1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5 
6 #include <linux/topology.h>
7 #include <linux/cpumask.h>
8 #include <linux/interrupt.h>
9 #include <linux/numa.h>
10 
11 #include "hfi.h"
12 #include "affinity.h"
13 #include "sdma.h"
14 #include "trace.h"
15 
16 struct hfi1_affinity_node_list node_affinity = {
17 	.list = LIST_HEAD_INIT(node_affinity.list),
18 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
19 };
20 
21 /* Name of IRQ types, indexed by enum irq_type */
22 static const char * const irq_type_names[] = {
23 	"SDMA",
24 	"RCVCTXT",
25 	"NETDEVCTXT",
26 	"GENERAL",
27 	"OTHER",
28 };
29 
30 /* Per NUMA node count of HFI devices */
31 static unsigned int *hfi1_per_node_cntr;
32 
init_cpu_mask_set(struct cpu_mask_set * set)33 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
34 {
35 	cpumask_clear(&set->mask);
36 	cpumask_clear(&set->used);
37 	set->gen = 0;
38 }
39 
40 /* Increment generation of CPU set if needed */
_cpu_mask_set_gen_inc(struct cpu_mask_set * set)41 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
42 {
43 	if (cpumask_equal(&set->mask, &set->used)) {
44 		/*
45 		 * We've used up all the CPUs, bump up the generation
46 		 * and reset the 'used' map
47 		 */
48 		set->gen++;
49 		cpumask_clear(&set->used);
50 	}
51 }
52 
_cpu_mask_set_gen_dec(struct cpu_mask_set * set)53 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
54 {
55 	if (cpumask_empty(&set->used) && set->gen) {
56 		set->gen--;
57 		cpumask_copy(&set->used, &set->mask);
58 	}
59 }
60 
61 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
cpu_mask_set_get_first(struct cpu_mask_set * set,cpumask_var_t diff)62 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
63 {
64 	int cpu;
65 
66 	if (!diff || !set)
67 		return -EINVAL;
68 
69 	_cpu_mask_set_gen_inc(set);
70 
71 	/* Find out CPUs left in CPU mask */
72 	cpumask_andnot(diff, &set->mask, &set->used);
73 
74 	cpu = cpumask_first(diff);
75 	if (cpu >= nr_cpu_ids) /* empty */
76 		cpu = -EINVAL;
77 	else
78 		cpumask_set_cpu(cpu, &set->used);
79 
80 	return cpu;
81 }
82 
cpu_mask_set_put(struct cpu_mask_set * set,int cpu)83 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
84 {
85 	if (!set)
86 		return;
87 
88 	cpumask_clear_cpu(cpu, &set->used);
89 	_cpu_mask_set_gen_dec(set);
90 }
91 
92 /* Initialize non-HT cpu cores mask */
init_real_cpu_mask(void)93 void init_real_cpu_mask(void)
94 {
95 	int possible, curr_cpu, i, ht;
96 
97 	cpumask_clear(&node_affinity.real_cpu_mask);
98 
99 	/* Start with cpu online mask as the real cpu mask */
100 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
101 
102 	/*
103 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
104 	 */
105 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
106 	ht = cpumask_weight(topology_sibling_cpumask(
107 				cpumask_first(&node_affinity.real_cpu_mask)));
108 	/*
109 	 * Step 1.  Skip over the first N HT siblings and use them as the
110 	 * "real" cores.  Assumes that HT cores are not enumerated in
111 	 * succession (except in the single core case).
112 	 */
113 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
114 	for (i = 0; i < possible / ht; i++)
115 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
116 	/*
117 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
118 	 * skip any gaps.
119 	 */
120 	for (; i < possible; i++) {
121 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
122 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
123 	}
124 }
125 
node_affinity_init(void)126 int node_affinity_init(void)
127 {
128 	int node;
129 	struct pci_dev *dev = NULL;
130 	const struct pci_device_id *ids = hfi1_pci_tbl;
131 
132 	cpumask_clear(&node_affinity.proc.used);
133 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
134 
135 	node_affinity.proc.gen = 0;
136 	node_affinity.num_core_siblings =
137 				cpumask_weight(topology_sibling_cpumask(
138 					cpumask_first(&node_affinity.proc.mask)
139 					));
140 	node_affinity.num_possible_nodes = num_possible_nodes();
141 	node_affinity.num_online_nodes = num_online_nodes();
142 	node_affinity.num_online_cpus = num_online_cpus();
143 
144 	/*
145 	 * The real cpu mask is part of the affinity struct but it has to be
146 	 * initialized early. It is needed to calculate the number of user
147 	 * contexts in set_up_context_variables().
148 	 */
149 	init_real_cpu_mask();
150 
151 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
152 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
153 	if (!hfi1_per_node_cntr)
154 		return -ENOMEM;
155 
156 	while (ids->vendor) {
157 		dev = NULL;
158 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
159 			node = pcibus_to_node(dev->bus);
160 			if (node < 0)
161 				goto out;
162 
163 			hfi1_per_node_cntr[node]++;
164 		}
165 		ids++;
166 	}
167 
168 	return 0;
169 
170 out:
171 	/*
172 	 * Invalid PCI NUMA node information found, note it, and populate
173 	 * our database 1:1.
