1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(trans, leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(trans, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(trans, leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(trans, leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(trans, root, path, &key, 540 args->extent_item_size); 541 args->extent_inserted = true; 542 } 543 544 if (!args->path) 545 btrfs_free_path(path); 546 else if (!args->extent_inserted) 547 btrfs_release_path(path); 548 out: 549 args->drop_end = found ? min(args->end, last_end) : args->end; 550 551 return ret; 552 } 553 extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)554 static int extent_mergeable(struct extent_buffer *leaf, int slot, 555 u64 objectid, u64 bytenr, u64 orig_offset, 556 u64 *start, u64 *end) 557 { 558 struct btrfs_file_extent_item *fi; 559 struct btrfs_key key; 560 u64 extent_end; 561 562 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 563 return 0; 564 565 btrfs_item_key_to_cpu(leaf, &key, slot); 566 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 567 return 0; 568 569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 570 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 571 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 572 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 573 btrfs_file_extent_compression(leaf, fi) || 574 btrfs_file_extent_encryption(leaf, fi) || 575 btrfs_file_extent_other_encoding(leaf, fi)) 576 return 0; 577 578 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 579 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 580 return 0; 581 582 *start = key.offset; 583 *end = extent_end; 584 return 1; 585 } 586 587 /* 588 * Mark extent in the range start - end as written. 589 * 590 * This changes extent type from 'pre-allocated' to 'regular'. If only 591 * part of extent is marked as written, the extent will be split into 592 * two or three. 593 */ btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 595 struct btrfs_inode *inode, u64 start, u64 end) 596 { 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(trans, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(trans, leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(trans, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(trans, leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(trans, leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(trans, leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(trans, leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 get_prepare_fgp_flags(bool nowait)879 static fgf_t get_prepare_fgp_flags(bool nowait) 880 { 881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 get_prepare_gfp_flags(struct inode * inode,bool nowait)889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 btrfs_check_nocow_unlock(struct btrfs_inode * inode)1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 update_time_for_write(struct inode * inode)1109 static void update_time_for_write(struct inode *inode) 1110 { 1111 struct timespec64 now, ctime; 1112 1113 if (IS_NOCMTIME(inode)) 1114 return; 1115 1116 now = current_time(inode); 1117 if (!timespec64_equal(&inode->i_mtime, &now)) 1118 inode->i_mtime = now; 1119 1120 ctime = inode_get_ctime(inode); 1121 if (!timespec64_equal(&ctime, &now)) 1122 inode_set_ctime_to_ts(inode, now); 1123 1124 if (IS_I_VERSION(inode)) 1125 inode_inc_iversion(inode); 1126 } 1127 btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1129 size_t count) 1130 { 1131 struct file *file = iocb->ki_filp; 1132 struct inode *inode = file_inode(file); 1133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1134 loff_t pos = iocb->ki_pos; 1135 int ret; 1136 loff_t oldsize; 1137 1138 /* 1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1140 * prealloc flags, as without those flags we always have to COW. We will 1141 * later check if we can really COW into the target range (using 1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1143 */ 1144 if ((iocb->ki_flags & IOCB_NOWAIT) && 1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1146 return -EAGAIN; 1147 1148 ret = file_remove_privs(file); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * We reserve space for updating the inode when we reserve space for the 1154 * extent we are going to write, so we will enospc out there. We don't 1155 * need to start yet another transaction to update the inode as we will 1156 * update the inode when we finish writing whatever data we write. 1157 */ 1158 update_time_for_write(inode); 1159 1160 oldsize = i_size_read(inode); 1161 if (pos > oldsize) { 1162 /* Expand hole size to cover write data, preventing empty gap */ 1163 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1164 1165 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1166 if (ret) 1167 return ret; 1168 } 1169 1170 return 0; 1171 } 1172 btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1173 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1174 struct iov_iter *i) 1175 { 1176 struct file *file = iocb->ki_filp; 1177 loff_t pos; 1178 struct inode *inode = file_inode(file); 1179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1180 struct page **pages = NULL; 1181 struct extent_changeset *data_reserved = NULL; 1182 u64 release_bytes = 0; 1183 u64 lockstart; 1184 u64 lockend; 1185 size_t num_written = 0; 1186 int nrptrs; 1187 ssize_t ret; 1188 bool only_release_metadata = false; 1189 bool force_page_uptodate = false; 1190 loff_t old_isize = i_size_read(inode); 1191 unsigned int ilock_flags = 0; 1192 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1193 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1194 1195 if (nowait) 1196 ilock_flags |= BTRFS_ILOCK_TRY; 1197 1198 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1199 if (ret < 0) 1200 return ret; 1201 1202 ret = generic_write_checks(iocb, i); 1203 if (ret <= 0) 1204 goto out; 1205 1206 ret = btrfs_write_check(iocb, i, ret); 1207 if (ret < 0) 1208 goto out; 1209 1210 pos = iocb->ki_pos; 1211 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1212 PAGE_SIZE / (sizeof(struct page *))); 1213 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1214 nrptrs = max(nrptrs, 8); 1215 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1216 if (!pages) { 1217 ret = -ENOMEM; 1218 goto out; 1219 } 1220 1221 while (iov_iter_count(i) > 0) { 1222 struct extent_state *cached_state = NULL; 1223 size_t offset = offset_in_page(pos); 1224 size_t sector_offset; 1225 size_t write_bytes = min(iov_iter_count(i), 1226 nrptrs * (size_t)PAGE_SIZE - 1227 offset); 1228 size_t num_pages; 1229 size_t reserve_bytes; 1230 size_t dirty_pages; 1231 size_t copied; 1232 size_t dirty_sectors; 1233 size_t num_sectors; 1234 int extents_locked; 1235 1236 /* 1237 * Fault pages before locking them in prepare_pages 1238 * to avoid recursive lock 1239 */ 1240 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1241 ret = -EFAULT; 1242 break; 1243 } 1244 1245 only_release_metadata = false; 1246 sector_offset = pos & (fs_info->sectorsize - 1); 1247 1248 extent_changeset_release(data_reserved); 1249 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1250 &data_reserved, pos, 1251 write_bytes, nowait); 1252 if (ret < 0) { 1253 int can_nocow; 1254 1255 