xref: /openbmc/linux/drivers/of/of_reserved_mem.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26 
27 #include "of_private.h"
28 
29 #define MAX_RESERVED_REGIONS	64
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32 
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35 	phys_addr_t *res_base)
36 {
37 	phys_addr_t base;
38 	int err = 0;
39 
40 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 	align = !align ? SMP_CACHE_BYTES : align;
42 	base = memblock_phys_alloc_range(size, align, start, end);
43 	if (!base)
44 		return -ENOMEM;
45 
46 	*res_base = base;
47 	if (nomap) {
48 		err = memblock_mark_nomap(base, size);
49 		if (err)
50 			memblock_phys_free(base, size);
51 	}
52 
53 	if (!err)
54 		kmemleak_ignore_phys(base);
55 
56 	return err;
57 }
58 
59 /*
60  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
61  */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)62 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
63 				      phys_addr_t base, phys_addr_t size)
64 {
65 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
66 
67 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
68 		pr_err("not enough space for all defined regions.\n");
69 		return;
70 	}
71 
72 	rmem->fdt_node = node;
73 	rmem->name = uname;
74 	rmem->base = base;
75 	rmem->size = size;
76 
77 	reserved_mem_count++;
78 	return;
79 }
80 
81 /*
82  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
83  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
84  *	reserved regions to keep the reserved memory contiguous if possible.
85  */
__reserved_mem_alloc_in_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)86 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
87 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
88 	phys_addr_t *res_base)
89 {
90 	bool prev_bottom_up = memblock_bottom_up();
91 	bool bottom_up = false, top_down = false;
92 	int ret, i;
93 
94 	for (i = 0; i < reserved_mem_count; i++) {
95 		struct reserved_mem *rmem = &reserved_mem[i];
96 
97 		/* Skip regions that were not reserved yet */
98 		if (rmem->size == 0)
99 			continue;
100 
101 		/*
102 		 * If range starts next to an existing reservation, use bottom-up:
103 		 *	|....RRRR................RRRRRRRR..............|
104 		 *	       --RRRR------
105 		 */
106 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
107 			bottom_up = true;
108 
109 		/*
110 		 * If range ends next to an existing reservation, use top-down:
111 		 *	|....RRRR................RRRRRRRR..............|
112 		 *	              -------RRRR-----
113 		 */
114 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
115 			top_down = true;
116 	}
117 
118 	/* Change setting only if either bottom-up or top-down was selected */
119 	if (bottom_up != top_down)
120 		memblock_set_bottom_up(bottom_up);
121 
122 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
123 			start, end, nomap, res_base);
124 
125 	/* Restore old setting if needed */
126 	if (bottom_up != top_down)
127 		memblock_set_bottom_up(prev_bottom_up);
128 
129 	return ret;
130 }
131 
132 /*
133  * __reserved_mem_alloc_size() - allocate reserved memory described by
134  *	'size', 'alignment'  and 'alloc-ranges' properties.
135  */
__reserved_mem_alloc_size(unsigned long node,const char * uname,phys_addr_t * res_base,phys_addr_t * res_size)136 static int __init __reserved_mem_alloc_size(unsigned long node,
137 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
138 {
139 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
140 	phys_addr_t start = 0, end = 0;
141 	phys_addr_t base = 0, align = 0, size;
142 	int len;
143 	const __be32 *prop;
144 	bool nomap;
145 	int ret;
146 
147 	prop = of_get_flat_dt_prop(node, "size", &len);
148 	if (!prop)
149 		return -EINVAL;
150 
151 	if (len != dt_root_size_cells * sizeof(__be32)) {
152 		pr_err("invalid size property in '%s' node.\n", uname);
153 		return -EINVAL;
154 	}
155 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
156 
157 	prop = of_get_flat_dt_prop(node, "alignment", &len);
158 	if (prop) {
159 		if (len != dt_root_addr_cells * sizeof(__be32)) {
160 			pr_err("invalid alignment property in '%s' node.\n",
161 				uname);
162 			return -EINVAL;
163 		}
164 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
165 	}
166 
167 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
168 
169 	/* Need adjust the alignment to satisfy the CMA requirement */
170 	if (IS_ENABLED(CONFIG_CMA)
171 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
172 	    && of_get_flat_dt_prop(node, "reusable", NULL)
173 	    && !nomap)
174 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
175 
176 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
177 	if (prop) {
178 
179 		if (len % t_len != 0) {
180 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
181 			       uname);
182 			return -EINVAL;
183 		}
184 
185 		base = 0;
186 
187 		while (len > 0) {
188 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
189 			end = start + dt_mem_next_cell(dt_root_size_cells,
190 						       &prop);
191 
192 			ret = __reserved_mem_alloc_in_range(size, align,
193 					start, end, nomap, &base);
194 			if (ret == 0) {
195 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
196 					uname, &base,
197 					(unsigned long)(size / SZ_1M));
198 				break;
199 			}
200 			len -= t_len;
201 		}
202 
203 	} else {
204 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
205 							0, 0, nomap, &base);
206 		if (ret == 0)
207 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