174 	 */
175 	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
176 	pr_err("HFI: System BIOS may need to be upgraded\n");
177 	for (node = 0; node < node_affinity.num_possible_nodes; node++)
178 		hfi1_per_node_cntr[node] = 1;
179 
180 	pci_dev_put(dev);
181 
182 	return 0;
183 }
184 
node_affinity_destroy(struct hfi1_affinity_node * entry)185 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
186 {
187 	free_percpu(entry->comp_vect_affinity);
188 	kfree(entry);
189 }
190 
node_affinity_destroy_all(void)191 void node_affinity_destroy_all(void)
192 {
193 	struct list_head *pos, *q;
194 	struct hfi1_affinity_node *entry;
195 
196 	mutex_lock(&node_affinity.lock);
197 	list_for_each_safe(pos, q, &node_affinity.list) {
198 		entry = list_entry(pos, struct hfi1_affinity_node,
199 				   list);
200 		list_del(pos);
201 		node_affinity_destroy(entry);
202 	}
203 	mutex_unlock(&node_affinity.lock);
204 	kfree(hfi1_per_node_cntr);
205 }
206 
node_affinity_allocate(int node)207 static struct hfi1_affinity_node *node_affinity_allocate(int node)
208 {
209 	struct hfi1_affinity_node *entry;
210 
211 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
212 	if (!entry)
213 		return NULL;
214 	entry->node = node;
215 	entry->comp_vect_affinity = alloc_percpu(u16);
216 	INIT_LIST_HEAD(&entry->list);
217 
218 	return entry;
219 }
220 
221 /*
222  * It appends an entry to the list.
223  * It *must* be called with node_affinity.lock held.
224  */
node_affinity_add_tail(struct hfi1_affinity_node * entry)225 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
226 {
227 	list_add_tail(&entry->list, &node_affinity.list);
228 }
229 
230 /* It must be called with node_affinity.lock held */
node_affinity_lookup(int node)231 static struct hfi1_affinity_node *node_affinity_lookup(int node)
232 {
233 	struct hfi1_affinity_node *entry;
234 
235 	list_for_each_entry(entry, &node_affinity.list, list) {
236 		if (entry->node == node)
237 			return entry;
238 	}
239 
240 	return NULL;
241 }
242 
per_cpu_affinity_get(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)243 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
244 				u16 __percpu *comp_vect_affinity)
245 {
246 	int curr_cpu;
247 	u16 cntr;
248 	u16 prev_cntr;
249 	int ret_cpu;
250 
251 	if (!possible_cpumask) {
252 		ret_cpu = -EINVAL;
253 		goto fail;
254 	}
255 
256 	if (!comp_vect_affinity) {
257 		ret_cpu = -EINVAL;
258 		goto fail;
259 	}
260 
261 	ret_cpu = cpumask_first(possible_cpumask);
262 	if (ret_cpu >= nr_cpu_ids) {
263 		ret_cpu = -EINVAL;
264 		goto fail;
265 	}
266 
267 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
268 	for_each_cpu(curr_cpu, possible_cpumask) {
269 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
270 
271 		if (cntr < prev_cntr) {
272 			ret_cpu = curr_cpu;
273 			prev_cntr = cntr;
274 		}
275 	}
276 
277 	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
278 
279 fail:
280 	return ret_cpu;
281 }
282 
per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)283 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
284 				    u16 __percpu *comp_vect_affinity)
285 {
286 	int curr_cpu;
287 	int max_cpu;
288 	u16 cntr;
289 	u16 prev_cntr;
290 
291 	if (!possible_cpumask)
292 		return -EINVAL;
293 
294 	if (!comp_vect_affinity)
295 		return -EINVAL;
296 
297 	max_cpu = cpumask_first(possible_cpumask);
298 	if (max_cpu >= nr_cpu_ids)
299 		return -EINVAL;
300 
301 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
302 	for_each_cpu(curr_cpu, possible_cpumask) {
303 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
304 
305 		if (cntr > prev_cntr) {
306 			max_cpu = curr_cpu;
307 			prev_cntr = cntr;
308 		}
309 	}
310 
311 	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
312 
313 	return max_cpu;
314 }
315 
316 /*
317  * Non-interrupt CPUs are used first, then interrupt CPUs.
318  * Two already allocated cpu masks must be passed.