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1256 ret = -EAGAIN; 1257 break; 1258 } 1259 1260 /* 1261 * If we don't have to COW at the offset, reserve 1262 * metadata only. write_bytes may get smaller than 1263 * requested here. 1264 */ 1265 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1266 &write_bytes, nowait); 1267 if (can_nocow < 0) 1268 ret = can_nocow; 1269 if (can_nocow > 0) 1270 ret = 0; 1271 if (ret) 1272 break; 1273 only_release_metadata = true; 1274 } 1275 1276 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1277 WARN_ON(num_pages > nrptrs); 1278 reserve_bytes = round_up(write_bytes + sector_offset, 1279 fs_info->sectorsize); 1280 WARN_ON(reserve_bytes == 0); 1281 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1282 reserve_bytes, 1283 reserve_bytes, nowait); 1284 if (ret) { 1285 if (!only_release_metadata) 1286 btrfs_free_reserved_data_space(BTRFS_I(inode), 1287 data_reserved, pos, 1288 write_bytes); 1289 else 1290 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1291 1292 if (nowait && ret == -ENOSPC) 1293 ret = -EAGAIN; 1294 break; 1295 } 1296 1297 release_bytes = reserve_bytes; 1298 again: 1299 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1300 if (ret) { 1301 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1302 break; 1303 } 1304 1305 /* 1306 * This is going to setup the pages array with the number of 1307 * pages we want, so we don't really need to worry about the 1308 * contents of pages from loop to loop 1309 */ 1310 ret = prepare_pages(inode, pages, num_pages, 1311 pos, write_bytes, force_page_uptodate, false); 1312 if (ret) { 1313 btrfs_delalloc_release_extents(BTRFS_I(inode), 1314 reserve_bytes); 1315 break; 1316 } 1317 1318 extents_locked = lock_and_cleanup_extent_if_need( 1319 BTRFS_I(inode), pages, 1320 num_pages, pos, write_bytes, &lockstart, 1321 &lockend, nowait, &cached_state); 1322 if (extents_locked < 0) { 1323 if (!nowait && extents_locked == -EAGAIN) 1324 goto again; 1325 1326 btrfs_delalloc_release_extents(BTRFS_I(inode), 1327 reserve_bytes); 1328 ret = extents_locked; 1329 break; 1330 } 1331 1332 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1333 1334 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1335 dirty_sectors = round_up(copied + sector_offset, 1336 fs_info->sectorsize); 1337 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1338 1339 /* 1340 * if we have trouble faulting in the pages, fall 1341 * back to one page at a time 1342 */ 1343 if (copied < write_bytes) 1344 nrptrs = 1; 1345 1346 if (copied == 0) { 1347 force_page_uptodate = true; 1348 dirty_sectors = 0; 1349 dirty_pages = 0; 1350 } else { 1351 force_page_uptodate = false; 1352 dirty_pages = DIV_ROUND_UP(copied + offset, 1353 PAGE_SIZE); 1354 } 1355 1356 if (num_sectors > dirty_sectors) { 1357 /* release everything except the sectors we dirtied */ 1358 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1359 if (only_release_metadata) { 1360 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1361 release_bytes, true); 1362 } else { 1363 u64 __pos; 1364 1365 __pos = round_down(pos, 1366 fs_info->sectorsize) + 1367 (dirty_pages << PAGE_SHIFT); 1368 btrfs_delalloc_release_space(BTRFS_I(inode), 1369 data_reserved, __pos, 1370 release_bytes, true); 1371 } 1372 } 1373 1374 release_bytes = round_up(copied + sector_offset, 1375 fs_info->sectorsize); 1376 1377 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1378 dirty_pages, pos, copied, 1379 &cached_state, only_release_metadata); 1380 1381 /* 1382 * If we have not locked the extent range, because the range's 1383 * start offset is >= i_size, we might still have a non-NULL 1384 * cached extent state, acquired while marking the extent range 1385 * as delalloc through btrfs_dirty_pages(). Therefore free any 1386 * possible cached extent state to avoid a memory leak. 1387 */ 1388 if (extents_locked) 1389 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1390 lockend, &cached_state); 1391 else 1392 free_extent_state(cached_state); 1393 1394 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1395 if (ret) { 1396 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1397 break; 1398 } 1399 1400 release_bytes = 0; 1401 if (only_release_metadata) 1402 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1403 1404 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1405 1406 cond_resched(); 1407 1408 pos += copied; 1409 num_written += copied; 1410 } 1411 1412 kfree(pages); 1413 1414 if (release_bytes) { 1415 if (only_release_metadata) { 1416 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1417 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1418 release_bytes, true); 1419 } else { 1420 btrfs_delalloc_release_space(BTRFS_I(inode), 1421 data_reserved, 1422 round_down(pos, fs_info->sectorsize), 1423 release_bytes, true); 1424 } 1425 } 1426 1427 extent_changeset_free(data_reserved); 1428 if (num_written > 0) { 1429 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1430 iocb->ki_pos += num_written; 1431 } 1432 out: 1433 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1434 return num_written ? num_written : ret; 1435 } 1436 check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1437 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1438 const struct iov_iter *iter, loff_t offset) 1439 { 1440 const u32 blocksize_mask = fs_info->sectorsize - 1; 1441 1442 if (offset & blocksize_mask) 1443 return -EINVAL; 1444 1445 if (iov_iter_alignment(iter) & blocksize_mask) 1446 return -EINVAL; 1447 1448 return 0; 1449 } 1450 btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1451 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1452 { 1453 struct file *file = iocb->ki_filp; 1454 struct inode *inode = file_inode(file); 1455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1456 loff_t pos; 1457 ssize_t written = 0; 1458 ssize_t written_buffered; 1459 size_t prev_left = 0; 1460 loff_t endbyte; 1461 ssize_t err; 1462 unsigned int ilock_flags = 0; 1463 struct iomap_dio *dio; 1464 1465 if (iocb->ki_flags & IOCB_NOWAIT) 1466 ilock_flags |= BTRFS_ILOCK_TRY; 1467 1468 /* 1469 * If the write DIO is within EOF, use a shared lock and also only if 1470 * security bits will likely not be dropped by file_remove_privs() called 1471 * from btrfs_write_check(). Either will need to be rechecked after the 1472 * lock was acquired. 