xref: /openbmc/linux/mm/page_alloc.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
get_pcppage_migratetype(struct page * page)215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
set_pcppage_migratetype(struct page * page,int migratetype)220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool cond_accept_memory(struct zone *zone, unsigned int order);
306 static bool __free_unaccepted(struct page *page);
307 
308 int page_group_by_mobility_disabled __read_mostly;
309 
310 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
311 /*
312  * During boot we initialize deferred pages on-demand, as needed, but once
313  * page_alloc_init_late() has finished, the deferred pages are all initialized,
314  * and we can permanently disable that path.
315  */
316 DEFINE_STATIC_KEY_TRUE(deferred_pages);
317 
deferred_pages_enabled(void)318 static inline bool deferred_pages_enabled(void)
319 {
320 	return static_branch_unlikely(&deferred_pages);
321 }
322 
323 /*
324  * deferred_grow_zone() is __init, but it is called from
325  * get_page_from_freelist() during early boot until deferred_pages permanently
326  * disables this call. This is why we have refdata wrapper to avoid warning,
327  * and to ensure that the function body gets unloaded.
328  */
329 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)330 _deferred_grow_zone(struct zone *zone, unsigned int order)
331 {
332        return deferred_grow_zone(zone, order);
333 }
334 #else
deferred_pages_enabled(void)335 static inline bool deferred_pages_enabled(void)
336 {
337 	return false;
338 }
339 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
340 
341 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)342 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
343 							unsigned long pfn)
344 {
345 #ifdef CONFIG_SPARSEMEM
346 	return section_to_usemap(__pfn_to_section(pfn));
347 #else
348 	return page_zone(page)->pageblock_flags;
349 #endif /* CONFIG_SPARSEMEM */
350 }
351 
pfn_to_bitidx(const struct page * page,unsigned long pfn)352 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 	pfn &= (PAGES_PER_SECTION-1);
356 #else
357 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
358 #endif /* CONFIG_SPARSEMEM */
359 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
360 }
361 
362 /**
363  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
364  * @page: The page within the block of interest
365  * @pfn: The target page frame number
366  * @mask: mask of bits that the caller is interested in
367  *
368  * Return: pageblock_bits flags
369  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)370 unsigned long get_pfnblock_flags_mask(const struct page *page,
371 					unsigned long pfn, unsigned long mask)
372 {
373 	unsigned long *bitmap;
374 	unsigned long bitidx, word_bitidx;
375 	unsigned long word;
376 
377 	bitmap = get_pageblock_bitmap(page, pfn);
378 	bitidx = pfn_to_bitidx(page, pfn);
379 	word_bitidx = bitidx / BITS_PER_LONG;
380 	bitidx &= (BITS_PER_LONG-1);
381 	/*
382 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
383 	 * a consistent read of the memory array, so that results, even though
384 	 * racy, are not corrupted.
385 	 */
386 	word = READ_ONCE(bitmap[word_bitidx]);
387 	return (word >> bitidx) & mask;
388 }
389 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)390 static __always_inline int get_pfnblock_migratetype(const struct page *page,
391 					unsigned long pfn)
392 {
393 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
394 }
395 
396 /**
397  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
398  * @page: The page within the block of interest
399  * @flags: The flags to set
400  * @pfn: The target page frame number
401  * @mask: mask of bits that the caller is interested in
402  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)403 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
404 					unsigned long pfn,
405 					unsigned long mask)
406 {
407 	unsigned long *bitmap;
408 	unsigned long bitidx, word_bitidx;
409 	unsigned long word;
410 
411 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
412 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
413 
414 	bitmap = get_pageblock_bitmap(page, pfn);
415 	bitidx = pfn_to_bitidx(page, pfn);
416 	word_bitidx = bitidx / BITS_PER_LONG;
417 	bitidx &= (BITS_PER_LONG-1);
418 
419 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
420 
421 	mask <<= bitidx;
422 	flags <<= bitidx;
423 
424 	word = READ_ONCE(bitmap[word_bitidx]);
425 	do {
426 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
427 }
428 
set_pageblock_migratetype(struct page * page,int migratetype)429 void set_pageblock_migratetype(struct page *page, int migratetype)
430 {
431 	if (unlikely(page_group_by_mobility_disabled &&
432 		     migratetype < MIGRATE_PCPTYPES))
433 		migratetype = MIGRATE_UNMOVABLE;
434 
435 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
436 				page_to_pfn(page), MIGRATETYPE_MASK);
437 }
438 
439 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)440 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
441 {
442 	int ret;
443 	unsigned seq;
444 	unsigned long pfn = page_to_pfn(page);
445 	unsigned long sp, start_pfn;
446 
447 	do {
448 		seq = zone_span_seqbegin(zone);
449 		start_pfn = zone->zone_start_pfn;
450 		sp = zone->spanned_pages;
451 		ret = !zone_spans_pfn(zone, pfn);
452 	} while (zone_span_seqretry(zone, seq));
453 
454 	if (ret)
455 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
456 			pfn, zone_to_nid(zone), zone->name,
457 			start_pfn, start_pfn + sp);
458 
459 	return ret;
460 }
461 
462 /*
463  * Temporary debugging check for pages not lying within a given zone.
464  */
bad_range(struct zone * zone,struct page * page)465 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
466 {
467 	if (page_outside_zone_boundaries(zone, page))
468 		return 1;
469 	if (zone != page_zone(page))
470 		return 1;
471 
472 	return 0;
473 }
474 #else
bad_range(struct zone * zone,struct page * page)475 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
476 {
477 	return 0;
478 }
479 #endif
480 
bad_page(struct page * page,const char * reason)481 static void bad_page(struct page *page, const char *reason)
482 {
483 	static unsigned long resume;
484 	static unsigned long nr_shown;
485 	static unsigned long nr_unshown;
486 
487 	/*
488 	 * Allow a burst of 60 reports, then keep quiet for that minute;
489 	 * or allow a steady drip of one report per second.
490 	 */
491 	if (nr_shown == 60) {
492 		if (time_before(jiffies, resume)) {
493 			nr_unshown++;
494 			goto out;
495 		}
496 		if (nr_unshown) {
497 			pr_alert(
498 			      "BUG: Bad page state: %lu messages suppressed\n",
499 				nr_unshown);
500 			nr_unshown = 0;
501 		}
502 		nr_shown = 0;
503 	}
504 	if (nr_shown++ == 0)
505 		resume = jiffies + 60 * HZ;
506 
507 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
508 		current->comm, page_to_pfn(page));
509 	dump_page(page, reason);
510 
511 	print_modules();
512 	dump_stack();
513 out:
514 	/* Leave bad fields for debug, except PageBuddy could make trouble */
515 	page_mapcount_reset(page); /* remove PageBuddy */
516 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
517 }
518 
order_to_pindex(int migratetype,int order)519 static inline unsigned int order_to_pindex(int migratetype, int order)
520 {
521 	bool __maybe_unused movable;
522 
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 		VM_BUG_ON(order != pageblock_order);
526 
527 		movable = migratetype == MIGRATE_MOVABLE;
528 
529 		return NR_LOWORDER_PCP_LISTS + movable;
530 	}
531 #else
532 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
533 #endif
534 
535 	return (MIGRATE_PCPTYPES * order) + migratetype;
536 }
537 
pindex_to_order(unsigned int pindex)538 static inline int pindex_to_order(unsigned int pindex)
539 {
540 	int order = pindex / MIGRATE_PCPTYPES;
541 
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 	if (pindex >= NR_LOWORDER_PCP_LISTS)
544 		order = pageblock_order;
545 #else
546 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
547 #endif
548 
549 	return order;
550 }
551 
pcp_allowed_order(unsigned int order)552 static inline bool pcp_allowed_order(unsigned int order)
553 {
554 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
555 		return true;
556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
557 	if (order == pageblock_order)
558 		return true;
559 #endif
560 	return false;
561 }
562 
free_the_page(struct page * page,unsigned int order)563 static inline void free_the_page(struct page *page, unsigned int order)
564 {
565 	if (pcp_allowed_order(order))		/* Via pcp? */
566 		free_unref_page(page, order);
567 	else
568 		__free_pages_ok(page, order, FPI_NONE);
569 }
570 
571 /*
572  * Higher-order pages are called "compound pages".  They are structured thusly:
573  *
574  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
575  *
576  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
577  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
578  *
579  * The first tail page's ->compound_order holds the order of allocation.
580  * This usage means that zero-order pages may not be compound.
581  */
582 
prep_compound_page(struct page * page,unsigned int order)583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 	int i;
586 	int nr_pages = 1 << order;
587 
588 	__SetPageHead(page);
589 	for (i = 1; i < nr_pages; i++)
590 		prep_compound_tail(page, i);
591 
592 	prep_compound_head(page, order);
593 }
594 
destroy_large_folio(struct folio * folio)595 void destroy_large_folio(struct folio *folio)
596 {
597 	if (folio_test_hugetlb(folio)) {
598 		free_huge_folio(folio);
599 		return;
600 	}
601 
602 	folio_unqueue_deferred_split(folio);
603 	mem_cgroup_uncharge(folio);
604 	free_the_page(&folio->page, folio_order(folio));
605 }
606 
set_buddy_order(struct page * page,unsigned int order)607 static inline void set_buddy_order(struct page *page, unsigned int order)
608 {
609 	set_page_private(page, order);
610 	__SetPageBuddy(page);
611 }
612 
613 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)614 static inline struct capture_control *task_capc(struct zone *zone)
615 {
616 	struct capture_control *capc = current->capture_control;
617 
618 	return unlikely(capc) &&
619 		!(current->flags & PF_KTHREAD) &&
620 		!capc->page &&
621 		capc->cc->zone == zone ? capc : NULL;
622 }
623 
624 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)625 compaction_capture(struct capture_control *capc, struct page *page,
626 		   int order, int migratetype)
627 {
628 	if (!capc || order != capc->cc->order)
629 		return false;
630 
631 	/* Do not accidentally pollute CMA or isolated regions*/
632 	if (is_migrate_cma(migratetype) ||
633 	    is_migrate_isolate(migratetype))
634 		return false;
635 
636 	/*
637 	 * Do not let lower order allocations pollute a movable pageblock.
638 	 * This might let an unmovable request use a reclaimable pageblock
639 	 * and vice-versa but no more than normal fallback logic which can
640 	 * have trouble finding a high-order free page.
641 	 */
642 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
643 		return false;
644 
645 	capc->page = page;
646 	return true;
647 }
648 
649 #else
task_capc(struct zone * zone)650 static inline struct capture_control *task_capc(struct zone *zone)
651 {
652 	return NULL;
653 }
654 
655 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)656 compaction_capture(struct capture_control *capc, struct page *page,
657 		   int order, int migratetype)
658 {
659 	return false;
660 }
661 #endif /* CONFIG_COMPACTION */
662 
663 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)664 static inline void add_to_free_list(struct page *page, struct zone *zone,
665 				    unsigned int order, int migratetype)
666 {
667 	struct free_area *area = &zone->free_area[order];
668 
669 	list_add(&page->buddy_list, &area->free_list[migratetype]);
670 	area->nr_free++;
671 }
672 
673 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)674 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
675 					 unsigned int order, int migratetype)
676 {
677 	struct free_area *area = &zone->free_area[order];
678 
679 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
680 	area->nr_free++;
681 }
682 
683 /*
684  * Used for pages which are on another list. Move the pages to the tail
685  * of the list - so the moved pages won't immediately be considered for
686  * allocation again (e.g., optimization for memory onlining).
687  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 				     unsigned int order, int migratetype)
690 {
691 	struct free_area *area = &zone->free_area[order];
692 
693 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
694 }
695 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)696 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
697 					   unsigned int order)
698 {
699 	/* clear reported state and update reported page count */
700 	if (page_reported(page))
701 		__ClearPageReported(page);
702 
703 	list_del(&page->buddy_list);
704 	__ClearPageBuddy(page);
705 	set_page_private(page, 0);
706 	zone->free_area[order].nr_free--;
707 }
708 
get_page_from_free_area(struct free_area * area,int migratetype)709 static inline struct page *get_page_from_free_area(struct free_area *area,
710 					    int migratetype)
711 {
712 	return list_first_entry_or_null(&area->free_list[migratetype],
713 					struct page, buddy_list);
714 }
715 
716 /*
717  * If this is not the largest possible page, check if the buddy
718  * of the next-highest order is free. If it is, it's possible
719  * that pages are being freed that will coalesce soon. In case,
720  * that is happening, add the free page to the tail of the list
721  * so it's less likely to be used soon and more likely to be merged
722  * as a higher order page
723  */
724 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)725 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
726 		   struct page *page, unsigned int order)
727 {
728 	unsigned long higher_page_pfn;
729 	struct page *higher_page;
730 
731 	if (order >= MAX_ORDER - 1)
732 		return false;
733 
734 	higher_page_pfn = buddy_pfn & pfn;
735 	higher_page = page + (higher_page_pfn - pfn);
736 
737 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
738 			NULL) != NULL;
739 }
740 
741 /*
742  * Freeing function for a buddy system allocator.
743  *
744  * The concept of a buddy system is to maintain direct-mapped table
745  * (containing bit values) for memory blocks of various "orders".
746  * The bottom level table contains the map for the smallest allocatable
747  * units of memory (here, pages), and each level above it describes
748  * pairs of units from the levels below, hence, "buddies".
749  * At a high level, all that happens here is marking the table entry
750  * at the bottom level available, and propagating the changes upward
751  * as necessary, plus some accounting needed to play nicely with other
752  * parts of the VM system.
753  * At each level, we keep a list of pages, which are heads of continuous
754  * free pages of length of (1 << order) and marked with PageBuddy.
755  * Page's order is recorded in page_private(page) field.
756  * So when we are allocating or freeing one, we can derive the state of the
757  * other.  That is, if we allocate a small block, and both were
758  * free, the remainder of the region must be split into blocks.
759  * If a block is freed, and its buddy is also free, then this
760  * triggers coalescing into a block of larger size.
761  *
762  * -- nyc
763  */
764 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)765 static inline void __free_one_page(struct page *page,
766 		unsigned long pfn,
767 		struct zone *zone, unsigned int order,
768 		int migratetype, fpi_t fpi_flags)
769 {
770 	struct capture_control *capc = task_capc(zone);
771 	unsigned long buddy_pfn = 0;
772 	unsigned long combined_pfn;
773 	struct page *buddy;
774 	bool to_tail;
775 
776 	VM_BUG_ON(!zone_is_initialized(zone));
777 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
778 
779 	VM_BUG_ON(migratetype == -1);
780 	if (likely(!is_migrate_isolate(migratetype)))
781 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
782 
783 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
784 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
785 
786 	while (order < MAX_ORDER) {
787 		if (compaction_capture(capc, page, order, migratetype)) {
788 			__mod_zone_freepage_state(zone, -(1 << order),
789 								migratetype);
790 			return;
791 		}
792 
793 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
794 		if (!buddy)
795 			goto done_merging;
796 
797 		if (unlikely(order >= pageblock_order)) {
798 			/*
799 			 * We want to prevent merge between freepages on pageblock
800 			 * without fallbacks and normal pageblock. Without this,
801 			 * pageblock isolation could cause incorrect freepage or CMA
802 			 * accounting or HIGHATOMIC accounting.
803 			 */
804 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
805 
806 			if (migratetype != buddy_mt
807 					&& (!migratetype_is_mergeable(migratetype) ||
808 						!migratetype_is_mergeable(buddy_mt)))
809 				goto done_merging;
810 		}
811 
812 		/*
813 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 		 * merge with it and move up one order.
815 		 */
816 		if (page_is_guard(buddy))
817 			clear_page_guard(zone, buddy, order, migratetype);
818 		else
819 			del_page_from_free_list(buddy, zone, order);
820 		combined_pfn = buddy_pfn & pfn;
821 		page = page + (combined_pfn - pfn);
822 		pfn = combined_pfn;
823 		order++;
824 	}
825 
826 done_merging:
827 	set_buddy_order(page, order);
828 
829 	if (fpi_flags & FPI_TO_TAIL)
830 		to_tail = true;
831 	else if (is_shuffle_order(order))
832 		to_tail = shuffle_pick_tail();
833 	else
834 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
835 
836 	if (to_tail)
837 		add_to_free_list_tail(page, zone, order, migratetype);
838 	else
839 		add_to_free_list(page, zone, order, migratetype);
840 
841 	/* Notify page reporting subsystem of freed page */
842 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
843 		page_reporting_notify_free(order);
844 }
845 
846 /**
847  * split_free_page() -- split a free page at split_pfn_offset
848  * @free_page:		the original free page
849  * @order:		the order of the page
850  * @split_pfn_offset:	split offset within the page
851  *
852  * Return -ENOENT if the free page is changed, otherwise 0
853  *
854  * It is used when the free page crosses two pageblocks with different migratetypes
855  * at split_pfn_offset within the page. The split free page will be put into
856  * separate migratetype lists afterwards. Otherwise, the function achieves
857  * nothing.
858  */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)859 int split_free_page(struct page *free_page,
860 			unsigned int order, unsigned long split_pfn_offset)
861 {
862 	struct zone *zone = page_zone(free_page);
863 	unsigned long free_page_pfn = page_to_pfn(free_page);
864 	unsigned long pfn;
865 	unsigned long flags;
866 	int free_page_order;
867 	int mt;
868 	int ret = 0;
869 
870 	if (split_pfn_offset == 0)
871 		return ret;
872 
873 	spin_lock_irqsave(&zone->lock, flags);
874 
875 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
876 		ret = -ENOENT;
877 		goto out;
878 	}
879 
880 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
881 	if (likely(!is_migrate_isolate(mt)))
882 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
883 
884 	del_page_from_free_list(free_page, zone, order);
885 	for (pfn = free_page_pfn;
886 	     pfn < free_page_pfn + (1UL << order);) {
887 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888 
889 		free_page_order = min_t(unsigned int,
890 					pfn ? __ffs(pfn) : order,
891 					__fls(split_pfn_offset));
892 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893 				mt, FPI_NONE);
894 		pfn += 1UL << free_page_order;
895 		split_pfn_offset -= (1UL << free_page_order);
896 		/* we have done the first part, now switch to second part */
897 		if (split_pfn_offset == 0)
898 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
899 	}
900 out:
901 	spin_unlock_irqrestore(&zone->lock, flags);
902 	return ret;
903 }
904 /*
905  * A bad page could be due to a number of fields. Instead of multiple branches,
906  * try and check multiple fields with one check. The caller must do a detailed
907  * check if necessary.
908  */
page_expected_state(struct page * page,unsigned long check_flags)909 static inline bool page_expected_state(struct page *page,
910 					unsigned long check_flags)
911 {
912 	if (unlikely(atomic_read(&page->_mapcount) != -1))
913 		return false;
914 
915 	if (unlikely((unsigned long)page->mapping |
916 			page_ref_count(page) |
917 #ifdef CONFIG_MEMCG
918 			page->memcg_data |
919 #endif
920 			(page->flags & check_flags)))
921 		return false;
922 
923 	return true;
924 }
925 
page_bad_reason(struct page * page,unsigned long flags)926 static const char *page_bad_reason(struct page *page, unsigned long flags)
927 {
928 	const char *bad_reason = NULL;
929 
930 	if (unlikely(atomic_read(&page->_mapcount) != -1))
931 		bad_reason = "nonzero mapcount";
932 	if (unlikely(page->mapping != NULL))
933 		bad_reason = "non-NULL mapping";
934 	if (unlikely(page_ref_count(page) != 0))
935 		bad_reason = "nonzero _refcount";
936 	if (unlikely(page->flags & flags)) {
937 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
938 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
939 		else
940 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
941 	}
942 #ifdef CONFIG_MEMCG
943 	if (unlikely(page->memcg_data))
944 		bad_reason = "page still charged to cgroup";
945 #endif
946 	return bad_reason;
947 }
948 
free_page_is_bad_report(struct page * page)949 static void free_page_is_bad_report(struct page *page)
950 {
951 	bad_page(page,
952 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
953 }
954 
free_page_is_bad(struct page * page)955 static inline bool free_page_is_bad(struct page *page)
956 {
957 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
958 		return false;
959 
960 	/* Something has gone sideways, find it */
961 	free_page_is_bad_report(page);
962 	return true;
963 }
964 
is_check_pages_enabled(void)965 static inline bool is_check_pages_enabled(void)
966 {
967 	return static_branch_unlikely(&check_pages_enabled);
968 }
969 
free_tail_page_prepare(struct page * head_page,struct page * page)970 static int free_tail_page_prepare(struct page *head_page, struct page *page)
971 {
972 	struct folio *folio = (struct folio *)head_page;
973 	int ret = 1;
974 
975 	/*
976 	 * We rely page->lru.next never has bit 0 set, unless the page
977 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
978 	 */
979 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
980 
981 	if (!is_check_pages_enabled()) {
982 		ret = 0;
983 		goto out;
984 	}
985 	switch (page - head_page) {
986 	case 1:
987 		/* the first tail page: these may be in place of ->mapping */
988 		if (unlikely(folio_entire_mapcount(folio))) {
989 			bad_page(page, "nonzero entire_mapcount");
990 			goto out;
991 		}
992 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
993 			bad_page(page, "nonzero nr_pages_mapped");
994 			goto out;
995 		}
996 		if (unlikely(atomic_read(&folio->_pincount))) {
997 			bad_page(page, "nonzero pincount");
998 			goto out;
999 		}
1000 		break;
1001 	case 2:
1002 		/* the second tail page: deferred_list overlaps ->mapping */
1003 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1004 			bad_page(page, "on deferred list");
1005 			goto out;
1006 		}
1007 		break;
1008 	default:
1009 		if (page->mapping != TAIL_MAPPING) {
1010 			bad_page(page, "corrupted mapping in tail page");
1011 			goto out;
1012 		}
1013 		break;
1014 	}
1015 	if (unlikely(!PageTail(page))) {
1016 		bad_page(page, "PageTail not set");
1017 		goto out;
1018 	}
1019 	if (unlikely(compound_head(page) != head_page)) {
1020 		bad_page(page, "compound_head not consistent");
1021 		goto out;
1022 	}
1023 	ret = 0;
1024 out:
1025 	page->mapping = NULL;
1026 	clear_compound_head(page);
1027 	return ret;
1028 }
1029 
1030 /*
1031  * Skip KASAN memory poisoning when either:
1032  *
1033  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1034  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1035  *    using page tags instead (see below).
1036  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1037  *    that error detection is disabled for accesses via the page address.
1038  *
1039  * Pages will have match-all tags in the following circumstances:
1040  *
1041  * 1. Pages are being initialized for the first time, including during deferred
1042  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1043  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1044  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1045  * 3. The allocation was excluded from being checked due to sampling,
1046  *    see the call to kasan_unpoison_pages.
1047  *
1048  * Poisoning pages during deferred memory init will greatly lengthen the
1049  * process and cause problem in large memory systems as the deferred pages
1050  * initialization is done with interrupt disabled.
1051  *
1052  * Assuming that there will be no reference to those newly initialized
1053  * pages before they are ever allocated, this should have no effect on
1054  * KASAN memory tracking as the poison will be properly inserted at page
1055  * allocation time. The only corner case is when pages are allocated by
1056  * on-demand allocation and then freed again before the deferred pages
1057  * initialization is done, but this is not likely to happen.
1058  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1059 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1060 {
1061 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1062 		return deferred_pages_enabled();
1063 
1064 	return page_kasan_tag(page) == 0xff;
1065 }
1066 
kernel_init_pages(struct page * page,int numpages)1067 static void kernel_init_pages(struct page *page, int numpages)
1068 {
1069 	int i;
1070 
1071 	/* s390's use of memset() could override KASAN redzones. */
1072 	kasan_disable_current();
1073 	for (i = 0; i < numpages; i++)
1074 		clear_highpage_kasan_tagged(page + i);
1075 	kasan_enable_current();
1076 }
1077 
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1078 static __always_inline bool free_pages_prepare(struct page *page,
1079 			unsigned int order, fpi_t fpi_flags)
1080 {
1081 	int bad = 0;
1082 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1083 	bool init = want_init_on_free();
1084 	struct folio *folio = page_folio(page);
1085 
1086 	VM_BUG_ON_PAGE(PageTail(page), page);
1087 
1088 	trace_mm_page_free(page, order);
1089 	kmsan_free_page(page, order);
1090 
1091 	/*
1092 	 * In rare cases, when truncation or holepunching raced with
1093 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1094 	 * found set here.  This does not indicate a problem, unless
1095 	 * "unevictable_pgs_cleared" appears worryingly large.
1096 	 */
1097 	if (unlikely(folio_test_mlocked(folio))) {
1098 		long nr_pages = folio_nr_pages(folio);
1099 
1100 		__folio_clear_mlocked(folio);
1101 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1102 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1103 	}
1104 
1105 	if (unlikely(PageHWPoison(page)) && !order) {
1106 		/*
1107 		 * Do not let hwpoison pages hit pcplists/buddy
1108 		 * Untie memcg state and reset page's owner
1109 		 */
1110 		if (memcg_kmem_online() && PageMemcgKmem(page))
1111 			__memcg_kmem_uncharge_page(page, order);
1112 		reset_page_owner(page, order);
1113 		page_table_check_free(page, order);
1114 		return false;
1115 	}
1116 
1117 	/*
1118 	 * Check tail pages before head page information is cleared to
1119 	 * avoid checking PageCompound for order-0 pages.
