_le32(data + 4) != len)
2426 goto error;
2427
2428 switch (get_unaligned_le32(data)) {
2429 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2430 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2431 data += 8;
2432 len -= 8;
2433 break;
2434 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2435 flags = get_unaligned_le32(data + 8);
2436 ffs->user_flags = flags;
2437 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2438 FUNCTIONFS_HAS_HS_DESC |
2439 FUNCTIONFS_HAS_SS_DESC |
2440 FUNCTIONFS_HAS_MS_OS_DESC |
2441 FUNCTIONFS_VIRTUAL_ADDR |
2442 FUNCTIONFS_EVENTFD |
2443 FUNCTIONFS_ALL_CTRL_RECIP |
2444 FUNCTIONFS_CONFIG0_SETUP)) {
2445 ret = -ENOSYS;
2446 goto error;
2447 }
2448 data += 12;
2449 len -= 12;
2450 break;
2451 default:
2452 goto error;
2453 }
2454
2455 if (flags & FUNCTIONFS_EVENTFD) {
2456 if (len < 4)
2457 goto error;
2458 ffs->ffs_eventfd =
2459 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2460 if (IS_ERR(ffs->ffs_eventfd)) {
2461 ret = PTR_ERR(ffs->ffs_eventfd);
2462 ffs->ffs_eventfd = NULL;
2463 goto error;
2464 }
2465 data += 4;
2466 len -= 4;
2467 }
2468
2469 /* Read fs_count, hs_count and ss_count (if present) */
2470 for (i = 0; i < 3; ++i) {
2471 if (!(flags & (1 << i))) {
2472 counts[i] = 0;
2473 } else if (len < 4) {
2474 goto error;
2475 } else {
2476 counts[i] = get_unaligned_le32(data);
2477 data += 4;
2478 len -= 4;
2479 }
2480 }
2481 if (flags & (1 << i)) {
2482 if (len < 4) {
2483 goto error;
2484 }
2485 os_descs_count = get_unaligned_le32(data);
2486 data += 4;
2487 len -= 4;
2488 }
2489
2490 /* Read descriptors */
2491 raw_descs = data;
2492 helper.ffs = ffs;
2493 for (i = 0; i < 3; ++i) {
2494 if (!counts[i])
2495 continue;
2496 helper.interfaces_count = 0;
2497 helper.eps_count = 0;
2498 ret = ffs_do_descs(counts[i], data, len,
2499 __ffs_data_do_entity, &helper);
2500 if (ret < 0)
2501 goto error;
2502 if (!ffs->eps_count && !ffs->interfaces_count) {
2503 ffs->eps_count = helper.eps_count;
2504 ffs->interfaces_count = helper.interfaces_count;
2505 } else {
2506 if (ffs->eps_count != helper.eps_count) {
2507 ret = -EINVAL;
2508 goto error;
2509 }
2510 if (ffs->interfaces_count != helper.interfaces_count) {
2511 ret = -EINVAL;
2512 goto error;
2513 }
2514 }
2515 data += ret;
2516 len -= ret;
2517 }
2518 if (os_descs_count) {
2519 ret = ffs_do_os_descs(os_descs_count, data, len,
2520 __ffs_data_do_os_desc, ffs);
2521 if (ret < 0)
2522 goto error;
2523 data += ret;
2524 len -= ret;
2525 }
2526
2527 if (raw_descs == data || len) {
2528 ret = -EINVAL;
2529 goto error;
2530 }
2531
2532 ffs->raw_descs_data = _data;
2533 ffs->raw_descs = raw_descs;
2534 ffs->raw_descs_length = data - raw_descs;
2535 ffs->fs_descs_count = counts[0];
2536 ffs->hs_descs_count = counts[1];
2537 ffs->ss_descs_count = counts[2];
2538 ffs->ms_os_descs_count = os_descs_count;
2539
2540 return 0;
2541
2542 error:
2543 kfree(_data);
2544 return ret;
2545 }
2546
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2547 static int __ffs_data_got_strings(struct ffs_data *ffs,
2548 char *const _data, size_t len)
2549 {
2550 u32 str_count, needed_count, lang_count;
2551 struct usb_gadget_strings **stringtabs, *t;
2552 const char *data = _data;
2553 struct usb_string *s;
2554
2555 if (len < 16 ||
2556 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2557 get_unaligned_le32(data + 4) != len)
2558 goto error;
2559 str_count = get_unaligned_le32(data + 8);
2560 lang_count = get_unaligned_le32(data + 12);
2561
2562 /* if one is zero the other must be zero */
2563 if (!str_count != !lang_count)
2564 goto error;
2565
2566 /* Do we have at least as many strings as descriptors need? */
2567 needed_count = ffs->strings_count;
2568 if (str_count < needed_count)
2569 goto error;
2570
2571 /*
2572 * If we don't need any strings just return and free all
2573 * memory.