319  */
_dev_comp_vect_cpu_get(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,cpumask_var_t non_intr_cpus,cpumask_var_t available_cpus)320 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
321 				  struct hfi1_affinity_node *entry,
322 				  cpumask_var_t non_intr_cpus,
323 				  cpumask_var_t available_cpus)
324 	__must_hold(&node_affinity.lock)
325 {
326 	int cpu;
327 	struct cpu_mask_set *set = dd->comp_vect;
328 
329 	lockdep_assert_held(&node_affinity.lock);
330 	if (!non_intr_cpus) {
331 		cpu = -1;
332 		goto fail;
333 	}
334 
335 	if (!available_cpus) {
336 		cpu = -1;
337 		goto fail;
338 	}
339 
340 	/* Available CPUs for pinning completion vectors */
341 	_cpu_mask_set_gen_inc(set);
342 	cpumask_andnot(available_cpus, &set->mask, &set->used);
343 
344 	/* Available CPUs without SDMA engine interrupts */
345 	cpumask_andnot(non_intr_cpus, available_cpus,
346 		       &entry->def_intr.used);
347 
348 	/* If there are non-interrupt CPUs available, use them first */
349 	if (!cpumask_empty(non_intr_cpus))
350 		cpu = cpumask_first(non_intr_cpus);
351 	else /* Otherwise, use interrupt CPUs */
352 		cpu = cpumask_first(available_cpus);
353 
354 	if (cpu >= nr_cpu_ids) { /* empty */
355 		cpu = -1;
356 		goto fail;
357 	}
358 	cpumask_set_cpu(cpu, &set->used);
359 
360 fail:
361 	return cpu;
362 }
363 
_dev_comp_vect_cpu_put(struct hfi1_devdata * dd,int cpu)364 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
365 {
366 	struct cpu_mask_set *set = dd->comp_vect;
367 
368 	if (cpu < 0)
369 		return;
370 
371 	cpu_mask_set_put(set, cpu);
372 }
373 
374 /* _dev_comp_vect_mappings_destroy() is reentrant */
_dev_comp_vect_mappings_destroy(struct hfi1_devdata * dd)375 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
376 {
377 	int i, cpu;
378 
379 	if (!dd->comp_vect_mappings)
380 		return;
381 
382 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
383 		cpu = dd->comp_vect_mappings[i];
384 		_dev_comp_vect_cpu_put(dd, cpu);
385 		dd->comp_vect_mappings[i] = -1;
386 		hfi1_cdbg(AFFINITY,
387 			  "[%s] Release CPU %d from completion vector %d",
388 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
389 	}
390 
391 	kfree(dd->comp_vect_mappings);
392 	dd->comp_vect_mappings = NULL;
393 }
394 
395 /*
396  * This function creates the table for looking up CPUs for completion vectors.
397  * num_comp_vectors needs to have been initilized before calling this function.
398  */
_dev_comp_vect_mappings_create(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)399 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
400 					  struct hfi1_affinity_node *entry)
401 	__must_hold(&node_affinity.lock)
402 {
403 	int i, cpu, ret;
404 	cpumask_var_t non_intr_cpus;
405 	cpumask_var_t available_cpus;
406 
407 	lockdep_assert_held(&node_affinity.lock);
408 
409 	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
410 		return -ENOMEM;
411 
412 	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
413 		free_cpumask_var(non_intr_cpus);
414 		return -ENOMEM;
415 	}
416 
417 	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
418 					 sizeof(*dd->comp_vect_mappings),
419 					 GFP_KERNEL);
420 	if (!dd->comp_vect_mappings) {
421 		ret = -ENOMEM;
422 		goto fail;
423 	}
424 	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
425 		dd->comp_vect_mappings[i] = -1;
426 
427 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
428 		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
429 					     available_cpus);
430 		if (cpu < 0) {
431 			ret = -EINVAL;
432 			goto fail;
433 		}
434 
435 		dd->comp_vect_mappings[i] = cpu;
436 		hfi1_cdbg(AFFINITY,
437 			  "[%s] Completion Vector %d -> CPU %d",
438 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
439 	}
440 
441 	free_cpumask_var(available_cpus);
442 	free_cpumask_var(non_intr_cpus);
443 	return 0;
444 
445 fail:
446 	free_cpumask_var(available_cpus);
447 	free_cpumask_var(non_intr_cpus);
448 	_dev_comp_vect_mappings_destroy(dd);
449 
450 	return ret;
451 }
452 
hfi1_comp_vectors_set_up(struct hfi1_devdata * dd)453 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
454 {
455 	int ret;
456 	struct hfi1_affinity_node *entry;
457 
458 	mutex_lock(&node_affinity.lock);
459 	entry = node_affinity_lookup(dd->node);
460 	if (!entry) {
461 		ret = -EINVAL;
462 		goto unlock;
463 	}
464 	ret = _dev_comp_vect_mappings_create(dd, entry);
465 unlock:
466 	mutex_unlock(&node_affinity.lock);
467 
468 	return ret;
469 }
470 
hfi1_comp_vectors_clean_up(struct hfi1_devdata * dd)471 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
472 {
473 	_dev_comp_vect_mappings_destroy(dd);
474 }
475 
hfi1_comp_vect_mappings_lookup(struct rvt_dev_info * rdi,int comp_vect)476 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
477 {
478 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
479 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
480 
481 	if (!dd->comp_vect_mappings)
482 		return -EINVAL;
483 	if (comp_vect >= dd->comp_vect_possible_cpus)
484 		return -EINVAL;
485 
486 	return dd->comp_vect_mappings[comp_vect];
487 }
488 
489 /*
490  * It assumes dd->comp_vect_possible_cpus is available.