1120 	 */
1121 	if (unlikely(order)) {
1122 		bool compound = PageCompound(page);
1123 		int i;
1124 
1125 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1126 
1127 		if (compound)
1128 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1129 		for (i = 1; i < (1 << order); i++) {
1130 			if (compound)
1131 				bad += free_tail_page_prepare(page, page + i);
1132 			if (is_check_pages_enabled()) {
1133 				if (free_page_is_bad(page + i)) {
1134 					bad++;
1135 					continue;
1136 				}
1137 			}
1138 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1139 		}
1140 	}
1141 	if (PageMappingFlags(page))
1142 		page->mapping = NULL;
1143 	if (memcg_kmem_online() && PageMemcgKmem(page))
1144 		__memcg_kmem_uncharge_page(page, order);
1145 	if (is_check_pages_enabled()) {
1146 		if (free_page_is_bad(page))
1147 			bad++;
1148 		if (bad)
1149 			return false;
1150 	}
1151 
1152 	page_cpupid_reset_last(page);
1153 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1154 	reset_page_owner(page, order);
1155 	page_table_check_free(page, order);
1156 
1157 	if (!PageHighMem(page)) {
1158 		debug_check_no_locks_freed(page_address(page),
1159 					   PAGE_SIZE << order);
1160 		debug_check_no_obj_freed(page_address(page),
1161 					   PAGE_SIZE << order);
1162 	}
1163 
1164 	kernel_poison_pages(page, 1 << order);
1165 
1166 	/*
1167 	 * As memory initialization might be integrated into KASAN,
1168 	 * KASAN poisoning and memory initialization code must be
1169 	 * kept together to avoid discrepancies in behavior.
1170 	 *
1171 	 * With hardware tag-based KASAN, memory tags must be set before the
1172 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1173 	 */
1174 	if (!skip_kasan_poison) {
1175 		kasan_poison_pages(page, order, init);
1176 
1177 		/* Memory is already initialized if KASAN did it internally. */
1178 		if (kasan_has_integrated_init())
1179 			init = false;
1180 	}
1181 	if (init)
1182 		kernel_init_pages(page, 1 << order);
1183 
1184 	/*
1185 	 * arch_free_page() can make the page's contents inaccessible.  s390
1186 	 * does this.  So nothing which can access the page's contents should
1187 	 * happen after this.
1188 	 */
1189 	arch_free_page(page, order);
1190 
1191 	debug_pagealloc_unmap_pages(page, 1 << order);
1192 
1193 	return true;
1194 }
1195 
1196 /*
1197  * Frees a number of pages from the PCP lists
1198  * Assumes all pages on list are in same zone.
1199  * count is the number of pages to free.
1200  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1201 static void free_pcppages_bulk(struct zone *zone, int count,
1202 					struct per_cpu_pages *pcp,
1203 					int pindex)
1204 {
1205 	unsigned long flags;
1206 	unsigned int order;
1207 	bool isolated_pageblocks;
1208 	struct page *page;
1209 
1210 	/*
1211 	 * Ensure proper count is passed which otherwise would stuck in the
1212 	 * below while (list_empty(list)) loop.
1213 	 */
1214 	count = min(pcp->count, count);
1215 
1216 	/* Ensure requested pindex is drained first. */
1217 	pindex = pindex - 1;
1218 
1219 	spin_lock_irqsave(&zone->lock, flags);
1220 	isolated_pageblocks = has_isolate_pageblock(zone);
1221 
1222 	while (count > 0) {
1223 		struct list_head *list;
1224 		int nr_pages;
1225 
1226 		/* Remove pages from lists in a round-robin fashion. */
1227 		do {
1228 			if (++pindex > NR_PCP_LISTS - 1)
1229 				pindex = 0;
1230 			list = &pcp->lists[pindex];
1231 		} while (list_empty(list));
1232 
1233 		order = pindex_to_order(pindex);
1234 		nr_pages = 1 << order;
1235 		do {
1236 			int mt;
1237 
1238 			page = list_last_entry(list, struct page, pcp_list);
1239 			mt = get_pcppage_migratetype(page);
1240 
1241 			/* must delete to avoid corrupting pcp list */
1242 			list_del(&page->pcp_list);
1243 			count -= nr_pages;
1244 			pcp->count -= nr_pages;
1245 
1246 			/* MIGRATE_ISOLATE page should not go to pcplists */
1247 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1248 			/* Pageblock could have been isolated meanwhile */
1249 			if (unlikely(isolated_pageblocks))
1250 				mt = get_pageblock_migratetype(page);
1251 
1252 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1253 			trace_mm_page_pcpu_drain(page, order, mt);
1254 		} while (count > 0 && !list_empty(list));
1255 	}
1256 
1257 	spin_unlock_irqrestore(&zone->lock, flags);
1258 }
1259 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1260 static void free_one_page(struct zone *zone,
1261 				struct page *page, unsigned long pfn,
1262 				unsigned int order,
1263 				int migratetype, fpi_t fpi_flags)
1264 {
1265 	unsigned long flags;
1266 
1267 	spin_lock_irqsave(&zone->lock, flags);
1268 	if (unlikely(has_isolate_pageblock(zone) ||
1269 		is_migrate_isolate(migratetype))) {
1270 		migratetype = get_pfnblock_migratetype(page, pfn);
1271 	}
1272 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1273 	spin_unlock_irqrestore(&zone->lock, flags);
1274 }
1275 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1276 static void __free_pages_ok(struct page *page, unsigned int order,
1277 			    fpi_t fpi_flags)
1278 {
1279 	unsigned long flags;
1280 	int migratetype;
1281 	unsigned long pfn = page_to_pfn(page);
1282 	struct zone *zone = page_zone(page);
1283 
1284 	if (!free_pages_prepare(page, order, fpi_flags))
1285 		return;
1286 
1287 	/*
1288 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1289 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1290 	 * This will reduce the lock holding time.
1291 	 */
1292 	migratetype = get_pfnblock_migratetype(page, pfn);
1293 
1294 	spin_lock_irqsave(&zone->lock, flags);
1295 	if (unlikely(has_isolate_pageblock(zone) ||
1296 		is_migrate_isolate(migratetype))) {
1297 		migratetype = get_pfnblock_migratetype(page, pfn);
1298 	}
1299 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1300 	spin_unlock_irqrestore(&zone->lock, flags);
1301 
1302 	__count_vm_events(PGFREE, 1 << order);
1303 }
1304 
__free_pages_core(struct page * page,unsigned int order)1305 void __free_pages_core(struct page *page, unsigned int order)
1306 {
1307 	unsigned int nr_pages = 1 << order;
1308 	struct page *p = page;
1309 	unsigned int loop;
1310 
1311 	/*
1312 	 * When initializing the memmap, __init_single_page() sets the refcount
1313 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1314 	 * refcount of all involved pages to 0.
1315 	 */
1316 	prefetchw(p);
1317 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1318 		prefetchw(p + 1);
1319 		__ClearPageReserved(p);
1320 		set_page_count(p, 0);
1321 	}
1322 	__ClearPageReserved(p);
1323 	set_page_count(p, 0);
1324 
1325 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1326 
1327 	if (page_contains_unaccepted(page, order)) {
1328 		if (order == MAX_ORDER && __free_unaccepted(page))
1329 			return;
1330 
1331 		accept_page(page, order);
1332 	}
1333 
1334 	/*
1335 	 * Bypass PCP and place fresh pages right to the tail, primarily
1336 	 * relevant for memory onlining.
1337 	 */
1338 	__free_pages_ok(page, order, FPI_TO_TAIL);
1339 }
1340 
1341 /*
1342  * Check that the whole (or subset of) a pageblock given by the interval of
1343  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344  * with the migration of free compaction scanner.
1345  *
1346  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347  *
1348  * It's possible on some configurations to have a setup like node0 node1 node0
1349  * i.e. it's possible that all pages within a zones range of pages do not
1350  * belong to a single zone. We assume that a border between node0 and node1
1351  * can occur within a single pageblock, but not a node0 node1 node0
1352  * interleaving within a single pageblock. It is therefore sufficient to check
1353  * the first and last page of a pageblock and avoid checking each individual
1354  * page in a pageblock.
1355  *
1356  * Note: the function may return non-NULL struct page even for a page block
1357  * which contains a memory hole (i.e. there is no physical memory for a subset
1358  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1359  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1360  * even though the start pfn is online and valid. This should be safe most of
1361  * the time because struct pages are still initialized via init_unavailable_range()
1362  * and pfn walkers shouldn't touch any physical memory range for which they do
1363  * not recognize any specific metadata in struct pages.
1364  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1365 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1366 				     unsigned long end_pfn, struct zone *zone)
1367 {
1368 	struct page *start_page;
1369 	struct page *end_page;
1370 
1371 	/* end_pfn is one past the range we are checking */
1372 	end_pfn--;
1373 
1374 	if (!pfn_valid(end_pfn))
1375 		return NULL;
1376 
1377 	start_page = pfn_to_online_page(start_pfn);
1378 	if (!start_page)
1379 		return NULL;
1380 
1381 	if (page_zone(start_page) != zone)
1382 		return NULL;
1383 
1384 	end_page = pfn_to_page(end_pfn);
1385 
1386 	/* This gives a shorter code than deriving page_zone(end_page) */
1387 	if (page_zone_id(start_page) != page_zone_id(end_page))
1388 		return NULL;
1389 
1390 	return start_page;
1391 }
1392 
1393 /*
1394  * The order of subdivision here is critical for the IO subsystem.
1395  * Please do not alter this order without good reasons and regression
1396  * testing. Specifically, as large blocks of memory are subdivided,
1397  * the order in which smaller blocks are delivered depends on the order
1398  * they're subdivided in this function. This is the primary factor
1399  * influencing the order in which pages are delivered to the IO
1400  * subsystem according to empirical testing, and this is also justified
1401  * by considering the behavior of a buddy system containing a single
1402  * large block of memory acted on by a series of small allocations.
1403  * This behavior is a critical factor in sglist merging's success.
1404  *
1405  * -- nyc
1406  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1407 static inline void expand(struct zone *zone, struct page *page,
1408 	int low, int high, int migratetype)
1409 {
1410 	unsigned long size = 1 << high;
1411 
1412 	while (high > low) {
1413 		high--;
1414 		size >>= 1;
1415 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1416 
1417 		/*
1418 		 * Mark as guard pages (or page), that will allow to
1419 		 * merge back to allocator when buddy will be freed.
1420 		 * Corresponding page table entries will not be touched,
1421 		 * pages will stay not present in virtual address space
1422 		 */
1423 		if (set_page_guard(zone, &page[size], high, migratetype))
1424 			continue;
1425 
1426 		add_to_free_list(&page[size], zone, high, migratetype);
1427 		set_buddy_order(&page[size], high);
1428 	}
1429 }
1430 
check_new_page_bad(struct page * page)1431 static void check_new_page_bad(struct page *page)
1432 {
1433 	if (unlikely(page->flags & __PG_HWPOISON)) {
1434 		/* Don't complain about hwpoisoned pages */
1435 		page_mapcount_reset(page); /* remove PageBuddy */
1436 		return;
1437 	}
1438 
1439 	bad_page(page,
1440 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1441 }
1442 
1443 /*
1444  * This page is about to be returned from the page allocator
1445  */
check_new_page(struct page * page)1446 static int check_new_page(struct page *page)
1447 {
1448 	if (likely(page_expected_state(page,
1449 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1450 		return 0;
1451 
1452 	check_new_page_bad(page);
1453 	return 1;
1454 }
1455 
check_new_pages(struct page * page,unsigned int order)1456 static inline bool check_new_pages(struct page *page, unsigned int order)
1457 {
1458 	if (is_check_pages_enabled()) {
1459 		for (int i = 0; i < (1 << order); i++) {
1460 			struct page *p = page + i;
1461 
1462 			if (check_new_page(p))
1463 				return true;
1464 		}
1465 	}
1466 
1467 	return false;
1468 }
1469 
should_skip_kasan_unpoison(gfp_t flags)1470 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1471 {
1472 	/* Don't skip if a software KASAN mode is enabled. */
1473 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1474 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1475 		return false;
1476 
1477 	/* Skip, if hardware tag-based KASAN is not enabled. */
1478 	if (!kasan_hw_tags_enabled())
1479 		return true;
1480 
1481 	/*
1482 	 * With hardware tag-based KASAN enabled, skip if this has been
1483 	 * requested via __GFP_SKIP_KASAN.
1484 	 */
1485 	return flags & __GFP_SKIP_KASAN;
1486 }
1487 
should_skip_init(gfp_t flags)1488 static inline bool should_skip_init(gfp_t flags)
1489 {
1490 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1491 	if (!kasan_hw_tags_enabled())
1492 		return false;
1493 
1494 	/* For hardware tag-based KASAN, skip if requested. */
1495 	return (flags & __GFP_SKIP_ZERO);
1496 }
1497 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1498 inline void post_alloc_hook(struct page *page, unsigned int order,
1499 				gfp_t gfp_flags)
1500 {
1501 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1502 			!should_skip_init(gfp_flags);
1503 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1504 	int i;
1505 
1506 	set_page_private(page, 0);
1507 	set_page_refcounted(page);
1508 
1509 	arch_alloc_page(page, order);
1510 	debug_pagealloc_map_pages(page, 1 << order);
1511 
1512 	/*
1513 	 * Page unpoisoning must happen before memory initialization.
1514 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1515 	 * allocations and the page unpoisoning code will complain.
1516 	 */
1517 	kernel_unpoison_pages(page, 1 << order);
1518 
1519 	/*
1520 	 * As memory initialization might be integrated into KASAN,
1521 	 * KASAN unpoisoning and memory initializion code must be
1522 	 * kept together to avoid discrepancies in behavior.
1523 	 */
1524 
1525 	/*
1526 	 * If memory tags should be zeroed
1527 	 * (which happens only when memory should be initialized as well).
1528 	 */
1529 	if (zero_tags) {
1530 		/* Initialize both memory and memory tags. */
1531 		for (i = 0; i != 1 << order; ++i)
1532 			tag_clear_highpage(page + i);
1533 
1534 		/* Take note that memory was initialized by the loop above. */
1535 		init = false;
1536 	}
1537 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1538 	    kasan_unpoison_pages(page, order, init)) {
1539 		/* Take note that memory was initialized by KASAN. */
1540 		if (kasan_has_integrated_init())
1541 			init = false;
1542 	} else {
1543 		/*
1544 		 * If memory tags have not been set by KASAN, reset the page
1545 		 * tags to ensure page_address() dereferencing does not fault.
1546 		 */
1547 		for (i = 0; i != 1 << order; ++i)
1548 			page_kasan_tag_reset(page + i);
1549 	}
1550 	/* If memory is still not initialized, initialize it now. */
1551 	if (init)
1552 		kernel_init_pages(page, 1 << order);
1553 
1554 	set_page_owner(page, order, gfp_flags);
1555 	page_table_check_alloc(page, order);
1556 }
1557 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1558 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1559 							unsigned int alloc_flags)
1560 {
1561 	post_alloc_hook(page, order, gfp_flags);
1562 
1563 	if (order && (gfp_flags & __GFP_COMP))
1564 		prep_compound_page(page, order);
1565 
1566 	/*
1567 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1568 	 * allocate the page. The expectation is that the caller is taking
1569 	 * steps that will free more memory. The caller should avoid the page
1570 	 * being used for !PFMEMALLOC purposes.
1571 	 */
1572 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1573 		set_page_pfmemalloc(page);
1574 	else
1575 		clear_page_pfmemalloc(page);
1576 }
1577 
1578 /*
1579  * Go through the free lists for the given migratetype and remove
1580  * the smallest available page from the freelists
1581  */
1582 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1583 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1584 						int migratetype)
1585 {
1586 	unsigned int current_order;
1587 	struct free_area *area;
1588 	struct page *page;
1589 
1590 	/* Find a page of the appropriate size in the preferred list */
1591 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1592 		area = &(zone->free_area[current_order]);
1593 		page = get_page_from_free_area(area, migratetype);
1594 		if (!page)
1595 			continue;
1596 		del_page_from_free_list(page, zone, current_order);
1597 		expand(zone, page, order, current_order, migratetype);
1598 		set_pcppage_migratetype(page, migratetype);
1599 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1600 				pcp_allowed_order(order) &&
1601 				migratetype < MIGRATE_PCPTYPES);
1602 		return page;
1603 	}
1604 
1605 	return NULL;
1606 }
1607 
1608 
1609 /*
1610  * This array describes the order lists are fallen back to when
1611  * the free lists for the desirable migrate type are depleted
1612  *
1613  * The other migratetypes do not have fallbacks.
1614  */
1615 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1616 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1617 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1618 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1619 };
1620 
1621 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1622 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 					unsigned int order)
1624 {
1625 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626 }
1627 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1628 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 					unsigned int order) { return NULL; }
1630 #endif
1631 
1632 /*
1633  * Move the free pages in a range to the freelist tail of the requested type.
1634  * Note that start_page and end_pages are not aligned on a pageblock
1635  * boundary. If alignment is required, use move_freepages_block()
1636  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1637 static int move_freepages(struct zone *zone,
1638 			  unsigned long start_pfn, unsigned long end_pfn,
1639 			  int migratetype, int *num_movable)
1640 {
1641 	struct page *page;
1642 	unsigned long pfn;
1643 	unsigned int order;
1644 	int pages_moved = 0;
1645 
1646 	for (pfn = start_pfn; pfn <= end_pfn;) {
1647 		page = pfn_to_page(pfn);
1648 		if (!PageBuddy(page)) {
1649 			/*
1650 			 * We assume that pages that could be isolated for
1651 			 * migration are movable. But we don't actually try
1652 			 * isolating, as that would be expensive.
1653 			 */
1654 			if (num_movable &&
1655 					(PageLRU(page) || __PageMovable(page)))
1656 				(*num_movable)++;
1657 			pfn++;
1658 			continue;
1659 		}
1660 
1661 		/* Make sure we are not inadvertently changing nodes */
1662 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1663 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1664 
1665 		order = buddy_order(page);
1666 		move_to_free_list(page, zone, order, migratetype);
1667 		pfn += 1 << order;
1668 		pages_moved += 1 << order;
1669 	}
1670 
1671 	return pages_moved;
1672 }
1673 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1674 int move_freepages_block(struct zone *zone, struct page *page,
1675 				int migratetype, int *num_movable)
1676 {
1677 	unsigned long start_pfn, end_pfn, pfn;
1678 
1679 	if (num_movable)
1680 		*num_movable = 0;
1681 
1682 	pfn = page_to_pfn(page);
1683 	start_pfn = pageblock_start_pfn(pfn);
1684 	end_pfn = pageblock_end_pfn(pfn) - 1;
1685 
1686 	/* Do not cross zone boundaries */
1687 	if (!zone_spans_pfn(zone, start_pfn))
1688 		start_pfn = pfn;
1689 	if (!zone_spans_pfn(zone, end_pfn))
1690 		return 0;
1691 
1692 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1693 								num_movable);
1694 }
1695 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1696 static void change_pageblock_range(struct page *pageblock_page,
1697 					int start_order, int migratetype)
1698 {
1699 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1700 
1701 	while (nr_pageblocks--) {
1702 		set_pageblock_migratetype(pageblock_page, migratetype);
1703 		pageblock_page += pageblock_nr_pages;
1704 	}
1705 }
1706 
1707 /*
1708  * When we are falling back to another migratetype during allocation, try to
1709  * steal extra free pages from the same pageblocks to satisfy further
1710  * allocations, instead of polluting multiple pageblocks.
1711  *
1712  * If we are stealing a relatively large buddy page, it is likely there will
1713  * be more free pages in the pageblock, so try to steal them all. For
1714  * reclaimable and unmovable allocations, we steal regardless of page size,
1715  * as fragmentation caused by those allocations polluting movable pageblocks
1716  * is worse than movable allocations stealing from unmovable and reclaimable
1717  * pageblocks.
1718  */
can_steal_fallback(unsigned int order,int start_mt)1719 static bool can_steal_fallback(unsigned int order, int start_mt)
1720 {
1721 	/*
1722 	 * Leaving this order check is intended, although there is
1723 	 * relaxed order check in next check. The reason is that
1724 	 * we can actually steal whole pageblock if this condition met,
1725 	 * but, below check doesn't guarantee it and that is just heuristic
1726 	 * so could be changed anytime.
1727 	 */
1728 	if (order >= pageblock_order)
1729 		return true;
1730 
1731 	if (order >= pageblock_order / 2 ||
1732 		start_mt == MIGRATE_RECLAIMABLE ||
1733 		start_mt == MIGRATE_UNMOVABLE ||
1734 		page_group_by_mobility_disabled)
1735 		return true;
1736 
1737 	return false;
1738 }
1739 
boost_watermark(struct zone * zone)1740 static inline bool boost_watermark(struct zone *zone)
1741 {
1742 	unsigned long max_boost;
1743 
1744 	if (!watermark_boost_factor)
1745 		return false;
1746 	/*
1747 	 * Don't bother in zones that are unlikely to produce results.
1748 	 * On small machines, including kdump capture kernels running
1749 	 * in a small area, boosting the watermark can cause an out of
1750 	 * memory situation immediately.
1751 	 */
1752 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1753 		return false;
1754 
1755 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1756 			watermark_boost_factor, 10000);
1757 
1758 	/*
1759 	 * high watermark may be uninitialised if fragmentation occurs
1760 	 * very early in boot so do not boost. We do not fall
1761 	 * through and boost by pageblock_nr_pages as failing
1762 	 * allocations that early means that reclaim is not going
1763 	 * to help and it may even be impossible to reclaim the
1764 	 * boosted watermark resulting in a hang.
1765 	 */
1766 	if (!max_boost)
1767 		return false;
1768 
1769 	max_boost = max(pageblock_nr_pages, max_boost);
1770 
1771 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1772 		max_boost);
1773 
1774 	return true;
1775 }
1776 
1777 /*
1778  * This function implements actual steal behaviour. If order is large enough,
1779  * we can steal whole pageblock. If not, we first move freepages in this
1780  * pageblock to our migratetype and determine how many already-allocated pages
1781  * are there in the pageblock with a compatible migratetype. If at least half
1782  * of pages are free or compatible, we can change migratetype of the pageblock
1783  * itself, so pages freed in the future will be put on the correct free list.
1784  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1785 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1786 		unsigned int alloc_flags, int start_type, bool whole_block)
1787 {
1788 	unsigned int current_order = buddy_order(page);
1789 	int free_pages, movable_pages, alike_pages;
1790 	int old_block_type;
1791 
1792 	old_block_type = get_pageblock_migratetype(page);
1793 
1794 	/*
1795 	 * This can happen due to races and we want to prevent broken
1796 	 * highatomic accounting.
1797 	 */
1798 	if (is_migrate_highatomic(old_block_type))
1799 		goto single_page;
1800 
1801 	/* Take ownership for orders >= pageblock_order */
1802 	if (current_order >= pageblock_order) {
1803 		change_pageblock_range(page, current_order, start_type);
1804 		goto single_page;
1805 	}
1806 
1807 	/*
1808 	 * Boost watermarks to increase reclaim pressure to reduce the
1809 	 * likelihood of future fallbacks. Wake kswapd now as the node
1810 	 * may be balanced overall and kswapd will not wake naturally.
1811 	 */
1812 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1813 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1814 
1815 	/* We are not allowed to try stealing from the whole block */
1816 	if (!whole_block)
1817 		goto single_page;
1818 
1819 	free_pages = move_freepages_block(zone, page, start_type,
1820 						&movable_pages);
1821 	/* moving whole block can fail due to zone boundary conditions */
1822 	if (!free_pages)
1823 		goto single_page;
1824 
1825 	/*
1826 	 * Determine how many pages are compatible with our allocation.
1827 	 * For movable allocation, it's the number of movable pages which
1828 	 * we just obtained. For other types it's a bit more tricky.
1829 	 */
1830 	if (start_type == MIGRATE_MOVABLE) {
1831 		alike_pages = movable_pages;
1832 	} else {
1833 		/*
1834 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1835 		 * to MOVABLE pageblock, consider all non-movable pages as
1836 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1837 		 * vice versa, be conservative since we can't distinguish the
1838 		 * exact migratetype of non-movable pages.
1839 		 */
1840 		if (old_block_type == MIGRATE_MOVABLE)
1841 			alike_pages = pageblock_nr_pages
1842 						- (free_pages + movable_pages);
1843 		else
1844 			alike_pages = 0;
1845 	}
1846 	/*
1847 	 * If a sufficient number of pages in the block are either free or of
1848 	 * compatible migratability as our allocation, claim the whole block.
1849 	 */
1850 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1851 			page_group_by_mobility_disabled)
1852 		set_pageblock_migratetype(page, start_type);
1853 
1854 	return;
1855 
1856 single_page:
1857 	move_to_free_list(page, zone, current_order, start_type);
1858 }
1859 
1860 /*
1861  * Check whether there is a suitable fallback freepage with requested order.
1862  * If only_stealable is true, this function returns fallback_mt only if
1863  * we can steal other freepages all together. This would help to reduce
1864  * fragmentation due to mixed migratetype pages in one pageblock.