2574 */
2575 if (!needed_count) {
2576 kfree(_data);
2577 return 0;
2578 }
2579
2580 /* Allocate everything in one chunk so there's less maintenance. */
2581 {
2582 unsigned i = 0;
2583 vla_group(d);
2584 vla_item(d, struct usb_gadget_strings *, stringtabs,
2585 size_add(lang_count, 1));
2586 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2587 vla_item(d, struct usb_string, strings,
2588 size_mul(lang_count, (needed_count + 1)));
2589
2590 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2591
2592 if (!vlabuf) {
2593 kfree(_data);
2594 return -ENOMEM;
2595 }
2596
2597 /* Initialize the VLA pointers */
2598 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2599 t = vla_ptr(vlabuf, d, stringtab);
2600 i = lang_count;
2601 do {
2602 *stringtabs++ = t++;
2603 } while (--i);
2604 *stringtabs = NULL;
2605
2606 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2607 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2608 t = vla_ptr(vlabuf, d, stringtab);
2609 s = vla_ptr(vlabuf, d, strings);
2610 }
2611
2612 /* For each language */
2613 data += 16;
2614 len -= 16;
2615
2616 do { /* lang_count > 0 so we can use do-while */
2617 unsigned needed = needed_count;
2618 u32 str_per_lang = str_count;
2619
2620 if (len < 3)
2621 goto error_free;
2622 t->language = get_unaligned_le16(data);
2623 t->strings = s;
2624 ++t;
2625
2626 data += 2;
2627 len -= 2;
2628
2629 /* For each string */
2630 do { /* str_count > 0 so we can use do-while */
2631 size_t length = strnlen(data, len);
2632
2633 if (length == len)
2634 goto error_free;
2635
2636 /*
2637 * User may provide more strings then we need,
2638 * if that's the case we simply ignore the
2639 * rest
2640 */
2641 if (needed) {
2642 /*
2643 * s->id will be set while adding
2644 * function to configuration so for
2645 * now just leave garbage here.
2646 */
2647 s->s = data;
2648 --needed;
2649 ++s;
2650 }
2651
2652 data += length + 1;
2653 len -= length + 1;
2654 } while (--str_per_lang);
2655
2656 s->id = 0; /* terminator */
2657 s->s = NULL;
2658 ++s;
2659
2660 } while (--lang_count);
2661
2662 /* Some garbage left? */
2663 if (len)
2664 goto error_free;
2665
2666 /* Done! */
2667 ffs->stringtabs = stringtabs;
2668 ffs->raw_strings = _data;
2669
2670 return 0;
2671
2672 error_free:
2673 kfree(stringtabs);
2674 error:
2675 kfree(_data);
2676 return -EINVAL;
2677 }
2678
2679
2680 /* Events handling and management *******************************************/
2681
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2682 static void __ffs_event_add(struct ffs_data *ffs,
2683 enum usb_functionfs_event_type type)
2684 {
2685 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2686 int neg = 0;
2687
2688 /*
2689 * Abort any unhandled setup
2690 *
2691 * We do not need to worry about some cmpxchg() changing value
2692 * of ffs->setup_state without holding the lock because when
2693 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2694 * the source does nothing.
2695 */
2696 if (ffs->setup_state == FFS_SETUP_PENDING)
2697 ffs->setup_state = FFS_SETUP_CANCELLED;
2698
2699 /*
2700 * Logic of this function guarantees that there are at most four pending
2701 * evens on ffs->ev.types queue. This is important because the queue
2702 * has space for four elements only and __ffs_ep0_read_events function
2703 * depends on that limit as well. If more event types are added, those
2704 * limits have to be revisited or guaranteed to still hold.
2705 */
2706 switch (type) {
2707 case FUNCTIONFS_RESUME:
2708 rem_type2 = FUNCTIONFS_SUSPEND;
2709 fallthrough;
2710 case FUNCTIONFS_SUSPEND:
2711 case FUNCTIONFS_SETUP:
2712 rem_type1 = type;
2713 /* Discard all similar events */
2714 break;
2715
2716 case FUNCTIONFS_BIND:
2717 case FUNCTIONFS_UNBIND:
2718 case FUNCTIONFS_DISABLE:
2719 case FUNCTIONFS_ENABLE:
2720 /* Discard everything other then power management. */
2721 rem_type1 = FUNCTIONFS_SUSPEND;
2722 rem_type2 = FUNCTIONFS_RESUME;
2723 neg = 1;
2724 break;
2725
2726 default:
2727 WARN(1, "%d: unknown event, this should not happen\n", type);
2728 return;
2729 }
2730
2731 {
2732 u8 *ev = ffs->ev.types, *out = ev;
2733 unsigned n = ffs->ev.count;
2734 for (; n; --n, ++ev)
2735 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2736 *out++ = *ev;
2737 else
2738 pr_vdebug("purging event %d\n", *ev);
2739 ffs->ev.count = out - ffs->ev.types;
2740 }
2741
2742 pr_vdebug("adding event %d\n", type);
2743 ffs->ev.types[ffs->ev.count++] = type;
2744 wake_up_locked(&ffs->ev.waitq);
2745 if (ffs->ffs_eventfd)
2746 eventfd_signal(ffs->ffs_eventfd, 1);
2747 }
2748
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2749 static void ffs_event_add(struct ffs_data *ffs,
2750 enum usb_functionfs_event_type type)
2751 {
2752 unsigned long flags;
2753 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2754 __ffs_event_add(ffs, type);
2755 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2756 }
2757
2758 /* Bind/unbind USB function hooks *******************************************/
2759
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2760 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2761 {
2762 int i;
2763
2764 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2765 if (ffs->eps_addrmap[i] == endpoint_address)
2766 return i;
2767 return -ENOENT;
2768 }
2769
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2770 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2771 struct usb_descriptor_header *desc,
2772 void *priv)
2773 {
2774 struct usb_endpoint_descriptor *ds = (void *)desc;
2775 struct ffs_function *func = priv;
2776 struct ffs_ep *ffs_ep;
2777 unsigned ep_desc_id;
2778 int idx;
2779 static const char *speed_names[] = { "full", "high", "super" };
2780
2781 if (type != FFS_DESCRIPTOR)
2782 return 0;
2783
2784 /*
2785 * If ss_descriptors is not NULL, we are reading super speed
2786 * descriptors; if hs_descriptors is not NULL, we are reading high
2787 * speed descriptors; otherwise, we are reading full speed
2788 * descriptors.
