xref: /openbmc/linux/kernel/rseq.c (revision 55b7acbd15b15e75c6df468c72177a6b32e648cf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Restartable sequences system call
4  *
5  * Copyright (C) 2015, Google, Inc.,
6  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
7  * Copyright (C) 2015-2018, EfficiOS Inc.,
8  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <linux/syscalls.h>
14 #include <linux/rseq.h>
15 #include <linux/types.h>
16 #include <asm/ptrace.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/rseq.h>
20 
21 /* The original rseq structure size (including padding) is 32 bytes. */
22 #define ORIG_RSEQ_SIZE		32
23 
24 #define RSEQ_CS_NO_RESTART_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT | \
25 				  RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL | \
26 				  RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE)
27 
28 /*
29  *
30  * Restartable sequences are a lightweight interface that allows
31  * user-level code to be executed atomically relative to scheduler
32  * preemption and signal delivery. Typically used for implementing
33  * per-cpu operations.
34  *
35  * It allows user-space to perform update operations on per-cpu data
36  * without requiring heavy-weight atomic operations.
37  *
38  * Detailed algorithm of rseq user-space assembly sequences:
39  *
40  *                     init(rseq_cs)
41  *                     cpu = TLS->rseq::cpu_id_start
42  *   [1]               TLS->rseq::rseq_cs = rseq_cs
43  *   [start_ip]        ----------------------------
44  *   [2]               if (cpu != TLS->rseq::cpu_id)
45  *                             goto abort_ip;
46  *   [3]               <last_instruction_in_cs>
47  *   [post_commit_ip]  ----------------------------
48  *
49  *   The address of jump target abort_ip must be outside the critical
50  *   region, i.e.:
51  *
52  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
53  *
54  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
55  *   userspace that can handle being interrupted between any of those
56  *   instructions, and then resumed to the abort_ip.
57  *
58  *   1.  Userspace stores the address of the struct rseq_cs assembly
59  *       block descriptor into the rseq_cs field of the registered
60  *       struct rseq TLS area. This update is performed through a single
61  *       store within the inline assembly instruction sequence.
62  *       [start_ip]
63  *
64  *   2.  Userspace tests to check whether the current cpu_id field match
65  *       the cpu number loaded before start_ip, branching to abort_ip
66  *       in case of a mismatch.
67  *
68  *       If the sequence is preempted or interrupted by a signal
69  *       at or after start_ip and before post_commit_ip, then the kernel
70  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
71  *       ip to abort_ip before returning to user-space, so the preempted
72  *       execution resumes at abort_ip.
73  *
74  *   3.  Userspace critical section final instruction before
75  *       post_commit_ip is the commit. The critical section is
76  *       self-terminating.
77  *       [post_commit_ip]
78  *
79  *   4.  <success>
80  *
81  *   On failure at [2], or if interrupted by preempt or signal delivery
82  *   between [1] and [3]:
83  *
84  *       [abort_ip]
85  *   F1. <failure>
86  */
87 
rseq_update_cpu_node_id(struct task_struct * t)88 static int rseq_update_cpu_node_id(struct task_struct *t)
89 {
90 	struct rseq __user *rseq = t->rseq;
91 	u32 cpu_id = raw_smp_processor_id();
92 	u32 node_id = cpu_to_node(cpu_id);
93 	u32 mm_cid = task_mm_cid(t);
94 
95 	WARN_ON_ONCE((int) mm_cid < 0);
96 	if (!user_write_access_begin(rseq, t->rseq_len))
97 		goto efault;
98 	unsafe_put_user(cpu_id, &rseq->cpu_id_start, efault_end);
99 	unsafe_put_user(cpu_id, &rseq->cpu_id, efault_end);
100 	unsafe_put_user(node_id, &rseq->node_id, efault_end);
101 	unsafe_put_user(mm_cid, &rseq->mm_cid, efault_end);
102 	/*
103 	 * Additional feature fields added after ORIG_RSEQ_SIZE
104 	 * need to be conditionally updated only if
105 	 * t->rseq_len != ORIG_RSEQ_SIZE.