491  */
_dev_comp_vect_cpu_mask_init(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,bool first_dev_init)492 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
493 					struct hfi1_affinity_node *entry,
494 					bool first_dev_init)
495 	__must_hold(&node_affinity.lock)
496 {
497 	int i, j, curr_cpu;
498 	int possible_cpus_comp_vect = 0;
499 	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
500 
501 	lockdep_assert_held(&node_affinity.lock);
502 	/*
503 	 * If there's only one CPU available for completion vectors, then
504 	 * there will only be one completion vector available. Othewise,
505 	 * the number of completion vector available will be the number of
506 	 * available CPUs divide it by the number of devices in the
507 	 * local NUMA node.
508 	 */
509 	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
510 		possible_cpus_comp_vect = 1;
511 		dd_dev_warn(dd,
512 			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
513 	} else {
514 		possible_cpus_comp_vect +=
515 			cpumask_weight(&entry->comp_vect_mask) /
516 				       hfi1_per_node_cntr[dd->node];
517 
518 		/*
519 		 * If the completion vector CPUs available doesn't divide
520 		 * evenly among devices, then the first device device to be
521 		 * initialized gets an extra CPU.
522 		 */
523 		if (first_dev_init &&
524 		    cpumask_weight(&entry->comp_vect_mask) %
525 		    hfi1_per_node_cntr[dd->node] != 0)
526 			possible_cpus_comp_vect++;
527 	}
528 
529 	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
530 
531 	/* Reserving CPUs for device completion vector */
532 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
533 		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
534 						entry->comp_vect_affinity);
535 		if (curr_cpu < 0)
536 			goto fail;
537 
538 		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
539 	}
540 
541 	hfi1_cdbg(AFFINITY,
542 		  "[%s] Completion vector affinity CPU set(s) %*pbl",
543 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
544 		  cpumask_pr_args(dev_comp_vect_mask));
545 
546 	return 0;
547 
548 fail:
549 	for (j = 0; j < i; j++)
550 		per_cpu_affinity_put_max(&entry->comp_vect_mask,
551 					 entry->comp_vect_affinity);
552 
553 	return curr_cpu;
554 }
555 
556 /*
557  * It assumes dd->comp_vect_possible_cpus is available.
558  */
_dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)559 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
560 					     struct hfi1_affinity_node *entry)
561 	__must_hold(&node_affinity.lock)
562 {
563 	int i, cpu;
564 
565 	lockdep_assert_held(&node_affinity.lock);
566 	if (!dd->comp_vect_possible_cpus)
567 		return;
568 
569 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
570 		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
571 					       entry->comp_vect_affinity);
572 		/* Clearing CPU in device completion vector cpu mask */
573 		if (cpu >= 0)
574 			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
575 	}
576 
577 	dd->comp_vect_possible_cpus = 0;
578 }
579 
580 /*
581  * Interrupt affinity.
582  *
583  * non-rcv avail gets a default mask that
584  * starts as possible cpus with threads reset
585  * and each rcv avail reset.
586  *
587  * rcv avail gets node relative 1 wrapping back
588  * to the node relative 1 as necessary.
589  *
590  */
hfi1_dev_affinity_init(struct hfi1_devdata * dd)591 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
592 {
593 	struct hfi1_affinity_node *entry;
594 	const struct cpumask *local_mask;
595 	int curr_cpu, possible, i, ret;
596 	bool new_entry = false;
597 
598 	local_mask = cpumask_of_node(dd->node);
599 	if (cpumask_first(local_mask) >= nr_cpu_ids)
600 		local_mask = topology_core_cpumask(0);
601 
602 	mutex_lock(&node_affinity.lock);
603 	entry = node_affinity_lookup(dd->node);
604 
605 	/*
606 	 * If this is the first time this NUMA node's affinity is used,
607 	 * create an entry in the global affinity structure and initialize it.
608 	 */
609 	if (!entry) {
610 		entry = node_affinity_allocate(dd->node);
611 		if (!entry) {
612 			dd_dev_err(dd,
613 				   "Unable to allocate global affinity node\n");
614 			ret = -ENOMEM;
615 			goto fail;
616 		}
617 		new_entry = true;
618 
619 		init_cpu_mask_set(&entry->def_intr);
620 		init_cpu_mask_set(&entry->rcv_intr);
621 		cpumask_clear(&entry->comp_vect_mask);
622 		cpumask_clear(&entry->general_intr_mask);
623 		/* Use the "real" cpu mask of this node as the default */
624 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
625 			    local_mask);
626 
627 		/* fill in the receive list */
628 		possible = cpumask_weight(&entry->def_intr.mask);
629 		curr_cpu = cpumask_first(&entry->def_intr.mask);
630 
631 		if (possible == 1) {
632 			/* only one CPU, everyone will use it */
633 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
634 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
635 		} else {
636 			/*
637 			 * The general/control context will be the first CPU in
638 			 * the default list, so it is removed from the default
639 			 * list and added to the general interrupt list.