1473 */ 1474 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1475 ilock_flags |= BTRFS_ILOCK_SHARED; 1476 1477 relock: 1478 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1479 if (err < 0) 1480 return err; 1481 1482 /* Shared lock cannot be used with security bits set. */ 1483 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1484 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1485 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1486 goto relock; 1487 } 1488 1489 err = generic_write_checks(iocb, from); 1490 if (err <= 0) { 1491 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1492 return err; 1493 } 1494 1495 err = btrfs_write_check(iocb, from, err); 1496 if (err < 0) { 1497 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1498 goto out; 1499 } 1500 1501 pos = iocb->ki_pos; 1502 /* 1503 * Re-check since file size may have changed just before taking the 1504 * lock or pos may have changed because of O_APPEND in generic_write_check() 1505 */ 1506 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1507 pos + iov_iter_count(from) > i_size_read(inode)) { 1508 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1509 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1510 goto relock; 1511 } 1512 1513 if (check_direct_IO(fs_info, from, pos)) { 1514 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1515 goto buffered; 1516 } 1517 1518 /* 1519 * The iov_iter can be mapped to the same file range we are writing to. 1520 * If that's the case, then we will deadlock in the iomap code, because 1521 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1522 * an ordered extent, and after that it will fault in the pages that the 1523 * iov_iter refers to. During the fault in we end up in the readahead 1524 * pages code (starting at btrfs_readahead()), which will lock the range, 1525 * find that ordered extent and then wait for it to complete (at 1526 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1527 * obviously the ordered extent can never complete as we didn't submit 1528 * yet the respective bio(s). This always happens when the buffer is 1529 * memory mapped to the same file range, since the iomap DIO code always 1530 * invalidates pages in the target file range (after starting and waiting 1531 * for any writeback). 1532 * 1533 * So here we disable page faults in the iov_iter and then retry if we 1534 * got -EFAULT, faulting in the pages before the retry. 1535 */ 1536 again: 1537 from->nofault = true; 1538 dio = btrfs_dio_write(iocb, from, written); 1539 from->nofault = false; 1540 1541 if (IS_ERR_OR_NULL(dio)) { 1542 err = PTR_ERR_OR_ZERO(dio); 1543 } else { 1544 /* 1545 * If we have a synchoronous write, we must make sure the fsync 1546 * triggered by the iomap_dio_complete() call below doesn't 1547 * deadlock on the inode lock - we are already holding it and we 1548 * can't call it after unlocking because we may need to complete 1549 * partial writes due to the input buffer (or parts of it) not 1550 * being already faulted in. 1551 */ 1552 ASSERT(current->journal_info == NULL); 1553 current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB; 1554 err = iomap_dio_complete(dio); 1555 current->journal_info = NULL; 1556 } 1557 1558 /* No increment (+=) because iomap returns a cumulative value. */ 1559 if (err > 0) 1560 written = err; 1561 1562 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1563 const size_t left = iov_iter_count(from); 1564 /* 1565 * We have more data left to write. Try to fault in as many as 1566 * possible of the remainder pages and retry. We do this without 1567 * releasing and locking again the inode, to prevent races with 1568 * truncate. 1569 * 1570 * Also, in case the iov refers to pages in the file range of the 1571 * file we want to write to (due to a mmap), we could enter an 1572 * infinite loop if we retry after faulting the pages in, since 1573 * iomap will invalidate any pages in the range early on, before 1574 * it tries to fault in the pages of the iov. So we keep track of 1575 * how much was left of iov in the previous EFAULT and fallback 1576 * to buffered IO in case we haven't made any progress. 1577 */ 1578 if (left == prev_left) { 1579 err = -ENOTBLK; 1580 } else { 1581 fault_in_iov_iter_readable(from, left); 1582 prev_left = left; 1583 goto again; 1584 } 1585 } 1586 1587 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1588 1589 /* 1590 * If 'err' is -ENOTBLK or we have not written all data, then it means 1591 * we must fallback to buffered IO. 1592 */ 1593 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1594 goto out; 1595 1596 buffered: 1597 /* 1598 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1599 * it must retry the operation in a context where blocking is acceptable, 1600 * because even if we end up not blocking during the buffered IO attempt 1601 * below, we will block when flushing and waiting for the IO. 1602 */ 1603 if (iocb->ki_flags & IOCB_NOWAIT) { 1604 err = -EAGAIN; 1605 goto out; 1606 } 1607 1608 pos = iocb->ki_pos; 1609 written_buffered = btrfs_buffered_write(iocb, from); 1610 if (written_buffered < 0) { 1611 err = written_buffered; 1612 goto out; 1613 } 1614 /* 1615 * Ensure all data is persisted. We want the next direct IO read to be 1616 * able to read what was just written. 1617 */ 1618 endbyte = pos + written_buffered - 1; 1619 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1620 if (err) 1621 goto out; 1622 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1623 if (err) 1624 goto out; 1625 written += written_buffered; 1626 iocb->ki_pos = pos + written_buffered; 1627 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1628 endbyte >> PAGE_SHIFT); 1629 out: 1630 return err < 0 ? err : written; 1631 } 1632 btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1633 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1634 const struct btrfs_ioctl_encoded_io_args *encoded) 1635 { 1636 struct file *file = iocb->ki_filp; 1637 struct inode *inode = file_inode(file); 1638 loff_t count; 1639 ssize_t ret; 1640 1641 btrfs_inode_lock(BTRFS_I(inode), 0); 1642 count = encoded->len; 1643 ret = generic_write_checks_count(iocb, &count); 1644 if (ret == 0 && count != encoded->len) { 1645 /* 1646 * The write got truncated by generic_write_checks_count(). We 1647 * can't do a partial encoded write. 1648 */ 1649 ret = -EFBIG; 1650 } 1651 if (ret || encoded->len == 0) 1652 goto out; 1653 1654 ret = btrfs_write_check(iocb, from, encoded->len); 1655 if (ret < 0) 1656 goto out; 1657 1658 ret = btrfs_do_encoded_write(iocb, from, encoded); 1659 out: 1660 btrfs_inode_unlock(BTRFS_I(inode), 0); 1661 return ret; 1662 } 1663 btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1664 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1665 const struct btrfs_ioctl_encoded_io_args *encoded) 1666 { 1667 struct file *file = iocb->ki_filp; 1668 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1669 ssize_t num_written, num_sync; 1670 1671 /* 1672 * If the fs flips readonly due to some impossible error, although we 1673 * have opened a file as writable, we have to stop this write operation 1674 * to ensure consistency. 1675 */ 1676 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1677 return -EROFS; 1678 1679 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1680 return -EOPNOTSUPP; 1681 1682 if (encoded) { 1683 num_written = btrfs_encoded_write(iocb, from, encoded); 1684 num_sync = encoded->len; 1685 } else if (iocb->ki_flags & IOCB_DIRECT) { 1686 num_written = btrfs_direct_write(iocb, from); 1687 num_sync = num_written; 1688 } else { 1689 num_written = btrfs_buffered_write(iocb, from); 1690 num_sync = num_written; 1691 } 1692 1693 btrfs_set_inode_last_sub_trans(inode); 1694 1695 if (num_sync > 0) { 1696 num_sync = generic_write_sync(iocb, num_sync); 1697 if (num_sync < 0) 1698 num_written = num_sync; 1699 } 1700 1701 return num_written; 1702 } 1703 btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1704 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1705 { 1706 return btrfs_do_write_iter(iocb, from, NULL); 1707 } 1708 btrfs_release_file(struct inode * inode,struct file * filp)1709 int btrfs_release_file(struct inode *inode, struct file *filp) 1710 { 1711 struct btrfs_file_private *private = filp->private_data; 1712 1713 if (private) { 1714 kfree(private->filldir_buf); 1715 free_extent_state(private->llseek_cached_state); 1716 kfree(private); 1717 filp->private_data = NULL; 1718 } 1719 1720 /* 1721 * Set by setattr when we are about to truncate a file from a non-zero 1722 * size to a zero size. This tries to flush down new bytes that may 1723 * have been written if the application were using truncate to replace 1724 * a file in place. 