1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_FP_H
6 #define __ASM_FP_H
7
8 #include <asm/errno.h>
9 #include <asm/percpu.h>
10 #include <asm/ptrace.h>
11 #include <asm/processor.h>
12 #include <asm/sigcontext.h>
13 #include <asm/sysreg.h>
14
15 #ifndef __ASSEMBLY__
16
17 #include <linux/bitmap.h>
18 #include <linux/build_bug.h>
19 #include <linux/bug.h>
20 #include <linux/cache.h>
21 #include <linux/init.h>
22 #include <linux/stddef.h>
23 #include <linux/types.h>
24
25 #ifdef CONFIG_COMPAT
26 /* Masks for extracting the FPSR and FPCR from the FPSCR */
27 #define VFP_FPSCR_STAT_MASK 0xf800009f
28 #define VFP_FPSCR_CTRL_MASK 0x07f79f00
29 /*
30 * The VFP state has 32x64-bit registers and a single 32-bit
31 * control/status register.
32 */
33 #define VFP_STATE_SIZE ((32 * 8) + 4)
34 #endif
35
36 /*
37 * When we defined the maximum SVE vector length we defined the ABI so
38 * that the maximum vector length included all the reserved for future
39 * expansion bits in ZCR rather than those just currently defined by
40 * the architecture. Using this length to allocate worst size buffers
41 * results in excessively large allocations, and this effect is even
42 * more pronounced for SME due to ZA. Define more suitable VLs for
43 * these situations.
44 */
45 #define ARCH_SVE_VQ_MAX ((ZCR_ELx_LEN_MASK >> ZCR_ELx_LEN_SHIFT) + 1)
46 #define SME_VQ_MAX ((SMCR_ELx_LEN_MASK >> SMCR_ELx_LEN_SHIFT) + 1)
47
48 struct task_struct;
49
50 extern void fpsimd_save_state(struct user_fpsimd_state *state);
51 extern void fpsimd_load_state(struct user_fpsimd_state *state);
52
53 extern void fpsimd_thread_switch(struct task_struct *next);
54 extern void fpsimd_flush_thread(void);
55
56 extern void fpsimd_signal_preserve_current_state(void);
57 extern void fpsimd_preserve_current_state(void);
58 extern void fpsimd_restore_current_state(void);
59 extern void fpsimd_update_current_state(struct user_fpsimd_state const *state);
60 extern void fpsimd_kvm_prepare(void);
61
62 struct cpu_fp_state {
63 struct user_fpsimd_state *st;
64 void *sve_state;
65 void *sme_state;
66 u64 *svcr;
67 unsigned int sve_vl;
68 unsigned int sme_vl;
69 enum fp_type *fp_type;
70 enum fp_type to_save;
71 };
72
73 DECLARE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
74
75 extern void fpsimd_bind_state_to_cpu(struct cpu_fp_state *fp_state);
76
77 extern void fpsimd_flush_task_state(struct task_struct *target);
78 extern void fpsimd_save_and_flush_cpu_state(void);
79
thread_sm_enabled(struct thread_struct * thread)80 static inline bool thread_sm_enabled(struct thread_struct *thread)
81 {
82 return system_supports_sme() && (thread->svcr & SVCR_SM_MASK);
83 }
84
thread_za_enabled(struct thread_struct * thread)85 static inline bool thread_za_enabled(struct thread_struct *thread)
86 {
87 return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK);
88 }
89
90 /* Maximum VL that SVE/SME VL-agnostic software can transparently support */
91 #define VL_ARCH_MAX 0x100
92
93 /* Offset of FFR in the SVE register dump */
sve_ffr_offset(int vl)94 static inline size_t sve_ffr_offset(int vl)
95 {
96 return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
97 }
98
sve_pffr(struct thread_struct * thread)99 static inline void *sve_pffr(struct thread_struct *thread)
100 {
101 unsigned int vl;
102
103 if (system_supports_sme() && thread_sm_enabled(thread))
104 vl = thread_get_sme_vl(thread);
105 else
106 vl = thread_get_sve_vl(thread);
107
108 return (char *)thread->sve_state + sve_ffr_offset(vl);
109 }
110