640 			 */
641 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
642 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
643 			curr_cpu = cpumask_next(curr_cpu,
644 						&entry->def_intr.mask);
645 
646 			/*
647 			 * Remove the remaining kernel receive queues from
648 			 * the default list and add them to the receive list.
649 			 */
650 			for (i = 0;
651 			     i < (dd->n_krcv_queues - 1) *
652 				  hfi1_per_node_cntr[dd->node];
653 			     i++) {
654 				cpumask_clear_cpu(curr_cpu,
655 						  &entry->def_intr.mask);
656 				cpumask_set_cpu(curr_cpu,
657 						&entry->rcv_intr.mask);
658 				curr_cpu = cpumask_next(curr_cpu,
659 							&entry->def_intr.mask);
660 				if (curr_cpu >= nr_cpu_ids)
661 					break;
662 			}
663 
664 			/*
665 			 * If there ends up being 0 CPU cores leftover for SDMA
666 			 * engines, use the same CPU cores as general/control
667 			 * context.
668 			 */
669 			if (cpumask_empty(&entry->def_intr.mask))
670 				cpumask_copy(&entry->def_intr.mask,
671 					     &entry->general_intr_mask);
672 		}
673 
674 		/* Determine completion vector CPUs for the entire node */
675 		cpumask_and(&entry->comp_vect_mask,
676 			    &node_affinity.real_cpu_mask, local_mask);
677 		cpumask_andnot(&entry->comp_vect_mask,
678 			       &entry->comp_vect_mask,
679 			       &entry->rcv_intr.mask);
680 		cpumask_andnot(&entry->comp_vect_mask,
681 			       &entry->comp_vect_mask,
682 			       &entry->general_intr_mask);
683 
684 		/*
685 		 * If there ends up being 0 CPU cores leftover for completion
686 		 * vectors, use the same CPU core as the general/control
687 		 * context.
688 		 */
689 		if (cpumask_empty(&entry->comp_vect_mask))
690 			cpumask_copy(&entry->comp_vect_mask,
691 				     &entry->general_intr_mask);
692 	}
693 
694 	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
695 	if (ret < 0)
696 		goto fail;
697 
698 	if (new_entry)
699 		node_affinity_add_tail(entry);
700 
701 	dd->affinity_entry = entry;
702 	mutex_unlock(&node_affinity.lock);
703 
704 	return 0;
705 
706 fail:
707 	if (new_entry)
708 		node_affinity_destroy(entry);
709 	mutex_unlock(&node_affinity.lock);
710 	return ret;
711 }
712 
hfi1_dev_affinity_clean_up(struct hfi1_devdata * dd)713 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
714 {
715 	struct hfi1_affinity_node *entry;
716 
717 	mutex_lock(&node_affinity.lock);
718 	if (!dd->affinity_entry)
719 		goto unlock;
720 	entry = node_affinity_lookup(dd->node);
721 	if (!entry)
722 		goto unlock;
723 
724 	/*
725 	 * Free device completion vector CPUs to be used by future
726 	 * completion vectors
727 	 */
728 	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
729 unlock:
730 	dd->affinity_entry = NULL;
731 	mutex_unlock(&node_affinity.lock);
732 }
733 
734 /*
735  * Function updates the irq affinity hint for msix after it has been changed
736  * by the user using the /proc/irq interface. This function only accepts
737  * one cpu in the mask.