2789 */
2790 if (func->function.ss_descriptors) {
2791 ep_desc_id = 2;
2792 func->function.ss_descriptors[(long)valuep] = desc;
2793 } else if (func->function.hs_descriptors) {
2794 ep_desc_id = 1;
2795 func->function.hs_descriptors[(long)valuep] = desc;
2796 } else {
2797 ep_desc_id = 0;
2798 func->function.fs_descriptors[(long)valuep] = desc;
2799 }
2800
2801 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2802 return 0;
2803
2804 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2805 if (idx < 0)
2806 return idx;
2807
2808 ffs_ep = func->eps + idx;
2809
2810 if (ffs_ep->descs[ep_desc_id]) {
2811 pr_err("two %sspeed descriptors for EP %d\n",
2812 speed_names[ep_desc_id],
2813 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2814 return -EINVAL;
2815 }
2816 ffs_ep->descs[ep_desc_id] = ds;
2817
2818 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2819 if (ffs_ep->ep) {
2820 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2821 if (!ds->wMaxPacketSize)
2822 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2823 } else {
2824 struct usb_request *req;
2825 struct usb_ep *ep;
2826 u8 bEndpointAddress;
2827 u16 wMaxPacketSize;
2828
2829 /*
2830 * We back up bEndpointAddress because autoconfig overwrites
2831 * it with physical endpoint address.
2832 */
2833 bEndpointAddress = ds->bEndpointAddress;
2834 /*
2835 * We back up wMaxPacketSize because autoconfig treats
2836 * endpoint descriptors as if they were full speed.
2837 */
2838 wMaxPacketSize = ds->wMaxPacketSize;
2839 pr_vdebug("autoconfig\n");
2840 ep = usb_ep_autoconfig(func->gadget, ds);
2841 if (!ep)
2842 return -ENOTSUPP;
2843 ep->driver_data = func->eps + idx;
2844
2845 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2846 if (!req)
2847 return -ENOMEM;
2848
2849 ffs_ep->ep = ep;
2850 ffs_ep->req = req;
2851 func->eps_revmap[ds->bEndpointAddress &
2852 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2853 /*
2854 * If we use virtual address mapping, we restore
2855 * original bEndpointAddress value.
2856 */
2857 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2858 ds->bEndpointAddress = bEndpointAddress;
2859 /*
2860 * Restore wMaxPacketSize which was potentially
2861 * overwritten by autoconfig.
2862 */
2863 ds->wMaxPacketSize = wMaxPacketSize;
2864 }
2865 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2866
2867 return 0;
2868 }
2869
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2870 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2871 struct usb_descriptor_header *desc,
2872 void *priv)
2873 {
2874 struct ffs_function *func = priv;
2875 unsigned idx;
2876 u8 newValue;
2877
2878 switch (type) {
2879 default:
2880 case FFS_DESCRIPTOR:
2881 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2882 return 0;
2883
2884 case FFS_INTERFACE:
2885 idx = *valuep;
2886 if (func->interfaces_nums[idx] < 0) {
2887 int id = usb_interface_id(func->conf, &func->function);
2888 if (id < 0)
2889 return id;
2890 func->interfaces_nums[idx] = id;
2891 }
2892 newValue = func->interfaces_nums[idx];
2893 break;
2894
2895 case FFS_STRING:
2896 /* String' IDs are allocated when fsf_data is bound to cdev */
2897 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2898 break;
2899
2900 case FFS_ENDPOINT:
2901 /*
2902 * USB_DT_ENDPOINT are handled in
2903 * __ffs_func_bind_do_descs().