thread_zt_state(struct thread_struct * thread)111 static inline void *thread_zt_state(struct thread_struct *thread)
112 {
113 /* The ZT register state is stored immediately after the ZA state */
114 unsigned int sme_vq = sve_vq_from_vl(thread_get_sme_vl(thread));
115 return thread->sme_state + ZA_SIG_REGS_SIZE(sme_vq);
116 }
117
118 extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr);
119 extern void sve_load_state(void const *state, u32 const *pfpsr,
120 int restore_ffr);
121 extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1);
122 extern unsigned int sve_get_vl(void);
123 extern void sve_set_vq(unsigned long vq_minus_1);
124 extern void sme_set_vq(unsigned long vq_minus_1);
125 extern void sme_save_state(void *state, int zt);
126 extern void sme_load_state(void const *state, int zt);
127
128 struct arm64_cpu_capabilities;
129 extern void sve_kernel_enable(const struct arm64_cpu_capabilities *__unused);
130 extern void sme_kernel_enable(const struct arm64_cpu_capabilities *__unused);
131 extern void sme2_kernel_enable(const struct arm64_cpu_capabilities *__unused);
132 extern void fa64_kernel_enable(const struct arm64_cpu_capabilities *__unused);
133
134 extern u64 read_zcr_features(void);
135 extern u64 read_smcr_features(void);
136
137 /*
138 * Helpers to translate bit indices in sve_vq_map to VQ values (and
139 * vice versa). This allows find_next_bit() to be used to find the
140 * _maximum_ VQ not exceeding a certain value.
141 */
__vq_to_bit(unsigned int vq)142 static inline unsigned int __vq_to_bit(unsigned int vq)
143 {
144 return SVE_VQ_MAX - vq;
145 }
146
__bit_to_vq(unsigned int bit)147 static inline unsigned int __bit_to_vq(unsigned int bit)
148 {
149 return SVE_VQ_MAX - bit;
150 }
151
152
153 struct vl_info {
154 enum vec_type type;
155 const char *name; /* For display purposes */
156
157 /* Minimum supported vector length across all CPUs */
158 int min_vl;
159
160 /* Maximum supported vector length across all CPUs */
161 int max_vl;
162 int max_virtualisable_vl;
163
164 /*
165 * Set of available vector lengths,
166 * where length vq encoded as bit __vq_to_bit(vq):
167 */
168 DECLARE_BITMAP(vq_map, SVE_VQ_MAX);
169
170 /* Set of vector lengths present on at least one cpu: */
171 DECLARE_BITMAP(vq_partial_map, SVE_VQ_MAX);
172 };
173
174 #ifdef CONFIG_ARM64_SVE
175
176 extern void sve_alloc(struct task_struct *task, bool flush);
177 extern void fpsimd_release_task(struct task_struct *task);
178 extern void fpsimd_sync_to_sve(struct task_struct *task);
179 extern void fpsimd_force_sync_to_sve(struct task_struct *task);
180 extern void sve_sync_to_fpsimd(struct task_struct *task);
181 extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task);
182
183 extern int vec_set_vector_length(struct task_struct *task, enum vec_type type,
184 unsigned long vl, unsigned long flags);
185
186 extern int sve_set_current_vl(unsigned long arg);
187 extern int sve_get_current_vl(void);
188
sve_user_disable(void)189 static inline void sve_user_disable(void)
190 {
191 sysreg_clear_set(cpacr_el1, CPACR_EL1_ZEN_EL0EN, 0);
192 }
193
sve_user_enable(void)194 static inline void sve_user_enable(void)
195 {
196 sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_ZEN_EL0EN);
197 }
198
199 #define sve_cond_update_zcr_vq(val, reg) \
200 do { \
201 u64 __zcr = read_sysreg_s((reg)); \
202 u64 __new = __zcr & ~ZCR_ELx_LEN_MASK; \
203 __new |= (val) & ZCR_ELx_LEN_MASK; \
204 if (__zcr != __new) \
205 write_sysreg_s(__new, (reg)); \
206 } while (0)
207
208 /*
209 * Probing and setup functions.