738  */
hfi1_update_sdma_affinity(struct hfi1_msix_entry * msix,int cpu)739 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
740 {
741 	struct sdma_engine *sde = msix->arg;
742 	struct hfi1_devdata *dd = sde->dd;
743 	struct hfi1_affinity_node *entry;
744 	struct cpu_mask_set *set;
745 	int i, old_cpu;
746 
747 	if (cpu > num_online_cpus() || cpu == sde->cpu)
748 		return;
749 
750 	mutex_lock(&node_affinity.lock);
751 	entry = node_affinity_lookup(dd->node);
752 	if (!entry)
753 		goto unlock;
754 
755 	old_cpu = sde->cpu;
756 	sde->cpu = cpu;
757 	cpumask_clear(&msix->mask);
758 	cpumask_set_cpu(cpu, &msix->mask);
759 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
760 		   msix->irq, irq_type_names[msix->type],
761 		   sde->this_idx, cpu);
762 	irq_set_affinity_hint(msix->irq, &msix->mask);
763 
764 	/*
765 	 * Set the new cpu in the hfi1_affinity_node and clean
766 	 * the old cpu if it is not used by any other IRQ
767 	 */
768 	set = &entry->def_intr;
769 	cpumask_set_cpu(cpu, &set->mask);
770 	cpumask_set_cpu(cpu, &set->used);
771 	for (i = 0; i < dd->msix_info.max_requested; i++) {
772 		struct hfi1_msix_entry *other_msix;
773 
774 		other_msix = &dd->msix_info.msix_entries[i];
775 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
776 			continue;
777 
778 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
779 			goto unlock;
780 	}
781 	cpumask_clear_cpu(old_cpu, &set->mask);
782 	cpumask_clear_cpu(old_cpu, &set->used);
783 unlock:
784 	mutex_unlock(&node_affinity.lock);
785 }
786 
hfi1_irq_notifier_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)787 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
788 				     const cpumask_t *mask)
789 {
790 	int cpu = cpumask_first(mask);
791 	struct hfi1_msix_entry *msix = container_of(notify,
792 						    struct hfi1_msix_entry,
793 						    notify);
794 
795 	/* Only one CPU configuration supported currently */
796 	hfi1_update_sdma_affinity(msix, cpu);
797 }
798 
hfi1_irq_notifier_release(struct kref * ref)799 static void hfi1_irq_notifier_release(struct kref *ref)
800 {
801 	/*
802 	 * This is required by affinity notifier. We don't have anything to
803 	 * free here.
804 	 */
805 }
806 
hfi1_setup_sdma_notifier(struct hfi1_msix_entry * msix)807 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
808 {
809 	struct irq_affinity_notify *notify = &msix->notify;
810 
811 	notify->irq = msix->irq;
812 	notify->notify = hfi1_irq_notifier_notify;
813 	notify->release = hfi1_irq_notifier_release;
814 
815 	if (irq_set_affinity_notifier(notify->irq, notify))
816 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
817 		       notify->irq);
818 }
819 
hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry * msix)820 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
821 {
822 	struct irq_affinity_notify *notify = &msix->notify;
823 
824 	if (irq_set_affinity_notifier(notify->irq, NULL))
825 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
826 		       notify->irq);
827 }
828 
829 /*
830  * Function sets the irq affinity for msix.
831  * It *must* be called with node_affinity.lock held.
832  */
get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)833 static int get_irq_affinity(struct hfi1_devdata *dd,
834 			    struct hfi1_msix_entry *msix)
835 {
836 	cpumask_var_t diff;
837 	struct hfi1_affinity_node *entry;
838 	struct cpu_mask_set *set = NULL;
839 	struct sdma_engine *sde = NULL;
840 	struct hfi1_ctxtdata *rcd = NULL;
841 	char extra[64];
842 	int cpu = -1;
843 
844 	extra[0] = '\0';
845 	cpumask_clear(&msix->mask);
846 
847 	entry = node_affinity_lookup(dd->node);
848 
849 	switch (msix->type) {
850 	case IRQ_SDMA:
851 		sde = (struct sdma_engine *)msix->arg;
852 		scnprintf(extra, 64, "engine %u", sde->this_idx);
853 		set = &entry->def_intr;
854 		break;
855 	case IRQ_GENERAL:
856 		cpu = cpumask_first(&entry->general_intr_mask);
857 		break;
858 	case IRQ_RCVCTXT:
859 		rcd = (struct hfi1_ctxtdata *)msix->arg;
860 		if (rcd->ctxt == HFI1_CTRL_CTXT)
861 			cpu = cpumask_first(&entry->general_intr_mask);
862 		else
863 			set = &entry->rcv_intr;
864 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
865 		break;
866 	case IRQ_NETDEVCTXT:
867 		rcd = (struct hfi1_ctxtdata *)msix->arg;
868 		set = &entry->def_intr;
869 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
870 		break;
871 	default:
872 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
873 		return -EINVAL;
874 	}
875 
876 	/*
877 	 * The general and control contexts are placed on a particular
878 	 * CPU, which is set above. Skip accounting for it. Everything else
879 	 * finds its CPU here.