1865  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1866 int find_suitable_fallback(struct free_area *area, unsigned int order,
1867 			int migratetype, bool only_stealable, bool *can_steal)
1868 {
1869 	int i;
1870 	int fallback_mt;
1871 
1872 	if (area->nr_free == 0)
1873 		return -1;
1874 
1875 	*can_steal = false;
1876 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1877 		fallback_mt = fallbacks[migratetype][i];
1878 		if (free_area_empty(area, fallback_mt))
1879 			continue;
1880 
1881 		if (can_steal_fallback(order, migratetype))
1882 			*can_steal = true;
1883 
1884 		if (!only_stealable)
1885 			return fallback_mt;
1886 
1887 		if (*can_steal)
1888 			return fallback_mt;
1889 	}
1890 
1891 	return -1;
1892 }
1893 
1894 /*
1895  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1896  * there are no empty page blocks that contain a page with a suitable order
1897  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1898 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1899 {
1900 	int mt;
1901 	unsigned long max_managed, flags;
1902 
1903 	/*
1904 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1905 	 * Check is race-prone but harmless.
1906 	 */
1907 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1908 	if (zone->nr_reserved_highatomic >= max_managed)
1909 		return;
1910 
1911 	spin_lock_irqsave(&zone->lock, flags);
1912 
1913 	/* Recheck the nr_reserved_highatomic limit under the lock */
1914 	if (zone->nr_reserved_highatomic >= max_managed)
1915 		goto out_unlock;
1916 
1917 	/* Yoink! */
1918 	mt = get_pageblock_migratetype(page);
1919 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1920 	if (migratetype_is_mergeable(mt)) {
1921 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1922 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1923 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1924 	}
1925 
1926 out_unlock:
1927 	spin_unlock_irqrestore(&zone->lock, flags);
1928 }
1929 
1930 /*
1931  * Used when an allocation is about to fail under memory pressure. This
1932  * potentially hurts the reliability of high-order allocations when under
1933  * intense memory pressure but failed atomic allocations should be easier
1934  * to recover from than an OOM.
1935  *
1936  * If @force is true, try to unreserve a pageblock even though highatomic
1937  * pageblock is exhausted.
1938  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1939 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1940 						bool force)
1941 {
1942 	struct zonelist *zonelist = ac->zonelist;
1943 	unsigned long flags;
1944 	struct zoneref *z;
1945 	struct zone *zone;
1946 	struct page *page;
1947 	int order;
1948 	bool ret;
1949 
1950 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1951 								ac->nodemask) {
1952 		/*
1953 		 * Preserve at least one pageblock unless memory pressure
1954 		 * is really high.
1955 		 */
1956 		if (!force && zone->nr_reserved_highatomic <=
1957 					pageblock_nr_pages)
1958 			continue;
1959 
1960 		spin_lock_irqsave(&zone->lock, flags);
1961 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1962 			struct free_area *area = &(zone->free_area[order]);
1963 
1964 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1965 			if (!page)
1966 				continue;
1967 
1968 			/*
1969 			 * In page freeing path, migratetype change is racy so
1970 			 * we can counter several free pages in a pageblock
1971 			 * in this loop although we changed the pageblock type
1972 			 * from highatomic to ac->migratetype. So we should
1973 			 * adjust the count once.
1974 			 */
1975 			if (is_migrate_highatomic_page(page)) {
1976 				/*
1977 				 * It should never happen but changes to
1978 				 * locking could inadvertently allow a per-cpu
1979 				 * drain to add pages to MIGRATE_HIGHATOMIC
1980 				 * while unreserving so be safe and watch for
1981 				 * underflows.
1982 				 */
1983 				zone->nr_reserved_highatomic -= min(
1984 						pageblock_nr_pages,
1985 						zone->nr_reserved_highatomic);
1986 			}
1987 
1988 			/*
1989 			 * Convert to ac->migratetype and avoid the normal
1990 			 * pageblock stealing heuristics. Minimally, the caller
1991 			 * is doing the work and needs the pages. More
1992 			 * importantly, if the block was always converted to
1993 			 * MIGRATE_UNMOVABLE or another type then the number
1994 			 * of pageblocks that cannot be completely freed
1995 			 * may increase.
1996 			 */
1997 			set_pageblock_migratetype(page, ac->migratetype);
1998 			ret = move_freepages_block(zone, page, ac->migratetype,
1999 									NULL);
2000 			if (ret) {
2001 				spin_unlock_irqrestore(&zone->lock, flags);
2002 				return ret;
2003 			}
2004 		}
2005 		spin_unlock_irqrestore(&zone->lock, flags);
2006 	}
2007 
2008 	return false;
2009 }
2010 
2011 /*
2012  * Try finding a free buddy page on the fallback list and put it on the free
2013  * list of requested migratetype, possibly along with other pages from the same
2014  * block, depending on fragmentation avoidance heuristics. Returns true if
2015  * fallback was found so that __rmqueue_smallest() can grab it.
2016  *
2017  * The use of signed ints for order and current_order is a deliberate
2018  * deviation from the rest of this file, to make the for loop
2019  * condition simpler.
2020  */
2021 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2022 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2023 						unsigned int alloc_flags)
2024 {
2025 	struct free_area *area;
2026 	int current_order;
2027 	int min_order = order;
2028 	struct page *page;
2029 	int fallback_mt;
2030 	bool can_steal;
2031 
2032 	/*
2033 	 * Do not steal pages from freelists belonging to other pageblocks
2034 	 * i.e. orders < pageblock_order. If there are no local zones free,
2035 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2036 	 */
2037 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2038 		min_order = pageblock_order;
2039 
2040 	/*
2041 	 * Find the largest available free page in the other list. This roughly
2042 	 * approximates finding the pageblock with the most free pages, which
2043 	 * would be too costly to do exactly.
2044 	 */
2045 	for (current_order = MAX_ORDER; current_order >= min_order;
2046 				--current_order) {
2047 		area = &(zone->free_area[current_order]);
2048 		fallback_mt = find_suitable_fallback(area, current_order,
2049 				start_migratetype, false, &can_steal);
2050 		if (fallback_mt == -1)
2051 			continue;
2052 
2053 		/*
2054 		 * We cannot steal all free pages from the pageblock and the
2055 		 * requested migratetype is movable. In that case it's better to
2056 		 * steal and split the smallest available page instead of the
2057 		 * largest available page, because even if the next movable
2058 		 * allocation falls back into a different pageblock than this
2059 		 * one, it won't cause permanent fragmentation.
2060 		 */
2061 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2062 					&& current_order > order)
2063 			goto find_smallest;
2064 
2065 		goto do_steal;
2066 	}
2067 
2068 	return false;
2069 
2070 find_smallest:
2071 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2072 		area = &(zone->free_area[current_order]);
2073 		fallback_mt = find_suitable_fallback(area, current_order,
2074 				start_migratetype, false, &can_steal);
2075 		if (fallback_mt != -1)
2076 			break;
2077 	}
2078 
2079 	/*
2080 	 * This should not happen - we already found a suitable fallback
2081 	 * when looking for the largest page.
2082 	 */
2083 	VM_BUG_ON(current_order > MAX_ORDER);
2084 
2085 do_steal:
2086 	page = get_page_from_free_area(area, fallback_mt);
2087 
2088 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2089 								can_steal);
2090 
2091 	trace_mm_page_alloc_extfrag(page, order, current_order,
2092 		start_migratetype, fallback_mt);
2093 
2094 	return true;
2095 
2096 }
2097 
2098 /*
2099  * Do the hard work of removing an element from the buddy allocator.
2100  * Call me with the zone->lock already held.
2101  */
2102 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2103 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2104 						unsigned int alloc_flags)
2105 {
2106 	struct page *page;
2107 
2108 	if (IS_ENABLED(CONFIG_CMA)) {
2109 		/*
2110 		 * Balance movable allocations between regular and CMA areas by
2111 		 * allocating from CMA when over half of the zone's free memory
2112 		 * is in the CMA area.
2113 		 */
2114 		if (alloc_flags & ALLOC_CMA &&
2115 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2116 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2117 			page = __rmqueue_cma_fallback(zone, order);
2118 			if (page)
2119 				return page;
2120 		}
2121 	}
2122 retry:
2123 	page = __rmqueue_smallest(zone, order, migratetype);
2124 	if (unlikely(!page)) {
2125 		if (alloc_flags & ALLOC_CMA)
2126 			page = __rmqueue_cma_fallback(zone, order);
2127 
2128 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2129 								alloc_flags))
2130 			goto retry;
2131 	}
2132 	return page;
2133 }
2134 
2135 /*
2136  * Obtain a specified number of elements from the buddy allocator, all under
2137  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2138  * Returns the number of new pages which were placed at *list.
2139  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2140 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2141 			unsigned long count, struct list_head *list,
2142 			int migratetype, unsigned int alloc_flags)
2143 {
2144 	unsigned long flags;
2145 	int i;
2146 
2147 	spin_lock_irqsave(&zone->lock, flags);
2148 	for (i = 0; i < count; ++i) {
2149 		struct page *page = __rmqueue(zone, order, migratetype,
2150 								alloc_flags);
2151 		if (unlikely(page == NULL))
2152 			break;
2153 
2154 		/*
2155 		 * Split buddy pages returned by expand() are received here in
2156 		 * physical page order. The page is added to the tail of
2157 		 * caller's list. From the callers perspective, the linked list
2158 		 * is ordered by page number under some conditions. This is
2159 		 * useful for IO devices that can forward direction from the
2160 		 * head, thus also in the physical page order. This is useful
2161 		 * for IO devices that can merge IO requests if the physical
2162 		 * pages are ordered properly.
2163 		 */
2164 		list_add_tail(&page->pcp_list, list);
2165 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2166 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2167 					      -(1 << order));
2168 	}
2169 
2170 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2171 	spin_unlock_irqrestore(&zone->lock, flags);
2172 
2173 	return i;
2174 }
2175 
2176 #ifdef CONFIG_NUMA
2177 /*
2178  * Called from the vmstat counter updater to drain pagesets of this
2179  * currently executing processor on remote nodes after they have
2180  * expired.
2181  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2182 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2183 {
2184 	int to_drain, batch;
2185 
2186 	batch = READ_ONCE(pcp->batch);
2187 	to_drain = min(pcp->count, batch);
2188 	if (to_drain > 0) {
2189 		spin_lock(&pcp->lock);
2190 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2191 		spin_unlock(&pcp->lock);
2192 	}
2193 }
2194 #endif
2195 
2196 /*
2197  * Drain pcplists of the indicated processor and zone.
2198  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2199 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2200 {
2201 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2202 	int count;
2203 
2204 	do {
2205 		spin_lock(&pcp->lock);
2206 		count = pcp->count;
2207 		if (count) {
2208 			int to_drain = min(count,
2209 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2210 
2211 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2212 			count -= to_drain;
2213 		}
2214 		spin_unlock(&pcp->lock);
2215 	} while (count);
2216 }
2217 
2218 /*
2219  * Drain pcplists of all zones on the indicated processor.
2220  */
drain_pages(unsigned int cpu)2221 static void drain_pages(unsigned int cpu)
2222 {
2223 	struct zone *zone;
2224 
2225 	for_each_populated_zone(zone) {
2226 		drain_pages_zone(cpu, zone);
2227 	}
2228 }
2229 
2230 /*
2231  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2232  */
drain_local_pages(struct zone * zone)2233 void drain_local_pages(struct zone *zone)
2234 {
2235 	int cpu = smp_processor_id();
2236 
2237 	if (zone)
2238 		drain_pages_zone(cpu, zone);
2239 	else
2240 		drain_pages(cpu);
2241 }
2242 
2243 /*
2244  * The implementation of drain_all_pages(), exposing an extra parameter to
2245  * drain on all cpus.
2246  *
2247  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2248  * not empty. The check for non-emptiness can however race with a free to
2249  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2250  * that need the guarantee that every CPU has drained can disable the
2251  * optimizing racy check.
2252  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2253 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2254 {
2255 	int cpu;
2256 
2257 	/*
2258 	 * Allocate in the BSS so we won't require allocation in
2259 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2260 	 */
2261 	static cpumask_t cpus_with_pcps;
2262 
2263 	/*
2264 	 * Do not drain if one is already in progress unless it's specific to
2265 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2266 	 * the drain to be complete when the call returns.
2267 	 */
2268 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2269 		if (!zone)
2270 			return;
2271 		mutex_lock(&pcpu_drain_mutex);
2272 	}
2273 
2274 	/*
2275 	 * We don't care about racing with CPU hotplug event
2276 	 * as offline notification will cause the notified
2277 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2278 	 * disables preemption as part of its processing
2279 	 */
2280 	for_each_online_cpu(cpu) {
2281 		struct per_cpu_pages *pcp;
2282 		struct zone *z;
2283 		bool has_pcps = false;
2284 
2285 		if (force_all_cpus) {
2286 			/*
2287 			 * The pcp.count check is racy, some callers need a
2288 			 * guarantee that no cpu is missed.
2289 			 */
2290 			has_pcps = true;
2291 		} else if (zone) {
2292 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2293 			if (pcp->count)
2294 				has_pcps = true;
2295 		} else {
2296 			for_each_populated_zone(z) {
2297 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2298 				if (pcp->count) {
2299 					has_pcps = true;
2300 					break;
2301 				}
2302 			}
2303 		}
2304 
2305 		if (has_pcps)
2306 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2307 		else
2308 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2309 	}
2310 
2311 	for_each_cpu(cpu, &cpus_with_pcps) {
2312 		if (zone)
2313 			drain_pages_zone(cpu, zone);
2314 		else
2315 			drain_pages(cpu);
2316 	}
2317 
2318 	mutex_unlock(&pcpu_drain_mutex);
2319 }
2320 
2321 /*
2322  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2323  *
2324  * When zone parameter is non-NULL, spill just the single zone's pages.
2325  */
drain_all_pages(struct zone * zone)2326 void drain_all_pages(struct zone *zone)
2327 {
2328 	__drain_all_pages(zone, false);
2329 }
2330 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2331 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2332 							unsigned int order)
2333 {
2334 	int migratetype;
2335 
2336 	if (!free_pages_prepare(page, order, FPI_NONE))
2337 		return false;
2338 
2339 	migratetype = get_pfnblock_migratetype(page, pfn);
2340 	set_pcppage_migratetype(page, migratetype);
2341 	return true;
2342 }
2343 
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2344 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2345 {
2346 	int min_nr_free, max_nr_free;
2347 	int batch = READ_ONCE(pcp->batch);
2348 
2349 	/* Free everything if batch freeing high-order pages. */
2350 	if (unlikely(free_high))
2351 		return pcp->count;
2352 
2353 	/* Check for PCP disabled or boot pageset */
2354 	if (unlikely(high < batch))
2355 		return 1;
2356 
2357 	/* Leave at least pcp->batch pages on the list */
2358 	min_nr_free = batch;
2359 	max_nr_free = high - batch;
2360 
2361 	/*
2362 	 * Double the number of pages freed each time there is subsequent
2363 	 * freeing of pages without any allocation.
2364 	 */
2365 	batch <<= pcp->free_factor;
2366 	if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2367 		pcp->free_factor++;
2368 	batch = clamp(batch, min_nr_free, max_nr_free);
2369 
2370 	return batch;
2371 }
2372 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2373 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2374 		       bool free_high)
2375 {
2376 	int high = READ_ONCE(pcp->high);
2377 
2378 	if (unlikely(!high || free_high))
2379 		return 0;
2380 
2381 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2382 		return high;
2383 
2384 	/*
2385 	 * If reclaim is active, limit the number of pages that can be
2386 	 * stored on pcp lists
2387 	 */
2388 	return min(READ_ONCE(pcp->batch) << 2, high);
2389 }
2390 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2391 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2392 				   struct page *page, int migratetype,
2393 				   unsigned int order)
2394 {
2395 	int high;
2396 	int pindex;
2397 	bool free_high;
2398 
2399 	__count_vm_events(PGFREE, 1 << order);
2400 	pindex = order_to_pindex(migratetype, order);
2401 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2402 	pcp->count += 1 << order;
2403 
2404 	/*
2405 	 * As high-order pages other than THP's stored on PCP can contribute
2406 	 * to fragmentation, limit the number stored when PCP is heavily
2407 	 * freeing without allocation. The remainder after bulk freeing
2408 	 * stops will be drained from vmstat refresh context.
2409 	 */
2410 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2411 
2412 	high = nr_pcp_high(pcp, zone, free_high);
2413 	if (pcp->count >= high) {
2414 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2415 	}
2416 }
2417 
2418 /*
2419  * Free a pcp page
2420  */
free_unref_page(struct page * page,unsigned int order)2421 void free_unref_page(struct page *page, unsigned int order)
2422 {
2423 	unsigned long __maybe_unused UP_flags;
2424 	struct per_cpu_pages *pcp;
2425 	struct zone *zone;
2426 	unsigned long pfn = page_to_pfn(page);
2427 	int migratetype, pcpmigratetype;
2428 
2429 	if (!free_unref_page_prepare(page, pfn, order))
2430 		return;
2431 
2432 	/*
2433 	 * We only track unmovable, reclaimable and movable on pcp lists.
2434 	 * Place ISOLATE pages on the isolated list because they are being
2435 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2436 	 * get those areas back if necessary. Otherwise, we may have to free
2437 	 * excessively into the page allocator
2438 	 */
2439 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2440 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2441 		if (unlikely(is_migrate_isolate(migratetype))) {
2442 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2443 			return;
2444 		}
2445 		pcpmigratetype = MIGRATE_MOVABLE;
2446 	}
2447 
2448 	zone = page_zone(page);
2449 	pcp_trylock_prepare(UP_flags);
2450 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2451 	if (pcp) {
2452 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2453 		pcp_spin_unlock(pcp);
2454 	} else {
2455 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2456 	}
2457 	pcp_trylock_finish(UP_flags);
2458 }
2459 
2460 /*
2461  * Free a list of 0-order pages
2462  */
free_unref_page_list(struct list_head * list)2463 void free_unref_page_list(struct list_head *list)
2464 {
2465 	unsigned long __maybe_unused UP_flags;
2466 	struct page *page, *next;
2467 	struct per_cpu_pages *pcp = NULL;
2468 	struct zone *locked_zone = NULL;
2469 	int batch_count = 0;
2470 	int migratetype;
2471 
2472 	/* Prepare pages for freeing */
2473 	list_for_each_entry_safe(page, next, list, lru) {
2474 		unsigned long pfn = page_to_pfn(page);
2475 		if (!free_unref_page_prepare(page, pfn, 0)) {
2476 			list_del(&page->lru);
2477 			continue;
2478 		}
2479 
2480 		/*
2481 		 * Free isolated pages directly to the allocator, see
2482 		 * comment in free_unref_page.
2483 		 */
2484 		migratetype = get_pcppage_migratetype(page);
2485 		if (unlikely(is_migrate_isolate(migratetype))) {
2486 			list_del(&page->lru);
2487 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2488 			continue;
2489 		}
2490 	}
2491 
2492 	list_for_each_entry_safe(page, next, list, lru) {
2493 		struct zone *zone = page_zone(page);
2494 
2495 		list_del(&page->lru);
2496 		migratetype = get_pcppage_migratetype(page);
2497 
2498 		/*
2499 		 * Either different zone requiring a different pcp lock or
2500 		 * excessive lock hold times when freeing a large list of
2501 		 * pages.
2502 		 */
2503 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2504 			if (pcp) {
2505 				pcp_spin_unlock(pcp);
2506 				pcp_trylock_finish(UP_flags);
2507 			}
2508 
2509 			batch_count = 0;
2510 
2511 			/*
2512 			 * trylock is necessary as pages may be getting freed
2513 			 * from IRQ or SoftIRQ context after an IO completion.
2514 			 */
2515 			pcp_trylock_prepare(UP_flags);
2516 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2517 			if (unlikely(!pcp)) {
2518 				pcp_trylock_finish(UP_flags);
2519 				free_one_page(zone, page, page_to_pfn(page),
2520 					      0, migratetype, FPI_NONE);
2521 				locked_zone = NULL;
2522 				continue;
2523 			}
2524 			locked_zone = zone;
2525 		}
2526 
2527 		/*
2528 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2529 		 * to the MIGRATE_MOVABLE pcp list.
2530 		 */
2531 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2532 			migratetype = MIGRATE_MOVABLE;
2533 
2534 		trace_mm_page_free_batched(page);
2535 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2536 		batch_count++;
2537 	}
2538 
2539 	if (pcp) {
2540 		pcp_spin_unlock(pcp);
2541 		pcp_trylock_finish(UP_flags);
2542 	}
2543 }
2544 
2545 /*
2546  * split_page takes a non-compound higher-order page, and splits it into
2547  * n (1<<order) sub-pages: page[0..n]
2548  * Each sub-page must be freed individually.
2549  *
2550  * Note: this is probably too low level an operation for use in drivers.
2551  * Please consult with lkml before using this in your driver.
2552  */
split_page(struct page * page,unsigned int order)2553 void split_page(struct page *page, unsigned int order)
2554 {
2555 	int i;
2556 
2557 	VM_BUG_ON_PAGE(PageCompound(page), page);
2558 	VM_BUG_ON_PAGE(!page_count(page), page);
2559 
2560 	for (i = 1; i < (1 << order); i++)
2561 		set_page_refcounted(page + i);
2562 	split_page_owner(page, 1 << order);
2563 	split_page_memcg(page, 1 << order);
2564 }
2565 EXPORT_SYMBOL_GPL(split_page);
2566 
__isolate_free_page(struct page * page,unsigned int order)2567 int __isolate_free_page(struct page *page, unsigned int order)
2568 {
2569 	struct zone *zone = page_zone(page);
2570 	int mt = get_pageblock_migratetype(page);
2571 
2572 	if (!is_migrate_isolate(mt)) {
2573 		unsigned long watermark;
2574 		/*
2575 		 * Obey watermarks as if the page was being allocated. We can
2576 		 * emulate a high-order watermark check with a raised order-0
2577 		 * watermark, because we already know our high-order page
2578 		 * exists.
2579 		 */
2580 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2581 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2582 			return 0;
2583 
2584 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2585 	}
2586 
2587 	del_page_from_free_list(page, zone, order);
2588 
2589 	/*
2590 	 * Set the pageblock if the isolated page is at least half of a
2591 	 * pageblock
2592 	 */
2593 	if (order >= pageblock_order - 1) {
2594 		struct page *endpage = page + (1 << order) - 1;
2595 		for (; page < endpage; page += pageblock_nr_pages) {
2596 			int mt = get_pageblock_migratetype(page);
2597 			/*
2598 			 * Only change normal pageblocks (i.e., they can merge
2599 			 * with others)
2600 			 */
2601 			if (migratetype_is_mergeable(mt))
2602 				set_pageblock_migratetype(page,
2603 							  MIGRATE_MOVABLE);
2604 		}
2605 	}
2606 
2607 	return 1UL << order;
2608 }
2609 
2610 /**
2611  * __putback_isolated_page - Return a now-isolated page back where we got it
2612  * @page: Page that was isolated
2613  * @order: Order of the isolated page
2614  * @mt: The page's pageblock's migratetype
2615  *
2616  * This function is meant to return a page pulled from the free lists via
2617  * __isolate_free_page back to the free lists they were pulled from.
2618  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2619 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2620 {
2621 	struct zone *zone = page_zone(page);
2622 
2623 	/* zone lock should be held when this function is called */
2624 	lockdep_assert_held(&zone->lock);
2625 
2626 	/* Return isolated page to tail of freelist. */
2627 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2628 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2629 }
2630 
2631 /*
2632  * Update NUMA hit/miss statistics
2633  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2634 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2635 				   long nr_account)
2636 {
2637 #ifdef CONFIG_NUMA
2638 	enum numa_stat_item local_stat = NUMA_LOCAL;
2639 
2640 	/* skip numa counters update if numa stats is disabled */
2641 	if (!static_branch_likely(&vm_numa_stat_key))
2642 		return;
2643 
2644 	if (zone_to_nid(z) != numa_node_id())
2645 		local_stat = NUMA_OTHER;
2646 
2647 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2648 		__count_numa_events(z, NUMA_HIT, nr_account);
2649 	else {
2650 		__count_numa_events(z, NUMA_MISS, nr_account);
2651 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2652 	}
2653 	__count_numa_events(z, local_stat, nr_account);
2654 #endif
2655 }
2656 
2657 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2658 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2659 			   unsigned int order, unsigned int alloc_flags,
2660 			   int migratetype)
2661 {
2662 	struct page *page;
2663 	unsigned long flags;
2664 
2665 	do {
2666 		page = NULL;
2667 		spin_lock_irqsave(&zone->lock, flags);
2668 		if (alloc_flags & ALLOC_HIGHATOMIC)
2669 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2670 		if (!page) {
2671 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2672 
2673 			/*
2674 			 * If the allocation fails, allow OOM handling and
2675 			 * order-0 (atomic) allocs access to HIGHATOMIC
2676 			 * reserves as failing now is worse than failing a
2677 			 * high-order atomic allocation in the future.