210 * Calls to these functions must be serialised with one another.
211 */
212 enum vec_type;
213
214 extern void __init vec_init_vq_map(enum vec_type type);
215 extern void vec_update_vq_map(enum vec_type type);
216 extern int vec_verify_vq_map(enum vec_type type);
217 extern void __init sve_setup(void);
218
219 extern __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX];
220
write_vl(enum vec_type type,u64 val)221 static inline void write_vl(enum vec_type type, u64 val)
222 {
223 u64 tmp;
224
225 switch (type) {
226 #ifdef CONFIG_ARM64_SVE
227 case ARM64_VEC_SVE:
228 tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK;
229 write_sysreg_s(tmp | val, SYS_ZCR_EL1);
230 break;
231 #endif
232 #ifdef CONFIG_ARM64_SME
233 case ARM64_VEC_SME:
234 tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK;
235 write_sysreg_s(tmp | val, SYS_SMCR_EL1);
236 break;
237 #endif
238 default:
239 WARN_ON_ONCE(1);
240 break;
241 }
242 }
243
vec_max_vl(enum vec_type type)244 static inline int vec_max_vl(enum vec_type type)
245 {
246 return vl_info[type].max_vl;
247 }
248
vec_max_virtualisable_vl(enum vec_type type)249 static inline int vec_max_virtualisable_vl(enum vec_type type)
250 {
251 return vl_info[type].max_virtualisable_vl;
252 }
253
sve_max_vl(void)254 static inline int sve_max_vl(void)
255 {
256 return vec_max_vl(ARM64_VEC_SVE);
257 }
258
sve_max_virtualisable_vl(void)259 static inline int sve_max_virtualisable_vl(void)
260 {
261 return vec_max_virtualisable_vl(ARM64_VEC_SVE);
262 }
263
264 /* Ensure vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX before calling this function */
vq_available(enum vec_type type,unsigned int vq)265 static inline bool vq_available(enum vec_type type, unsigned int vq)
266 {
267 return test_bit(__vq_to_bit(vq), vl_info[type].vq_map);
268 }
269
sve_vq_available(unsigned int vq)270 static inline bool sve_vq_available(unsigned int vq)
271 {
272 return vq_available(ARM64_VEC_SVE, vq);
273 }
274
275 size_t sve_state_size(struct task_struct const *task);
276
277 #else /* ! CONFIG_ARM64_SVE */
278
sve_alloc(struct task_struct * task,bool flush)279 static inline void sve_alloc(struct task_struct *task, bool flush) { }
fpsimd_release_task(struct task_struct * task)280 static inline void fpsimd_release_task(struct task_struct *task) { }
sve_sync_to_fpsimd(struct task_struct * task)281 static inline void sve_sync_to_fpsimd(struct task_struct *task) { }
sve_sync_from_fpsimd_zeropad(struct task_struct * task)282 static inline void sve_sync_from_fpsimd_zeropad(struct task_struct *task) { }
283
sve_max_virtualisable_vl(void)284 static inline int sve_max_virtualisable_vl(void)
285 {
286 return 0;
287 }
288
sve_set_current_vl(unsigned long arg)289 static inline int sve_set_current_vl(unsigned long arg)
290 {
291 return -EINVAL;
292 }
293
sve_get_current_vl(void)294 static inline int sve_get_current_vl(void)
295 {
296 return -EINVAL;
297 }
298
sve_max_vl(void)299 static inline int sve_max_vl(void)
300 {
301 return -EINVAL;
302 }
303
sve_vq_available(unsigned int vq)304 static inline bool sve_vq_available(unsigned int vq) { return false; }
305
sve_user_disable(void)306 static inline void sve_user_disable(void) { BUILD_BUG(); }
sve_user_enable(void)307 static inline void sve_user_enable(void) { BUILD_BUG(); }
308
309 #define sve_cond_update_zcr_vq(val, reg) do { } while (0)
310
vec_init_vq_map(enum vec_type t)311 static inline void vec_init_vq_map(enum vec_type t) { }
vec_update_vq_map(enum vec_type t)312 static inline void vec_update_vq_map(enum vec_type t) { }
