1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device tree based initialization code for reserved memory.
4 *
5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7 * http://www.samsung.com
8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9 * Author: Josh Cartwright <joshc@codeaurora.org>
10 */
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26
27 #include "of_private.h"
28
29 #define MAX_RESERVED_REGIONS 64
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35 phys_addr_t *res_base)
36 {
37 phys_addr_t base;
38 int err = 0;
39
40 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 align = !align ? SMP_CACHE_BYTES : align;
42 base = memblock_phys_alloc_range(size, align, start, end);
43 if (!base)
44 return -ENOMEM;
45
46 *res_base = base;
47 if (nomap) {
48 err = memblock_mark_nomap(base, size);
49 if (err)
50 memblock_phys_free(base, size);
51 }
52
53 if (!err)
54 kmemleak_ignore_phys(base);
55
56 return err;
57 }
58
59 /*
60 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
61 */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)62 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
63 phys_addr_t base, phys_addr_t size)
64 {
65 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
66
67 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
68 pr_err("not enough space for all defined regions.\n");
69 return;
70 }
71
72 rmem->fdt_node = node;
73 rmem->name = uname;
74 rmem->base = base;
75 rmem->size = size;
76
77 reserved_mem_count++;
78 return;
79 }
80
81 /*
82 * __reserved_mem_alloc_in_range() - allocate reserved memory described with
83 * 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
84 * reserved regions to keep the reserved memory contiguous if possible.
85 */
__reserved_mem_alloc_in_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)86 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
87 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
88 phys_addr_t *res_base)
89 {
90 bool prev_bottom_up = memblock_bottom_up();
91 bool bottom_up = false, top_down = false;
92 int ret, i;
93
94 for (i = 0; i < reserved_mem_count; i++) {
95 struct reserved_mem *rmem = &reserved_mem[i];
96
97 /* Skip regions that were not reserved yet */
98 if (rmem->size == 0)
99 continue;
100
101 /*
102 * If range starts next to an existing reservation, use bottom-up:
103 * |....RRRR................RRRRRRRR..............|
104 * --RRRR------
105 */
106 if (start >= rmem->base && start <= (rmem->base + rmem->size))
107 bottom_up = true;
108
109 /*
110 * If range ends next to an existing reservation, use top-down:
111 * |....RRRR................RRRRRRRR..............|
112 * -------RRRR-----
113 */
114 if (end >= rmem->base && end <= (rmem->base + rmem->size))
115 top_down = true;
116 }
117
118 /* Change setting only if either bottom-up or top-down was selected */
119 if (bottom_up != top_down)
120 memblock_set_bottom_up(bottom_up);
121
122 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
123 start, end, nomap, res_base);
124
125 /* Restore old setting if needed */
126 if (bottom_up != top_down)
127 memblock_set_bottom_up(prev_bottom_up);
128
129 return ret;
130 }
131
132 /*
133 * __reserved_mem_alloc_size() - allocate reserved memory described by
134 * 'size', 'alignment' and 'alloc-ranges' properties.
135 */
__reserved_mem_alloc_size(unsigned long node,const char * uname,phys_addr_t * res_base,phys_addr_t * res_size)136 static int __init __reserved_mem_alloc_size(unsigned long node,
137 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
138 {
139 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
140 phys_addr_t start = 0, end = 0;
141 phys_addr_t base = 0, align = 0, size;
142 int len;
143 const __be32 *prop;
144 bool nomap;
145 int ret;
146
147 prop = of_get_flat_dt_prop(node, "size", &len);
148 if (!prop)
149 return -EINVAL;
150
151 if (len != dt_root_size_cells * sizeof(__be32)) {
152 pr_err("invalid size property in '%s' node.\n", uname);
153 return -EINVAL;
154 }
155 size = dt_mem_next_cell(dt_root_size_cells, &prop);
156
157 prop = of_get_flat_dt_prop(node, "alignment", &len);
158 if (prop) {
159 if (len != dt_root_addr_cells * sizeof(__be32)) {
160 pr_err("invalid alignment property in '%s' node.\n",
161 uname);
162 return -EINVAL;
163 }
164 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
165 }
166
167 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
168
169 /* Need adjust the alignment to satisfy the CMA requirement */
170 if (IS_ENABLED(CONFIG_CMA)
171 && of_flat_dt_is_compatible(node, "shared-dma-pool")
172 && of_get_flat_dt_prop(node, "reusable", NULL)
173 && !nomap)
174 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
175
176 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
177 if (prop) {
178
179 if (len % t_len != 0) {
180 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
181 uname);
182 return -EINVAL;
183 }
184
185 base = 0;
186
187 while (len > 0) {
188 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
189 end = start + dt_mem_next_cell(dt_root_size_cells,
190 &prop);
191
192 ret = __reserved_mem_alloc_in_range(size, align,
193 start, end, nomap, &base);
194 if (ret == 0) {
195 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
196 uname, &base,
197 (unsigned long)(size / SZ_1M));
198 break;
199 }
200 len -= t_len;
201 }
202
203 } else {