1725 */ 1726 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1727 &BTRFS_I(inode)->runtime_flags)) 1728 filemap_flush(inode->i_mapping); 1729 return 0; 1730 } 1731 start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1732 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1733 { 1734 int ret; 1735 struct blk_plug plug; 1736 1737 /* 1738 * This is only called in fsync, which would do synchronous writes, so 1739 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1740 * multiple disks using raid profile, a large IO can be split to 1741 * several segments of stripe length (currently 64K). 1742 */ 1743 blk_start_plug(&plug); 1744 ret = btrfs_fdatawrite_range(inode, start, end); 1745 blk_finish_plug(&plug); 1746 1747 return ret; 1748 } 1749 skip_inode_logging(const struct btrfs_log_ctx * ctx)1750 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1751 { 1752 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1753 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1754 1755 if (btrfs_inode_in_log(inode, fs_info->generation) && 1756 list_empty(&ctx->ordered_extents)) 1757 return true; 1758 1759 /* 1760 * If we are doing a fast fsync we can not bail out if the inode's 1761 * last_trans is <= then the last committed transaction, because we only 1762 * update the last_trans of the inode during ordered extent completion, 1763 * and for a fast fsync we don't wait for that, we only wait for the 1764 * writeback to complete. 1765 */ 1766 if (inode->last_trans <= fs_info->last_trans_committed && 1767 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1768 list_empty(&ctx->ordered_extents))) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 /* 1775 * fsync call for both files and directories. This logs the inode into 1776 * the tree log instead of forcing full commits whenever possible. 1777 * 1778 * It needs to call filemap_fdatawait so that all ordered extent updates are 1779 * in the metadata btree are up to date for copying to the log. 1780 * 1781 * It drops the inode mutex before doing the tree log commit. This is an 1782 * important optimization for directories because holding the mutex prevents 1783 * new operations on the dir while we write to disk. 1784 */ btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1785 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1786 { 1787 struct dentry *dentry = file_dentry(file); 1788 struct inode *inode = d_inode(dentry); 1789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1790 struct btrfs_root *root = BTRFS_I(inode)->root; 1791 struct btrfs_trans_handle *trans; 1792 struct btrfs_log_ctx ctx; 1793 int ret = 0, err; 1794 u64 len; 1795 bool full_sync; 1796 bool skip_ilock = false; 1797 1798 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) { 1799 skip_ilock = true; 1800 current->journal_info = NULL; 1801 lockdep_assert_held(&inode->i_rwsem); 1802 } 1803 1804 trace_btrfs_sync_file(file, datasync); 1805 1806 btrfs_init_log_ctx(&ctx, inode); 1807 1808 /* 1809 * Always set the range to a full range, otherwise we can get into 1810 * several problems, from missing file extent items to represent holes 1811 * when not using the NO_HOLES feature, to log tree corruption due to 1812 * races between hole detection during logging and completion of ordered 1813 * extents outside the range, to missing checksums due to ordered extents 1814 * for which we flushed only a subset of their pages. 1815 */ 1816 start = 0; 1817 end = LLONG_MAX; 1818 len = (u64)LLONG_MAX + 1; 1819 1820 /* 1821 * We write the dirty pages in the range and wait until they complete 1822 * out of the ->i_mutex. If so, we can flush the dirty pages by 1823 * multi-task, and make the performance up. See 1824 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1825 */ 1826 ret = start_ordered_ops(inode, start, end); 1827 if (ret) 1828 goto out; 1829 1830 if (skip_ilock) 1831 down_write(&BTRFS_I(inode)->i_mmap_lock); 1832 else 1833 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1834 1835 atomic_inc(&root->log_batch); 1836 1837 /* 1838 * Before we acquired the inode's lock and the mmap lock, someone may 1839 * have dirtied more pages in the target range. We need to make sure 1840 * that writeback for any such pages does not start while we are logging 1841 * the inode, because if it does, any of the following might happen when 1842 * we are not doing a full inode sync: 1843 * 1844 * 1) We log an extent after its writeback finishes but before its 1845 * checksums are added to the csum tree, leading to -EIO errors 1846 * when attempting to read the extent after a log replay. 1847 * 1848 * 2) We can end up logging an extent before its writeback finishes. 1849 * Therefore after the log replay we will have a file extent item 1850 * pointing to an unwritten extent (and no data checksums as well). 1851 * 1852 * So trigger writeback for any eventual new dirty pages and then we 1853 * wait for all ordered extents to complete below. 1854 */ 1855 ret = start_ordered_ops(inode, start, end); 1856 if (ret) { 1857 if (skip_ilock) 1858 up_write(&BTRFS_I(inode)->i_mmap_lock); 1859 else 1860 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1861 goto out; 1862 } 1863 1864 /* 1865 * Always check for the full sync flag while holding the inode's lock, 1866 * to avoid races with other tasks. The flag must be either set all the 1867 * time during logging or always off all the time while logging. 1868 * We check the flag here after starting delalloc above, because when 1869 * running delalloc the full sync flag may be set if we need to drop 1870 * extra extent map ranges due to temporary memory allocation failures. 1871 */ 1872 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1873 &BTRFS_I(inode)->runtime_flags); 1874 1875 /* 1876 * We have to do this here to avoid the priority inversion of waiting on 1877 * IO of a lower priority task while holding a transaction open. 1878 * 1879 * For a full fsync we wait for the ordered extents to complete while 1880 * for a fast fsync we wait just for writeback to complete, and then 1881 * attach the ordered extents to the transaction so that a transaction 1882 * commit waits for their completion, to avoid data loss if we fsync, 1883 * the current transaction commits before the ordered extents complete 1884 * and a power failure happens right after that. 1885 * 1886 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1887 * logical address recorded in the ordered extent may change. We need 1888 * to wait for the IO to stabilize the logical address. 1889 */ 1890 if (full_sync || btrfs_is_zoned(fs_info)) { 1891 ret = btrfs_wait_ordered_range(inode, start, len); 1892 } else { 1893 /* 1894 * Get our ordered extents as soon as possible to avoid doing 1895 * checksum lookups in the csum tree, and use instead the 1896 * checksums attached to the ordered extents. 