106 	 */
107 	user_write_access_end();
108 	trace_rseq_update(t);
109 	return 0;
110 
111 efault_end:
112 	user_write_access_end();
113 efault:
114 	return -EFAULT;
115 }
116 
rseq_reset_rseq_cpu_node_id(struct task_struct * t)117 static int rseq_reset_rseq_cpu_node_id(struct task_struct *t)
118 {
119 	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED, node_id = 0,
120 	    mm_cid = 0;
121 
122 	/*
123 	 * Reset cpu_id_start to its initial state (0).
124 	 */
125 	if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
126 		return -EFAULT;
127 	/*
128 	 * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
129 	 * in after unregistration can figure out that rseq needs to be
130 	 * registered again.
131 	 */
132 	if (put_user(cpu_id, &t->rseq->cpu_id))
133 		return -EFAULT;
134 	/*
135 	 * Reset node_id to its initial state (0).
136 	 */
137 	if (put_user(node_id, &t->rseq->node_id))
138 		return -EFAULT;
139 	/*
140 	 * Reset mm_cid to its initial state (0).
141 	 */
142 	if (put_user(mm_cid, &t->rseq->mm_cid))
143 		return -EFAULT;
144 	/*
145 	 * Additional feature fields added after ORIG_RSEQ_SIZE
146 	 * need to be conditionally reset only if
147 	 * t->rseq_len != ORIG_RSEQ_SIZE.
148 	 */
149 	return 0;
150 }
151 
152 /*
153  * Get the user-space pointer value stored in the 'rseq_cs' field.
154  */
rseq_get_rseq_cs_ptr_val(struct rseq __user * rseq,u64 * rseq_cs)155 static int rseq_get_rseq_cs_ptr_val(struct rseq __user *rseq, u64 *rseq_cs)
156 {
157 	if (!rseq_cs)
158 		return -EFAULT;
159 
160 #ifdef CONFIG_64BIT
161 	if (get_user(*rseq_cs, &rseq->rseq_cs))
162 		return -EFAULT;
163 #else
164 	if (copy_from_user(rseq_cs, &rseq->rseq_cs, sizeof(*rseq_cs)))
165 		return -EFAULT;
166 #endif
167 
168 	return 0;
169 }
170 
171 /*
172  * If the rseq_cs field of 'struct rseq' contains a valid pointer to
173  * user-space, copy 'struct rseq_cs' from user-space and validate its fields.
174  */
rseq_get_rseq_cs(struct task_struct * t,struct rseq_cs * rseq_cs)175 static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
176 {
177 	struct rseq_cs __user *urseq_cs;
178 	u64 ptr;
179 	u32 __user *usig;
180 	u32 sig;
181 	int ret;
182 
183 	ret = rseq_get_rseq_cs_ptr_val(t->rseq, &ptr);
184 	if (ret)
185 		return ret;
186 
187 	/* If the rseq_cs pointer is NULL, return a cleared struct rseq_cs. */
188 	if (!ptr) {
189 		memset(rseq_cs, 0, sizeof(*rseq_cs));
190 		return 0;
191 	}
192 	/* Check that the pointer value fits in the user-space process space. */
193 	if (ptr >= TASK_SIZE)
194 		return -EINVAL;
195 	urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
196 	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
197 		return -EFAULT;
198 
199 	if (rseq_cs->start_ip >= TASK_SIZE ||
200 	    rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
201 	    rseq_cs->abort_ip >= TASK_SIZE ||
202 	    rseq_cs->version > 0)
203 		return -EINVAL;
204 	/* Check for overflow. */
205 	if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
206 		return -EINVAL;
207 	/* Ensure that abort_ip is not in the critical section. */
208 	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
209 		return -EINVAL;
210 
211 	usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
212 	ret = get_user(sig, usig);
213 	if (ret)
214 		return ret;
215 
216 	if (current->rseq_sig != sig) {
217 		printk_ratelimited(KERN_WARNING
218 			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
219 			sig, current->rseq_sig, current->pid, usig);
220 		return -EINVAL;
221 	}
222 	return 0;
223 }
224 
rseq_warn_flags(const char * str,u32 flags)225 static bool rseq_warn_flags(const char *str, u32 flags)
226 {
227 	u32 test_flags;
228 
229 	if (!flags)
230 		return false;
231 	test_flags = flags & RSEQ_CS_NO_RESTART_FLAGS;
232 	if (test_flags)
233 		pr_warn_once("Deprecated flags (%u) in %s ABI structure", test_flags, str);
234 	test_flags = flags & ~RSEQ_CS_NO_RESTART_FLAGS;
235 	if (test_flags)
236 		pr_warn_once("Unknown flags (%u) in %s ABI structure", test_flags, str);
237 	return true;
238 }
239 
rseq_need_restart(struct task_struct * t,u32 cs_flags)240 static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
241 {
242 	u32 flags, event_mask;
243 	int ret;
244 
245 	if (rseq_warn_flags("rseq_cs", cs_flags))
246 		return -EINVAL;
247 
248 	/* Get thread flags. */
249 	ret = get_user(flags, &t->rseq->flags);
250 	if (ret)
251 		return ret;
252 
253 	if (rseq_warn_flags("rseq", flags))
254 		return -EINVAL;
255 
256 	/*
257 	 * Load and clear event mask atomically with respect to
258 	 * scheduler preemption.