204 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
205 0, 0, nomap, &base);
206 if (ret == 0)
207 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
208 uname, &base, (unsigned long)(size / SZ_1M));
209 }
210
211 if (base == 0) {
212 pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
213 uname, (unsigned long)(size / SZ_1M));
214 return -ENOMEM;
215 }
216
217 *res_base = base;
218 *res_size = size;
219
220 return 0;
221 }
222
223 static const struct of_device_id __rmem_of_table_sentinel
224 __used __section("__reservedmem_of_table_end");
225
226 /*
227 * __reserved_mem_init_node() - call region specific reserved memory init code
228 */
__reserved_mem_init_node(struct reserved_mem * rmem)229 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
230 {
231 extern const struct of_device_id __reservedmem_of_table[];
232 const struct of_device_id *i;
233 int ret = -ENOENT;
234
235 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
236 reservedmem_of_init_fn initfn = i->data;
237 const char *compat = i->compatible;
238
239 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
240 continue;
241
242 ret = initfn(rmem);
243 if (ret == 0) {
244 pr_info("initialized node %s, compatible id %s\n",
245 rmem->name, compat);
246 break;
247 }
248 }
249 return ret;
250 }
251
__rmem_cmp(const void * a,const void * b)252 static int __init __rmem_cmp(const void *a, const void *b)
253 {
254 const struct reserved_mem *ra = a, *rb = b;
255
256 if (ra->base < rb->base)
257 return -1;
258
259 if (ra->base > rb->base)
260 return 1;
261
262 /*
263 * Put the dynamic allocations (address == 0, size == 0) before static
264 * allocations at address 0x0 so that overlap detection works
265 * correctly.
266 */
267 if (ra->size < rb->size)
268 return -1;
269 if (ra->size > rb->size)
270 return 1;
271
272 if (ra->fdt_node < rb->fdt_node)
273 return -1;
274 if (ra->fdt_node > rb->fdt_node)
275 return 1;
276
277 return 0;
278 }
279
__rmem_check_for_overlap(void)280 static void __init __rmem_check_for_overlap(void)
281 {
282 int i;
283
284 if (reserved_mem_count < 2)
285 return;
286
287 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
288 __rmem_cmp, NULL);
289 for (i = 0; i < reserved_mem_count - 1; i++) {
290 struct reserved_mem *this, *next;
291
292 this = &reserved_mem[i];
293 next = &reserved_mem[i + 1];
294
295 if (this->base + this->size > next->base) {
296 phys_addr_t this_end, next_end;
297
298 this_end = this->base + this->size;
299 next_end = next->base + next->size;
300 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
301 this->name, &this->base, &this_end,
302 next->name, &next->base, &next_end);
303 }
304 }
305 }
306
307 /**
308 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
309 */
fdt_init_reserved_mem(void)310 void __init fdt_init_reserved_mem(void)
311 {
312 int i;
313
314 /* check for overlapping reserved regions */
315 __rmem_check_for_overlap();
316
317 for (i = 0; i < reserved_mem_count; i++) {
318 struct reserved_mem *rmem = &reserved_mem[i];
319 unsigned long node = rmem->fdt_node;
320 int len;
321 const __be32 *prop;
322 int err = 0;
323 bool nomap;
324
325 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
326 prop = of_get_flat_dt_prop(node, "phandle", &len);
327 if (!prop)
328 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
329 if (prop)
330 rmem->phandle = of_read_number(prop, len/4);
331
332 if (rmem->size == 0)
333 err = __reserved_mem_alloc_size(node, rmem->name,
334 &rmem->base, &rmem->size);
335 if (err == 0) {
336 err = __reserved_mem_init_node(rmem);
337 if (err != 0 && err != -ENOENT) {
338 pr_info("node %s compatible matching fail\n",
339 rmem->name);
340 if (nomap)
341 memblock_clear_nomap(rmem->base, rmem->size);
342 else
343 memblock_phys_free(rmem->base,
344 rmem->size);
345 } else {
346 phys_addr_t end = rmem->base + rmem->size - 1;
347 bool reusable =
348 (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
349
350 pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
351 &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
352 nomap ? "nomap" : "map",
353 reusable ? "reusable" : "non-reusable",
354 rmem->name ? rmem->name : "unknown");
355 }
356 }
357 }
358 }
359
__find_rmem(struct device_node * node)360 static inline struct reserved_mem *__find_rmem(struct device_node *node)
361 {
362 unsigned int i;
363
364 if (!node->phandle)
365 return NULL;
366
367 for (i = 0; i < reserved_mem_count; i++)
368 if (reserved_mem[i].phandle == node->phandle)
369 return &reserved_mem[i];
370 return NULL;
371 }
372
373 struct rmem_assigned_device {
374 struct device *dev;
375 struct reserved_mem *rmem;
376 struct list_head list;
377 };
378
379 static LIST_HEAD(of_rmem_assigned_device_list);
380 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
381
382 /**
383 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
384 * given device
385 * @dev: Pointer to the device to configure
386 * @np: Pointer to the device_node with 'reserved-memory' property
387 * @idx: Index of selected region
388 *
389 * This function assigns respective DMA-mapping operations based on reserved
390 * memory region specified by 'memory-region' property in @np node to the @dev
391 * device. When driver needs to use more than one reserved memory region, it
392 * should allocate child devices and initialize regions by name for each of
393 * child device.