2904 */
2905 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2906 return 0;
2907
2908 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2909 if (!func->eps[idx].ep)
2910 return -EINVAL;
2911
2912 {
2913 struct usb_endpoint_descriptor **descs;
2914 descs = func->eps[idx].descs;
2915 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2916 }
2917 break;
2918 }
2919
2920 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2921 *valuep = newValue;
2922 return 0;
2923 }
2924
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2925 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2926 struct usb_os_desc_header *h, void *data,
2927 unsigned len, void *priv)
2928 {
2929 struct ffs_function *func = priv;
2930 u8 length = 0;
2931
2932 switch (type) {
2933 case FFS_OS_DESC_EXT_COMPAT: {
2934 struct usb_ext_compat_desc *desc = data;
2935 struct usb_os_desc_table *t;
2936
2937 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2938 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2939 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2940 ARRAY_SIZE(desc->CompatibleID) +
2941 ARRAY_SIZE(desc->SubCompatibleID));
2942 length = sizeof(*desc);
2943 }
2944 break;
2945 case FFS_OS_DESC_EXT_PROP: {
2946 struct usb_ext_prop_desc *desc = data;
2947 struct usb_os_desc_table *t;
2948 struct usb_os_desc_ext_prop *ext_prop;
2949 char *ext_prop_name;
2950 char *ext_prop_data;
2951
2952 t = &func->function.os_desc_table[h->interface];
2953 t->if_id = func->interfaces_nums[h->interface];
2954
2955 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2956 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2957
2958 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2959 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2960 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2961 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2962 length = ext_prop->name_len + ext_prop->data_len + 14;
2963
2964 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2965 func->ffs->ms_os_descs_ext_prop_name_avail +=
2966 ext_prop->name_len;
2967
2968 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2969 func->ffs->ms_os_descs_ext_prop_data_avail +=
2970 ext_prop->data_len;
2971 memcpy(ext_prop_data,
2972 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2973 ext_prop->data_len);
2974 /* unicode data reported to the host as "WCHAR"s */
2975 switch (ext_prop->type) {
2976 case USB_EXT_PROP_UNICODE:
2977 case USB_EXT_PROP_UNICODE_ENV:
2978 case USB_EXT_PROP_UNICODE_LINK:
2979 case USB_EXT_PROP_UNICODE_MULTI:
2980 ext_prop->data_len *= 2;
2981 break;
2982 }
2983 ext_prop->data = ext_prop_data;
2984
2985 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2986 ext_prop->name_len);
2987 /* property name reported to the host as "WCHAR"s */
2988 ext_prop->name_len *= 2;
2989 ext_prop->name = ext_prop_name;
2990
2991 t->os_desc->ext_prop_len +=
2992 ext_prop->name_len + ext_prop->data_len + 14;
2993 ++t->os_desc->ext_prop_count;
2994 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2995 }
2996 break;
2997 default:
2998 pr_vdebug("unknown descriptor: %d\n", type);
2999 }
3000
3001 return length;
3002 }
3003
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3004 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3005 struct usb_configuration *c)
3006 {
3007 struct ffs_function *func = ffs_func_from_usb(f);
3008 struct f_fs_opts *ffs_opts =
3009 container_of(f->fi, struct f_fs_opts, func_inst);
3010 struct ffs_data *ffs_data;
3011 int ret;
3012
3013 /*
3014 * Legacy gadget triggers binding in functionfs_ready_callback,
3015 * which already uses locking; taking the same lock here would
3016 * cause a deadlock.
3017 *
3018 * Configfs-enabled gadgets however do need ffs_dev_lock.
3019 */
3020 if (!ffs_opts->no_configfs)
3021 ffs_dev_lock();
3022 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3023 ffs_data = ffs_opts->dev->ffs_data;
3024 if (!ffs_opts->no_configfs)
3025 ffs_dev_unlock();
3026 if (ret)
3027 return ERR_PTR(ret);
3028
3029 func->ffs = ffs_data;
3030 func->conf = c;
3031 func->gadget = c->cdev->gadget;
3032
3033 /*
3034 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3035 * configurations are bound in sequence with list_for_each_entry,
3036 * in each configuration its functions are bound in sequence
3037 * with list_for_each_entry, so we assume no race condition
3038 * with regard to ffs_opts->bound access
3039 */
3040 if (!ffs_opts->refcnt) {
3041 ret = functionfs_bind(func->ffs, c->cdev);
3042 if (ret)
3043 return ERR_PTR(ret);
3044 }
3045 ffs_opts->refcnt++;
3046 func->function.strings = func->ffs->stringtabs;
3047
3048 return ffs_opts;
3049 }
3050
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3051 static int _ffs_func_bind(struct usb_configuration *c,
3052 struct usb_function *f)
3053 {
3054 struct ffs_function *func = ffs_func_from_usb(f);
3055 struct ffs_data *ffs = func->ffs;
3056
3057 const int full = !!func->ffs->fs_descs_count;
3058 const int high = !!func->ffs->hs_descs_count;
3059 const int super = !!func->ffs->ss_descs_count;
3060
3061 int fs_len, hs_len, ss_len, ret, i;
3062 struct ffs_ep *eps_ptr;
3063
3064 /* Make it a single chunk, less management later on */
3065 vla_group(d);
3066 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3067 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3068 full ? ffs->fs_descs_count + 1 : 0);
3069 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3070 high ? ffs->hs_descs_count + 1 : 0);
3071 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3072 super ? ffs->ss_descs_count + 1 : 0);
3073 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3074 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3075 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3076 vla_item_with_sz(d, char[16], ext_compat,
3077 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3078 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3079 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3080 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3081 ffs->ms_os_descs_ext_prop_count);
3082 vla_item_with_sz(d, char, ext_prop_name,
3083 ffs->ms_os_descs_ext_prop_name_len);
3084 vla_item_with_sz(d, char, ext_prop_data,
3085 ffs->ms_os_descs_ext_prop_data_len);
3086 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3087 char *vlabuf;
3088
3089 /* Has descriptors only for speeds gadget does not support */
3090 if (!(full | high | super))
3091 return -ENOTSUPP;
3092
3093 /* Allocate a single chunk, less management later on */
3094 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3095 if (!vlabuf)
3096 return -ENOMEM;
3097
3098 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3099 ffs->ms_os_descs_ext_prop_name_avail =
3100 vla_ptr(vlabuf, d, ext_prop_name);
3101 ffs->ms_os_descs_ext_prop_data_avail =
3102 vla_ptr(vlabuf, d, ext_prop_data);
3103
3104 /* Copy descriptors */
3105 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3106 ffs->raw_descs_length);
3107
3108 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3109 eps_ptr = vla_ptr(vlabuf, d, eps);
3110 for (i = 0; i < ffs->eps_count; i++)
3111 eps_ptr[i].num = -1;
3112
3113 /* Save pointers
3114 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3115 */
3116 func->eps = vla_ptr(vlabuf, d, eps);
3117 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3118
3119 /*
3120 * Go through all the endpoint descriptors and allocate
3121 * endpoints first, so that later we can rewrite the endpoint
3122 * numbers without worrying that it may be described later on.