880 	 */
881 	if (cpu == -1 && set) {
882 		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
883 			return -ENOMEM;
884 
885 		cpu = cpu_mask_set_get_first(set, diff);
886 		if (cpu < 0) {
887 			free_cpumask_var(diff);
888 			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
889 			return cpu;
890 		}
891 
892 		free_cpumask_var(diff);
893 	}
894 
895 	cpumask_set_cpu(cpu, &msix->mask);
896 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
897 		    msix->irq, irq_type_names[msix->type],
898 		    extra, cpu);
899 	irq_set_affinity_hint(msix->irq, &msix->mask);
900 
901 	if (msix->type == IRQ_SDMA) {
902 		sde->cpu = cpu;
903 		hfi1_setup_sdma_notifier(msix);
904 	}
905 
906 	return 0;
907 }
908 
hfi1_get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)909 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
910 {
911 	int ret;
912 
913 	mutex_lock(&node_affinity.lock);
914 	ret = get_irq_affinity(dd, msix);
915 	mutex_unlock(&node_affinity.lock);
916 	return ret;
917 }
918 
hfi1_put_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)919 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
920 			   struct hfi1_msix_entry *msix)
921 {
922 	struct cpu_mask_set *set = NULL;
923 	struct hfi1_affinity_node *entry;
924 
925 	mutex_lock(&node_affinity.lock);
926 	entry = node_affinity_lookup(dd->node);
927 
928 	switch (msix->type) {
929 	case IRQ_SDMA:
930 		set = &entry->def_intr;
931 		hfi1_cleanup_sdma_notifier(msix);
932 		break;
933 	case IRQ_GENERAL:
934 		/* Don't do accounting for general contexts */
935 		break;
936 	case IRQ_RCVCTXT: {
937 		struct hfi1_ctxtdata *rcd = msix->arg;
938 
939 		/* Don't do accounting for control contexts */
940 		if (rcd->ctxt != HFI1_CTRL_CTXT)
941 			set = &entry->rcv_intr;
942 		break;
943 	}
944 	case IRQ_NETDEVCTXT:
945 		set = &entry->def_intr;
946 		break;
947 	default:
948 		mutex_unlock(&node_affinity.lock);
949 		return;
950 	}
951 
952 	if (set) {
953 		cpumask_andnot(&set->used, &set->used, &msix->mask);
954 		_cpu_mask_set_gen_dec(set);
955 	}
956 
957 	irq_set_affinity_hint(msix->irq, NULL);
958 	cpumask_clear(&msix->mask);
959 	mutex_unlock(&node_affinity.lock);
960 }
961 
962 /* This should be called with node_affinity.lock held */
find_hw_thread_mask(uint hw_thread_no,cpumask_var_t hw_thread_mask,struct hfi1_affinity_node_list * affinity)963 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
964 				struct hfi1_affinity_node_list *affinity)
965 {
966 	int possible, curr_cpu, i;
967 	uint num_cores_per_socket = node_affinity.num_online_cpus /
968 					affinity->num_core_siblings /
969 						node_affinity.num_online_nodes;
970 
971 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
972 	if (affinity->num_core_siblings > 0) {
973 		/* Removing other siblings not needed for now */
974 		possible = cpumask_weight(hw_thread_mask);
975 		curr_cpu = cpumask_first(hw_thread_mask);
976 		for (i = 0;
977 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
978 		     i++)
979 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
980 
981 		for (; i < possible; i++) {
982 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
983 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
984 		}
985 
986 		/* Identifying correct HW threads within physical cores */
987 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
988 				   num_cores_per_socket *
989 				   node_affinity.num_online_nodes *
990 				   hw_thread_no);
991 	}
992 }
993 
hfi1_get_proc_affinity(int node)994 int hfi1_get_proc_affinity(int node)
995 {
996 	int cpu = -1, ret, i;
997 	struct hfi1_affinity_node *entry;
998 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
999 	const struct cpumask *node_mask,
1000 		*proc_mask = current->cpus_ptr;
1001 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1002 	struct cpu_mask_set *set = &affinity->proc;
1003 
1004 	/*
1005 	 * check whether process/context affinity has already
1006 	 * been set
1007 	 */
1008 	if (current->nr_cpus_allowed == 1) {
1009 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1010 			  current->pid, current->comm,
1011 			  cpumask_pr_args(proc_mask));
1012 		/*
1013 		 * Mark the pre-set CPU as used. This is atomic so we don't
1014 		 * need the lock
1015 		 */
1016 		cpu = cpumask_first(proc_mask);
1017 		cpumask_set_cpu(cpu, &set->used);
1018 		goto done;
1019 	} else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1020 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1021 			  current->pid, current->comm,
1022 			  cpumask_pr_args(proc_mask));
1023 		goto done;
1024 	}
1025 
1026 	/*
1027 	 * The process does not have a preset CPU affinity so find one to
1028 	 * recommend using the following algorithm:
1029 	 *
1030 	 * For each user process that is opening a context on HFI Y:
1031 	 *  a) If all cores are filled, reinitialize the bitmask
1032 	 *  b) Fill real cores first, then HT cores (First set of HT
1033 	 *     cores on all physical cores, then second set of HT core,
1034 	 *     and, so on) in the following order:
1035 	 *
1036 	 *     1. Same NUMA node as HFI Y and not running an IRQ
1037 	 *        handler
1038 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
1039 	 *     3. Different NUMA node to HFI Y and not running an IRQ
1040 	 *        handler
1041 	 *     4. Different NUMA node to HFI Y and running an IRQ
1042 	 *        handler
1043 	 *  c) Mark core as filled in the bitmask. As user processes are
1044 	 *     done, clear cores from the bitmask.
1045 	 */
1046 
1047 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1048 	if (!ret)
1049 		goto done;
1050 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1051 	if (!ret)
1052 		goto free_diff;
1053 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1054 	if (!ret)
1055 		goto free_hw_thread_mask;
1056 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1057 	if (!ret)
1058 		goto free_available_mask;
1059 
1060 	mutex_lock(&affinity->lock);
1061 	/*
1062 	 * If we've used all available HW threads, clear the mask and start
1063 	 * overloading.