1897 */ 1898 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1899 &ctx.ordered_extents); 1900 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1901 } 1902 1903 if (ret) 1904 goto out_release_extents; 1905 1906 atomic_inc(&root->log_batch); 1907 1908 smp_mb(); 1909 if (skip_inode_logging(&ctx)) { 1910 /* 1911 * We've had everything committed since the last time we were 1912 * modified so clear this flag in case it was set for whatever 1913 * reason, it's no longer relevant. 1914 */ 1915 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1916 &BTRFS_I(inode)->runtime_flags); 1917 /* 1918 * An ordered extent might have started before and completed 1919 * already with io errors, in which case the inode was not 1920 * updated and we end up here. So check the inode's mapping 1921 * for any errors that might have happened since we last 1922 * checked called fsync. 1923 */ 1924 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1925 goto out_release_extents; 1926 } 1927 1928 /* 1929 * We use start here because we will need to wait on the IO to complete 1930 * in btrfs_sync_log, which could require joining a transaction (for 1931 * example checking cross references in the nocow path). If we use join 1932 * here we could get into a situation where we're waiting on IO to 1933 * happen that is blocked on a transaction trying to commit. With start 1934 * we inc the extwriter counter, so we wait for all extwriters to exit 1935 * before we start blocking joiners. This comment is to keep somebody 1936 * from thinking they are super smart and changing this to 1937 * btrfs_join_transaction *cough*Josef*cough*. 1938 */ 1939 trans = btrfs_start_transaction(root, 0); 1940 if (IS_ERR(trans)) { 1941 ret = PTR_ERR(trans); 1942 goto out_release_extents; 1943 } 1944 trans->in_fsync = true; 1945 1946 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1947 btrfs_release_log_ctx_extents(&ctx); 1948 if (ret < 0) { 1949 /* Fallthrough and commit/free transaction. */ 1950 ret = BTRFS_LOG_FORCE_COMMIT; 1951 } 1952 1953 /* we've logged all the items and now have a consistent 1954 * version of the file in the log. It is possible that 1955 * someone will come in and modify the file, but that's 1956 * fine because the log is consistent on disk, and we 1957 * have references to all of the file's extents 1958 * 1959 * It is possible that someone will come in and log the 1960 * file again, but that will end up using the synchronization 1961 * inside btrfs_sync_log to keep things safe. 1962 */ 1963 if (skip_ilock) 1964 up_write(&BTRFS_I(inode)->i_mmap_lock); 1965 else 1966 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1967 1968 if (ret == BTRFS_NO_LOG_SYNC) { 1969 ret = btrfs_end_transaction(trans); 1970 goto out; 1971 } 1972 1973 /* We successfully logged the inode, attempt to sync the log. */ 1974 if (!ret) { 1975 ret = btrfs_sync_log(trans, root, &ctx); 1976 if (!ret) { 1977 ret = btrfs_end_transaction(trans); 1978 goto out; 1979 } 1980 } 1981 1982 /* 1983 * At this point we need to commit the transaction because we had 1984 * btrfs_need_log_full_commit() or some other error. 1985 * 1986 * If we didn't do a full sync we have to stop the trans handle, wait on 1987 * the ordered extents, start it again and commit the transaction. If 1988 * we attempt to wait on the ordered extents here we could deadlock with 1989 * something like fallocate() that is holding the extent lock trying to 1990 * start a transaction while some other thread is trying to commit the 1991 * transaction while we (fsync) are currently holding the transaction 1992 * open. 1993 */ 1994 if (!full_sync) { 1995 ret = btrfs_end_transaction(trans); 1996 if (ret) 1997 goto out; 1998 ret = btrfs_wait_ordered_range(inode, start, len); 1999 if (ret) 2000 goto out; 2001 2002 /* 2003 * This is safe to use here because we're only interested in 2004 * making sure the transaction that had the ordered extents is 2005 * committed. We aren't waiting on anything past this point, 2006 * we're purely getting the transaction and committing it. 2007 */ 2008 trans = btrfs_attach_transaction_barrier(root); 2009 if (IS_ERR(trans)) { 2010 ret = PTR_ERR(trans); 2011 2012 /* 2013 * We committed the transaction and there's no currently 2014 * running transaction, this means everything we care 2015 * about made it to disk and we are done. 2016 */ 2017 if (ret == -ENOENT) 2018 ret = 0; 2019 goto out; 2020 } 2021 } 2022 2023 ret = btrfs_commit_transaction(trans); 2024 out: 2025 ASSERT(list_empty(&ctx.list)); 2026 ASSERT(list_empty(&ctx.conflict_inodes)); 2027 err = file_check_and_advance_wb_err(file); 2028 if (!ret) 2029 ret = err; 2030 return ret > 0 ? -EIO : ret; 2031 2032 out_release_extents: 2033 btrfs_release_log_ctx_extents(&ctx); 2034 if (skip_ilock) 2035 up_write(&BTRFS_I(inode)->i_mmap_lock); 2036 else 2037 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2038 goto out; 2039 } 2040 2041 static const struct vm_operations_struct btrfs_file_vm_ops = { 2042 .fault = filemap_fault, 2043 .map_pages = filemap_map_pages, 2044 .page_mkwrite = btrfs_page_mkwrite, 2045 }; 2046 btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2047 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2048 { 2049 struct address_space *mapping = filp->f_mapping; 2050 2051 if (!mapping->a_ops->read_folio) 2052 return -ENOEXEC; 2053 2054 file_accessed(filp); 2055 vma->vm_ops = &btrfs_file_vm_ops; 2056 2057 return 0; 2058 } 2059 hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2060 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2061 int slot, u64 start, u64 end) 2062 { 2063 struct btrfs_file_extent_item *fi; 2064 struct btrfs_key key; 2065 2066 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2067 return 0; 2068 2069 btrfs_item_key_to_cpu(leaf, &key, slot); 2070 if (key.objectid != btrfs_ino(inode) || 2071 key.type != BTRFS_EXTENT_DATA_KEY) 2072 return 0; 2073 2074 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2075 2076 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2077 return 0; 2078 2079 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2080 return 0; 2081 2082 if (key.offset == end) 2083 return 1; 2084 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2085 return 1; 2086 return 0; 2087 } 2088 fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2089 static int fill_holes(struct btrfs_trans_handle *trans, 2090 struct btrfs_inode *inode, 2091 struct btrfs_path *path, u64 offset, u64 end) 2092 { 2093 struct btrfs_fs_info *fs_info = trans->fs_info; 2094 struct btrfs_root *root = inode->root; 2095 struct extent_buffer *leaf; 2096 struct btrfs_file_extent_item *fi; 2097 struct extent_map *hole_em; 2098 struct btrfs_key key; 2099 int ret; 2100 2101 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2102 goto out; 2103 2104 key.objectid = btrfs_ino(inode); 2105 key.type = BTRFS_EXTENT_DATA_KEY; 2106 key.offset = offset; 2107 2108 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2109 if (ret <= 0) { 2110 /* 2111 * We should have dropped this offset, so if we find it then 2112 * something has gone horribly wrong. 