2678 			 */
2679 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2680 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2681 
2682 			if (!page) {
2683 				spin_unlock_irqrestore(&zone->lock, flags);
2684 				return NULL;
2685 			}
2686 		}
2687 		__mod_zone_freepage_state(zone, -(1 << order),
2688 					  get_pcppage_migratetype(page));
2689 		spin_unlock_irqrestore(&zone->lock, flags);
2690 	} while (check_new_pages(page, order));
2691 
2692 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2693 	zone_statistics(preferred_zone, zone, 1);
2694 
2695 	return page;
2696 }
2697 
2698 /* Remove page from the per-cpu list, caller must protect the list */
2699 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2700 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2701 			int migratetype,
2702 			unsigned int alloc_flags,
2703 			struct per_cpu_pages *pcp,
2704 			struct list_head *list)
2705 {
2706 	struct page *page;
2707 
2708 	do {
2709 		if (list_empty(list)) {
2710 			int batch = READ_ONCE(pcp->batch);
2711 			int alloced;
2712 
2713 			/*
2714 			 * Scale batch relative to order if batch implies
2715 			 * free pages can be stored on the PCP. Batch can
2716 			 * be 1 for small zones or for boot pagesets which
2717 			 * should never store free pages as the pages may
2718 			 * belong to arbitrary zones.
2719 			 */
2720 			if (batch > 1)
2721 				batch = max(batch >> order, 2);
2722 			alloced = rmqueue_bulk(zone, order,
2723 					batch, list,
2724 					migratetype, alloc_flags);
2725 
2726 			pcp->count += alloced << order;
2727 			if (unlikely(list_empty(list)))
2728 				return NULL;
2729 		}
2730 
2731 		page = list_first_entry(list, struct page, pcp_list);
2732 		list_del(&page->pcp_list);
2733 		pcp->count -= 1 << order;
2734 	} while (check_new_pages(page, order));
2735 
2736 	return page;
2737 }
2738 
2739 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2740 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2741 			struct zone *zone, unsigned int order,
2742 			int migratetype, unsigned int alloc_flags)
2743 {
2744 	struct per_cpu_pages *pcp;
2745 	struct list_head *list;
2746 	struct page *page;
2747 	unsigned long __maybe_unused UP_flags;
2748 
2749 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2750 	pcp_trylock_prepare(UP_flags);
2751 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2752 	if (!pcp) {
2753 		pcp_trylock_finish(UP_flags);
2754 		return NULL;
2755 	}
2756 
2757 	/*
2758 	 * On allocation, reduce the number of pages that are batch freed.
2759 	 * See nr_pcp_free() where free_factor is increased for subsequent
2760 	 * frees.
2761 	 */
2762 	pcp->free_factor >>= 1;
2763 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2764 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2765 	pcp_spin_unlock(pcp);
2766 	pcp_trylock_finish(UP_flags);
2767 	if (page) {
2768 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2769 		zone_statistics(preferred_zone, zone, 1);
2770 	}
2771 	return page;
2772 }
2773 
2774 /*
2775  * Allocate a page from the given zone.
2776  * Use pcplists for THP or "cheap" high-order allocations.
2777  */
2778 
2779 /*
2780  * Do not instrument rmqueue() with KMSAN. This function may call
2781  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2782  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2783  * may call rmqueue() again, which will result in a deadlock.
2784  */
2785 __no_sanitize_memory
2786 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2787 struct page *rmqueue(struct zone *preferred_zone,
2788 			struct zone *zone, unsigned int order,
2789 			gfp_t gfp_flags, unsigned int alloc_flags,
2790 			int migratetype)
2791 {
2792 	struct page *page;
2793 
2794 	/*
2795 	 * We most definitely don't want callers attempting to
2796 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2797 	 */
2798 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2799 
2800 	if (likely(pcp_allowed_order(order))) {
2801 		page = rmqueue_pcplist(preferred_zone, zone, order,
2802 				       migratetype, alloc_flags);
2803 		if (likely(page))
2804 			goto out;
2805 	}
2806 
2807 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2808 							migratetype);
2809 
2810 out:
2811 	/* Separate test+clear to avoid unnecessary atomics */
2812 	if ((alloc_flags & ALLOC_KSWAPD) &&
2813 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2814 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2815 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2816 	}
2817 
2818 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2819 	return page;
2820 }
2821 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2822 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2823 {
2824 	return __should_fail_alloc_page(gfp_mask, order);
2825 }
2826 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2827 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2828 static inline long __zone_watermark_unusable_free(struct zone *z,
2829 				unsigned int order, unsigned int alloc_flags)
2830 {
2831 	long unusable_free = (1 << order) - 1;
2832 
2833 	/*
2834 	 * If the caller does not have rights to reserves below the min
2835 	 * watermark then subtract the high-atomic reserves. This will
2836 	 * over-estimate the size of the atomic reserve but it avoids a search.
2837 	 */
2838 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2839 		unusable_free += z->nr_reserved_highatomic;
2840 
2841 #ifdef CONFIG_CMA
2842 	/* If allocation can't use CMA areas don't use free CMA pages */
2843 	if (!(alloc_flags & ALLOC_CMA))
2844 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2845 #endif
2846 
2847 	return unusable_free;
2848 }
2849 
2850 /*
2851  * Return true if free base pages are above 'mark'. For high-order checks it
2852  * will return true of the order-0 watermark is reached and there is at least
2853  * one free page of a suitable size. Checking now avoids taking the zone lock
2854  * to check in the allocation paths if no pages are free.
2855  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2856 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2857 			 int highest_zoneidx, unsigned int alloc_flags,
2858 			 long free_pages)
2859 {
2860 	long min = mark;
2861 	int o;
2862 
2863 	/* free_pages may go negative - that's OK */
2864 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2865 
2866 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2867 		/*
2868 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2869 		 * as OOM.
2870 		 */
2871 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2872 			min -= min / 2;
2873 
2874 			/*
2875 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2876 			 * access more reserves than just __GFP_HIGH. Other
2877 			 * non-blocking allocations requests such as GFP_NOWAIT
2878 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2879 			 * access to the min reserve.
2880 			 */
2881 			if (alloc_flags & ALLOC_NON_BLOCK)
2882 				min -= min / 4;
2883 		}
2884 
2885 		/*
2886 		 * OOM victims can try even harder than the normal reserve
2887 		 * users on the grounds that it's definitely going to be in
2888 		 * the exit path shortly and free memory. Any allocation it
2889 		 * makes during the free path will be small and short-lived.
2890 		 */
2891 		if (alloc_flags & ALLOC_OOM)
2892 			min -= min / 2;
2893 	}
2894 
2895 	/*
2896 	 * Check watermarks for an order-0 allocation request. If these
2897 	 * are not met, then a high-order request also cannot go ahead
2898 	 * even if a suitable page happened to be free.
2899 	 */
2900 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2901 		return false;
2902 
2903 	/* If this is an order-0 request then the watermark is fine */
2904 	if (!order)
2905 		return true;
2906 
2907 	/* For a high-order request, check at least one suitable page is free */
2908 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2909 		struct free_area *area = &z->free_area[o];
2910 		int mt;
2911 
2912 		if (!area->nr_free)
2913 			continue;
2914 
2915 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2916 			if (!free_area_empty(area, mt))
2917 				return true;
2918 		}
2919 
2920 #ifdef CONFIG_CMA
2921 		if ((alloc_flags & ALLOC_CMA) &&
2922 		    !free_area_empty(area, MIGRATE_CMA)) {
2923 			return true;
2924 		}
2925 #endif
2926 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2927 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2928 			return true;
2929 		}
2930 	}
2931 	return false;
2932 }
2933 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2934 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2935 		      int highest_zoneidx, unsigned int alloc_flags)
2936 {
2937 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2938 					zone_page_state(z, NR_FREE_PAGES));
2939 }
2940 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2941 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2942 				unsigned long mark, int highest_zoneidx,
2943 				unsigned int alloc_flags, gfp_t gfp_mask)
2944 {
2945 	long free_pages;
2946 
2947 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2948 
2949 	/*
2950 	 * Fast check for order-0 only. If this fails then the reserves
2951 	 * need to be calculated.
2952 	 */
2953 	if (!order) {
2954 		long usable_free;
2955 		long reserved;
2956 
2957 		usable_free = free_pages;
2958 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2959 
2960 		/* reserved may over estimate high-atomic reserves. */
2961 		usable_free -= min(usable_free, reserved);
2962 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2963 			return true;
2964 	}
2965 
2966 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2967 					free_pages))
2968 		return true;
2969 
2970 	/*
2971 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2972 	 * when checking the min watermark. The min watermark is the
2973 	 * point where boosting is ignored so that kswapd is woken up
2974 	 * when below the low watermark.
2975 	 */
2976 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2977 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2978 		mark = z->_watermark[WMARK_MIN];
2979 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2980 					alloc_flags, free_pages);
2981 	}
2982 
2983 	return false;
2984 }
2985 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)2986 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2987 			unsigned long mark, int highest_zoneidx)
2988 {
2989 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2990 
2991 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2992 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2993 
2994 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2995 								free_pages);
2996 }
2997 
2998 #ifdef CONFIG_NUMA
2999 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3000 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3001 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3002 {
3003 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3004 				node_reclaim_distance;
3005 }
3006 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3008 {
3009 	return true;
3010 }
3011 #endif	/* CONFIG_NUMA */
3012 
3013 /*
3014  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3015  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3016  * premature use of a lower zone may cause lowmem pressure problems that
3017  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3018  * probably too small. It only makes sense to spread allocations to avoid
3019  * fragmentation between the Normal and DMA32 zones.
3020  */
3021 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3022 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3023 {
3024 	unsigned int alloc_flags;
3025 
3026 	/*
3027 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3028 	 * to save a branch.
3029 	 */
3030 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3031 
3032 #ifdef CONFIG_ZONE_DMA32
3033 	if (!zone)
3034 		return alloc_flags;
3035 
3036 	if (zone_idx(zone) != ZONE_NORMAL)
3037 		return alloc_flags;
3038 
3039 	/*
3040 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3041 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3042 	 * on UMA that if Normal is populated then so is DMA32.
3043 	 */
3044 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3045 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3046 		return alloc_flags;
3047 
3048 	alloc_flags |= ALLOC_NOFRAGMENT;
3049 #endif /* CONFIG_ZONE_DMA32 */
3050 	return alloc_flags;
3051 }
3052 
3053 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3054 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3055 						  unsigned int alloc_flags)
3056 {
3057 #ifdef CONFIG_CMA
3058 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3059 		alloc_flags |= ALLOC_CMA;
3060 #endif
3061 	return alloc_flags;
3062 }
3063 
3064 /*
3065  * get_page_from_freelist goes through the zonelist trying to allocate
3066  * a page.
3067  */
3068 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3069 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3070 						const struct alloc_context *ac)
3071 {
3072 	struct zoneref *z;
3073 	struct zone *zone;
3074 	struct pglist_data *last_pgdat = NULL;
3075 	bool last_pgdat_dirty_ok = false;
3076 	bool no_fallback;
3077 
3078 retry:
3079 	/*
3080 	 * Scan zonelist, looking for a zone with enough free.
3081 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3082 	 */
3083 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3084 	z = ac->preferred_zoneref;
3085 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3086 					ac->nodemask) {
3087 		struct page *page;
3088 		unsigned long mark;
3089 
3090 		if (cpusets_enabled() &&
3091 			(alloc_flags & ALLOC_CPUSET) &&
3092 			!__cpuset_zone_allowed(zone, gfp_mask))
3093 				continue;
3094 		/*
3095 		 * When allocating a page cache page for writing, we
3096 		 * want to get it from a node that is within its dirty
3097 		 * limit, such that no single node holds more than its
3098 		 * proportional share of globally allowed dirty pages.
3099 		 * The dirty limits take into account the node's
3100 		 * lowmem reserves and high watermark so that kswapd
3101 		 * should be able to balance it without having to
3102 		 * write pages from its LRU list.
3103 		 *
3104 		 * XXX: For now, allow allocations to potentially
3105 		 * exceed the per-node dirty limit in the slowpath
3106 		 * (spread_dirty_pages unset) before going into reclaim,
3107 		 * which is important when on a NUMA setup the allowed
3108 		 * nodes are together not big enough to reach the
3109 		 * global limit.  The proper fix for these situations
3110 		 * will require awareness of nodes in the
3111 		 * dirty-throttling and the flusher threads.
3112 		 */
3113 		if (ac->spread_dirty_pages) {
3114 			if (last_pgdat != zone->zone_pgdat) {
3115 				last_pgdat = zone->zone_pgdat;
3116 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3117 			}
3118 
3119 			if (!last_pgdat_dirty_ok)
3120 				continue;
3121 		}
3122 
3123 		if (no_fallback && nr_online_nodes > 1 &&
3124 		    zone != ac->preferred_zoneref->zone) {
3125 			int local_nid;
3126 
3127 			/*
3128 			 * If moving to a remote node, retry but allow
3129 			 * fragmenting fallbacks. Locality is more important
3130 			 * than fragmentation avoidance.
3131 			 */
3132 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3133 			if (zone_to_nid(zone) != local_nid) {
3134 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3135 				goto retry;
3136 			}
3137 		}
3138 
3139 		cond_accept_memory(zone, order);
3140 
3141 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3142 		if (!zone_watermark_fast(zone, order, mark,
3143 				       ac->highest_zoneidx, alloc_flags,
3144 				       gfp_mask)) {
3145 			int ret;
3146 
3147 			if (cond_accept_memory(zone, order))
3148 				goto try_this_zone;
3149 
3150 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3151 			/*
3152 			 * Watermark failed for this zone, but see if we can
3153 			 * grow this zone if it contains deferred pages.
3154 			 */
3155 			if (deferred_pages_enabled()) {
3156 				if (_deferred_grow_zone(zone, order))
3157 					goto try_this_zone;
3158 			}
3159 #endif
3160 			/* Checked here to keep the fast path fast */
3161 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3162 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3163 				goto try_this_zone;
3164 
3165 			if (!node_reclaim_enabled() ||
3166 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3167 				continue;
3168 
3169 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3170 			switch (ret) {
3171 			case NODE_RECLAIM_NOSCAN:
3172 				/* did not scan */
3173 				continue;
3174 			case NODE_RECLAIM_FULL:
3175 				/* scanned but unreclaimable */
3176 				continue;
3177 			default:
3178 				/* did we reclaim enough */
3179 				if (zone_watermark_ok(zone, order, mark,
3180 					ac->highest_zoneidx, alloc_flags))
3181 					goto try_this_zone;
3182 
3183 				continue;
3184 			}
3185 		}
3186 
3187 try_this_zone:
3188 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3189 				gfp_mask, alloc_flags, ac->migratetype);
3190 		if (page) {
3191 			prep_new_page(page, order, gfp_mask, alloc_flags);
3192 
3193 			/*
3194 			 * If this is a high-order atomic allocation then check
3195 			 * if the pageblock should be reserved for the future
3196 			 */
3197 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3198 				reserve_highatomic_pageblock(page, zone);
3199 
3200 			return page;
3201 		} else {
3202 			if (cond_accept_memory(zone, order))
3203 				goto try_this_zone;
3204 
3205 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3206 			/* Try again if zone has deferred pages */
3207 			if (deferred_pages_enabled()) {
3208 				if (_deferred_grow_zone(zone, order))
3209 					goto try_this_zone;
3210 			}
3211 #endif
3212 		}
3213 	}
3214 
3215 	/*
3216 	 * It's possible on a UMA machine to get through all zones that are
3217 	 * fragmented. If avoiding fragmentation, reset and try again.
3218 	 */
3219 	if (no_fallback) {
3220 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3221 		goto retry;
3222 	}
3223 
3224 	return NULL;
3225 }
3226 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3227 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3228 {
3229 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3230 
3231 	/*
3232 	 * This documents exceptions given to allocations in certain
3233 	 * contexts that are allowed to allocate outside current's set
3234 	 * of allowed nodes.
3235 	 */
3236 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3237 		if (tsk_is_oom_victim(current) ||
3238 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3239 			filter &= ~SHOW_MEM_FILTER_NODES;
3240 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3241 		filter &= ~SHOW_MEM_FILTER_NODES;
3242 
3243 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3244 }
3245 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3246 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3247 {
3248 	struct va_format vaf;
3249 	va_list args;
3250 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3251 
3252 	if ((gfp_mask & __GFP_NOWARN) ||
3253 	     !__ratelimit(&nopage_rs) ||
3254 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3255 		return;
3256 
3257 	va_start(args, fmt);
3258 	vaf.fmt = fmt;
3259 	vaf.va = &args;
3260 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3261 			current->comm, &vaf, gfp_mask, &gfp_mask,
3262 			nodemask_pr_args(nodemask));
3263 	va_end(args);
3264 
3265 	cpuset_print_current_mems_allowed();
3266 	pr_cont("\n");
3267 	dump_stack();
3268 	warn_alloc_show_mem(gfp_mask, nodemask);
3269 }
3270 
3271 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3272 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3273 			      unsigned int alloc_flags,
3274 			      const struct alloc_context *ac)
3275 {
3276 	struct page *page;
3277 
3278 	page = get_page_from_freelist(gfp_mask, order,
3279 			alloc_flags|ALLOC_CPUSET, ac);
3280 	/*
3281 	 * fallback to ignore cpuset restriction if our nodes
3282 	 * are depleted
3283 	 */
3284 	if (!page)
3285 		page = get_page_from_freelist(gfp_mask, order,
3286 				alloc_flags, ac);
3287 
3288 	return page;
3289 }
3290 
3291 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3292 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3293 	const struct alloc_context *ac, unsigned long *did_some_progress)
3294 {
3295 	struct oom_control oc = {
3296 		.zonelist = ac->zonelist,
3297 		.nodemask = ac->nodemask,
3298 		.memcg = NULL,
3299 		.gfp_mask = gfp_mask,
3300 		.order = order,
3301 	};
3302 	struct page *page;
3303 
3304 	*did_some_progress = 0;
3305 
3306 	/*
3307 	 * Acquire the oom lock.  If that fails, somebody else is
3308 	 * making progress for us.
3309 	 */
3310 	if (!mutex_trylock(&oom_lock)) {
3311 		*did_some_progress = 1;
3312 		schedule_timeout_uninterruptible(1);
3313 		return NULL;
3314 	}
3315 
3316 	/*
3317 	 * Go through the zonelist yet one more time, keep very high watermark
3318 	 * here, this is only to catch a parallel oom killing, we must fail if
3319 	 * we're still under heavy pressure. But make sure that this reclaim
3320 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3321 	 * allocation which will never fail due to oom_lock already held.
3322 	 */
3323 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3324 				      ~__GFP_DIRECT_RECLAIM, order,
3325 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3326 	if (page)
3327 		goto out;
3328 
3329 	/* Coredumps can quickly deplete all memory reserves */
3330 	if (current->flags & PF_DUMPCORE)
3331 		goto out;
3332 	/* The OOM killer will not help higher order allocs */
3333 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3334 		goto out;
3335 	/*
3336 	 * We have already exhausted all our reclaim opportunities without any
3337 	 * success so it is time to admit defeat. We will skip the OOM killer
3338 	 * because it is very likely that the caller has a more reasonable
3339 	 * fallback than shooting a random task.
3340 	 *
3341 	 * The OOM killer may not free memory on a specific node.
3342 	 */
3343 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3344 		goto out;
3345 	/* The OOM killer does not needlessly kill tasks for lowmem */
3346 	if (ac->highest_zoneidx < ZONE_NORMAL)
3347 		goto out;
3348 	if (pm_suspended_storage())
3349 		goto out;
3350 	/*
3351 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3352 	 * other request to make a forward progress.
3353 	 * We are in an unfortunate situation where out_of_memory cannot
3354 	 * do much for this context but let's try it to at least get
3355 	 * access to memory reserved if the current task is killed (see
3356 	 * out_of_memory). Once filesystems are ready to handle allocation
3357 	 * failures more gracefully we should just bail out here.
3358 	 */
3359 
3360 	/* Exhausted what can be done so it's blame time */
3361 	if (out_of_memory(&oc) ||
3362 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3363 		*did_some_progress = 1;
3364 
3365 		/*
3366 		 * Help non-failing allocations by giving them access to memory
3367 		 * reserves
3368 		 */
3369 		if (gfp_mask & __GFP_NOFAIL)
3370 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3371 					ALLOC_NO_WATERMARKS, ac);
3372 	}
3373 out:
3374 	mutex_unlock(&oom_lock);
3375 	return page;
3376 }
3377 
3378 /*
3379  * Maximum number of compaction retries with a progress before OOM
3380  * killer is consider as the only way to move forward.
3381  */
3382 #define MAX_COMPACT_RETRIES 16
3383 
3384 #ifdef CONFIG_COMPACTION
3385 /* Try memory compaction for high-order allocations before reclaim */
3386 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3387 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3388 		unsigned int alloc_flags, const struct alloc_context *ac,
3389 		enum compact_priority prio, enum compact_result *compact_result)
3390 {
3391 	struct page *page = NULL;
3392 	unsigned long pflags;
3393 	unsigned int noreclaim_flag;
3394 
3395 	if (!order)
3396 		return NULL;
3397 
3398 	psi_memstall_enter(&pflags);
3399 	delayacct_compact_start();
3400 	noreclaim_flag = memalloc_noreclaim_save();
3401 
3402 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3403 								prio, &page);
3404 
3405 	memalloc_noreclaim_restore(noreclaim_flag);
3406 	psi_memstall_leave(&pflags);
3407 	delayacct_compact_end();
3408 
3409 	if (*compact_result == COMPACT_SKIPPED)
3410 		return NULL;
3411 	/*
3412 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3413 	 * count a compaction stall
3414 	 */
3415 	count_vm_event(COMPACTSTALL);
3416 
3417 	/* Prep a captured page if available */
3418 	if (page)
3419 		prep_new_page(page, order, gfp_mask, alloc_flags);
3420 
3421 	/* Try get a page from the freelist if available */
3422 	if (!page)
3423 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3424 
3425 	if (page) {
3426 		struct zone *zone = page_zone(page);
3427 
3428 		zone->compact_blockskip_flush = false;
3429 		compaction_defer_reset(zone, order, true);
3430 		count_vm_event(COMPACTSUCCESS);
3431 		return page;
3432 	}
3433 
3434 	/*
3435 	 * It's bad if compaction run occurs and fails. The most likely reason
3436 	 * is that pages exist, but not enough to satisfy watermarks.
3437 	 */
3438 	count_vm_event(COMPACTFAIL);
3439 
3440 	cond_resched();
3441 
3442 	return NULL;
3443 }
3444 
3445 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3446 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3447 		     enum compact_result compact_result,
3448 		     enum compact_priority *compact_priority,
3449 		     int *compaction_retries)
3450 {
3451 	int max_retries = MAX_COMPACT_RETRIES;
3452 	int min_priority;
3453 	bool ret = false;
3454 	int retries = *compaction_retries;
3455 	enum compact_priority priority = *compact_priority;
3456 
3457 	if (!order)
3458 		return false;
3459 
3460 	if (fatal_signal_pending(current))
3461 		return false;
3462 
3463 	/*
3464 	 * Compaction was skipped due to a lack of free order-0
3465 	 * migration targets. Continue if reclaim can help.
3466 	 */
3467 	if (compact_result == COMPACT_SKIPPED) {
3468 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3469 		goto out;
3470 	}
3471 
3472 	/*
3473 	 * Compaction managed to coalesce some page blocks, but the
3474 	 * allocation failed presumably due to a race. Retry some.
3475 	 */
3476 	if (compact_result == COMPACT_SUCCESS) {
3477 		/*
3478 		 * !costly requests are much more important than
3479 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3480 		 * facto nofail and invoke OOM killer to move on while
3481 		 * costly can fail and users are ready to cope with
3482 		 * that. 1/4 retries is rather arbitrary but we would
3483 		 * need much more detailed feedback from compaction to
3484 		 * make a better decision.
3485 		 */
3486 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3487 			max_retries /= 4;
3488 
3489 		if (++(*compaction_retries) <= max_retries) {
3490 			ret = true;
3491 			goto out;
3492 		}
3493 	}
3494 
3495 	/*
3496 	 * Compaction failed. Retry with increasing priority.
3497 	 */
3498 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3499 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3500 
3501 	if (*compact_priority > min_priority) {
3502 		(*compact_priority)--;
3503 		*compaction_retries = 0;
3504 		ret = true;
3505 	}
3506 out:
3507 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3508 	return ret;
3509 }
3510 #else
3511 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3512 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3513 		unsigned int alloc_flags, const struct alloc_context *ac,
3514 		enum compact_priority prio, enum compact_result *compact_result)
3515 {
3516 	*compact_result = COMPACT_SKIPPED;
3517 	return NULL;
3518 }
3519 
3520 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3521 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3522 		     enum compact_result compact_result,
3523 		     enum compact_priority *compact_priority,
3524 		     int *compaction_retries)
3525 {
3526 	struct zone *zone;
3527 	struct zoneref *z;
3528 
3529 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3530 		return false;
3531 
3532 	/*
3533 	 * There are setups with compaction disabled which would prefer to loop
3534 	 * inside the allocator rather than hit the oom killer prematurely.
3535 	 * Let's give them a good hope and keep retrying while the order-0
3536 	 * watermarks are OK.