1064 	 */
1065 	_cpu_mask_set_gen_inc(set);
1066 
1067 	/*
1068 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
1069 	 * interrupt handler mask.
1070 	 */
1071 	entry = node_affinity_lookup(node);
1072 	if (entry) {
1073 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1074 					  &entry->def_intr.mask :
1075 					  &entry->def_intr.used));
1076 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1077 						    &entry->rcv_intr.mask :
1078 						    &entry->rcv_intr.used));
1079 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1080 	}
1081 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1082 		  cpumask_pr_args(intrs_mask));
1083 
1084 	cpumask_copy(hw_thread_mask, &set->mask);
1085 
1086 	/*
1087 	 * If HT cores are enabled, identify which HW threads within the
1088 	 * physical cores should be used.
1089 	 */
1090 	if (affinity->num_core_siblings > 0) {
1091 		for (i = 0; i < affinity->num_core_siblings; i++) {
1092 			find_hw_thread_mask(i, hw_thread_mask, affinity);
1093 
1094 			/*
1095 			 * If there's at least one available core for this HW
1096 			 * thread number, stop looking for a core.
1097 			 *
1098 			 * diff will always be not empty at least once in this
1099 			 * loop as the used mask gets reset when
1100 			 * (set->mask == set->used) before this loop.
1101 			 */
1102 			cpumask_andnot(diff, hw_thread_mask, &set->used);
1103 			if (!cpumask_empty(diff))
1104 				break;
1105 		}
1106 	}
1107 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1108 		  cpumask_pr_args(hw_thread_mask));
1109 
1110 	node_mask = cpumask_of_node(node);
1111 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1112 		  cpumask_pr_args(node_mask));
1113 
1114 	/* Get cpumask of available CPUs on preferred NUMA */
1115 	cpumask_and(available_mask, hw_thread_mask, node_mask);
1116 	cpumask_andnot(available_mask, available_mask, &set->used);
1117 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1118 		  cpumask_pr_args(available_mask));
1119 
1120 	/*
1121 	 * At first, we don't want to place processes on the same
1122 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
1123 	 * handlers are used.
1124 	 *
1125 	 * 1) If diff is not empty, then there are CPUs not running
1126 	 *    non-interrupt handlers available, so diff gets copied
1127 	 *    over to available_mask.
1128 	 * 2) If diff is empty, then all CPUs not running interrupt
1129 	 *    handlers are taken, so available_mask contains all
1130 	 *    available CPUs running interrupt handlers.
1131 	 * 3) If available_mask is empty, then all CPUs on the
1132 	 *    preferred NUMA node are taken, so other NUMA nodes are
1133 	 *    used for process assignments using the same method as
1134 	 *    the preferred NUMA node.
1135 	 */
1136 	cpumask_andnot(diff, available_mask, intrs_mask);
1137 	if (!cpumask_empty(diff))
1138 		cpumask_copy(available_mask, diff);
1139 
1140 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
1141 	if (cpumask_empty(available_mask)) {
1142 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1143 		/* Excluding preferred NUMA cores */
1144 		cpumask_andnot(available_mask, available_mask, node_mask);
1145 		hfi1_cdbg(PROC,
1146 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1147 			  cpumask_pr_args(available_mask));
1148 
1149 		/*
1150 		 * At first, we don't want to place processes on the same
1151 		 * CPUs as interrupt handlers.
1152 		 */
1153 		cpumask_andnot(diff, available_mask, intrs_mask);
1154 		if (!cpumask_empty(diff))
1155 			cpumask_copy(available_mask, diff);
1156 	}
1157 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1158 		  cpumask_pr_args(available_mask));
1159 
1160 	cpu = cpumask_first(available_mask);
1161 	if (cpu >= nr_cpu_ids) /* empty */
1162 		cpu = -1;
1163 	else
1164 		cpumask_set_cpu(cpu, &set->used);
1165 
1166 	mutex_unlock(&affinity->lock);
1167 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1168 
1169 	free_cpumask_var(intrs_mask);
1170 free_available_mask:
1171 	free_cpumask_var(available_mask);
1172 free_hw_thread_mask:
1173 	free_cpumask_var(hw_thread_mask);
1174 free_diff:
1175 	free_cpumask_var(diff);
1176 done:
1177 	return cpu;
1178 }
1179 
hfi1_put_proc_affinity(int cpu)1180 void hfi1_put_proc_affinity(int cpu)
1181 {
1182 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1183 	struct cpu_mask_set *set = &affinity->proc;
1184 
1185 	if (cpu < 0)
1186 		return;
1187 
1188 	mutex_lock(&affinity->lock);
1189 	cpu_mask_set_put(set, cpu);
1190 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1191 	mutex_unlock(&affinity->lock);
1192 }
1193