259 	 */
260 	preempt_disable();
261 	event_mask = t->rseq_event_mask;
262 	t->rseq_event_mask = 0;
263 	preempt_enable();
264 
265 	return !!event_mask;
266 }
267 
clear_rseq_cs(struct rseq __user * rseq)268 static int clear_rseq_cs(struct rseq __user *rseq)
269 {
270 	/*
271 	 * The rseq_cs field is set to NULL on preemption or signal
272 	 * delivery on top of rseq assembly block, as well as on top
273 	 * of code outside of the rseq assembly block. This performs
274 	 * a lazy clear of the rseq_cs field.
275 	 *
276 	 * Set rseq_cs to NULL.
277 	 */
278 #ifdef CONFIG_64BIT
279 	return put_user(0UL, &rseq->rseq_cs);
280 #else
281 	if (clear_user(&rseq->rseq_cs, sizeof(rseq->rseq_cs)))
282 		return -EFAULT;
283 	return 0;
284 #endif
285 }
286 
287 /*
288  * Unsigned comparison will be true when ip >= start_ip, and when
289  * ip < start_ip + post_commit_offset.
290  */
in_rseq_cs(unsigned long ip,struct rseq_cs * rseq_cs)291 static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
292 {
293 	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
294 }
295 
rseq_ip_fixup(struct pt_regs * regs)296 static int rseq_ip_fixup(struct pt_regs *regs)
297 {
298 	unsigned long ip = instruction_pointer(regs);
299 	struct task_struct *t = current;
300 	struct rseq_cs rseq_cs;
301 	int ret;
302 
303 	ret = rseq_get_rseq_cs(t, &rseq_cs);
304 	if (ret)
305 		return ret;
306 
307 	/*
308 	 * Handle potentially not being within a critical section.
309 	 * If not nested over a rseq critical section, restart is useless.
310 	 * Clear the rseq_cs pointer and return.
311 	 */
312 	if (!in_rseq_cs(ip, &rseq_cs))
313 		return clear_rseq_cs(t->rseq);
314 	ret = rseq_need_restart(t, rseq_cs.flags);
315 	if (ret <= 0)
316 		return ret;
317 	ret = clear_rseq_cs(t->rseq);
318 	if (ret)
319 		return ret;
320 	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
321 			    rseq_cs.abort_ip);
322 	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
323 	return 0;
324 }
325 
326 /*
327  * This resume handler must always be executed between any of:
328  * - preemption,
329  * - signal delivery,
330  * and return to user-space.
331  *
332  * This is how we can ensure that the entire rseq critical section
333  * will issue the commit instruction only if executed atomically with
334  * respect to other threads scheduled on the same CPU, and with respect
335  * to signal handlers.
336  */
__rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)337 void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
338 {
339 	struct task_struct *t = current;
340 	int ret, sig;
341 
342 	if (unlikely(t->flags & PF_EXITING))
343 		return;
344 
345 	/*
346 	 * regs is NULL if and only if the caller is in a syscall path.  Skip
347 	 * fixup and leave rseq_cs as is so that rseq_sycall() will detect and
348 	 * kill a misbehaving userspace on debug kernels.
349 	 */
350 	if (regs) {
351 		ret = rseq_ip_fixup(regs);
352 		if (unlikely(ret < 0))
353 			goto error;
354 	}
355 	if (unlikely(rseq_update_cpu_node_id(t)))
356 		goto error;
357 	return;
358 
359 error:
360 	sig = ksig ? ksig->sig : 0;
361 	force_sigsegv(sig);
362 }
363 
364 #ifdef CONFIG_DEBUG_RSEQ
365 
366 /*
367  * Terminate the process if a syscall is issued within a restartable
368  * sequence.