vec_verify_vq_map(enum vec_type t)313 static inline int vec_verify_vq_map(enum vec_type t) { return 0; }
sve_setup(void)314 static inline void sve_setup(void) { }
315
sve_state_size(struct task_struct const * task)316 static inline size_t sve_state_size(struct task_struct const *task)
317 {
318 return 0;
319 }
320
321 #endif /* ! CONFIG_ARM64_SVE */
322
323 #ifdef CONFIG_ARM64_SME
324
sme_user_disable(void)325 static inline void sme_user_disable(void)
326 {
327 sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0);
328 }
329
sme_user_enable(void)330 static inline void sme_user_enable(void)
331 {
332 sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN);
333 }
334
sme_smstart_sm(void)335 static inline void sme_smstart_sm(void)
336 {
337 asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr"));
338 }
339
sme_smstop_sm(void)340 static inline void sme_smstop_sm(void)
341 {
342 asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr"));
343 }
344
sme_smstop(void)345 static inline void sme_smstop(void)
346 {
347 asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr"));
348 }
349
350 extern void __init sme_setup(void);
351
sme_max_vl(void)352 static inline int sme_max_vl(void)
353 {
354 return vec_max_vl(ARM64_VEC_SME);
355 }
356
sme_max_virtualisable_vl(void)357 static inline int sme_max_virtualisable_vl(void)
358 {
359 return vec_max_virtualisable_vl(ARM64_VEC_SME);
360 }
361
362 extern void sme_alloc(struct task_struct *task, bool flush);
363 extern unsigned int sme_get_vl(void);
364 extern int sme_set_current_vl(unsigned long arg);
365 extern int sme_get_current_vl(void);
366 extern void sme_suspend_exit(void);
367
368 /*
369 * Return how many bytes of memory are required to store the full SME
370 * specific state for task, given task's currently configured vector
371 * length.
372 */
sme_state_size(struct task_struct const * task)373 static inline size_t sme_state_size(struct task_struct const *task)
374 {
375 unsigned int vl = task_get_sme_vl(task);
376 size_t size;
377
378 size = ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl));
379
380 if (system_supports_sme2())
381 size += ZT_SIG_REG_SIZE;
382
383 return size;
384 }
385
386 #else
387
sme_user_disable(void)388 static inline void sme_user_disable(void) { BUILD_BUG(); }
sme_user_enable(void)389 static inline void sme_user_enable(void) { BUILD_BUG(); }
390
sme_smstart_sm(void)391 static inline void sme_smstart_sm(void) { }
sme_smstop_sm(void)392 static inline void sme_smstop_sm(void) { }
sme_smstop(void)393 static inline void sme_smstop(void) { }
394
sme_alloc(struct task_struct * task,bool flush)395 static inline void sme_alloc(struct task_struct *task, bool flush) { }
sme_setup(void)396 static inline void sme_setup(void) { }
sme_get_vl(void)397 static inline unsigned int sme_get_vl(void) { return 0; }
sme_max_vl(void)398 static inline int sme_max_vl(void) { return 0; }
sme_max_virtualisable_vl(void)399 static inline int sme_max_virtualisable_vl(void) { return 0; }
sme_set_current_vl(unsigned long arg)400 static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; }
sme_get_current_vl(void)401 static inline int sme_get_current_vl(void) { return -EINVAL; }
sme_suspend_exit(void)402 static inline void sme_suspend_exit(void) { }
403
sme_state_size(struct task_struct const * task)404 static inline size_t sme_state_size(struct task_struct const *task)
405 {
406 return 0;
407 }
408
409 #endif /* ! CONFIG_ARM64_SME */
410
411 /* For use by EFI runtime services calls only */
412 extern void __efi_fpsimd_begin(void);
413 extern void __efi_fpsimd_end(void);
414
415 #endif
416
417 #endif
418