394 *
395 * Returns error code or zero on success.
396 */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)397 int of_reserved_mem_device_init_by_idx(struct device *dev,
398 struct device_node *np, int idx)
399 {
400 struct rmem_assigned_device *rd;
401 struct device_node *target;
402 struct reserved_mem *rmem;
403 int ret;
404
405 if (!np || !dev)
406 return -EINVAL;
407
408 target = of_parse_phandle(np, "memory-region", idx);
409 if (!target)
410 return -ENODEV;
411
412 if (!of_device_is_available(target)) {
413 of_node_put(target);
414 return 0;
415 }
416
417 rmem = __find_rmem(target);
418 of_node_put(target);
419
420 if (!rmem || !rmem->ops || !rmem->ops->device_init)
421 return -EINVAL;
422
423 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
424 if (!rd)
425 return -ENOMEM;
426
427 ret = rmem->ops->device_init(rmem, dev);
428 if (ret == 0) {
429 rd->dev = dev;
430 rd->rmem = rmem;
431
432 mutex_lock(&of_rmem_assigned_device_mutex);
433 list_add(&rd->list, &of_rmem_assigned_device_list);
434 mutex_unlock(&of_rmem_assigned_device_mutex);
435
436 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
437 } else {
438 kfree(rd);
439 }
440
441 return ret;
442 }
443 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
444
445 /**
446 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
447 * to given device
448 * @dev: pointer to the device to configure
449 * @np: pointer to the device node with 'memory-region' property
450 * @name: name of the selected memory region
451 *
452 * Returns: 0 on success or a negative error-code on failure.
453 */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)454 int of_reserved_mem_device_init_by_name(struct device *dev,
455 struct device_node *np,
456 const char *name)
457 {
458 int idx = of_property_match_string(np, "memory-region-names", name);
459
460 return of_reserved_mem_device_init_by_idx(dev, np, idx);
461 }
462 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
463
464 /**
465 * of_reserved_mem_device_release() - release reserved memory device structures
466 * @dev: Pointer to the device to deconfigure
467 *
468 * This function releases structures allocated for memory region handling for
469 * the given device.
470 */
of_reserved_mem_device_release(struct device * dev)471 void of_reserved_mem_device_release(struct device *dev)
472 {
473 struct rmem_assigned_device *rd, *tmp;
474 LIST_HEAD(release_list);
475
476 mutex_lock(&of_rmem_assigned_device_mutex);
477 list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
478 if (rd->dev == dev)
479 list_move_tail(&rd->list, &release_list);
480 }
481 mutex_unlock(&of_rmem_assigned_device_mutex);
482
483 list_for_each_entry_safe(rd, tmp, &release_list, list) {
484 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
485 rd->rmem->ops->device_release(rd->rmem, dev);
486
487 kfree(rd);
488 }
489 }
490 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
491
492 /**
493 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
494 * @np: node pointer of the desired reserved-memory region
495 *
496 * This function allows drivers to acquire a reference to the reserved_mem
497 * struct based on a device node handle.
498 *
499 * Returns a reserved_mem reference, or NULL on error.
500 */
of_reserved_mem_lookup(struct device_node * np)501 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
502 {
503 const char *name;
504 int i;
505
506 if (!np->full_name)
507 return NULL;
508
509 name = kbasename(np->full_name);
510 for (i = 0; i < reserved_mem_count; i++)
511 if (!strcmp(reserved_mem[i].name, name))
512 return &reserved_mem[i];
513
514 return NULL;
515 }
516 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
517