2113 */ 2114 if (ret == 0) 2115 ret = -EINVAL; 2116 return ret; 2117 } 2118 2119 leaf = path->nodes[0]; 2120 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2121 u64 num_bytes; 2122 2123 path->slots[0]--; 2124 fi = btrfs_item_ptr(leaf, path->slots[0], 2125 struct btrfs_file_extent_item); 2126 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2127 end - offset; 2128 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2129 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2130 btrfs_set_file_extent_offset(leaf, fi, 0); 2131 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2132 btrfs_mark_buffer_dirty(trans, leaf); 2133 goto out; 2134 } 2135 2136 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2137 u64 num_bytes; 2138 2139 key.offset = offset; 2140 btrfs_set_item_key_safe(trans, path, &key); 2141 fi = btrfs_item_ptr(leaf, path->slots[0], 2142 struct btrfs_file_extent_item); 2143 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2144 offset; 2145 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2146 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2147 btrfs_set_file_extent_offset(leaf, fi, 0); 2148 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2149 btrfs_mark_buffer_dirty(trans, leaf); 2150 goto out; 2151 } 2152 btrfs_release_path(path); 2153 2154 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2155 end - offset); 2156 if (ret) 2157 return ret; 2158 2159 out: 2160 btrfs_release_path(path); 2161 2162 hole_em = alloc_extent_map(); 2163 if (!hole_em) { 2164 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2165 btrfs_set_inode_full_sync(inode); 2166 } else { 2167 hole_em->start = offset; 2168 hole_em->len = end - offset; 2169 hole_em->ram_bytes = hole_em->len; 2170 hole_em->orig_start = offset; 2171 2172 hole_em->block_start = EXTENT_MAP_HOLE; 2173 hole_em->block_len = 0; 2174 hole_em->orig_block_len = 0; 2175 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2176 hole_em->generation = trans->transid; 2177 2178 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2179 free_extent_map(hole_em); 2180 if (ret) 2181 btrfs_set_inode_full_sync(inode); 2182 } 2183 2184 return 0; 2185 } 2186 2187 /* 2188 * Find a hole extent on given inode and change start/len to the end of hole 2189 * extent.(hole/vacuum extent whose em->start <= start && 2190 * em->start + em->len > start) 2191 * When a hole extent is found, return 1 and modify start/len. 2192 */ find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2193 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2194 { 2195 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2196 struct extent_map *em; 2197 int ret = 0; 2198 2199 em = btrfs_get_extent(inode, NULL, 0, 2200 round_down(*start, fs_info->sectorsize), 2201 round_up(*len, fs_info->sectorsize)); 2202 if (IS_ERR(em)) 2203 return PTR_ERR(em); 2204 2205 /* Hole or vacuum extent(only exists in no-hole mode) */ 2206 if (em->block_start == EXTENT_MAP_HOLE) { 2207 ret = 1; 2208 *len = em->start + em->len > *start + *len ? 2209 0 : *start + *len - em->start - em->len; 2210 *start = em->start + em->len; 2211 } 2212 free_extent_map(em); 2213 return ret; 2214 } 2215 btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2216 static void btrfs_punch_hole_lock_range(struct inode *inode, 2217 const u64 lockstart, 2218 const u64 lockend, 2219 struct extent_state **cached_state) 2220 { 2221 /* 2222 * For subpage case, if the range is not at page boundary, we could 2223 * have pages at the leading/tailing part of the range. 2224 * This could lead to dead loop since filemap_range_has_page() 2225 * will always return true. 2226 * So here we need to do extra page alignment for 2227 * filemap_range_has_page(). 2228 */ 2229 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2230 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2231 2232 while (1) { 2233 truncate_pagecache_range(inode, lockstart, lockend); 2234 2235 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2236 cached_state); 2237 /* 2238 * We can't have ordered extents in the range, nor dirty/writeback 2239 * pages, because we have locked the inode's VFS lock in exclusive 2240 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2241 * we have flushed all delalloc in the range and we have waited 2242 * for any ordered extents in the range to complete. 2243 * We can race with anyone reading pages from this range, so after 2244 * locking the range check if we have pages in the range, and if 2245 * we do, unlock the range and retry. 2246 */ 2247 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2248 page_lockend)) 2249 break; 2250 2251 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2252 cached_state); 2253 } 2254 2255 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2256 } 2257 btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2258 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2259 struct btrfs_inode *inode, 2260 struct btrfs_path *path, 2261 struct btrfs_replace_extent_info *extent_info, 2262 const u64 replace_len, 2263 const u64 bytes_to_drop) 2264 { 2265 struct btrfs_fs_info *fs_info = trans->fs_info; 2266 struct btrfs_root *root = inode->root; 2267 struct btrfs_file_extent_item *extent; 2268 struct extent_buffer *leaf; 2269 struct btrfs_key key; 2270 int slot; 2271 struct btrfs_ref ref = { 0 }; 2272 int ret; 2273 2274 if (replace_len == 0) 2275 return 0; 2276 2277 if (extent_info->disk_offset == 0 && 2278 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2279 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2280 return 0; 2281 } 2282 2283 key.objectid = btrfs_ino(inode); 2284 key.type = BTRFS_EXTENT_DATA_KEY; 2285 key.offset = extent_info->file_offset; 2286 ret = btrfs_insert_empty_item(trans, root, path, &key, 2287 sizeof(struct btrfs_file_extent_item)); 2288 if (ret) 2289 return ret; 2290 leaf = path->nodes[0]; 2291 slot = path->slots[0]; 2292 write_extent_buffer(leaf, extent_info->extent_buf, 2293 btrfs_item_ptr_offset(leaf, slot), 2294 sizeof(struct btrfs_file_extent_item)); 2295 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2296 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2297 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2298 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2299 if (extent_info->is_new_extent) 2300 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2301 btrfs_mark_buffer_dirty(trans, leaf); 2302 btrfs_release_path(path); 2303 2304 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2305 replace_len); 2306 if (ret) 2307 return ret; 2308 2309 /* If it's a hole, nothing more needs to be done. */ 2310 if (extent_info->disk_offset == 0) { 2311 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2312 return 0; 2313 } 2314 2315 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2316 2317 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2318 key.objectid = extent_info->disk_offset; 2319 key.type = BTRFS_EXTENT_ITEM_KEY; 2320 key.offset = extent_info->disk_len; 2321 ret = btrfs_alloc_reserved_file_extent(trans, root, 2322 btrfs_ino(inode), 2323 extent_info->file_offset, 2324 extent_info->qgroup_reserved, 2325 &key); 2326 } else { 2327 u64 ref_offset; 2328 2329 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2330 extent_info->disk_offset, 2331 extent_info->disk_len, 0); 2332 ref_offset = extent_info->file_offset - extent_info->data_offset; 2333 btrfs_init_data_ref(&ref, root->root_key.objectid, 2334 btrfs_ino(inode), ref_offset, 0, false); 2335 ret = btrfs_inc_extent_ref(trans, &ref); 2336 } 2337 2338 extent_info->insertions++; 2339 2340 return ret; 2341 } 2342 2343 /* 2344 * The respective range must have been previously locked, as well as the inode. 