3537 	 */
3538 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3539 				ac->highest_zoneidx, ac->nodemask) {
3540 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3541 					ac->highest_zoneidx, alloc_flags))
3542 			return true;
3543 	}
3544 	return false;
3545 }
3546 #endif /* CONFIG_COMPACTION */
3547 
3548 #ifdef CONFIG_LOCKDEP
3549 static struct lockdep_map __fs_reclaim_map =
3550 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3551 
__need_reclaim(gfp_t gfp_mask)3552 static bool __need_reclaim(gfp_t gfp_mask)
3553 {
3554 	/* no reclaim without waiting on it */
3555 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3556 		return false;
3557 
3558 	/* this guy won't enter reclaim */
3559 	if (current->flags & PF_MEMALLOC)
3560 		return false;
3561 
3562 	if (gfp_mask & __GFP_NOLOCKDEP)
3563 		return false;
3564 
3565 	return true;
3566 }
3567 
__fs_reclaim_acquire(unsigned long ip)3568 void __fs_reclaim_acquire(unsigned long ip)
3569 {
3570 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3571 }
3572 
__fs_reclaim_release(unsigned long ip)3573 void __fs_reclaim_release(unsigned long ip)
3574 {
3575 	lock_release(&__fs_reclaim_map, ip);
3576 }
3577 
fs_reclaim_acquire(gfp_t gfp_mask)3578 void fs_reclaim_acquire(gfp_t gfp_mask)
3579 {
3580 	gfp_mask = current_gfp_context(gfp_mask);
3581 
3582 	if (__need_reclaim(gfp_mask)) {
3583 		if (gfp_mask & __GFP_FS)
3584 			__fs_reclaim_acquire(_RET_IP_);
3585 
3586 #ifdef CONFIG_MMU_NOTIFIER
3587 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3588 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3589 #endif
3590 
3591 	}
3592 }
3593 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3594 
fs_reclaim_release(gfp_t gfp_mask)3595 void fs_reclaim_release(gfp_t gfp_mask)
3596 {
3597 	gfp_mask = current_gfp_context(gfp_mask);
3598 
3599 	if (__need_reclaim(gfp_mask)) {
3600 		if (gfp_mask & __GFP_FS)
3601 			__fs_reclaim_release(_RET_IP_);
3602 	}
3603 }
3604 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3605 #endif
3606 
3607 /*
3608  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3609  * have been rebuilt so allocation retries. Reader side does not lock and
3610  * retries the allocation if zonelist changes. Writer side is protected by the
3611  * embedded spin_lock.
3612  */
3613 static DEFINE_SEQLOCK(zonelist_update_seq);
3614 
zonelist_iter_begin(void)3615 static unsigned int zonelist_iter_begin(void)
3616 {
3617 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3618 		return read_seqbegin(&zonelist_update_seq);
3619 
3620 	return 0;
3621 }
3622 
check_retry_zonelist(unsigned int seq)3623 static unsigned int check_retry_zonelist(unsigned int seq)
3624 {
3625 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3626 		return read_seqretry(&zonelist_update_seq, seq);
3627 
3628 	return seq;
3629 }
3630 
3631 /* Perform direct synchronous page reclaim */
3632 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3633 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3634 					const struct alloc_context *ac)
3635 {
3636 	unsigned int noreclaim_flag;
3637 	unsigned long progress;
3638 
3639 	cond_resched();
3640 
3641 	/* We now go into synchronous reclaim */
3642 	cpuset_memory_pressure_bump();
3643 	fs_reclaim_acquire(gfp_mask);
3644 	noreclaim_flag = memalloc_noreclaim_save();
3645 
3646 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3647 								ac->nodemask);
3648 
3649 	memalloc_noreclaim_restore(noreclaim_flag);
3650 	fs_reclaim_release(gfp_mask);
3651 
3652 	cond_resched();
3653 
3654 	return progress;
3655 }
3656 
3657 /* The really slow allocator path where we enter direct reclaim */
3658 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3660 		unsigned int alloc_flags, const struct alloc_context *ac,
3661 		unsigned long *did_some_progress)
3662 {
3663 	struct page *page = NULL;
3664 	unsigned long pflags;
3665 	bool drained = false;
3666 
3667 	psi_memstall_enter(&pflags);
3668 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3669 	if (unlikely(!(*did_some_progress)))
3670 		goto out;
3671 
3672 retry:
3673 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3674 
3675 	/*
3676 	 * If an allocation failed after direct reclaim, it could be because
3677 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3678 	 * Shrink them and try again
3679 	 */
3680 	if (!page && !drained) {
3681 		unreserve_highatomic_pageblock(ac, false);
3682 		drain_all_pages(NULL);
3683 		drained = true;
3684 		goto retry;
3685 	}
3686 out:
3687 	psi_memstall_leave(&pflags);
3688 
3689 	return page;
3690 }
3691 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3692 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3693 			     const struct alloc_context *ac)
3694 {
3695 	struct zoneref *z;
3696 	struct zone *zone;
3697 	pg_data_t *last_pgdat = NULL;
3698 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3699 
3700 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3701 					ac->nodemask) {
3702 		if (!managed_zone(zone))
3703 			continue;
3704 		if (last_pgdat != zone->zone_pgdat) {
3705 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3706 			last_pgdat = zone->zone_pgdat;
3707 		}
3708 	}
3709 }
3710 
3711 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3712 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3713 {
3714 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3715 
3716 	/*
3717 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3718 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3719 	 * to save two branches.
3720 	 */
3721 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3722 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3723 
3724 	/*
3725 	 * The caller may dip into page reserves a bit more if the caller
3726 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3727 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3728 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3729 	 */
3730 	alloc_flags |= (__force int)
3731 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3732 
3733 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3734 		/*
3735 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3736 		 * if it can't schedule.
3737 		 */
3738 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3739 			alloc_flags |= ALLOC_NON_BLOCK;
3740 
3741 			if (order > 0)
3742 				alloc_flags |= ALLOC_HIGHATOMIC;
3743 		}
3744 
3745 		/*
3746 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3747 		 * GFP_ATOMIC) rather than fail, see the comment for
3748 		 * cpuset_node_allowed().
3749 		 */
3750 		if (alloc_flags & ALLOC_MIN_RESERVE)
3751 			alloc_flags &= ~ALLOC_CPUSET;
3752 	} else if (unlikely(rt_task(current)) && in_task())
3753 		alloc_flags |= ALLOC_MIN_RESERVE;
3754 
3755 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3756 
3757 	return alloc_flags;
3758 }
3759 
oom_reserves_allowed(struct task_struct * tsk)3760 static bool oom_reserves_allowed(struct task_struct *tsk)
3761 {
3762 	if (!tsk_is_oom_victim(tsk))
3763 		return false;
3764 
3765 	/*
3766 	 * !MMU doesn't have oom reaper so give access to memory reserves
3767 	 * only to the thread with TIF_MEMDIE set
3768 	 */
3769 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3770 		return false;
3771 
3772 	return true;
3773 }
3774 
3775 /*
3776  * Distinguish requests which really need access to full memory
3777  * reserves from oom victims which can live with a portion of it
3778  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3779 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3780 {
3781 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3782 		return 0;
3783 	if (gfp_mask & __GFP_MEMALLOC)
3784 		return ALLOC_NO_WATERMARKS;
3785 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3786 		return ALLOC_NO_WATERMARKS;
3787 	if (!in_interrupt()) {
3788 		if (current->flags & PF_MEMALLOC)
3789 			return ALLOC_NO_WATERMARKS;
3790 		else if (oom_reserves_allowed(current))
3791 			return ALLOC_OOM;
3792 	}
3793 
3794 	return 0;
3795 }
3796 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3797 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3798 {
3799 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3800 }
3801 
3802 /*
3803  * Checks whether it makes sense to retry the reclaim to make a forward progress
3804  * for the given allocation request.
3805  *
3806  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3807  * without success, or when we couldn't even meet the watermark if we
3808  * reclaimed all remaining pages on the LRU lists.
3809  *
3810  * Returns true if a retry is viable or false to enter the oom path.
3811  */
3812 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3813 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3814 		     struct alloc_context *ac, int alloc_flags,
3815 		     bool did_some_progress, int *no_progress_loops)
3816 {
3817 	struct zone *zone;
3818 	struct zoneref *z;
3819 	bool ret = false;
3820 
3821 	/*
3822 	 * Costly allocations might have made a progress but this doesn't mean
3823 	 * their order will become available due to high fragmentation so
3824 	 * always increment the no progress counter for them
3825 	 */
3826 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3827 		*no_progress_loops = 0;
3828 	else
3829 		(*no_progress_loops)++;
3830 
3831 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3832 		goto out;
3833 
3834 
3835 	/*
3836 	 * Keep reclaiming pages while there is a chance this will lead
3837 	 * somewhere.  If none of the target zones can satisfy our allocation
3838 	 * request even if all reclaimable pages are considered then we are
3839 	 * screwed and have to go OOM.
3840 	 */
3841 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3842 				ac->highest_zoneidx, ac->nodemask) {
3843 		unsigned long available;
3844 		unsigned long reclaimable;
3845 		unsigned long min_wmark = min_wmark_pages(zone);
3846 		bool wmark;
3847 
3848 		available = reclaimable = zone_reclaimable_pages(zone);
3849 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3850 
3851 		/*
3852 		 * Would the allocation succeed if we reclaimed all
3853 		 * reclaimable pages?
3854 		 */
3855 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3856 				ac->highest_zoneidx, alloc_flags, available);
3857 		trace_reclaim_retry_zone(z, order, reclaimable,
3858 				available, min_wmark, *no_progress_loops, wmark);
3859 		if (wmark) {
3860 			ret = true;
3861 			break;
3862 		}
3863 	}
3864 
3865 	/*
3866 	 * Memory allocation/reclaim might be called from a WQ context and the
3867 	 * current implementation of the WQ concurrency control doesn't
3868 	 * recognize that a particular WQ is congested if the worker thread is
3869 	 * looping without ever sleeping. Therefore we have to do a short sleep
3870 	 * here rather than calling cond_resched().
3871 	 */
3872 	if (current->flags & PF_WQ_WORKER)
3873 		schedule_timeout_uninterruptible(1);
3874 	else
3875 		cond_resched();
3876 out:
3877 	/* Before OOM, exhaust highatomic_reserve */
3878 	if (!ret)
3879 		return unreserve_highatomic_pageblock(ac, true);
3880 
3881 	return ret;
3882 }
3883 
3884 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3885 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3886 {
3887 	/*
3888 	 * It's possible that cpuset's mems_allowed and the nodemask from
3889 	 * mempolicy don't intersect. This should be normally dealt with by
3890 	 * policy_nodemask(), but it's possible to race with cpuset update in
3891 	 * such a way the check therein was true, and then it became false
3892 	 * before we got our cpuset_mems_cookie here.
3893 	 * This assumes that for all allocations, ac->nodemask can come only
3894 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3895 	 * when it does not intersect with the cpuset restrictions) or the
3896 	 * caller can deal with a violated nodemask.
3897 	 */
3898 	if (cpusets_enabled() && ac->nodemask &&
3899 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3900 		ac->nodemask = NULL;
3901 		return true;
3902 	}
3903 
3904 	/*
3905 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3906 	 * possible to race with parallel threads in such a way that our
3907 	 * allocation can fail while the mask is being updated. If we are about
3908 	 * to fail, check if the cpuset changed during allocation and if so,
3909 	 * retry.
3910 	 */
3911 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3912 		return true;
3913 
3914 	return false;
3915 }
3916 
3917 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3918 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3919 						struct alloc_context *ac)
3920 {
3921 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3922 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3923 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3924 	struct page *page = NULL;
3925 	unsigned int alloc_flags;
3926 	unsigned long did_some_progress;
3927 	enum compact_priority compact_priority;
3928 	enum compact_result compact_result;
3929 	int compaction_retries;
3930 	int no_progress_loops;
3931 	unsigned int cpuset_mems_cookie;
3932 	unsigned int zonelist_iter_cookie;
3933 	int reserve_flags;
3934 
3935 restart:
3936 	compaction_retries = 0;
3937 	no_progress_loops = 0;
3938 	compact_result = COMPACT_SKIPPED;
3939 	compact_priority = DEF_COMPACT_PRIORITY;
3940 	cpuset_mems_cookie = read_mems_allowed_begin();
3941 	zonelist_iter_cookie = zonelist_iter_begin();
3942 
3943 	/*
3944 	 * The fast path uses conservative alloc_flags to succeed only until
3945 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3946 	 * alloc_flags precisely. So we do that now.
3947 	 */
3948 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3949 
3950 	/*
3951 	 * We need to recalculate the starting point for the zonelist iterator
3952 	 * because we might have used different nodemask in the fast path, or
3953 	 * there was a cpuset modification and we are retrying - otherwise we
3954 	 * could end up iterating over non-eligible zones endlessly.
3955 	 */
3956 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3957 					ac->highest_zoneidx, ac->nodemask);
3958 	if (!ac->preferred_zoneref->zone)
3959 		goto nopage;
3960 
3961 	/*
3962 	 * Check for insane configurations where the cpuset doesn't contain
3963 	 * any suitable zone to satisfy the request - e.g. non-movable
3964 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3965 	 */
3966 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3967 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3968 					ac->highest_zoneidx,
3969 					&cpuset_current_mems_allowed);
3970 		if (!z->zone)
3971 			goto nopage;
3972 	}
3973 
3974 	if (alloc_flags & ALLOC_KSWAPD)
3975 		wake_all_kswapds(order, gfp_mask, ac);
3976 
3977 	/*
3978 	 * The adjusted alloc_flags might result in immediate success, so try
3979 	 * that first
3980 	 */
3981 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3982 	if (page)
3983 		goto got_pg;
3984 
3985 	/*
3986 	 * For costly allocations, try direct compaction first, as it's likely
3987 	 * that we have enough base pages and don't need to reclaim. For non-
3988 	 * movable high-order allocations, do that as well, as compaction will
3989 	 * try prevent permanent fragmentation by migrating from blocks of the
3990 	 * same migratetype.
3991 	 * Don't try this for allocations that are allowed to ignore
3992 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3993 	 */
3994 	if (can_direct_reclaim && can_compact &&
3995 			(costly_order ||
3996 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3997 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3998 		page = __alloc_pages_direct_compact(gfp_mask, order,
3999 						alloc_flags, ac,
4000 						INIT_COMPACT_PRIORITY,
4001 						&compact_result);
4002 		if (page)
4003 			goto got_pg;
4004 
4005 		/*
4006 		 * Checks for costly allocations with __GFP_NORETRY, which
4007 		 * includes some THP page fault allocations
4008 		 */
4009 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4010 			/*
4011 			 * If allocating entire pageblock(s) and compaction
4012 			 * failed because all zones are below low watermarks
4013 			 * or is prohibited because it recently failed at this
4014 			 * order, fail immediately unless the allocator has
4015 			 * requested compaction and reclaim retry.
4016 			 *
4017 			 * Reclaim is
4018 			 *  - potentially very expensive because zones are far
4019 			 *    below their low watermarks or this is part of very
4020 			 *    bursty high order allocations,
4021 			 *  - not guaranteed to help because isolate_freepages()
4022 			 *    may not iterate over freed pages as part of its
4023 			 *    linear scan, and
4024 			 *  - unlikely to make entire pageblocks free on its
4025 			 *    own.
4026 			 */
4027 			if (compact_result == COMPACT_SKIPPED ||
4028 			    compact_result == COMPACT_DEFERRED)
4029 				goto nopage;
4030 
4031 			/*
4032 			 * Looks like reclaim/compaction is worth trying, but
4033 			 * sync compaction could be very expensive, so keep
4034 			 * using async compaction.
4035 			 */
4036 			compact_priority = INIT_COMPACT_PRIORITY;
4037 		}
4038 	}
4039 
4040 retry:
4041 	/*
4042 	 * Deal with possible cpuset update races or zonelist updates to avoid
4043 	 * infinite retries.
4044 	 */
4045 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4046 	    check_retry_zonelist(zonelist_iter_cookie))
4047 		goto restart;
4048 
4049 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4050 	if (alloc_flags & ALLOC_KSWAPD)
4051 		wake_all_kswapds(order, gfp_mask, ac);
4052 
4053 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4054 	if (reserve_flags)
4055 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4056 					  (alloc_flags & ALLOC_KSWAPD);
4057 
4058 	/*
4059 	 * Reset the nodemask and zonelist iterators if memory policies can be
4060 	 * ignored. These allocations are high priority and system rather than
4061 	 * user oriented.
4062 	 */
4063 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4064 		ac->nodemask = NULL;
4065 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4066 					ac->highest_zoneidx, ac->nodemask);
4067 	}
4068 
4069 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4070 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4071 	if (page)
4072 		goto got_pg;
4073 
4074 	/* Caller is not willing to reclaim, we can't balance anything */
4075 	if (!can_direct_reclaim)
4076 		goto nopage;
4077 
4078 	/* Avoid recursion of direct reclaim */
4079 	if (current->flags & PF_MEMALLOC)
4080 		goto nopage;
4081 
4082 	/* Try direct reclaim and then allocating */
4083 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4084 							&did_some_progress);
4085 	if (page)
4086 		goto got_pg;
4087 
4088 	/* Try direct compaction and then allocating */
4089 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4090 					compact_priority, &compact_result);
4091 	if (page)
4092 		goto got_pg;
4093 
4094 	/* Do not loop if specifically requested */
4095 	if (gfp_mask & __GFP_NORETRY)
4096 		goto nopage;
4097 
4098 	/*
4099 	 * Do not retry costly high order allocations unless they are
4100 	 * __GFP_RETRY_MAYFAIL and we can compact
4101 	 */
4102 	if (costly_order && (!can_compact ||
4103 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4104 		goto nopage;
4105 
4106 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4107 				 did_some_progress > 0, &no_progress_loops))
4108 		goto retry;
4109 
4110 	/*
4111 	 * It doesn't make any sense to retry for the compaction if the order-0
4112 	 * reclaim is not able to make any progress because the current
4113 	 * implementation of the compaction depends on the sufficient amount
4114 	 * of free memory (see __compaction_suitable)
4115 	 */
4116 	if (did_some_progress > 0 && can_compact &&
4117 			should_compact_retry(ac, order, alloc_flags,
4118 				compact_result, &compact_priority,
4119 				&compaction_retries))
4120 		goto retry;
4121 
4122 
4123 	/*
4124 	 * Deal with possible cpuset update races or zonelist updates to avoid
4125 	 * a unnecessary OOM kill.
4126 	 */
4127 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4128 	    check_retry_zonelist(zonelist_iter_cookie))
4129 		goto restart;
4130 
4131 	/* Reclaim has failed us, start killing things */
4132 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4133 	if (page)
4134 		goto got_pg;
4135 
4136 	/* Avoid allocations with no watermarks from looping endlessly */
4137 	if (tsk_is_oom_victim(current) &&
4138 	    (alloc_flags & ALLOC_OOM ||
4139 	     (gfp_mask & __GFP_NOMEMALLOC)))
4140 		goto nopage;
4141 
4142 	/* Retry as long as the OOM killer is making progress */
4143 	if (did_some_progress) {
4144 		no_progress_loops = 0;
4145 		goto retry;
4146 	}
4147 
4148 nopage:
4149 	/*
4150 	 * Deal with possible cpuset update races or zonelist updates to avoid
4151 	 * a unnecessary OOM kill.
4152 	 */
4153 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4154 	    check_retry_zonelist(zonelist_iter_cookie))
4155 		goto restart;
4156 
4157 	/*
4158 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4159 	 * we always retry
4160 	 */
4161 	if (gfp_mask & __GFP_NOFAIL) {
4162 		/*
4163 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4164 		 * of any new users that actually require GFP_NOWAIT
4165 		 */
4166 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4167 			goto fail;
4168 
4169 		/*
4170 		 * PF_MEMALLOC request from this context is rather bizarre
4171 		 * because we cannot reclaim anything and only can loop waiting
4172 		 * for somebody to do a work for us
4173 		 */
4174 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4175 
4176 		/*
4177 		 * non failing costly orders are a hard requirement which we
4178 		 * are not prepared for much so let's warn about these users
4179 		 * so that we can identify them and convert them to something
4180 		 * else.
4181 		 */
4182 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4183 
4184 		/*
4185 		 * Help non-failing allocations by giving some access to memory
4186 		 * reserves normally used for high priority non-blocking
4187 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4188 		 * could deplete whole memory reserves which would just make
4189 		 * the situation worse.
4190 		 */
4191 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4192 		if (page)
4193 			goto got_pg;
4194 
4195 		cond_resched();
4196 		goto retry;
4197 	}
4198 fail:
4199 	warn_alloc(gfp_mask, ac->nodemask,
4200 			"page allocation failure: order:%u", order);
4201 got_pg:
4202 	return page;
4203 }
4204 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4205 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4206 		int preferred_nid, nodemask_t *nodemask,
4207 		struct alloc_context *ac, gfp_t *alloc_gfp,
4208 		unsigned int *alloc_flags)
4209 {
4210 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4211 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4212 	ac->nodemask = nodemask;
4213 	ac->migratetype = gfp_migratetype(gfp_mask);
4214 
4215 	if (cpusets_enabled()) {
4216 		*alloc_gfp |= __GFP_HARDWALL;
4217 		/*
4218 		 * When we are in the interrupt context, it is irrelevant
4219 		 * to the current task context. It means that any node ok.
4220 		 */
4221 		if (in_task() && !ac->nodemask)
4222 			ac->nodemask = &cpuset_current_mems_allowed;
4223 		else
4224 			*alloc_flags |= ALLOC_CPUSET;
4225 	}
4226 
4227 	might_alloc(gfp_mask);
4228 
4229 	if (should_fail_alloc_page(gfp_mask, order))
4230 		return false;
4231 
4232 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4233 
4234 	/* Dirty zone balancing only done in the fast path */
4235 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4236 
4237 	/*
4238 	 * The preferred zone is used for statistics but crucially it is
4239 	 * also used as the starting point for the zonelist iterator. It
4240 	 * may get reset for allocations that ignore memory policies.
4241 	 */
4242 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4243 					ac->highest_zoneidx, ac->nodemask);
4244 
4245 	return true;
4246 }
4247 
4248 /*
4249  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4250  * @gfp: GFP flags for the allocation
4251  * @preferred_nid: The preferred NUMA node ID to allocate from
4252  * @nodemask: Set of nodes to allocate from, may be NULL
4253  * @nr_pages: The number of pages desired on the list or array
4254  * @page_list: Optional list to store the allocated pages
4255  * @page_array: Optional array to store the pages
4256  *
4257  * This is a batched version of the page allocator that attempts to
4258  * allocate nr_pages quickly. Pages are added to page_list if page_list
4259  * is not NULL, otherwise it is assumed that the page_array is valid.
4260  *
4261  * For lists, nr_pages is the number of pages that should be allocated.
4262  *
4263  * For arrays, only NULL elements are populated with pages and nr_pages
4264  * is the maximum number of pages that will be stored in the array.
4265  *
4266  * Returns the number of pages on the list or array.
4267  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4268 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4269 			nodemask_t *nodemask, int nr_pages,
4270 			struct list_head *page_list,
4271 			struct page **page_array)
4272 {
4273 	struct page *page;
4274 	unsigned long __maybe_unused UP_flags;
4275 	struct zone *zone;
4276 	struct zoneref *z;
4277 	struct per_cpu_pages *pcp;
4278 	struct list_head *pcp_list;
4279 	struct alloc_context ac;
4280 	gfp_t alloc_gfp;
4281 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4282 	int nr_populated = 0, nr_account = 0;
4283 
4284 	/*
4285 	 * Skip populated array elements to determine if any pages need
4286 	 * to be allocated before disabling IRQs.
4287 	 */
4288 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4289 		nr_populated++;
4290 
4291 	/* No pages requested? */
4292 	if (unlikely(nr_pages <= 0))
4293 		goto out;
4294 
4295 	/* Already populated array? */
4296 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4297 		goto out;
4298 
4299 	/* Bulk allocator does not support memcg accounting. */
4300 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4301 		goto failed;
4302 
4303 	/* Use the single page allocator for one page. */
4304 	if (nr_pages - nr_populated == 1)
4305 		goto failed;
4306 
4307 #ifdef CONFIG_PAGE_OWNER
4308 	/*
4309 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4310 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4311 	 * removes much of the performance benefit of bulk allocation so
4312 	 * force the caller to allocate one page at a time as it'll have
4313 	 * similar performance to added complexity to the bulk allocator.
4314 	 */
4315 	if (static_branch_unlikely(&page_owner_inited))
4316 		goto failed;
4317 #endif
4318 
4319 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4320 	gfp &= gfp_allowed_mask;
4321 	alloc_gfp = gfp;
4322 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4323 		goto out;
4324 	gfp = alloc_gfp;
4325 
4326 	/* Find an allowed local zone that meets the low watermark. */
4327 	z = ac.preferred_zoneref;
4328 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4329 		unsigned long mark;
4330 
4331 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4332 		    !__cpuset_zone_allowed(zone, gfp)) {
4333 			continue;
4334 		}
4335 
4336 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4337 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4338 			goto failed;
4339 		}
4340 
4341 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4342 		if (zone_watermark_fast(zone, 0,  mark,
4343 				zonelist_zone_idx(ac.preferred_zoneref),
4344 				alloc_flags, gfp)) {
4345 			break;
4346 		}
4347 	}
4348 
4349 	/*
4350 	 * If there are no allowed local zones that meets the watermarks then
4351 	 * try to allocate a single page and reclaim if necessary.