369  */
rseq_syscall(struct pt_regs * regs)370 void rseq_syscall(struct pt_regs *regs)
371 {
372 	unsigned long ip = instruction_pointer(regs);
373 	struct task_struct *t = current;
374 	struct rseq_cs rseq_cs;
375 
376 	if (!t->rseq)
377 		return;
378 	if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
379 		force_sig(SIGSEGV);
380 }
381 
382 #endif
383 
384 /*
385  * sys_rseq - setup restartable sequences for caller thread.
386  */
SYSCALL_DEFINE4(rseq,struct rseq __user *,rseq,u32,rseq_len,int,flags,u32,sig)387 SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
388 		int, flags, u32, sig)
389 {
390 	int ret;
391 	u64 rseq_cs;
392 
393 	if (flags & RSEQ_FLAG_UNREGISTER) {
394 		if (flags & ~RSEQ_FLAG_UNREGISTER)
395 			return -EINVAL;
396 		/* Unregister rseq for current thread. */
397 		if (current->rseq != rseq || !current->rseq)
398 			return -EINVAL;
399 		if (rseq_len != current->rseq_len)
400 			return -EINVAL;
401 		if (current->rseq_sig != sig)
402 			return -EPERM;
403 		ret = rseq_reset_rseq_cpu_node_id(current);
404 		if (ret)
405 			return ret;
406 		current->rseq = NULL;
407 		current->rseq_sig = 0;
408 		current->rseq_len = 0;
409 		return 0;
410 	}
411 
412 	if (unlikely(flags))
413 		return -EINVAL;
414 
415 	if (current->rseq) {
416 		/*
417 		 * If rseq is already registered, check whether
418 		 * the provided address differs from the prior
419 		 * one.
420 		 */
421 		if (current->rseq != rseq || rseq_len != current->rseq_len)
422 			return -EINVAL;
423 		if (current->rseq_sig != sig)
424 			return -EPERM;
425 		/* Already registered. */
426 		return -EBUSY;
427 	}
428 
429 	/*
430 	 * If there was no rseq previously registered, ensure the provided rseq
431 	 * is properly aligned, as communcated to user-space through the ELF
432 	 * auxiliary vector AT_RSEQ_ALIGN. If rseq_len is the original rseq
433 	 * size, the required alignment is the original struct rseq alignment.
434 	 *
435 	 * In order to be valid, rseq_len is either the original rseq size, or
436 	 * large enough to contain all supported fields, as communicated to
437 	 * user-space through the ELF auxiliary vector AT_RSEQ_FEATURE_SIZE.
438 	 */
439 	if (rseq_len < ORIG_RSEQ_SIZE ||
440 	    (rseq_len == ORIG_RSEQ_SIZE && !IS_ALIGNED((unsigned long)rseq, ORIG_RSEQ_SIZE)) ||
441 	    (rseq_len != ORIG_RSEQ_SIZE && (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
442 					    rseq_len < offsetof(struct rseq, end))))
443 		return -EINVAL;
444 	if (!access_ok(rseq, rseq_len))
445 		return -EFAULT;
446 
447 	/*
448 	 * If the rseq_cs pointer is non-NULL on registration, clear it to
449 	 * avoid a potential segfault on return to user-space. The proper thing
450 	 * to do would have been to fail the registration but this would break
451 	 * older libcs that reuse the rseq area for new threads without
452 	 * clearing the fields.
453 	 */
454 	if (rseq_get_rseq_cs_ptr_val(rseq, &rseq_cs))
455 	        return -EFAULT;
456 	if (rseq_cs && clear_rseq_cs(rseq))
457 		return -EFAULT;
458 
459 	current->rseq = rseq;
460 	current->rseq_len = rseq_len;
461 	current->rseq_sig = sig;
462 	/*
463 	 * If rseq was previously inactive, and has just been
464 	 * registered, ensure the cpu_id_start and cpu_id fields
465 	 * are updated before returning to user-space.
466 	 */
467 	rseq_set_notify_resume(current);
468 
469 	return 0;
470 }
471