2345 * The end offset is inclusive (last byte of the range). 2346 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2347 * the file range with an extent. 2348 * When not punching a hole, we don't want to end up in a state where we dropped 2349 * extents without inserting a new one, so we must abort the transaction to avoid 2350 * a corruption. 2351 */ btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2352 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2353 struct btrfs_path *path, const u64 start, 2354 const u64 end, 2355 struct btrfs_replace_extent_info *extent_info, 2356 struct btrfs_trans_handle **trans_out) 2357 { 2358 struct btrfs_drop_extents_args drop_args = { 0 }; 2359 struct btrfs_root *root = inode->root; 2360 struct btrfs_fs_info *fs_info = root->fs_info; 2361 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2362 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2363 struct btrfs_trans_handle *trans = NULL; 2364 struct btrfs_block_rsv *rsv; 2365 unsigned int rsv_count; 2366 u64 cur_offset; 2367 u64 len = end - start; 2368 int ret = 0; 2369 2370 if (end <= start) 2371 return -EINVAL; 2372 2373 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2374 if (!rsv) { 2375 ret = -ENOMEM; 2376 goto out; 2377 } 2378 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2379 rsv->failfast = true; 2380 2381 /* 2382 * 1 - update the inode 2383 * 1 - removing the extents in the range 2384 * 1 - adding the hole extent if no_holes isn't set or if we are 2385 * replacing the range with a new extent 2386 */ 2387 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2388 rsv_count = 3; 2389 else 2390 rsv_count = 2; 2391 2392 trans = btrfs_start_transaction(root, rsv_count); 2393 if (IS_ERR(trans)) { 2394 ret = PTR_ERR(trans); 2395 trans = NULL; 2396 goto out_free; 2397 } 2398 2399 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2400 min_size, false); 2401 if (WARN_ON(ret)) 2402 goto out_trans; 2403 trans->block_rsv = rsv; 2404 2405 cur_offset = start; 2406 drop_args.path = path; 2407 drop_args.end = end + 1; 2408 drop_args.drop_cache = true; 2409 while (cur_offset < end) { 2410 drop_args.start = cur_offset; 2411 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2412 /* If we are punching a hole decrement the inode's byte count */ 2413 if (!extent_info) 2414 btrfs_update_inode_bytes(inode, 0, 2415 drop_args.bytes_found); 2416 if (ret != -ENOSPC) { 2417 /* 2418 * The only time we don't want to abort is if we are 2419 * attempting to clone a partial inline extent, in which 2420 * case we'll get EOPNOTSUPP. However if we aren't 2421 * clone we need to abort no matter what, because if we 2422 * got EOPNOTSUPP via prealloc then we messed up and 2423 * need to abort. 2424 */ 2425 if (ret && 2426 (ret != -EOPNOTSUPP || 2427 (extent_info && extent_info->is_new_extent))) 2428 btrfs_abort_transaction(trans, ret); 2429 break; 2430 } 2431 2432 trans->block_rsv = &fs_info->trans_block_rsv; 2433 2434 if (!extent_info && cur_offset < drop_args.drop_end && 2435 cur_offset < ino_size) { 2436 ret = fill_holes(trans, inode, path, cur_offset, 2437 drop_args.drop_end); 2438 if (ret) { 2439 /* 2440 * If we failed then we didn't insert our hole 2441 * entries for the area we dropped, so now the 2442 * fs is corrupted, so we must abort the 2443 * transaction. 2444 */ 2445 btrfs_abort_transaction(trans, ret); 2446 break; 2447 } 2448 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2449 /* 2450 * We are past the i_size here, but since we didn't 2451 * insert holes we need to clear the mapped area so we 2452 * know to not set disk_i_size in this area until a new 2453 * file extent is inserted here. 2454 */ 2455 ret = btrfs_inode_clear_file_extent_range(inode, 2456 cur_offset, 2457 drop_args.drop_end - cur_offset); 2458 if (ret) { 2459 /* 2460 * We couldn't clear our area, so we could 2461 * presumably adjust up and corrupt the fs, so 2462 * we need to abort. 2463 */ 2464 btrfs_abort_transaction(trans, ret); 2465 break; 2466 } 2467 } 2468 2469 if (extent_info && 2470 drop_args.drop_end > extent_info->file_offset) { 2471 u64 replace_len = drop_args.drop_end - 2472 extent_info->file_offset; 2473 2474 ret = btrfs_insert_replace_extent(trans, inode, path, 2475 extent_info, replace_len, 2476 drop_args.bytes_found); 2477 if (ret) { 2478 btrfs_abort_transaction(trans, ret); 2479 break; 2480 } 2481 extent_info->data_len -= replace_len; 2482 extent_info->data_offset += replace_len; 2483 extent_info->file_offset += replace_len; 2484 } 2485 2486 /* 2487 * We are releasing our handle on the transaction, balance the 2488 * dirty pages of the btree inode and flush delayed items, and 2489 * then get a new transaction handle, which may now point to a 2490 * new transaction in case someone else may have committed the 2491 * transaction we used to replace/drop file extent items. So 2492 * bump the inode's iversion and update mtime and ctime except 2493 * if we are called from a dedupe context. This is because a 2494 * power failure/crash may happen after the transaction is 2495 * committed and before we finish replacing/dropping all the 2496 * file extent items we need. 2497 */ 2498 inode_inc_iversion(&inode->vfs_inode); 2499 2500 if (!extent_info || extent_info->update_times) 2501 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode); 2502 2503 ret = btrfs_update_inode(trans, root, inode); 2504 if (ret) 2505 break; 2506 2507 btrfs_end_transaction(trans); 2508 btrfs_btree_balance_dirty(fs_info); 2509 2510 trans = btrfs_start_transaction(root, rsv_count); 2511 if (IS_ERR(trans)) { 2512 ret = PTR_ERR(trans); 2513 trans = NULL; 2514 break; 2515 } 2516 2517 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2518 rsv, min_size, false); 2519 if (WARN_ON(ret)) 2520 break; 2521 trans->block_rsv = rsv; 2522 2523 cur_offset = drop_args.drop_end; 2524 len = end - cur_offset; 2525 if (!extent_info && len) { 2526 ret = find_first_non_hole(inode, &cur_offset, &len); 2527 if (unlikely(ret < 0)) 2528 break; 2529 if (ret && !len) { 2530 ret = 0; 2531 break; 2532 } 2533 } 2534 } 2535 2536 /* 2537 * If we were cloning, force the next fsync to be a full one since we 2538 * we replaced (or just dropped in the case of cloning holes when 2539 * NO_HOLES is enabled) file extent items and did not setup new extent 2540 * maps for the replacement extents (or holes). 2541 */ 2542 if (extent_info && !extent_info->is_new_extent) 2543 btrfs_set_inode_full_sync(inode); 2544 2545 if (ret) 2546 goto out_trans; 2547 2548 trans->block_rsv = &fs_info->trans_block_rsv; 2549 /* 2550 * If we are using the NO_HOLES feature we might have had already an 2551 * hole that overlaps a part of the region [lockstart, lockend] and 2552 * ends at (or beyond) lockend. Since we have no file extent items to 2553 * represent holes, drop_end can be less than lockend and so we must 2554 * make sure we have an extent map representing the existing hole (the 2555 * call to __btrfs_drop_extents() might have dropped the existing extent 2556 * map representing the existing hole), otherwise the fast fsync path 2557 * will not record the existence of the hole region 2558 * [existing_hole_start, lockend]. 