4352 	 */
4353 	if (unlikely(!zone))
4354 		goto failed;
4355 
4356 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4357 	pcp_trylock_prepare(UP_flags);
4358 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4359 	if (!pcp)
4360 		goto failed_irq;
4361 
4362 	/* Attempt the batch allocation */
4363 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4364 	while (nr_populated < nr_pages) {
4365 
4366 		/* Skip existing pages */
4367 		if (page_array && page_array[nr_populated]) {
4368 			nr_populated++;
4369 			continue;
4370 		}
4371 
4372 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4373 								pcp, pcp_list);
4374 		if (unlikely(!page)) {
4375 			/* Try and allocate at least one page */
4376 			if (!nr_account) {
4377 				pcp_spin_unlock(pcp);
4378 				goto failed_irq;
4379 			}
4380 			break;
4381 		}
4382 		nr_account++;
4383 
4384 		prep_new_page(page, 0, gfp, 0);
4385 		if (page_list)
4386 			list_add(&page->lru, page_list);
4387 		else
4388 			page_array[nr_populated] = page;
4389 		nr_populated++;
4390 	}
4391 
4392 	pcp_spin_unlock(pcp);
4393 	pcp_trylock_finish(UP_flags);
4394 
4395 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4396 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4397 
4398 out:
4399 	return nr_populated;
4400 
4401 failed_irq:
4402 	pcp_trylock_finish(UP_flags);
4403 
4404 failed:
4405 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4406 	if (page) {
4407 		if (page_list)
4408 			list_add(&page->lru, page_list);
4409 		else
4410 			page_array[nr_populated] = page;
4411 		nr_populated++;
4412 	}
4413 
4414 	goto out;
4415 }
4416 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4417 
4418 /*
4419  * This is the 'heart' of the zoned buddy allocator.
4420  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4421 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4422 							nodemask_t *nodemask)
4423 {
4424 	struct page *page;
4425 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4426 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4427 	struct alloc_context ac = { };
4428 
4429 	/*
4430 	 * There are several places where we assume that the order value is sane
4431 	 * so bail out early if the request is out of bound.
4432 	 */
4433 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4434 		return NULL;
4435 
4436 	gfp &= gfp_allowed_mask;
4437 	/*
4438 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4439 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4440 	 * from a particular context which has been marked by
4441 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4442 	 * movable zones are not used during allocation.
4443 	 */
4444 	gfp = current_gfp_context(gfp);
4445 	alloc_gfp = gfp;
4446 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4447 			&alloc_gfp, &alloc_flags))
4448 		return NULL;
4449 
4450 	/*
4451 	 * Forbid the first pass from falling back to types that fragment
4452 	 * memory until all local zones are considered.
4453 	 */
4454 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4455 
4456 	/* First allocation attempt */
4457 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4458 	if (likely(page))
4459 		goto out;
4460 
4461 	alloc_gfp = gfp;
4462 	ac.spread_dirty_pages = false;
4463 
4464 	/*
4465 	 * Restore the original nodemask if it was potentially replaced with
4466 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4467 	 */
4468 	ac.nodemask = nodemask;
4469 
4470 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4471 
4472 out:
4473 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4474 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4475 		__free_pages(page, order);
4476 		page = NULL;
4477 	}
4478 
4479 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4480 	kmsan_alloc_page(page, order, alloc_gfp);
4481 
4482 	return page;
4483 }
4484 EXPORT_SYMBOL(__alloc_pages);
4485 
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4486 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4487 		nodemask_t *nodemask)
4488 {
4489 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4490 					preferred_nid, nodemask);
4491 	return page_rmappable_folio(page);
4492 }
4493 EXPORT_SYMBOL(__folio_alloc);
4494 
4495 /*
4496  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4497  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4498  * you need to access high mem.
4499  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4500 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4501 {
4502 	struct page *page;
4503 
4504 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4505 	if (!page)
4506 		return 0;
4507 	return (unsigned long) page_address(page);
4508 }
4509 EXPORT_SYMBOL(__get_free_pages);
4510 
get_zeroed_page(gfp_t gfp_mask)4511 unsigned long get_zeroed_page(gfp_t gfp_mask)
4512 {
4513 	return __get_free_page(gfp_mask | __GFP_ZERO);
4514 }
4515 EXPORT_SYMBOL(get_zeroed_page);
4516 
4517 /**
4518  * __free_pages - Free pages allocated with alloc_pages().
4519  * @page: The page pointer returned from alloc_pages().
4520  * @order: The order of the allocation.
4521  *
4522  * This function can free multi-page allocations that are not compound
4523  * pages.  It does not check that the @order passed in matches that of
4524  * the allocation, so it is easy to leak memory.  Freeing more memory
4525  * than was allocated will probably emit a warning.
4526  *
4527  * If the last reference to this page is speculative, it will be released
4528  * by put_page() which only frees the first page of a non-compound
4529  * allocation.  To prevent the remaining pages from being leaked, we free
4530  * the subsequent pages here.  If you want to use the page's reference
4531  * count to decide when to free the allocation, you should allocate a
4532  * compound page, and use put_page() instead of __free_pages().
4533  *
4534  * Context: May be called in interrupt context or while holding a normal
4535  * spinlock, but not in NMI context or while holding a raw spinlock.
4536  */
__free_pages(struct page * page,unsigned int order)4537 void __free_pages(struct page *page, unsigned int order)
4538 {
4539 	/* get PageHead before we drop reference */
4540 	int head = PageHead(page);
4541 
4542 	if (put_page_testzero(page))
4543 		free_the_page(page, order);
4544 	else if (!head)
4545 		while (order-- > 0)
4546 			free_the_page(page + (1 << order), order);
4547 }
4548 EXPORT_SYMBOL(__free_pages);
4549 
free_pages(unsigned long addr,unsigned int order)4550 void free_pages(unsigned long addr, unsigned int order)
4551 {
4552 	if (addr != 0) {
4553 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4554 		__free_pages(virt_to_page((void *)addr), order);
4555 	}
4556 }
4557 
4558 EXPORT_SYMBOL(free_pages);
4559 
4560 /*
4561  * Page Fragment:
4562  *  An arbitrary-length arbitrary-offset area of memory which resides
4563  *  within a 0 or higher order page.  Multiple fragments within that page
4564  *  are individually refcounted, in the page's reference counter.
4565  *
4566  * The page_frag functions below provide a simple allocation framework for
4567  * page fragments.  This is used by the network stack and network device
4568  * drivers to provide a backing region of memory for use as either an
4569  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4570  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4571 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4572 					     gfp_t gfp_mask)
4573 {
4574 	struct page *page = NULL;
4575 	gfp_t gfp = gfp_mask;
4576 
4577 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4578 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4579 		    __GFP_NOMEMALLOC;
4580 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4581 				PAGE_FRAG_CACHE_MAX_ORDER);
4582 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4583 #endif
4584 	if (unlikely(!page))
4585 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4586 
4587 	nc->va = page ? page_address(page) : NULL;
4588 
4589 	return page;
4590 }
4591 
__page_frag_cache_drain(struct page * page,unsigned int count)4592 void __page_frag_cache_drain(struct page *page, unsigned int count)
4593 {
4594 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4595 
4596 	if (page_ref_sub_and_test(page, count))
4597 		free_the_page(page, compound_order(page));
4598 }
4599 EXPORT_SYMBOL(__page_frag_cache_drain);
4600 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4601 void *page_frag_alloc_align(struct page_frag_cache *nc,
4602 		      unsigned int fragsz, gfp_t gfp_mask,
4603 		      unsigned int align_mask)
4604 {
4605 	unsigned int size = PAGE_SIZE;
4606 	struct page *page;
4607 	int offset;
4608 
4609 	if (unlikely(!nc->va)) {
4610 refill:
4611 		page = __page_frag_cache_refill(nc, gfp_mask);
4612 		if (!page)
4613 			return NULL;
4614 
4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 		/* if size can vary use size else just use PAGE_SIZE */
4617 		size = nc->size;
4618 #endif
4619 		/* Even if we own the page, we do not use atomic_set().
4620 		 * This would break get_page_unless_zero() users.
4621 		 */
4622 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4623 
4624 		/* reset page count bias and offset to start of new frag */
4625 		nc->pfmemalloc = page_is_pfmemalloc(page);
4626 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4627 		nc->offset = size;
4628 	}
4629 
4630 	offset = nc->offset - fragsz;
4631 	if (unlikely(offset < 0)) {
4632 		page = virt_to_page(nc->va);
4633 
4634 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4635 			goto refill;
4636 
4637 		if (unlikely(nc->pfmemalloc)) {
4638 			free_the_page(page, compound_order(page));
4639 			goto refill;
4640 		}
4641 
4642 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4643 		/* if size can vary use size else just use PAGE_SIZE */
4644 		size = nc->size;
4645 #endif
4646 		/* OK, page count is 0, we can safely set it */
4647 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4648 
4649 		/* reset page count bias and offset to start of new frag */
4650 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4651 		offset = size - fragsz;
4652 		if (unlikely(offset < 0)) {
4653 			/*
4654 			 * The caller is trying to allocate a fragment
4655 			 * with fragsz > PAGE_SIZE but the cache isn't big
4656 			 * enough to satisfy the request, this may
4657 			 * happen in low memory conditions.
4658 			 * We don't release the cache page because
4659 			 * it could make memory pressure worse
4660 			 * so we simply return NULL here.
4661 			 */
4662 			return NULL;
4663 		}
4664 	}
4665 
4666 	nc->pagecnt_bias--;
4667 	offset &= align_mask;
4668 	nc->offset = offset;
4669 
4670 	return nc->va + offset;
4671 }
4672 EXPORT_SYMBOL(page_frag_alloc_align);
4673 
4674 /*
4675  * Frees a page fragment allocated out of either a compound or order 0 page.
4676  */
page_frag_free(void * addr)4677 void page_frag_free(void *addr)
4678 {
4679 	struct page *page = virt_to_head_page(addr);
4680 
4681 	if (unlikely(put_page_testzero(page)))
4682 		free_the_page(page, compound_order(page));
4683 }
4684 EXPORT_SYMBOL(page_frag_free);
4685 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4686 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4687 		size_t size)
4688 {
4689 	if (addr) {
4690 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4691 		struct page *page = virt_to_page((void *)addr);
4692 		struct page *last = page + nr;
4693 
4694 		split_page_owner(page, 1 << order);
4695 		split_page_memcg(page, 1 << order);
4696 		while (page < --last)
4697 			set_page_refcounted(last);
4698 
4699 		last = page + (1UL << order);
4700 		for (page += nr; page < last; page++)
4701 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4702 	}
4703 	return (void *)addr;
4704 }
4705 
4706 /**
4707  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4708  * @size: the number of bytes to allocate
4709  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4710  *
4711  * This function is similar to alloc_pages(), except that it allocates the
4712  * minimum number of pages to satisfy the request.  alloc_pages() can only
4713  * allocate memory in power-of-two pages.
4714  *
4715  * This function is also limited by MAX_ORDER.
4716  *
4717  * Memory allocated by this function must be released by free_pages_exact().
4718  *
4719  * Return: pointer to the allocated area or %NULL in case of error.
4720  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4721 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4722 {
4723 	unsigned int order = get_order(size);
4724 	unsigned long addr;
4725 
4726 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4727 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4728 
4729 	addr = __get_free_pages(gfp_mask, order);
4730 	return make_alloc_exact(addr, order, size);
4731 }
4732 EXPORT_SYMBOL(alloc_pages_exact);
4733 
4734 /**
4735  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4736  *			   pages on a node.
4737  * @nid: the preferred node ID where memory should be allocated
4738  * @size: the number of bytes to allocate
4739  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4740  *
4741  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4742  * back.
4743  *
4744  * Return: pointer to the allocated area or %NULL in case of error.
4745  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4746 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4747 {
4748 	unsigned int order = get_order(size);
4749 	struct page *p;
4750 
4751 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4752 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4753 
4754 	p = alloc_pages_node(nid, gfp_mask, order);
4755 	if (!p)
4756 		return NULL;
4757 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4758 }
4759 
4760 /**
4761  * free_pages_exact - release memory allocated via alloc_pages_exact()
4762  * @virt: the value returned by alloc_pages_exact.
4763  * @size: size of allocation, same value as passed to alloc_pages_exact().
4764  *
4765  * Release the memory allocated by a previous call to alloc_pages_exact.
4766  */
free_pages_exact(void * virt,size_t size)4767 void free_pages_exact(void *virt, size_t size)
4768 {
4769 	unsigned long addr = (unsigned long)virt;
4770 	unsigned long end = addr + PAGE_ALIGN(size);
4771 
4772 	while (addr < end) {
4773 		free_page(addr);
4774 		addr += PAGE_SIZE;
4775 	}
4776 }
4777 EXPORT_SYMBOL(free_pages_exact);
4778 
4779 /**
4780  * nr_free_zone_pages - count number of pages beyond high watermark
4781  * @offset: The zone index of the highest zone
4782  *
4783  * nr_free_zone_pages() counts the number of pages which are beyond the
4784  * high watermark within all zones at or below a given zone index.  For each
4785  * zone, the number of pages is calculated as:
4786  *
4787  *     nr_free_zone_pages = managed_pages - high_pages
4788  *
4789  * Return: number of pages beyond high watermark.
4790  */
nr_free_zone_pages(int offset)4791 static unsigned long nr_free_zone_pages(int offset)
4792 {
4793 	struct zoneref *z;
4794 	struct zone *zone;
4795 
4796 	/* Just pick one node, since fallback list is circular */
4797 	unsigned long sum = 0;
4798 
4799 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4800 
4801 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4802 		unsigned long size = zone_managed_pages(zone);
4803 		unsigned long high = high_wmark_pages(zone);
4804 		if (size > high)
4805 			sum += size - high;
4806 	}
4807 
4808 	return sum;
4809 }
4810 
4811 /**
4812  * nr_free_buffer_pages - count number of pages beyond high watermark
4813  *
4814  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4815  * watermark within ZONE_DMA and ZONE_NORMAL.
4816  *
4817  * Return: number of pages beyond high watermark within ZONE_DMA and
4818  * ZONE_NORMAL.
4819  */
nr_free_buffer_pages(void)4820 unsigned long nr_free_buffer_pages(void)
4821 {
4822 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4823 }
4824 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4825 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4826 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4827 {
4828 	zoneref->zone = zone;
4829 	zoneref->zone_idx = zone_idx(zone);
4830 }
4831 
4832 /*
4833  * Builds allocation fallback zone lists.
4834  *
4835  * Add all populated zones of a node to the zonelist.
4836  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4837 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4838 {
4839 	struct zone *zone;
4840 	enum zone_type zone_type = MAX_NR_ZONES;
4841 	int nr_zones = 0;
4842 
4843 	do {
4844 		zone_type--;
4845 		zone = pgdat->node_zones + zone_type;
4846 		if (populated_zone(zone)) {
4847 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4848 			check_highest_zone(zone_type);
4849 		}
4850 	} while (zone_type);
4851 
4852 	return nr_zones;
4853 }
4854 
4855 #ifdef CONFIG_NUMA
4856 
__parse_numa_zonelist_order(char * s)4857 static int __parse_numa_zonelist_order(char *s)
4858 {
4859 	/*
4860 	 * We used to support different zonelists modes but they turned
4861 	 * out to be just not useful. Let's keep the warning in place
4862 	 * if somebody still use the cmd line parameter so that we do
4863 	 * not fail it silently
4864 	 */
4865 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4866 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4867 		return -EINVAL;
4868 	}
4869 	return 0;
4870 }
4871 
4872 static char numa_zonelist_order[] = "Node";
4873 #define NUMA_ZONELIST_ORDER_LEN	16
4874 /*
4875  * sysctl handler for numa_zonelist_order
4876  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4877 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4878 		void *buffer, size_t *length, loff_t *ppos)
4879 {
4880 	if (write)
4881 		return __parse_numa_zonelist_order(buffer);
4882 	return proc_dostring(table, write, buffer, length, ppos);
4883 }
4884 
4885 static int node_load[MAX_NUMNODES];
4886 
4887 /**
4888  * find_next_best_node - find the next node that should appear in a given node's fallback list
4889  * @node: node whose fallback list we're appending
4890  * @used_node_mask: nodemask_t of already used nodes
4891  *
4892  * We use a number of factors to determine which is the next node that should
4893  * appear on a given node's fallback list.  The node should not have appeared
4894  * already in @node's fallback list, and it should be the next closest node
4895  * according to the distance array (which contains arbitrary distance values
4896  * from each node to each node in the system), and should also prefer nodes
4897  * with no CPUs, since presumably they'll have very little allocation pressure
4898  * on them otherwise.
4899  *
4900  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4901  */
find_next_best_node(int node,nodemask_t * used_node_mask)4902 int find_next_best_node(int node, nodemask_t *used_node_mask)
4903 {
4904 	int n, val;
4905 	int min_val = INT_MAX;
4906 	int best_node = NUMA_NO_NODE;
4907 
4908 	/* Use the local node if we haven't already */
4909 	if (!node_isset(node, *used_node_mask)) {
4910 		node_set(node, *used_node_mask);
4911 		return node;
4912 	}
4913 
4914 	for_each_node_state(n, N_MEMORY) {
4915 
4916 		/* Don't want a node to appear more than once */
4917 		if (node_isset(n, *used_node_mask))
4918 			continue;
4919 
4920 		/* Use the distance array to find the distance */
4921 		val = node_distance(node, n);
4922 
4923 		/* Penalize nodes under us ("prefer the next node") */
4924 		val += (n < node);
4925 
4926 		/* Give preference to headless and unused nodes */
4927 		if (!cpumask_empty(cpumask_of_node(n)))
4928 			val += PENALTY_FOR_NODE_WITH_CPUS;
4929 
4930 		/* Slight preference for less loaded node */
4931 		val *= MAX_NUMNODES;
4932 		val += node_load[n];
4933 
4934 		if (val < min_val) {
4935 			min_val = val;
4936 			best_node = n;
4937 		}
4938 	}
4939 
4940 	if (best_node >= 0)
4941 		node_set(best_node, *used_node_mask);
4942 
4943 	return best_node;
4944 }
4945 
4946 
4947 /*
4948  * Build zonelists ordered by node and zones within node.
4949  * This results in maximum locality--normal zone overflows into local
4950  * DMA zone, if any--but risks exhausting DMA zone.
4951  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4952 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4953 		unsigned nr_nodes)
4954 {
4955 	struct zoneref *zonerefs;
4956 	int i;
4957 
4958 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4959 
4960 	for (i = 0; i < nr_nodes; i++) {
4961 		int nr_zones;
4962 
4963 		pg_data_t *node = NODE_DATA(node_order[i]);
4964 
4965 		nr_zones = build_zonerefs_node(node, zonerefs);
4966 		zonerefs += nr_zones;
4967 	}
4968 	zonerefs->zone = NULL;
4969 	zonerefs->zone_idx = 0;
4970 }
4971 
4972 /*
4973  * Build gfp_thisnode zonelists
4974  */
build_thisnode_zonelists(pg_data_t * pgdat)4975 static void build_thisnode_zonelists(pg_data_t *pgdat)
4976 {
4977 	struct zoneref *zonerefs;
4978 	int nr_zones;
4979 
4980 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4981 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4982 	zonerefs += nr_zones;
4983 	zonerefs->zone = NULL;
4984 	zonerefs->zone_idx = 0;
4985 }
4986 
4987 /*
4988  * Build zonelists ordered by zone and nodes within zones.
4989  * This results in conserving DMA zone[s] until all Normal memory is
4990  * exhausted, but results in overflowing to remote node while memory
4991  * may still exist in local DMA zone.
4992  */
4993 
build_zonelists(pg_data_t * pgdat)4994 static void build_zonelists(pg_data_t *pgdat)
4995 {
4996 	static int node_order[MAX_NUMNODES];
4997 	int node, nr_nodes = 0;
4998 	nodemask_t used_mask = NODE_MASK_NONE;
4999 	int local_node, prev_node;
5000 
5001 	/* NUMA-aware ordering of nodes */
5002 	local_node = pgdat->node_id;
5003 	prev_node = local_node;
5004 
5005 	memset(node_order, 0, sizeof(node_order));
5006 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5007 		/*
5008 		 * We don't want to pressure a particular node.
5009 		 * So adding penalty to the first node in same
5010 		 * distance group to make it round-robin.
5011 		 */
5012 		if (node_distance(local_node, node) !=
5013 		    node_distance(local_node, prev_node))
5014 			node_load[node] += 1;
5015 
5016 		node_order[nr_nodes++] = node;
5017 		prev_node = node;
5018 	}
5019 
5020 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5021 	build_thisnode_zonelists(pgdat);
5022 	pr_info("Fallback order for Node %d: ", local_node);
5023 	for (node = 0; node < nr_nodes; node++)
5024 		pr_cont("%d ", node_order[node]);
5025 	pr_cont("\n");
5026 }
5027 
5028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5029 /*
5030  * Return node id of node used for "local" allocations.
5031  * I.e., first node id of first zone in arg node's generic zonelist.
5032  * Used for initializing percpu 'numa_mem', which is used primarily
5033  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5034  */
local_memory_node(int node)5035 int local_memory_node(int node)
5036 {
5037 	struct zoneref *z;
5038 
5039 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5040 				   gfp_zone(GFP_KERNEL),
5041 				   NULL);
5042 	return zone_to_nid(z->zone);
5043 }
5044 #endif
5045 
5046 static void setup_min_unmapped_ratio(void);
5047 static void setup_min_slab_ratio(void);
5048 #else	/* CONFIG_NUMA */
5049 
build_zonelists(pg_data_t * pgdat)5050 static void build_zonelists(pg_data_t *pgdat)
5051 {
5052 	int node, local_node;
5053 	struct zoneref *zonerefs;
5054 	int nr_zones;
5055 
5056 	local_node = pgdat->node_id;
5057 
5058 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5059 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5060 	zonerefs += nr_zones;
5061 
5062 	/*
5063 	 * Now we build the zonelist so that it contains the zones
5064 	 * of all the other nodes.
5065 	 * We don't want to pressure a particular node, so when
5066 	 * building the zones for node N, we make sure that the
5067 	 * zones coming right after the local ones are those from
5068 	 * node N+1 (modulo N)
5069 	 */
5070 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5071 		if (!node_online(node))
5072 			continue;
5073 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5074 		zonerefs += nr_zones;
5075 	}
5076 	for (node = 0; node < local_node; node++) {
5077 		if (!node_online(node))
5078 			continue;
5079 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5080 		zonerefs += nr_zones;
5081 	}
5082 
5083 	zonerefs->zone = NULL;
5084 	zonerefs->zone_idx = 0;
5085 }
5086 
5087 #endif	/* CONFIG_NUMA */
5088 
5089 /*
5090  * Boot pageset table. One per cpu which is going to be used for all
5091  * zones and all nodes. The parameters will be set in such a way
5092  * that an item put on a list will immediately be handed over to
5093  * the buddy list. This is safe since pageset manipulation is done
5094  * with interrupts disabled.
5095  *
5096  * The boot_pagesets must be kept even after bootup is complete for
5097  * unused processors and/or zones. They do play a role for bootstrapping
5098  * hotplugged processors.
5099  *
5100  * zoneinfo_show() and maybe other functions do
5101  * not check if the processor is online before following the pageset pointer.
5102  * Other parts of the kernel may not check if the zone is available.
5103  */
5104 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5105 /* These effectively disable the pcplists in the boot pageset completely */
5106 #define BOOT_PAGESET_HIGH	0
5107 #define BOOT_PAGESET_BATCH	1
5108 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5109 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5110 
__build_all_zonelists(void * data)5111 static void __build_all_zonelists(void *data)
5112 {
5113 	int nid;
5114 	int __maybe_unused cpu;
5115 	pg_data_t *self = data;
5116 	unsigned long flags;
5117 
5118 	/*
5119 	 * The zonelist_update_seq must be acquired with irqsave because the
5120 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5121 	 */
5122 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5123 	/*
5124 	 * Also disable synchronous printk() to prevent any printk() from
5125 	 * trying to hold port->lock, for
5126 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5127 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5128 	 */
5129 	printk_deferred_enter();
5130 
5131 #ifdef CONFIG_NUMA
5132 	memset(node_load, 0, sizeof(node_load));
5133 #endif
5134 
5135 	/*
5136 	 * This node is hotadded and no memory is yet present.   So just
5137 	 * building zonelists is fine - no need to touch other nodes.
5138 	 */
5139 	if (self && !node_online(self->node_id)) {
5140 		build_zonelists(self);
5141 	} else {
5142 		/*
5143 		 * All possible nodes have pgdat preallocated
5144 		 * in free_area_init
5145 		 */
5146 		for_each_node(nid) {
5147 			pg_data_t *pgdat = NODE_DATA(nid);
5148 
5149 			build_zonelists(pgdat);
5150 		}
5151 
5152 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5153 		/*
5154 		 * We now know the "local memory node" for each node--
5155 		 * i.e., the node of the first zone in the generic zonelist.
5156 		 * Set up numa_mem percpu variable for on-line cpus.  During
5157 		 * boot, only the boot cpu should be on-line;  we'll init the
5158 		 * secondary cpus' numa_mem as they come on-line.  During
5159 		 * node/memory hotplug, we'll fixup all on-line cpus.
5160 		 */
5161 		for_each_online_cpu(cpu)
5162 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5163 #endif
5164 	}
5165 
5166 	printk_deferred_exit();
5167 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5168 }
5169 
5170 static noinline void __init
build_all_zonelists_init(void)5171 build_all_zonelists_init(void)
5172 {
5173 	int cpu;
5174 
5175 	__build_all_zonelists(NULL);
5176 
5177 	/*
5178 	 * Initialize the boot_pagesets that are going to be used
5179 	 * for bootstrapping processors. The real pagesets for
5180 	 * each zone will be allocated later when the per cpu
5181 	 * allocator is available.