208 				uname, &base, (unsigned long)(size / SZ_1M));
209 	}
210 
211 	if (base == 0) {
212 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
213 		       uname, (unsigned long)(size / SZ_1M));
214 		return -ENOMEM;
215 	}
216 
217 	*res_base = base;
218 	*res_size = size;
219 
220 	return 0;
221 }
222 
223 static const struct of_device_id __rmem_of_table_sentinel
224 	__used __section("__reservedmem_of_table_end");
225 
226 /*
227  * __reserved_mem_init_node() - call region specific reserved memory init code
228  */
__reserved_mem_init_node(struct reserved_mem * rmem)229 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
230 {
231 	extern const struct of_device_id __reservedmem_of_table[];
232 	const struct of_device_id *i;
233 	int ret = -ENOENT;
234 
235 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
236 		reservedmem_of_init_fn initfn = i->data;
237 		const char *compat = i->compatible;
238 
239 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
240 			continue;
241 
242 		ret = initfn(rmem);
243 		if (ret == 0) {
244 			pr_info("initialized node %s, compatible id %s\n",
245 				rmem->name, compat);
246 			break;
247 		}
248 	}
249 	return ret;
250 }
251 
__rmem_cmp(const void * a,const void * b)252 static int __init __rmem_cmp(const void *a, const void *b)
253 {
254 	const struct reserved_mem *ra = a, *rb = b;
255 
256 	if (ra->base < rb->base)
257 		return -1;
258 
259 	if (ra->base > rb->base)
260 		return 1;
261 
262 	/*
263 	 * Put the dynamic allocations (address == 0, size == 0) before static
264 	 * allocations at address 0x0 so that overlap detection works
265 	 * correctly.
266 	 */
267 	if (ra->size < rb->size)
268 		return -1;
269 	if (ra->size > rb->size)
270 		return 1;
271 
272 	if (ra->fdt_node < rb->fdt_node)
273 		return -1;
274 	if (ra->fdt_node > rb->fdt_node)
275 		return 1;
276 
277 	return 0;
278 }
279 
__rmem_check_for_overlap(void)280 static void __init __rmem_check_for_overlap(void)
281 {
282 	int i;
283 
284 	if (reserved_mem_count < 2)
285 		return;
286 
287 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
288 	     __rmem_cmp, NULL);
289 	for (i = 0; i < reserved_mem_count - 1; i++) {
290 		struct reserved_mem *this, *next;
291 
292 		this = &reserved_mem[i];
293 		next = &reserved_mem[i + 1];
294 
295 		if (this->base + this->size > next->base) {
296 			phys_addr_t this_end, next_end;
297 
298 			this_end = this->base + this->size;
299 			next_end = next->base + next->size;
300 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
301 			       this->name, &this->base, &this_end,
302 			       next->name, &next->base, &next_end);
303 		}
304 	}
305 }
306 
307 /**
308  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
309  */
fdt_init_reserved_mem(void)310 void __init fdt_init_reserved_mem(void)
311 {
312 	int i;
313 
314 	/* check for overlapping reserved regions */
315 	__rmem_check_for_overlap();
316 
317 	for (i = 0; i < reserved_mem_count; i++) {
318 		struct reserved_mem *rmem = &reserved_mem[i];
319 		unsigned long node = rmem->fdt_node;
320 		int len;
321 		const __be32 *prop;
322 		int err = 0;
323 		bool nomap;
324 
325 		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
326 		prop = of_get_flat_dt_prop(node, "phandle", &len);
327 		if (!prop)
328 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
329 		if (prop)
330 			rmem->phandle = of_read_number(prop, len/4);
331 
332 		if (rmem->size == 0)
333 			err = __reserved_mem_alloc_size(node, rmem->name,
334 						 &rmem->base, &rmem->size);
335 		if (err == 0) {
336 			err = __reserved_mem_init_node(rmem);
337 			if (err != 0 && err != -ENOENT) {
338 				pr_info("node %s compatible matching fail\n",
339 					rmem->name);
340 				if (nomap)
341 					memblock_clear_nomap(rmem->base, rmem->size);
342 				else
343 					memblock_phys_free(rmem->base,
344 							   rmem->size);
345 			} else {
346 				phys_addr_t end = rmem->base + rmem->size - 1;
347 				bool reusable =
348 					(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
349 
350 				pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
351 					&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
352 					nomap ? "nomap" : "map",
353 					reusable ? "reusable" : "non-reusable",
354 					rmem->name ? rmem->name : "unknown");
355 			}
356 		}
357 	}
358 }
359 
__find_rmem(struct device_node * node)360 static inline struct reserved_mem *__find_rmem(struct device_node *node)
361 {
362 	unsigned int i;
363 
364 	if (!node->phandle)
365 		return NULL;
366 
367 	for (i = 0; i < reserved_mem_count; i++)
368 		if (reserved_mem[i].phandle == node->phandle)
369 			return &reserved_mem[i];
370 	return NULL;
371 }
372 
373 struct rmem_assigned_device {
374 	struct device *dev;
375 	struct reserved_mem *rmem;
376 	struct list_head list;
377 };
378 
379 static LIST_HEAD(of_rmem_assigned_device_list);
380 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
381 
382 /**
383  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
384  *					  given device
385  * @dev:	Pointer to the device to configure
386  * @np:		Pointer to the device_node with 'reserved-memory' property
387  * @idx:	Index of selected region
388  *
389  * This function assigns respective DMA-mapping operations based on reserved
390  * memory region specified by 'memory-region' property in @np node to the @dev
391  * device. When driver needs to use more than one reserved memory region, it
392  * should allocate child devices and initialize regions by name for each of
393  * child device.