3123 */
3124 if (full) {
3125 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3126 fs_len = ffs_do_descs(ffs->fs_descs_count,
3127 vla_ptr(vlabuf, d, raw_descs),
3128 d_raw_descs__sz,
3129 __ffs_func_bind_do_descs, func);
3130 if (fs_len < 0) {
3131 ret = fs_len;
3132 goto error;
3133 }
3134 } else {
3135 fs_len = 0;
3136 }
3137
3138 if (high) {
3139 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3140 hs_len = ffs_do_descs(ffs->hs_descs_count,
3141 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3142 d_raw_descs__sz - fs_len,
3143 __ffs_func_bind_do_descs, func);
3144 if (hs_len < 0) {
3145 ret = hs_len;
3146 goto error;
3147 }
3148 } else {
3149 hs_len = 0;
3150 }
3151
3152 if (super) {
3153 func->function.ss_descriptors = func->function.ssp_descriptors =
3154 vla_ptr(vlabuf, d, ss_descs);
3155 ss_len = ffs_do_descs(ffs->ss_descs_count,
3156 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3157 d_raw_descs__sz - fs_len - hs_len,
3158 __ffs_func_bind_do_descs, func);
3159 if (ss_len < 0) {
3160 ret = ss_len;
3161 goto error;
3162 }
3163 } else {
3164 ss_len = 0;
3165 }
3166
3167 /*
3168 * Now handle interface numbers allocation and interface and
3169 * endpoint numbers rewriting. We can do that in one go
3170 * now.
3171 */
3172 ret = ffs_do_descs(ffs->fs_descs_count +
3173 (high ? ffs->hs_descs_count : 0) +
3174 (super ? ffs->ss_descs_count : 0),
3175 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3176 __ffs_func_bind_do_nums, func);
3177 if (ret < 0)
3178 goto error;
3179
3180 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3181 if (c->cdev->use_os_string) {
3182 for (i = 0; i < ffs->interfaces_count; ++i) {
3183 struct usb_os_desc *desc;
3184
3185 desc = func->function.os_desc_table[i].os_desc =
3186 vla_ptr(vlabuf, d, os_desc) +
3187 i * sizeof(struct usb_os_desc);
3188 desc->ext_compat_id =
3189 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3190 INIT_LIST_HEAD(&desc->ext_prop);
3191 }
3192 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3193 vla_ptr(vlabuf, d, raw_descs) +
3194 fs_len + hs_len + ss_len,
3195 d_raw_descs__sz - fs_len - hs_len -
3196 ss_len,
3197 __ffs_func_bind_do_os_desc, func);
3198 if (ret < 0)
3199 goto error;
3200 }
3201 func->function.os_desc_n =
3202 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3203
3204 /* And we're done */
3205 ffs_event_add(ffs, FUNCTIONFS_BIND);
3206 return 0;
3207
3208 error:
3209 /* XXX Do we need to release all claimed endpoints here? */
3210 return ret;
3211 }
3212
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3213 static int ffs_func_bind(struct usb_configuration *c,
3214 struct usb_function *f)
3215 {
3216 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3217 struct ffs_function *func = ffs_func_from_usb(f);
3218 int ret;
3219
3220 if (IS_ERR(ffs_opts))
3221 return PTR_ERR(ffs_opts);
3222
3223 ret = _ffs_func_bind(c, f);
3224 if (ret && !--ffs_opts->refcnt)
3225 functionfs_unbind(func->ffs);
3226
3227 return ret;
3228 }
3229
3230
3231 /* Other USB function hooks *************************************************/
3232
ffs_reset_work(struct work_struct * work)3233 static void ffs_reset_work(struct work_struct *work)
3234 {
3235 struct ffs_data *ffs = container_of(work,
3236 struct ffs_data, reset_work);
3237 ffs_data_reset(ffs);
3238 }
3239
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3240 static int ffs_func_set_alt(struct usb_function *f,
3241 unsigned interface, unsigned alt)
3242 {
3243 struct ffs_function *func = ffs_func_from_usb(f);
3244 struct ffs_data *ffs = func->ffs;
3245 int ret = 0, intf;
3246
3247 if (alt != (unsigned)-1) {
3248 intf = ffs_func_revmap_intf(func, interface);
3249 if (intf < 0)
3250 return intf;
3251 }
3252
3253 if (ffs->func)
3254 ffs_func_eps_disable(ffs->func);
3255
3256 if (ffs->state == FFS_DEACTIVATED) {
3257 ffs->state = FFS_CLOSING;
3258 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3259 schedule_work(&ffs->reset_work);
3260 return -ENODEV;
3261 }
3262
3263 if (ffs->state != FFS_ACTIVE)
3264 return -ENODEV;
3265
3266 if (alt == (unsigned)-1) {
3267 ffs->func = NULL;
3268 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3269 return 0;
3270 }
3271
3272 ffs->func = func;
3273 ret = ffs_func_eps_enable(func);
3274 if (ret >= 0)
3275 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3276 return ret;
3277 }
3278
ffs_func_disable(struct usb_function * f)3279 static void ffs_func_disable(struct usb_function *f)
3280 {
3281 ffs_func_set_alt(f, 0, (unsigned)-1);
3282 }
3283
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3284 static int ffs_func_setup(struct usb_function *f,
3285 const struct usb_ctrlrequest *creq)
3286 {
3287 struct ffs_function *func = ffs_func_from_usb(f);
3288 struct ffs_data *ffs = func->ffs;
3289 unsigned long flags;
3290 int ret;
3291
3292 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3293 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3294 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3295 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3296 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3297
3298 /*
3299 * Most requests directed to interface go through here
3300 * (notable exceptions are set/get interface) so we need to
3301 * handle them. All other either handled by composite or
3302 * passed to usb_configuration->setup() (if one is set). No
3303 * matter, we will handle requests directed to endpoint here
3304 * as well (as it's straightforward). Other request recipient
3305 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3306 * is being used.