5182 	 *
5183 	 * boot_pagesets are used also for bootstrapping offline
5184 	 * cpus if the system is already booted because the pagesets
5185 	 * are needed to initialize allocators on a specific cpu too.
5186 	 * F.e. the percpu allocator needs the page allocator which
5187 	 * needs the percpu allocator in order to allocate its pagesets
5188 	 * (a chicken-egg dilemma).
5189 	 */
5190 	for_each_possible_cpu(cpu)
5191 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5192 
5193 	mminit_verify_zonelist();
5194 	cpuset_init_current_mems_allowed();
5195 }
5196 
5197 /*
5198  * unless system_state == SYSTEM_BOOTING.
5199  *
5200  * __ref due to call of __init annotated helper build_all_zonelists_init
5201  * [protected by SYSTEM_BOOTING].
5202  */
build_all_zonelists(pg_data_t * pgdat)5203 void __ref build_all_zonelists(pg_data_t *pgdat)
5204 {
5205 	unsigned long vm_total_pages;
5206 
5207 	if (system_state == SYSTEM_BOOTING) {
5208 		build_all_zonelists_init();
5209 	} else {
5210 		__build_all_zonelists(pgdat);
5211 		/* cpuset refresh routine should be here */
5212 	}
5213 	/* Get the number of free pages beyond high watermark in all zones. */
5214 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5215 	/*
5216 	 * Disable grouping by mobility if the number of pages in the
5217 	 * system is too low to allow the mechanism to work. It would be
5218 	 * more accurate, but expensive to check per-zone. This check is
5219 	 * made on memory-hotadd so a system can start with mobility
5220 	 * disabled and enable it later
5221 	 */
5222 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5223 		page_group_by_mobility_disabled = 1;
5224 	else
5225 		page_group_by_mobility_disabled = 0;
5226 
5227 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5228 		nr_online_nodes,
5229 		page_group_by_mobility_disabled ? "off" : "on",
5230 		vm_total_pages);
5231 #ifdef CONFIG_NUMA
5232 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5233 #endif
5234 }
5235 
zone_batchsize(struct zone * zone)5236 static int zone_batchsize(struct zone *zone)
5237 {
5238 #ifdef CONFIG_MMU
5239 	int batch;
5240 
5241 	/*
5242 	 * The number of pages to batch allocate is either ~0.1%
5243 	 * of the zone or 1MB, whichever is smaller. The batch
5244 	 * size is striking a balance between allocation latency
5245 	 * and zone lock contention.
5246 	 */
5247 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5248 	batch /= 4;		/* We effectively *= 4 below */
5249 	if (batch < 1)
5250 		batch = 1;
5251 
5252 	/*
5253 	 * Clamp the batch to a 2^n - 1 value. Having a power
5254 	 * of 2 value was found to be more likely to have
5255 	 * suboptimal cache aliasing properties in some cases.
5256 	 *
5257 	 * For example if 2 tasks are alternately allocating
5258 	 * batches of pages, one task can end up with a lot
5259 	 * of pages of one half of the possible page colors
5260 	 * and the other with pages of the other colors.
5261 	 */
5262 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5263 
5264 	return batch;
5265 
5266 #else
5267 	/* The deferral and batching of frees should be suppressed under NOMMU
5268 	 * conditions.
5269 	 *
5270 	 * The problem is that NOMMU needs to be able to allocate large chunks
5271 	 * of contiguous memory as there's no hardware page translation to
5272 	 * assemble apparent contiguous memory from discontiguous pages.
5273 	 *
5274 	 * Queueing large contiguous runs of pages for batching, however,
5275 	 * causes the pages to actually be freed in smaller chunks.  As there
5276 	 * can be a significant delay between the individual batches being
5277 	 * recycled, this leads to the once large chunks of space being
5278 	 * fragmented and becoming unavailable for high-order allocations.
5279 	 */
5280 	return 0;
5281 #endif
5282 }
5283 
5284 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5285 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5286 {
5287 #ifdef CONFIG_MMU
5288 	int high;
5289 	int nr_split_cpus;
5290 	unsigned long total_pages;
5291 
5292 	if (!percpu_pagelist_high_fraction) {
5293 		/*
5294 		 * By default, the high value of the pcp is based on the zone
5295 		 * low watermark so that if they are full then background
5296 		 * reclaim will not be started prematurely.
5297 		 */
5298 		total_pages = low_wmark_pages(zone);
5299 	} else {
5300 		/*
5301 		 * If percpu_pagelist_high_fraction is configured, the high
5302 		 * value is based on a fraction of the managed pages in the
5303 		 * zone.
5304 		 */
5305 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5306 	}
5307 
5308 	/*
5309 	 * Split the high value across all online CPUs local to the zone. Note
5310 	 * that early in boot that CPUs may not be online yet and that during
5311 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5312 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5313 	 * all online CPUs to mitigate the risk that reclaim is triggered
5314 	 * prematurely due to pages stored on pcp lists.
5315 	 */
5316 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5317 	if (!nr_split_cpus)
5318 		nr_split_cpus = num_online_cpus();
5319 	high = total_pages / nr_split_cpus;
5320 
5321 	/*
5322 	 * Ensure high is at least batch*4. The multiple is based on the
5323 	 * historical relationship between high and batch.
5324 	 */
5325 	high = max(high, batch << 2);
5326 
5327 	return high;
5328 #else
5329 	return 0;
5330 #endif
5331 }
5332 
5333 /*
5334  * pcp->high and pcp->batch values are related and generally batch is lower
5335  * than high. They are also related to pcp->count such that count is lower
5336  * than high, and as soon as it reaches high, the pcplist is flushed.
5337  *
5338  * However, guaranteeing these relations at all times would require e.g. write
5339  * barriers here but also careful usage of read barriers at the read side, and
5340  * thus be prone to error and bad for performance. Thus the update only prevents
5341  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5342  * can cope with those fields changing asynchronously, and fully trust only the
5343  * pcp->count field on the local CPU with interrupts disabled.
5344  *
5345  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5346  * outside of boot time (or some other assurance that no concurrent updaters
5347  * exist).
5348  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5349 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5350 		unsigned long batch)
5351 {
5352 	WRITE_ONCE(pcp->batch, batch);
5353 	WRITE_ONCE(pcp->high, high);
5354 }
5355 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5356 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5357 {
5358 	int pindex;
5359 
5360 	memset(pcp, 0, sizeof(*pcp));
5361 	memset(pzstats, 0, sizeof(*pzstats));
5362 
5363 	spin_lock_init(&pcp->lock);
5364 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5365 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5366 
5367 	/*
5368 	 * Set batch and high values safe for a boot pageset. A true percpu
5369 	 * pageset's initialization will update them subsequently. Here we don't
5370 	 * need to be as careful as pageset_update() as nobody can access the
5371 	 * pageset yet.
5372 	 */
5373 	pcp->high = BOOT_PAGESET_HIGH;
5374 	pcp->batch = BOOT_PAGESET_BATCH;
5375 	pcp->free_factor = 0;
5376 }
5377 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5378 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5379 		unsigned long batch)
5380 {
5381 	struct per_cpu_pages *pcp;
5382 	int cpu;
5383 
5384 	for_each_possible_cpu(cpu) {
5385 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5386 		pageset_update(pcp, high, batch);
5387 	}
5388 }
5389 
5390 /*
5391  * Calculate and set new high and batch values for all per-cpu pagesets of a
5392  * zone based on the zone's size.
5393  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5394 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5395 {
5396 	int new_high, new_batch;
5397 
5398 	new_batch = max(1, zone_batchsize(zone));
5399 	new_high = zone_highsize(zone, new_batch, cpu_online);
5400 
5401 	if (zone->pageset_high == new_high &&
5402 	    zone->pageset_batch == new_batch)
5403 		return;
5404 
5405 	zone->pageset_high = new_high;
5406 	zone->pageset_batch = new_batch;
5407 
5408 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5409 }
5410 
setup_zone_pageset(struct zone * zone)5411 void __meminit setup_zone_pageset(struct zone *zone)
5412 {
5413 	int cpu;
5414 
5415 	/* Size may be 0 on !SMP && !NUMA */
5416 	if (sizeof(struct per_cpu_zonestat) > 0)
5417 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5418 
5419 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5420 	for_each_possible_cpu(cpu) {
5421 		struct per_cpu_pages *pcp;
5422 		struct per_cpu_zonestat *pzstats;
5423 
5424 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5425 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5426 		per_cpu_pages_init(pcp, pzstats);
5427 	}
5428 
5429 	zone_set_pageset_high_and_batch(zone, 0);
5430 }
5431 
5432 /*
5433  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5434  * page high values need to be recalculated.
5435  */
zone_pcp_update(struct zone * zone,int cpu_online)5436 static void zone_pcp_update(struct zone *zone, int cpu_online)
5437 {
5438 	mutex_lock(&pcp_batch_high_lock);
5439 	zone_set_pageset_high_and_batch(zone, cpu_online);
5440 	mutex_unlock(&pcp_batch_high_lock);
5441 }
5442 
5443 /*
5444  * Allocate per cpu pagesets and initialize them.
5445  * Before this call only boot pagesets were available.
5446  */
setup_per_cpu_pageset(void)5447 void __init setup_per_cpu_pageset(void)
5448 {
5449 	struct pglist_data *pgdat;
5450 	struct zone *zone;
5451 	int __maybe_unused cpu;
5452 
5453 	for_each_populated_zone(zone)
5454 		setup_zone_pageset(zone);
5455 
5456 #ifdef CONFIG_NUMA
5457 	/*
5458 	 * Unpopulated zones continue using the boot pagesets.
5459 	 * The numa stats for these pagesets need to be reset.
5460 	 * Otherwise, they will end up skewing the stats of
5461 	 * the nodes these zones are associated with.
5462 	 */
5463 	for_each_possible_cpu(cpu) {
5464 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5465 		memset(pzstats->vm_numa_event, 0,
5466 		       sizeof(pzstats->vm_numa_event));
5467 	}
5468 #endif
5469 
5470 	for_each_online_pgdat(pgdat)
5471 		pgdat->per_cpu_nodestats =
5472 			alloc_percpu(struct per_cpu_nodestat);
5473 }
5474 
zone_pcp_init(struct zone * zone)5475 __meminit void zone_pcp_init(struct zone *zone)
5476 {
5477 	/*
5478 	 * per cpu subsystem is not up at this point. The following code
5479 	 * relies on the ability of the linker to provide the
5480 	 * offset of a (static) per cpu variable into the per cpu area.
5481 	 */
5482 	zone->per_cpu_pageset = &boot_pageset;
5483 	zone->per_cpu_zonestats = &boot_zonestats;
5484 	zone->pageset_high = BOOT_PAGESET_HIGH;
5485 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5486 
5487 	if (populated_zone(zone))
5488 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5489 			 zone->present_pages, zone_batchsize(zone));
5490 }
5491 
adjust_managed_page_count(struct page * page,long count)5492 void adjust_managed_page_count(struct page *page, long count)
5493 {
5494 	atomic_long_add(count, &page_zone(page)->managed_pages);
5495 	totalram_pages_add(count);
5496 #ifdef CONFIG_HIGHMEM
5497 	if (PageHighMem(page))
5498 		totalhigh_pages_add(count);
5499 #endif
5500 }
5501 EXPORT_SYMBOL(adjust_managed_page_count);
5502 
free_reserved_area(void * start,void * end,int poison,const char * s)5503 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5504 {
5505 	void *pos;
5506 	unsigned long pages = 0;
5507 
5508 	start = (void *)PAGE_ALIGN((unsigned long)start);
5509 	end = (void *)((unsigned long)end & PAGE_MASK);
5510 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5511 		struct page *page = virt_to_page(pos);
5512 		void *direct_map_addr;
5513 
5514 		/*
5515 		 * 'direct_map_addr' might be different from 'pos'
5516 		 * because some architectures' virt_to_page()
5517 		 * work with aliases.  Getting the direct map
5518 		 * address ensures that we get a _writeable_
5519 		 * alias for the memset().
5520 		 */
5521 		direct_map_addr = page_address(page);
5522 		/*
5523 		 * Perform a kasan-unchecked memset() since this memory
5524 		 * has not been initialized.
5525 		 */
5526 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5527 		if ((unsigned int)poison <= 0xFF)
5528 			memset(direct_map_addr, poison, PAGE_SIZE);
5529 
5530 		free_reserved_page(page);
5531 	}
5532 
5533 	if (pages && s)
5534 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5535 
5536 	return pages;
5537 }
5538 
page_alloc_cpu_dead(unsigned int cpu)5539 static int page_alloc_cpu_dead(unsigned int cpu)
5540 {
5541 	struct zone *zone;
5542 
5543 	lru_add_drain_cpu(cpu);
5544 	mlock_drain_remote(cpu);
5545 	drain_pages(cpu);
5546 
5547 	/*
5548 	 * Spill the event counters of the dead processor
5549 	 * into the current processors event counters.
5550 	 * This artificially elevates the count of the current
5551 	 * processor.
5552 	 */
5553 	vm_events_fold_cpu(cpu);
5554 
5555 	/*
5556 	 * Zero the differential counters of the dead processor
5557 	 * so that the vm statistics are consistent.
5558 	 *
5559 	 * This is only okay since the processor is dead and cannot
5560 	 * race with what we are doing.
5561 	 */
5562 	cpu_vm_stats_fold(cpu);
5563 
5564 	for_each_populated_zone(zone)
5565 		zone_pcp_update(zone, 0);
5566 
5567 	return 0;
5568 }
5569 
page_alloc_cpu_online(unsigned int cpu)5570 static int page_alloc_cpu_online(unsigned int cpu)
5571 {
5572 	struct zone *zone;
5573 
5574 	for_each_populated_zone(zone)
5575 		zone_pcp_update(zone, 1);
5576 	return 0;
5577 }
5578 
page_alloc_init_cpuhp(void)5579 void __init page_alloc_init_cpuhp(void)
5580 {
5581 	int ret;
5582 
5583 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5584 					"mm/page_alloc:pcp",
5585 					page_alloc_cpu_online,
5586 					page_alloc_cpu_dead);
5587 	WARN_ON(ret < 0);
5588 }
5589 
5590 /*
5591  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5592  *	or min_free_kbytes changes.
5593  */
calculate_totalreserve_pages(void)5594 static void calculate_totalreserve_pages(void)
5595 {
5596 	struct pglist_data *pgdat;
5597 	unsigned long reserve_pages = 0;
5598 	enum zone_type i, j;
5599 
5600 	for_each_online_pgdat(pgdat) {
5601 
5602 		pgdat->totalreserve_pages = 0;
5603 
5604 		for (i = 0; i < MAX_NR_ZONES; i++) {
5605 			struct zone *zone = pgdat->node_zones + i;
5606 			long max = 0;
5607 			unsigned long managed_pages = zone_managed_pages(zone);
5608 
5609 			/* Find valid and maximum lowmem_reserve in the zone */
5610 			for (j = i; j < MAX_NR_ZONES; j++) {
5611 				if (zone->lowmem_reserve[j] > max)
5612 					max = zone->lowmem_reserve[j];
5613 			}
5614 
5615 			/* we treat the high watermark as reserved pages. */
5616 			max += high_wmark_pages(zone);
5617 
5618 			if (max > managed_pages)
5619 				max = managed_pages;
5620 
5621 			pgdat->totalreserve_pages += max;
5622 
5623 			reserve_pages += max;
5624 		}
5625 	}
5626 	totalreserve_pages = reserve_pages;
5627 }
5628 
5629 /*
5630  * setup_per_zone_lowmem_reserve - called whenever
5631  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5632  *	has a correct pages reserved value, so an adequate number of
5633  *	pages are left in the zone after a successful __alloc_pages().
5634  */
setup_per_zone_lowmem_reserve(void)5635 static void setup_per_zone_lowmem_reserve(void)
5636 {
5637 	struct pglist_data *pgdat;
5638 	enum zone_type i, j;
5639 
5640 	for_each_online_pgdat(pgdat) {
5641 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5642 			struct zone *zone = &pgdat->node_zones[i];
5643 			int ratio = sysctl_lowmem_reserve_ratio[i];
5644 			bool clear = !ratio || !zone_managed_pages(zone);
5645 			unsigned long managed_pages = 0;
5646 
5647 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5648 				struct zone *upper_zone = &pgdat->node_zones[j];
5649 
5650 				managed_pages += zone_managed_pages(upper_zone);
5651 
5652 				if (clear)
5653 					zone->lowmem_reserve[j] = 0;
5654 				else
5655 					zone->lowmem_reserve[j] = managed_pages / ratio;
5656 			}
5657 		}
5658 	}
5659 
5660 	/* update totalreserve_pages */
5661 	calculate_totalreserve_pages();
5662 }
5663 
__setup_per_zone_wmarks(void)5664 static void __setup_per_zone_wmarks(void)
5665 {
5666 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5667 	unsigned long lowmem_pages = 0;
5668 	struct zone *zone;
5669 	unsigned long flags;
5670 
5671 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5672 	for_each_zone(zone) {
5673 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5674 			lowmem_pages += zone_managed_pages(zone);
5675 	}
5676 
5677 	for_each_zone(zone) {
5678 		u64 tmp;
5679 
5680 		spin_lock_irqsave(&zone->lock, flags);
5681 		tmp = (u64)pages_min * zone_managed_pages(zone);
5682 		do_div(tmp, lowmem_pages);
5683 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5684 			/*
5685 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5686 			 * need highmem and movable zones pages, so cap pages_min
5687 			 * to a small  value here.
5688 			 *
5689 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5690 			 * deltas control async page reclaim, and so should
5691 			 * not be capped for highmem and movable zones.
5692 			 */
5693 			unsigned long min_pages;
5694 
5695 			min_pages = zone_managed_pages(zone) / 1024;
5696 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5697 			zone->_watermark[WMARK_MIN] = min_pages;
5698 		} else {
5699 			/*
5700 			 * If it's a lowmem zone, reserve a number of pages
5701 			 * proportionate to the zone's size.
5702 			 */
5703 			zone->_watermark[WMARK_MIN] = tmp;
5704 		}
5705 
5706 		/*
5707 		 * Set the kswapd watermarks distance according to the
5708 		 * scale factor in proportion to available memory, but
5709 		 * ensure a minimum size on small systems.
5710 		 */
5711 		tmp = max_t(u64, tmp >> 2,
5712 			    mult_frac(zone_managed_pages(zone),
5713 				      watermark_scale_factor, 10000));
5714 
5715 		zone->watermark_boost = 0;
5716 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5717 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5718 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5719 
5720 		spin_unlock_irqrestore(&zone->lock, flags);
5721 	}
5722 
5723 	/* update totalreserve_pages */
5724 	calculate_totalreserve_pages();
5725 }
5726 
5727 /**
5728  * setup_per_zone_wmarks - called when min_free_kbytes changes
5729  * or when memory is hot-{added|removed}
5730  *
5731  * Ensures that the watermark[min,low,high] values for each zone are set
5732  * correctly with respect to min_free_kbytes.
5733  */
setup_per_zone_wmarks(void)5734 void setup_per_zone_wmarks(void)
5735 {
5736 	struct zone *zone;
5737 	static DEFINE_SPINLOCK(lock);
5738 
5739 	spin_lock(&lock);
5740 	__setup_per_zone_wmarks();
5741 	spin_unlock(&lock);
5742 
5743 	/*
5744 	 * The watermark size have changed so update the pcpu batch
5745 	 * and high limits or the limits may be inappropriate.
5746 	 */
5747 	for_each_zone(zone)
5748 		zone_pcp_update(zone, 0);
5749 }
5750 
5751 /*
5752  * Initialise min_free_kbytes.
5753  *
5754  * For small machines we want it small (128k min).  For large machines
5755  * we want it large (256MB max).  But it is not linear, because network
5756  * bandwidth does not increase linearly with machine size.  We use
5757  *
5758  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5759  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5760  *
5761  * which yields
5762  *
5763  * 16MB:	512k
5764  * 32MB:	724k
5765  * 64MB:	1024k
5766  * 128MB:	1448k
5767  * 256MB:	2048k
5768  * 512MB:	2896k
5769  * 1024MB:	4096k
5770  * 2048MB:	5792k
5771  * 4096MB:	8192k
5772  * 8192MB:	11584k
5773  * 16384MB:	16384k
5774  */
calculate_min_free_kbytes(void)5775 void calculate_min_free_kbytes(void)
5776 {
5777 	unsigned long lowmem_kbytes;
5778 	int new_min_free_kbytes;
5779 
5780 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5781 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5782 
5783 	if (new_min_free_kbytes > user_min_free_kbytes)
5784 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5785 	else
5786 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5787 				new_min_free_kbytes, user_min_free_kbytes);
5788 
5789 }
5790 
init_per_zone_wmark_min(void)5791 int __meminit init_per_zone_wmark_min(void)
5792 {
5793 	calculate_min_free_kbytes();
5794 	setup_per_zone_wmarks();
5795 	refresh_zone_stat_thresholds();
5796 	setup_per_zone_lowmem_reserve();
5797 
5798 #ifdef CONFIG_NUMA
5799 	setup_min_unmapped_ratio();
5800 	setup_min_slab_ratio();
5801 #endif
5802 
5803 	khugepaged_min_free_kbytes_update();
5804 
5805 	return 0;
5806 }
postcore_initcall(init_per_zone_wmark_min)5807 postcore_initcall(init_per_zone_wmark_min)
5808 
5809 /*
5810  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5811  *	that we can call two helper functions whenever min_free_kbytes
5812  *	changes.
5813  */
5814 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5815 		void *buffer, size_t *length, loff_t *ppos)
5816 {
5817 	int rc;
5818 
5819 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5820 	if (rc)
5821 		return rc;
5822 
5823 	if (write) {
5824 		user_min_free_kbytes = min_free_kbytes;
5825 		setup_per_zone_wmarks();
5826 	}
5827 	return 0;
5828 }
5829 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5830 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5831 		void *buffer, size_t *length, loff_t *ppos)
5832 {
5833 	int rc;
5834 
5835 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5836 	if (rc)
5837 		return rc;
5838 
5839 	if (write)
5840 		setup_per_zone_wmarks();
5841 
5842 	return 0;
5843 }
5844 
5845 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5846 static void setup_min_unmapped_ratio(void)
5847 {
5848 	pg_data_t *pgdat;
5849 	struct zone *zone;
5850 
5851 	for_each_online_pgdat(pgdat)
5852 		pgdat->min_unmapped_pages = 0;
5853 
5854 	for_each_zone(zone)
5855 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5856 						         sysctl_min_unmapped_ratio) / 100;
5857 }
5858 
5859 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5860 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5861 		void *buffer, size_t *length, loff_t *ppos)
5862 {
5863 	int rc;
5864 
5865 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 	if (rc)
5867 		return rc;
5868 
5869 	setup_min_unmapped_ratio();
5870 
5871 	return 0;
5872 }
5873 
setup_min_slab_ratio(void)5874 static void setup_min_slab_ratio(void)
5875 {
5876 	pg_data_t *pgdat;
5877 	struct zone *zone;
5878 
5879 	for_each_online_pgdat(pgdat)
5880 		pgdat->min_slab_pages = 0;
5881 
5882 	for_each_zone(zone)
5883 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5884 						     sysctl_min_slab_ratio) / 100;
5885 }
5886 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5887 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5888 		void *buffer, size_t *length, loff_t *ppos)
5889 {
5890 	int rc;
5891 
5892 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5893 	if (rc)
5894 		return rc;
5895 
5896 	setup_min_slab_ratio();
5897 
5898 	return 0;
5899 }
5900 #endif
5901 
5902 /*
5903  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5904  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5905  *	whenever sysctl_lowmem_reserve_ratio changes.
5906  *
5907  * The reserve ratio obviously has absolutely no relation with the
5908  * minimum watermarks. The lowmem reserve ratio can only make sense
5909  * if in function of the boot time zone sizes.
5910  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5911 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5912 		int write, void *buffer, size_t *length, loff_t *ppos)
5913 {
5914 	int i;
5915 
5916 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 
5918 	for (i = 0; i < MAX_NR_ZONES; i++) {
5919 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5920 			sysctl_lowmem_reserve_ratio[i] = 0;
5921 	}
5922 
5923 	setup_per_zone_lowmem_reserve();
5924 	return 0;
5925 }
5926 
5927 /*
5928  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5929  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5930  * pagelist can have before it gets flushed back to buddy allocator.