394  *
395  * Returns error code or zero on success.
396  */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)397 int of_reserved_mem_device_init_by_idx(struct device *dev,
398 				       struct device_node *np, int idx)
399 {
400 	struct rmem_assigned_device *rd;
401 	struct device_node *target;
402 	struct reserved_mem *rmem;
403 	int ret;
404 
405 	if (!np || !dev)
406 		return -EINVAL;
407 
408 	target = of_parse_phandle(np, "memory-region", idx);
409 	if (!target)
410 		return -ENODEV;
411 
412 	if (!of_device_is_available(target)) {
413 		of_node_put(target);
414 		return 0;
415 	}
416 
417 	rmem = __find_rmem(target);
418 	of_node_put(target);
419 
420 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
421 		return -EINVAL;
422 
423 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
424 	if (!rd)
425 		return -ENOMEM;
426 
427 	ret = rmem->ops->device_init(rmem, dev);
428 	if (ret == 0) {
429 		rd->dev = dev;
430 		rd->rmem = rmem;
431 
432 		mutex_lock(&of_rmem_assigned_device_mutex);
433 		list_add(&rd->list, &of_rmem_assigned_device_list);
434 		mutex_unlock(&of_rmem_assigned_device_mutex);
435 
436 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
437 	} else {
438 		kfree(rd);
439 	}
440 
441 	return ret;
442 }
443 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
444 
445 /**
446  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
447  *					   to given device
448  * @dev: pointer to the device to configure
449  * @np: pointer to the device node with 'memory-region' property
450  * @name: name of the selected memory region
451  *
452  * Returns: 0 on success or a negative error-code on failure.
453  */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)454 int of_reserved_mem_device_init_by_name(struct device *dev,
455 					struct device_node *np,
456 					const char *name)
457 {
458 	int idx = of_property_match_string(np, "memory-region-names", name);
459 
460 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
461 }
462 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
463 
464 /**
465  * of_reserved_mem_device_release() - release reserved memory device structures
466  * @dev:	Pointer to the device to deconfigure
467  *
468  * This function releases structures allocated for memory region handling for
469  * the given device.
470  */
of_reserved_mem_device_release(struct device * dev)471 void of_reserved_mem_device_release(struct device *dev)
472 {
473 	struct rmem_assigned_device *rd, *tmp;
474 	LIST_HEAD(release_list);
475 
476 	mutex_lock(&of_rmem_assigned_device_mutex);
477 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
478 		if (rd->dev == dev)
479 			list_move_tail(&rd->list, &release_list);
480 	}
481 	mutex_unlock(&of_rmem_assigned_device_mutex);
482 
483 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
484 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
485 			rd->rmem->ops->device_release(rd->rmem, dev);
486 
487 		kfree(rd);
488 	}
489 }
490 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
491 
492 /**
493  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
494  * @np:		node pointer of the desired reserved-memory region
495  *
496  * This function allows drivers to acquire a reference to the reserved_mem
497  * struct based on a device node handle.
498  *
499  * Returns a reserved_mem reference, or NULL on error.
500  */
of_reserved_mem_lookup(struct device_node * np)501 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
502 {
503 	const char *name;
504 	int i;
505 
506 	if (!np->full_name)
507 		return NULL;
508 
509 	name = kbasename(np->full_name);
510 	for (i = 0; i < reserved_mem_count; i++)
511 		if (!strcmp(reserved_mem[i].name, name))
512 			return &reserved_mem[i];
513 
514 	return NULL;
515 }
516 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
517