3307 */
3308 if (ffs->state != FFS_ACTIVE)
3309 return -ENODEV;
3310
3311 switch (creq->bRequestType & USB_RECIP_MASK) {
3312 case USB_RECIP_INTERFACE:
3313 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3314 if (ret < 0)
3315 return ret;
3316 break;
3317
3318 case USB_RECIP_ENDPOINT:
3319 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3320 if (ret < 0)
3321 return ret;
3322 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3323 ret = func->ffs->eps_addrmap[ret];
3324 break;
3325
3326 default:
3327 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3328 ret = le16_to_cpu(creq->wIndex);
3329 else
3330 return -EOPNOTSUPP;
3331 }
3332
3333 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3334 ffs->ev.setup = *creq;
3335 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3336 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3337 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3338
3339 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3340 }
3341
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3342 static bool ffs_func_req_match(struct usb_function *f,
3343 const struct usb_ctrlrequest *creq,
3344 bool config0)
3345 {
3346 struct ffs_function *func = ffs_func_from_usb(f);
3347
3348 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3349 return false;
3350
3351 switch (creq->bRequestType & USB_RECIP_MASK) {
3352 case USB_RECIP_INTERFACE:
3353 return (ffs_func_revmap_intf(func,
3354 le16_to_cpu(creq->wIndex)) >= 0);
3355 case USB_RECIP_ENDPOINT:
3356 return (ffs_func_revmap_ep(func,
3357 le16_to_cpu(creq->wIndex)) >= 0);
3358 default:
3359 return (bool) (func->ffs->user_flags &
3360 FUNCTIONFS_ALL_CTRL_RECIP);
3361 }
3362 }
3363
ffs_func_suspend(struct usb_function * f)3364 static void ffs_func_suspend(struct usb_function *f)
3365 {
3366 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3367 }
3368
ffs_func_resume(struct usb_function * f)3369 static void ffs_func_resume(struct usb_function *f)
3370 {
3371 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3372 }
3373
3374
3375 /* Endpoint and interface numbers reverse mapping ***************************/
3376
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3377 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3378 {
3379 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3380 return num ? num : -EDOM;
3381 }
3382
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3383 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3384 {
3385 short *nums = func->interfaces_nums;
3386 unsigned count = func->ffs->interfaces_count;
3387
3388 for (; count; --count, ++nums) {
3389 if (*nums >= 0 && *nums == intf)
3390 return nums - func->interfaces_nums;
3391 }
3392
3393 return -EDOM;
3394 }
3395
3396
3397 /* Devices management *******************************************************/
3398
3399 static LIST_HEAD(ffs_devices);
3400
_ffs_do_find_dev(const char * name)3401 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3402 {
3403 struct ffs_dev *dev;
3404
3405 if (!name)
3406 return NULL;
3407
3408 list_for_each_entry(dev, &ffs_devices, entry) {
3409 if (strcmp(dev->name, name) == 0)
3410 return dev;
3411 }
3412
3413 return NULL;
3414 }
3415
3416 /*
3417 * ffs_lock must be taken by the caller of this function
3418 */
_ffs_get_single_dev(void)3419 static struct ffs_dev *_ffs_get_single_dev(void)
3420 {
3421 struct ffs_dev *dev;
3422
3423 if (list_is_singular(&ffs_devices)) {
3424 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3425 if (dev->single)
3426 return dev;
3427 }
3428
3429 return NULL;
3430 }
3431
3432 /*
3433 * ffs_lock must be taken by the caller of this function
3434 */
_ffs_find_dev(const char * name)3435 static struct ffs_dev *_ffs_find_dev(const char *name)
3436 {
3437 struct ffs_dev *dev;
3438
3439 dev = _ffs_get_single_dev();
3440 if (dev)
3441 return dev;
3442
3443 return _ffs_do_find_dev(name);
3444 }
3445
3446 /* Configfs support *********************************************************/
3447
to_ffs_opts(struct config_item * item)3448 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3449 {
3450 return container_of(to_config_group(item), struct f_fs_opts,
3451 func_inst.group);
3452 }
3453
ffs_attr_release(struct config_item * item)3454 static void ffs_attr_release(struct config_item *item)
3455 {
3456 struct f_fs_opts *opts = to_ffs_opts(item);
3457
3458 usb_put_function_instance(&opts->func_inst);
3459 }
3460
3461 static struct configfs_item_operations ffs_item_ops = {
3462 .release = ffs_attr_release,
3463 };