5931  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5932 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5933 		int write, void *buffer, size_t *length, loff_t *ppos)
5934 {
5935 	struct zone *zone;
5936 	int old_percpu_pagelist_high_fraction;
5937 	int ret;
5938 
5939 	mutex_lock(&pcp_batch_high_lock);
5940 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5941 
5942 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5943 	if (!write || ret < 0)
5944 		goto out;
5945 
5946 	/* Sanity checking to avoid pcp imbalance */
5947 	if (percpu_pagelist_high_fraction &&
5948 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5949 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5950 		ret = -EINVAL;
5951 		goto out;
5952 	}
5953 
5954 	/* No change? */
5955 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5956 		goto out;
5957 
5958 	for_each_populated_zone(zone)
5959 		zone_set_pageset_high_and_batch(zone, 0);
5960 out:
5961 	mutex_unlock(&pcp_batch_high_lock);
5962 	return ret;
5963 }
5964 
5965 static struct ctl_table page_alloc_sysctl_table[] = {
5966 	{
5967 		.procname	= "min_free_kbytes",
5968 		.data		= &min_free_kbytes,
5969 		.maxlen		= sizeof(min_free_kbytes),
5970 		.mode		= 0644,
5971 		.proc_handler	= min_free_kbytes_sysctl_handler,
5972 		.extra1		= SYSCTL_ZERO,
5973 	},
5974 	{
5975 		.procname	= "watermark_boost_factor",
5976 		.data		= &watermark_boost_factor,
5977 		.maxlen		= sizeof(watermark_boost_factor),
5978 		.mode		= 0644,
5979 		.proc_handler	= proc_dointvec_minmax,
5980 		.extra1		= SYSCTL_ZERO,
5981 	},
5982 	{
5983 		.procname	= "watermark_scale_factor",
5984 		.data		= &watermark_scale_factor,
5985 		.maxlen		= sizeof(watermark_scale_factor),
5986 		.mode		= 0644,
5987 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5988 		.extra1		= SYSCTL_ONE,
5989 		.extra2		= SYSCTL_THREE_THOUSAND,
5990 	},
5991 	{
5992 		.procname	= "percpu_pagelist_high_fraction",
5993 		.data		= &percpu_pagelist_high_fraction,
5994 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5995 		.mode		= 0644,
5996 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5997 		.extra1		= SYSCTL_ZERO,
5998 	},
5999 	{
6000 		.procname	= "lowmem_reserve_ratio",
6001 		.data		= &sysctl_lowmem_reserve_ratio,
6002 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6003 		.mode		= 0644,
6004 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6005 	},
6006 #ifdef CONFIG_NUMA
6007 	{
6008 		.procname	= "numa_zonelist_order",
6009 		.data		= &numa_zonelist_order,
6010 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6011 		.mode		= 0644,
6012 		.proc_handler	= numa_zonelist_order_handler,
6013 	},
6014 	{
6015 		.procname	= "min_unmapped_ratio",
6016 		.data		= &sysctl_min_unmapped_ratio,
6017 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6018 		.mode		= 0644,
6019 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6020 		.extra1		= SYSCTL_ZERO,
6021 		.extra2		= SYSCTL_ONE_HUNDRED,
6022 	},
6023 	{
6024 		.procname	= "min_slab_ratio",
6025 		.data		= &sysctl_min_slab_ratio,
6026 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6027 		.mode		= 0644,
6028 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6029 		.extra1		= SYSCTL_ZERO,
6030 		.extra2		= SYSCTL_ONE_HUNDRED,
6031 	},
6032 #endif
6033 	{}
6034 };
6035 
page_alloc_sysctl_init(void)6036 void __init page_alloc_sysctl_init(void)
6037 {
6038 	register_sysctl_init("vm", page_alloc_sysctl_table);
6039 }
6040 
6041 #ifdef CONFIG_CONTIG_ALLOC
6042 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6043 static void alloc_contig_dump_pages(struct list_head *page_list)
6044 {
6045 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6046 
6047 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6048 		struct page *page;
6049 
6050 		dump_stack();
6051 		list_for_each_entry(page, page_list, lru)
6052 			dump_page(page, "migration failure");
6053 	}
6054 }
6055 
6056 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6057 int __alloc_contig_migrate_range(struct compact_control *cc,
6058 					unsigned long start, unsigned long end)
6059 {
6060 	/* This function is based on compact_zone() from compaction.c. */
6061 	unsigned int nr_reclaimed;
6062 	unsigned long pfn = start;
6063 	unsigned int tries = 0;
6064 	int ret = 0;
6065 	struct migration_target_control mtc = {
6066 		.nid = zone_to_nid(cc->zone),
6067 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6068 	};
6069 
6070 	lru_cache_disable();
6071 
6072 	while (pfn < end || !list_empty(&cc->migratepages)) {
6073 		if (fatal_signal_pending(current)) {
6074 			ret = -EINTR;
6075 			break;
6076 		}
6077 
6078 		if (list_empty(&cc->migratepages)) {
6079 			cc->nr_migratepages = 0;
6080 			ret = isolate_migratepages_range(cc, pfn, end);
6081 			if (ret && ret != -EAGAIN)
6082 				break;
6083 			pfn = cc->migrate_pfn;
6084 			tries = 0;
6085 		} else if (++tries == 5) {
6086 			ret = -EBUSY;
6087 			break;
6088 		}
6089 
6090 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6091 							&cc->migratepages);
6092 		cc->nr_migratepages -= nr_reclaimed;
6093 
6094 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6095 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6096 
6097 		/*
6098 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6099 		 * to retry again over this error, so do the same here.
6100 		 */
6101 		if (ret == -ENOMEM)
6102 			break;
6103 	}
6104 
6105 	lru_cache_enable();
6106 	if (ret < 0) {
6107 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6108 			alloc_contig_dump_pages(&cc->migratepages);
6109 		putback_movable_pages(&cc->migratepages);
6110 		return ret;
6111 	}
6112 	return 0;
6113 }
6114 
6115 /**
6116  * alloc_contig_range() -- tries to allocate given range of pages
6117  * @start:	start PFN to allocate
6118  * @end:	one-past-the-last PFN to allocate
6119  * @migratetype:	migratetype of the underlying pageblocks (either
6120  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6121  *			in range must have the same migratetype and it must
6122  *			be either of the two.
6123  * @gfp_mask:	GFP mask to use during compaction
6124  *
6125  * The PFN range does not have to be pageblock aligned. The PFN range must
6126  * belong to a single zone.
6127  *
6128  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6129  * pageblocks in the range.  Once isolated, the pageblocks should not
6130  * be modified by others.
6131  *
6132  * Return: zero on success or negative error code.  On success all
6133  * pages which PFN is in [start, end) are allocated for the caller and
6134  * need to be freed with free_contig_range().
6135  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6136 int alloc_contig_range(unsigned long start, unsigned long end,
6137 		       unsigned migratetype, gfp_t gfp_mask)
6138 {
6139 	unsigned long outer_start, outer_end;
6140 	int order;
6141 	int ret = 0;
6142 
6143 	struct compact_control cc = {
6144 		.nr_migratepages = 0,
6145 		.order = -1,
6146 		.zone = page_zone(pfn_to_page(start)),
6147 		.mode = MIGRATE_SYNC,
6148 		.ignore_skip_hint = true,
6149 		.no_set_skip_hint = true,
6150 		.gfp_mask = current_gfp_context(gfp_mask),
6151 		.alloc_contig = true,
6152 	};
6153 	INIT_LIST_HEAD(&cc.migratepages);
6154 
6155 	/*
6156 	 * What we do here is we mark all pageblocks in range as
6157 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6158 	 * have different sizes, and due to the way page allocator
6159 	 * work, start_isolate_page_range() has special handlings for this.
6160 	 *
6161 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6162 	 * migrate the pages from an unaligned range (ie. pages that
6163 	 * we are interested in). This will put all the pages in
6164 	 * range back to page allocator as MIGRATE_ISOLATE.
6165 	 *
6166 	 * When this is done, we take the pages in range from page
6167 	 * allocator removing them from the buddy system.  This way
6168 	 * page allocator will never consider using them.
6169 	 *
6170 	 * This lets us mark the pageblocks back as
6171 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6172 	 * aligned range but not in the unaligned, original range are
6173 	 * put back to page allocator so that buddy can use them.
6174 	 */
6175 
6176 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6177 	if (ret)
6178 		goto done;
6179 
6180 	drain_all_pages(cc.zone);
6181 
6182 	/*
6183 	 * In case of -EBUSY, we'd like to know which page causes problem.
6184 	 * So, just fall through. test_pages_isolated() has a tracepoint
6185 	 * which will report the busy page.
6186 	 *
6187 	 * It is possible that busy pages could become available before
6188 	 * the call to test_pages_isolated, and the range will actually be
6189 	 * allocated.  So, if we fall through be sure to clear ret so that
6190 	 * -EBUSY is not accidentally used or returned to caller.
6191 	 */
6192 	ret = __alloc_contig_migrate_range(&cc, start, end);
6193 	if (ret && ret != -EBUSY)
6194 		goto done;
6195 	ret = 0;
6196 
6197 	/*
6198 	 * Pages from [start, end) are within a pageblock_nr_pages
6199 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6200 	 * more, all pages in [start, end) are free in page allocator.
6201 	 * What we are going to do is to allocate all pages from
6202 	 * [start, end) (that is remove them from page allocator).
6203 	 *
6204 	 * The only problem is that pages at the beginning and at the
6205 	 * end of interesting range may be not aligned with pages that
6206 	 * page allocator holds, ie. they can be part of higher order
6207 	 * pages.  Because of this, we reserve the bigger range and
6208 	 * once this is done free the pages we are not interested in.
6209 	 *
6210 	 * We don't have to hold zone->lock here because the pages are
6211 	 * isolated thus they won't get removed from buddy.
6212 	 */
6213 
6214 	order = 0;
6215 	outer_start = start;
6216 	while (!PageBuddy(pfn_to_page(outer_start))) {
6217 		if (++order > MAX_ORDER) {
6218 			outer_start = start;
6219 			break;
6220 		}
6221 		outer_start &= ~0UL << order;
6222 	}
6223 
6224 	if (outer_start != start) {
6225 		order = buddy_order(pfn_to_page(outer_start));
6226 
6227 		/*
6228 		 * outer_start page could be small order buddy page and
6229 		 * it doesn't include start page. Adjust outer_start
6230 		 * in this case to report failed page properly
6231 		 * on tracepoint in test_pages_isolated()
6232 		 */
6233 		if (outer_start + (1UL << order) <= start)
6234 			outer_start = start;
6235 	}
6236 
6237 	/* Make sure the range is really isolated. */
6238 	if (test_pages_isolated(outer_start, end, 0)) {
6239 		ret = -EBUSY;
6240 		goto done;
6241 	}
6242 
6243 	/* Grab isolated pages from freelists. */
6244 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6245 	if (!outer_end) {
6246 		ret = -EBUSY;
6247 		goto done;
6248 	}
6249 
6250 	/* Free head and tail (if any) */
6251 	if (start != outer_start)
6252 		free_contig_range(outer_start, start - outer_start);
6253 	if (end != outer_end)
6254 		free_contig_range(end, outer_end - end);
6255 
6256 done:
6257 	undo_isolate_page_range(start, end, migratetype);
6258 	return ret;
6259 }
6260 EXPORT_SYMBOL(alloc_contig_range);
6261 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6262 static int __alloc_contig_pages(unsigned long start_pfn,
6263 				unsigned long nr_pages, gfp_t gfp_mask)
6264 {
6265 	unsigned long end_pfn = start_pfn + nr_pages;
6266 
6267 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6268 				  gfp_mask);
6269 }
6270 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6271 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6272 				   unsigned long nr_pages)
6273 {
6274 	unsigned long i, end_pfn = start_pfn + nr_pages;
6275 	struct page *page;
6276 
6277 	for (i = start_pfn; i < end_pfn; i++) {
6278 		page = pfn_to_online_page(i);
6279 		if (!page)
6280 			return false;
6281 
6282 		if (page_zone(page) != z)
6283 			return false;
6284 
6285 		if (PageReserved(page))
6286 			return false;
6287 
6288 		if (PageHuge(page))
6289 			return false;
6290 	}
6291 	return true;
6292 }
6293 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6294 static bool zone_spans_last_pfn(const struct zone *zone,
6295 				unsigned long start_pfn, unsigned long nr_pages)
6296 {
6297 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6298 
6299 	return zone_spans_pfn(zone, last_pfn);
6300 }
6301 
6302 /**
6303  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6304  * @nr_pages:	Number of contiguous pages to allocate
6305  * @gfp_mask:	GFP mask to limit search and used during compaction
6306  * @nid:	Target node
6307  * @nodemask:	Mask for other possible nodes
6308  *
6309  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6310  * on an applicable zonelist to find a contiguous pfn range which can then be
6311  * tried for allocation with alloc_contig_range(). This routine is intended
6312  * for allocation requests which can not be fulfilled with the buddy allocator.
6313  *
6314  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6315  * power of two, then allocated range is also guaranteed to be aligned to same
6316  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6317  *
6318  * Allocated pages can be freed with free_contig_range() or by manually calling
6319  * __free_page() on each allocated page.
6320  *
6321  * Return: pointer to contiguous pages on success, or NULL if not successful.
6322  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6323 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6324 				int nid, nodemask_t *nodemask)
6325 {
6326 	unsigned long ret, pfn, flags;
6327 	struct zonelist *zonelist;
6328 	struct zone *zone;
6329 	struct zoneref *z;
6330 
6331 	zonelist = node_zonelist(nid, gfp_mask);
6332 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6333 					gfp_zone(gfp_mask), nodemask) {
6334 		spin_lock_irqsave(&zone->lock, flags);
6335 
6336 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6337 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6338 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6339 				/*
6340 				 * We release the zone lock here because
6341 				 * alloc_contig_range() will also lock the zone
6342 				 * at some point. If there's an allocation
6343 				 * spinning on this lock, it may win the race
6344 				 * and cause alloc_contig_range() to fail...
6345 				 */
6346 				spin_unlock_irqrestore(&zone->lock, flags);
6347 				ret = __alloc_contig_pages(pfn, nr_pages,
6348 							gfp_mask);
6349 				if (!ret)
6350 					return pfn_to_page(pfn);
6351 				spin_lock_irqsave(&zone->lock, flags);
6352 			}
6353 			pfn += nr_pages;
6354 		}
6355 		spin_unlock_irqrestore(&zone->lock, flags);
6356 	}
6357 	return NULL;
6358 }
6359 #endif /* CONFIG_CONTIG_ALLOC */
6360 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6361 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6362 {
6363 	unsigned long count = 0;
6364 
6365 	for (; nr_pages--; pfn++) {
6366 		struct page *page = pfn_to_page(pfn);
6367 
6368 		count += page_count(page) != 1;
6369 		__free_page(page);
6370 	}
6371 	WARN(count != 0, "%lu pages are still in use!\n", count);
6372 }
6373 EXPORT_SYMBOL(free_contig_range);
6374 
6375 /*
6376  * Effectively disable pcplists for the zone by setting the high limit to 0
6377  * and draining all cpus. A concurrent page freeing on another CPU that's about
6378  * to put the page on pcplist will either finish before the drain and the page
6379  * will be drained, or observe the new high limit and skip the pcplist.
6380  *
6381  * Must be paired with a call to zone_pcp_enable().
6382  */
zone_pcp_disable(struct zone * zone)6383 void zone_pcp_disable(struct zone *zone)
6384 {
6385 	mutex_lock(&pcp_batch_high_lock);
6386 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6387 	__drain_all_pages(zone, true);
6388 }
6389 
zone_pcp_enable(struct zone * zone)6390 void zone_pcp_enable(struct zone *zone)
6391 {
6392 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6393 	mutex_unlock(&pcp_batch_high_lock);
6394 }
6395 
zone_pcp_reset(struct zone * zone)6396 void zone_pcp_reset(struct zone *zone)
6397 {
6398 	int cpu;
6399 	struct per_cpu_zonestat *pzstats;
6400 
6401 	if (zone->per_cpu_pageset != &boot_pageset) {
6402 		for_each_online_cpu(cpu) {
6403 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6404 			drain_zonestat(zone, pzstats);
6405 		}
6406 		free_percpu(zone->per_cpu_pageset);
6407 		zone->per_cpu_pageset = &boot_pageset;
6408 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6409 			free_percpu(zone->per_cpu_zonestats);
6410 			zone->per_cpu_zonestats = &boot_zonestats;
6411 		}
6412 	}
6413 }
6414 
6415 #ifdef CONFIG_MEMORY_HOTREMOVE
6416 /*
6417  * All pages in the range must be in a single zone, must not contain holes,
6418  * must span full sections, and must be isolated before calling this function.
6419  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6420 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6421 {
6422 	unsigned long pfn = start_pfn;
6423 	struct page *page;
6424 	struct zone *zone;
6425 	unsigned int order;
6426 	unsigned long flags;
6427 
6428 	offline_mem_sections(pfn, end_pfn);
6429 	zone = page_zone(pfn_to_page(pfn));
6430 	spin_lock_irqsave(&zone->lock, flags);
6431 	while (pfn < end_pfn) {
6432 		page = pfn_to_page(pfn);
6433 		/*
6434 		 * The HWPoisoned page may be not in buddy system, and
6435 		 * page_count() is not 0.
6436 		 */
6437 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6438 			pfn++;
6439 			continue;
6440 		}
6441 		/*
6442 		 * At this point all remaining PageOffline() pages have a
6443 		 * reference count of 0 and can simply be skipped.
6444 		 */
6445 		if (PageOffline(page)) {
6446 			BUG_ON(page_count(page));
6447 			BUG_ON(PageBuddy(page));
6448 			pfn++;
6449 			continue;
6450 		}
6451 
6452 		BUG_ON(page_count(page));
6453 		BUG_ON(!PageBuddy(page));
6454 		order = buddy_order(page);
6455 		del_page_from_free_list(page, zone, order);
6456 		pfn += (1 << order);
6457 	}
6458 	spin_unlock_irqrestore(&zone->lock, flags);
6459 }
6460 #endif
6461 
6462 /*
6463  * This function returns a stable result only if called under zone lock.
6464  */
is_free_buddy_page(struct page * page)6465 bool is_free_buddy_page(struct page *page)
6466 {
6467 	unsigned long pfn = page_to_pfn(page);
6468 	unsigned int order;
6469 
6470 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6471 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6472 
6473 		if (PageBuddy(page_head) &&
6474 		    buddy_order_unsafe(page_head) >= order)
6475 			break;
6476 	}
6477 
6478 	return order <= MAX_ORDER;
6479 }
6480 EXPORT_SYMBOL(is_free_buddy_page);
6481 
6482 #ifdef CONFIG_MEMORY_FAILURE
6483 /*
6484  * Break down a higher-order page in sub-pages, and keep our target out of
6485  * buddy allocator.
6486  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6487 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6488 				   struct page *target, int low, int high,
6489 				   int migratetype)
6490 {
6491 	unsigned long size = 1 << high;
6492 	struct page *current_buddy, *next_page;
6493 
6494 	while (high > low) {
6495 		high--;
6496 		size >>= 1;
6497 
6498 		if (target >= &page[size]) {
6499 			next_page = page + size;
6500 			current_buddy = page;
6501 		} else {
6502 			next_page = page;
6503 			current_buddy = page + size;
6504 		}
6505 		page = next_page;
6506 
6507 		if (set_page_guard(zone, current_buddy, high, migratetype))
6508 			continue;
6509 
6510 		if (current_buddy != target) {
6511 			add_to_free_list(current_buddy, zone, high, migratetype);
6512 			set_buddy_order(current_buddy, high);
6513 		}
6514 	}
6515 }
6516 
6517 /*
6518  * Take a page that will be marked as poisoned off the buddy allocator.
6519  */
take_page_off_buddy(struct page * page)6520 bool take_page_off_buddy(struct page *page)
6521 {
6522 	struct zone *zone = page_zone(page);
6523 	unsigned long pfn = page_to_pfn(page);
6524 	unsigned long flags;
6525 	unsigned int order;
6526 	bool ret = false;
6527 
6528 	spin_lock_irqsave(&zone->lock, flags);
6529 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6530 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6531 		int page_order = buddy_order(page_head);
6532 
6533 		if (PageBuddy(page_head) && page_order >= order) {
6534 			unsigned long pfn_head = page_to_pfn(page_head);
6535 			int migratetype = get_pfnblock_migratetype(page_head,
6536 								   pfn_head);
6537 
6538 			del_page_from_free_list(page_head, zone, page_order);
6539 			break_down_buddy_pages(zone, page_head, page, 0,
6540 						page_order, migratetype);
6541 			SetPageHWPoisonTakenOff(page);
6542 			if (!is_migrate_isolate(migratetype))
6543 				__mod_zone_freepage_state(zone, -1, migratetype);
6544 			ret = true;
6545 			break;
6546 		}
6547 		if (page_count(page_head) > 0)
6548 			break;
6549 	}
6550 	spin_unlock_irqrestore(&zone->lock, flags);
6551 	return ret;
6552 }
6553 
6554 /*
6555  * Cancel takeoff done by take_page_off_buddy().
6556  */
put_page_back_buddy(struct page * page)6557 bool put_page_back_buddy(struct page *page)
6558 {
6559 	struct zone *zone = page_zone(page);
6560 	unsigned long pfn = page_to_pfn(page);
6561 	unsigned long flags;
6562 	int migratetype = get_pfnblock_migratetype(page, pfn);
6563 	bool ret = false;
6564 
6565 	spin_lock_irqsave(&zone->lock, flags);
6566 	if (put_page_testzero(page)) {
6567 		ClearPageHWPoisonTakenOff(page);
6568 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6569 		if (TestClearPageHWPoison(page)) {
6570 			ret = true;
6571 		}
6572 	}
6573 	spin_unlock_irqrestore(&zone->lock, flags);
6574 
6575 	return ret;
6576 }
6577 #endif
6578 
6579 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6580 bool has_managed_dma(void)
6581 {
6582 	struct pglist_data *pgdat;
6583 
6584 	for_each_online_pgdat(pgdat) {
6585 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6586 
6587 		if (managed_zone(zone))
6588 			return true;
6589 	}
6590 	return false;
6591 }
6592 #endif /* CONFIG_ZONE_DMA */
6593 
6594 #ifdef CONFIG_UNACCEPTED_MEMORY
6595 
6596 static bool lazy_accept = true;
6597 
accept_memory_parse(char * p)6598 static int __init accept_memory_parse(char *p)
6599 {
6600 	if (!strcmp(p, "lazy")) {
6601 		lazy_accept = true;
6602 		return 0;
6603 	} else if (!strcmp(p, "eager")) {
6604 		lazy_accept = false;
6605 		return 0;
6606 	} else {
6607 		return -EINVAL;
6608 	}
6609 }
6610 early_param("accept_memory", accept_memory_parse);
6611 
page_contains_unaccepted(struct page * page,unsigned int order)6612 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6613 {
6614 	phys_addr_t start = page_to_phys(page);
6615 	phys_addr_t end = start + (PAGE_SIZE << order);
6616 
6617 	return range_contains_unaccepted_memory(start, end);
6618 }
6619 
accept_page(struct page * page,unsigned int order)6620 static void accept_page(struct page *page, unsigned int order)
6621 {
6622 	phys_addr_t start = page_to_phys(page);
6623 
6624 	accept_memory(start, start + (PAGE_SIZE << order));
6625 }
6626 
try_to_accept_memory_one(struct zone * zone)6627 static bool try_to_accept_memory_one(struct zone *zone)
6628 {
6629 	unsigned long flags;
6630 	struct page *page;
6631 
6632 	spin_lock_irqsave(&zone->lock, flags);
6633 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6634 					struct page, lru);
6635 	if (!page) {
6636 		spin_unlock_irqrestore(&zone->lock, flags);
6637 		return false;
6638 	}
6639 
6640 	list_del(&page->lru);
6641 
6642 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6643 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6644 	spin_unlock_irqrestore(&zone->lock, flags);
6645 
6646 	accept_page(page, MAX_ORDER);
6647 
6648 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6649 
6650 	return true;
6651 }
6652 
cond_accept_memory(struct zone * zone,unsigned int order)6653 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6654 {
6655 	long to_accept, wmark;
6656 	bool ret = false;
6657 
6658 	if (list_empty(&zone->unaccepted_pages))
6659 		return false;
6660 
6661 	wmark = high_wmark_pages(zone);
6662 
6663 	/*
6664 	 * Watermarks have not been initialized yet.
6665 	 *
6666 	 * Accepting one MAX_ORDER page to ensure progress.
6667 	 */
6668 	if (!wmark)
6669 		return try_to_accept_memory_one(zone);
6670 
6671 	/* How much to accept to get to high watermark? */
6672 	to_accept = wmark -
6673 		    (zone_page_state(zone, NR_FREE_PAGES) -
6674 		    __zone_watermark_unusable_free(zone, order, 0) -
6675 		    zone_page_state(zone, NR_UNACCEPTED));
6676 
6677 	while (to_accept > 0) {
6678 		if (!try_to_accept_memory_one(zone))
6679 			break;
6680 		ret = true;
6681 		to_accept -= MAX_ORDER_NR_PAGES;
6682 	}
6683 
6684 	return ret;
6685 }
6686 
__free_unaccepted(struct page * page)6687 static bool __free_unaccepted(struct page *page)
6688 {
6689 	struct zone *zone = page_zone(page);
6690 	unsigned long flags;
6691 
6692 	if (!lazy_accept)
6693 		return false;
6694 
6695 	spin_lock_irqsave(&zone->lock, flags);
6696 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6697 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6698 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6699 	spin_unlock_irqrestore(&zone->lock, flags);
6700 
6701 	return true;
6702 }
6703 
6704 #else
6705 
page_contains_unaccepted(struct page * page,unsigned int order)6706 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6707 {
6708 	return false;
6709 }
6710 
accept_page(struct page * page,unsigned int order)6711 static void accept_page(struct page *page, unsigned int order)
6712 {
6713 }
6714 
cond_accept_memory(struct zone * zone,unsigned int order)6715 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6716 {
6717 	return false;
6718 }
6719 
__free_unaccepted(struct page * page)6720 static bool __free_unaccepted(struct page *page)
6721 {
6722 	BUILD_BUG();
6723 	return false;
6724 }
6725 
6726 #endif /* CONFIG_UNACCEPTED_MEMORY */
6727