3464
3465 static const struct config_item_type ffs_func_type = {
3466 .ct_item_ops = &ffs_item_ops,
3467 .ct_owner = THIS_MODULE,
3468 };
3469
3470
3471 /* Function registration interface ******************************************/
3472
ffs_free_inst(struct usb_function_instance * f)3473 static void ffs_free_inst(struct usb_function_instance *f)
3474 {
3475 struct f_fs_opts *opts;
3476
3477 opts = to_f_fs_opts(f);
3478 ffs_release_dev(opts->dev);
3479 ffs_dev_lock();
3480 _ffs_free_dev(opts->dev);
3481 ffs_dev_unlock();
3482 kfree(opts);
3483 }
3484
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3485 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3486 {
3487 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3488 return -ENAMETOOLONG;
3489 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3490 }
3491
ffs_alloc_inst(void)3492 static struct usb_function_instance *ffs_alloc_inst(void)
3493 {
3494 struct f_fs_opts *opts;
3495 struct ffs_dev *dev;
3496
3497 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3498 if (!opts)
3499 return ERR_PTR(-ENOMEM);
3500
3501 opts->func_inst.set_inst_name = ffs_set_inst_name;
3502 opts->func_inst.free_func_inst = ffs_free_inst;
3503 ffs_dev_lock();
3504 dev = _ffs_alloc_dev();
3505 ffs_dev_unlock();
3506 if (IS_ERR(dev)) {
3507 kfree(opts);
3508 return ERR_CAST(dev);
3509 }
3510 opts->dev = dev;
3511 dev->opts = opts;
3512
3513 config_group_init_type_name(&opts->func_inst.group, "",
3514 &ffs_func_type);
3515 return &opts->func_inst;
3516 }
3517
ffs_free(struct usb_function * f)3518 static void ffs_free(struct usb_function *f)
3519 {
3520 kfree(ffs_func_from_usb(f));
3521 }
3522
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3523 static void ffs_func_unbind(struct usb_configuration *c,
3524 struct usb_function *f)
3525 {
3526 struct ffs_function *func = ffs_func_from_usb(f);
3527 struct ffs_data *ffs = func->ffs;
3528 struct f_fs_opts *opts =
3529 container_of(f->fi, struct f_fs_opts, func_inst);
3530 struct ffs_ep *ep = func->eps;
3531 unsigned count = ffs->eps_count;
3532 unsigned long flags;
3533
3534 if (ffs->func == func) {
3535 ffs_func_eps_disable(func);
3536 ffs->func = NULL;
3537 }
3538
3539 /* Drain any pending AIO completions */
3540 drain_workqueue(ffs->io_completion_wq);
3541
3542 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3543 if (!--opts->refcnt)
3544 functionfs_unbind(ffs);
3545
3546 /* cleanup after autoconfig */
3547 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3548 while (count--) {
3549 if (ep->ep && ep->req)
3550 usb_ep_free_request(ep->ep, ep->req);
3551 ep->req = NULL;
3552 ++ep;
3553 }
3554 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3555 kfree(func->eps);
3556 func->eps = NULL;
3557 /*
3558 * eps, descriptors and interfaces_nums are allocated in the
3559 * same chunk so only one free is required.
3560 */
3561 func->function.fs_descriptors = NULL;
3562 func->function.hs_descriptors = NULL;
3563 func->function.ss_descriptors = NULL;
3564 func->function.ssp_descriptors = NULL;
3565 func->interfaces_nums = NULL;
3566
3567 }
3568
ffs_alloc(struct usb_function_instance * fi)3569 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3570 {
3571 struct ffs_function *func;
3572
3573 func = kzalloc(sizeof(*func), GFP_KERNEL);
3574 if (!func)
3575 return ERR_PTR(-ENOMEM);
3576
3577 func->function.name = "Function FS Gadget";
3578
3579 func->function.bind = ffs_func_bind;
3580 func->function.unbind = ffs_func_unbind;
3581 func->function.set_alt = ffs_func_set_alt;
3582 func->function.disable = ffs_func_disable;
3583 func->function.setup = ffs_func_setup;
3584 func->function.req_match = ffs_func_req_match;
3585 func->function.suspend = ffs_func_suspend;
3586 func->function.resume = ffs_func_resume;
3587 func->function.free_func = ffs_free;
3588
3589 return &func->function;
3590 }
3591
3592 /*
3593 * ffs_lock must be taken by the caller of this function
3594 */
_ffs_alloc_dev(void)3595 static struct ffs_dev *_ffs_alloc_dev(void)
3596 {
3597 struct ffs_dev *dev;
3598 int ret;
3599
3600 if (_ffs_get_single_dev())
3601 return ERR_PTR(-EBUSY);
3602
3603 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3604 if (!dev)
3605 return ERR_PTR(-ENOMEM);
3606
3607 if (list_empty(&ffs_devices)) {
3608 ret = functionfs_init();
3609 if (ret) {
3610 kfree(dev);
3611 return ERR_PTR(ret);
3612 }
3613 }
3614
3615 list_add(&dev->entry, &ffs_devices);
3616
3617 return dev;
3618 }
3619
ffs_name_dev(struct ffs_dev * dev,const char * name)3620 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3621 {
3622 struct ffs_dev *existing;
3623 int ret = 0;
3624
3625 ffs_dev_lock();
3626
3627 existing = _ffs_do_find_dev(name);
3628 if (!existing)
3629 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3630 else if (existing != dev)
3631 ret = -EBUSY;
3632
3633 ffs_dev_unlock();
3634
3635 return ret;
3636 }
3637 EXPORT_SYMBOL_GPL(ffs_name_dev);
3638
ffs_single_dev(struct ffs_dev * dev)3639 int ffs_single_dev(struct ffs_dev *dev)
3640 {
3641 int ret;
3642
3643 ret = 0;
3644 ffs_dev_lock();
3645
3646 if (!list_is_singular(&ffs_devices))
3647 ret = -EBUSY;
3648 else
3649 dev->single = true;
3650
3651 ffs_dev_unlock();
3652 return ret;
3653 }
3654 EXPORT_SYMBOL_GPL(ffs_single_dev);
3655
3656 /*
3657 * ffs_lock must be taken by the caller of this function
3658 */
_ffs_free_dev(struct ffs_dev * dev)3659 static void _ffs_free_dev(struct ffs_dev *dev)
3660 {
3661 list_del(&dev->entry);
3662
3663 kfree(dev);
3664 if (list_empty(&ffs_devices))
3665 functionfs_cleanup();
3666 }
3667
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3668 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3669 {
3670 int ret = 0;
3671 struct ffs_dev *ffs_dev;
3672
3673 ffs_dev_lock();
3674
3675 ffs_dev = _ffs_find_dev(dev_name);
3676 if (!ffs_dev) {
3677 ret = -ENOENT;
3678 } else if (ffs_dev->mounted) {
3679 ret = -EBUSY;
3680 } else if (ffs_dev->ffs_acquire_dev_callback &&
3681 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3682 ret = -ENOENT;
3683 } else {
3684 ffs_dev->mounted = true;
3685 ffs_dev->ffs_data = ffs_data;
3686 ffs_data->private_data = ffs_dev;
3687 }
3688
3689 ffs_dev_unlock();
3690 return ret;
3691 }
3692
ffs_release_dev(struct ffs_dev * ffs_dev)3693 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3694 {
3695 ffs_dev_lock();
3696
3697 if (ffs_dev && ffs_dev->mounted) {
3698 ffs_dev->mounted = false;
3699 if (ffs_dev->ffs_data) {
3700 ffs_dev->ffs_data->private_data = NULL;
3701 ffs_dev->ffs_data = NULL;
3702 }
3703
3704 if (ffs_dev->ffs_release_dev_callback)
3705 ffs_dev->ffs_release_dev_callback(ffs_dev);
3706 }
3707
3708 ffs_dev_unlock();
3709 }
3710
ffs_ready(struct ffs_data * ffs)3711 static int ffs_ready(struct ffs_data *ffs)
3712 {
3713 struct ffs_dev *ffs_obj;
3714 int ret = 0;
3715
3716 ffs_dev_lock();
3717
3718 ffs_obj = ffs->private_data;
3719 if (!ffs_obj) {
3720 ret = -EINVAL;
3721 goto done;
3722 }
3723 if (WARN_ON(ffs_obj->desc_ready)) {
3724 ret = -EBUSY;
3725 goto done;
3726 }
3727
3728 ffs_obj->desc_ready = true;
3729
3730 if (ffs_obj->ffs_ready_callback) {
3731 ret = ffs_obj->ffs_ready_callback(ffs);
3732 if (ret)
3733 goto done;
3734 }
3735
3736 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3737 done:
3738 ffs_dev_unlock();
3739 return ret;
3740 }
3741
ffs_closed(struct ffs_data * ffs)3742 static void ffs_closed(struct ffs_data *ffs)
3743 {
3744 struct ffs_dev *ffs_obj;
3745 struct f_fs_opts *opts;
3746 struct config_item *ci;
3747
3748 ffs_dev_lock();
3749
3750 ffs_obj = ffs->private_data;
3751 if (!ffs_obj)
3752 goto done;
3753
3754 ffs_obj->desc_ready = false;
3755
3756 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3757 ffs_obj->ffs_closed_callback)
3758 ffs_obj->ffs_closed_callback(ffs);
3759
3760 if (ffs_obj->opts)
3761 opts = ffs_obj->opts;
3762 else
3763 goto done;
3764
3765 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3766 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3767 goto done;
3768
3769 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3770 ffs_dev_unlock();
3771
3772 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3773 unregister_gadget_item(ci);
3774 return;
3775 done:
3776 ffs_dev_unlock();
3777 }
3778
3779 /* Misc helper functions ****************************************************/
3780
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3781 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3782 {
3783 return nonblock
3784 ? mutex_trylock(mutex) ? 0 : -EAGAIN
3785 : mutex_lock_interruptible(mutex);
3786 }
3787
ffs_prepare_buffer(const char __user * buf,size_t len)3788 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3789 {
3790 char *data;
3791
3792 if (!len)
3793 return NULL;
3794
3795 data = memdup_user(buf, len);
3796 if (IS_ERR(data))
3797 return data;
3798
3799 pr_vdebug("Buffer from user space:\n");
3800 ffs_dump_mem("", data, len);
3801
3802 return data;
3803 }
3804
3805 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3806 MODULE_LICENSE("GPL");
3807 MODULE_AUTHOR("Michal Nazarewicz");
3808