2559 */ 2560 if (drop_args.drop_end <= end) 2561 drop_args.drop_end = end + 1; 2562 /* 2563 * Don't insert file hole extent item if it's for a range beyond eof 2564 * (because it's useless) or if it represents a 0 bytes range (when 2565 * cur_offset == drop_end). 2566 */ 2567 if (!extent_info && cur_offset < ino_size && 2568 cur_offset < drop_args.drop_end) { 2569 ret = fill_holes(trans, inode, path, cur_offset, 2570 drop_args.drop_end); 2571 if (ret) { 2572 /* Same comment as above. */ 2573 btrfs_abort_transaction(trans, ret); 2574 goto out_trans; 2575 } 2576 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2577 /* See the comment in the loop above for the reasoning here. */ 2578 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2579 drop_args.drop_end - cur_offset); 2580 if (ret) { 2581 btrfs_abort_transaction(trans, ret); 2582 goto out_trans; 2583 } 2584 2585 } 2586 if (extent_info) { 2587 ret = btrfs_insert_replace_extent(trans, inode, path, 2588 extent_info, extent_info->data_len, 2589 drop_args.bytes_found); 2590 if (ret) { 2591 btrfs_abort_transaction(trans, ret); 2592 goto out_trans; 2593 } 2594 } 2595 2596 out_trans: 2597 if (!trans) 2598 goto out_free; 2599 2600 trans->block_rsv = &fs_info->trans_block_rsv; 2601 if (ret) 2602 btrfs_end_transaction(trans); 2603 else 2604 *trans_out = trans; 2605 out_free: 2606 btrfs_free_block_rsv(fs_info, rsv); 2607 out: 2608 return ret; 2609 } 2610 btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2611 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2612 { 2613 struct inode *inode = file_inode(file); 2614 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2615 struct btrfs_root *root = BTRFS_I(inode)->root; 2616 struct extent_state *cached_state = NULL; 2617 struct btrfs_path *path; 2618 struct btrfs_trans_handle *trans = NULL; 2619 u64 lockstart; 2620 u64 lockend; 2621 u64 tail_start; 2622 u64 tail_len; 2623 u64 orig_start = offset; 2624 int ret = 0; 2625 bool same_block; 2626 u64 ino_size; 2627 bool truncated_block = false; 2628 bool updated_inode = false; 2629 2630 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2631 2632 ret = btrfs_wait_ordered_range(inode, offset, len); 2633 if (ret) 2634 goto out_only_mutex; 2635 2636 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2637 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2638 if (ret < 0) 2639 goto out_only_mutex; 2640 if (ret && !len) { 2641 /* Already in a large hole */ 2642 ret = 0; 2643 goto out_only_mutex; 2644 } 2645 2646 ret = file_modified(file); 2647 if (ret) 2648 goto out_only_mutex; 2649 2650 lockstart = round_up(offset, fs_info->sectorsize); 2651 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2652 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2653 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2654 /* 2655 * We needn't truncate any block which is beyond the end of the file 2656 * because we are sure there is no data there. 2657 */ 2658 /* 2659 * Only do this if we are in the same block and we aren't doing the 2660 * entire block. 2661 */ 2662 if (same_block && len < fs_info->sectorsize) { 2663 if (offset < ino_size) { 2664 truncated_block = true; 2665 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2666 0); 2667 } else { 2668 ret = 0; 2669 } 2670 goto out_only_mutex; 2671 } 2672 2673 /* zero back part of the first block */ 2674 if (offset < ino_size) { 2675 truncated_block = true; 2676 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2677 if (ret) { 2678 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2679 return ret; 2680 } 2681 } 2682 2683 /* Check the aligned pages after the first unaligned page, 2684 * if offset != orig_start, which means the first unaligned page 2685 * including several following pages are already in holes, 2686 * the extra check can be skipped */ 2687 if (offset == orig_start) { 2688 /* after truncate page, check hole again */ 2689 len = offset + len - lockstart; 2690 offset = lockstart; 2691 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2692 if (ret < 0) 2693 goto out_only_mutex; 2694 if (ret && !len) { 2695 ret = 0; 2696 goto out_only_mutex; 2697 } 2698 lockstart = offset; 2699 } 2700 2701 /* Check the tail unaligned part is in a hole */ 2702 tail_start = lockend + 1; 2703 tail_len = offset + len - tail_start; 2704 if (tail_len) { 2705 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2706 if (unlikely(ret < 0)) 2707 goto out_only_mutex; 2708 if (!ret) { 2709 /* zero the front end of the last page */ 2710 if (tail_start + tail_len < ino_size) { 2711 truncated_block = true; 2712 ret = btrfs_truncate_block(BTRFS_I(inode), 2713 tail_start + tail_len, 2714 0, 1); 2715 if (ret) 2716 goto out_only_mutex; 2717 } 2718 } 2719 } 2720 2721 if (lockend < lockstart) { 2722 ret = 0; 2723 goto out_only_mutex; 2724 } 2725 2726 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2727 2728 path = btrfs_alloc_path(); 2729 if (!path) { 2730 ret = -ENOMEM; 2731 goto out; 2732 } 2733 2734 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2735 lockend, NULL, &trans); 2736 btrfs_free_path(path); 2737 if (ret) 2738 goto out; 2739 2740 ASSERT(trans != NULL); 2741 inode_inc_iversion(inode); 2742 inode->i_mtime = inode_set_ctime_current(inode); 2743 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2744 updated_inode = true; 2745 btrfs_end_transaction(trans); 2746 btrfs_btree_balance_dirty(fs_info); 2747 out: 2748 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2749 &cached_state); 2750 out_only_mutex: 2751 if (!updated_inode && truncated_block && !ret) { 2752 /* 2753 * If we only end up zeroing part of a page, we still need to 2754 * update the inode item, so that all the time fields are 2755 * updated as well as the necessary btrfs inode in memory fields 2756 * for detecting, at fsync time, if the inode isn't yet in the 2757 * log tree or it's there but not up to date. 2758 */ 2759 struct timespec64 now = inode_set_ctime_current(inode); 2760 2761 inode_inc_iversion(inode); 2762 inode->i_mtime = now; 2763 trans = btrfs_start_transaction(root, 1); 2764 if (IS_ERR(trans)) { 2765 ret = PTR_ERR(trans); 2766 } else { 2767 int ret2; 2768 2769 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2770 ret2 = btrfs_end_transaction(trans); 2771 if (!ret) 2772 ret = ret2; 2773 } 2774 } 2775 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2776 return ret; 2777 } 2778 2779 /* Helper structure to record which range is already reserved */ 2780 struct falloc_range { 2781 struct list_head list; 2782 u64 start; 2783 u64 len; 2784 }; 2785 2786 /* 2787 * Helper function to add falloc range 2788 * 2789 * Caller should have locked the larger range of extent containing 2790 * [start, len) 2791 */ add_falloc_range(struct list_head * head,u64 start,u64 len)2792 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2793 { 2794 struct falloc_range *range = NULL; 2795 2796 if (!list_empty(head)) { 2797 /* 2798 * As fallocate iterates by bytenr order, we only need to check 2799 * the last range. 2800 */ 2801 range = list_last_entry(head, struct falloc_range, list); 2802 if (range->start + range->len == start) { 2803 range->len += len; 2804 return 0; 2805 } 2806 } 2807 2808 range = kmalloc(sizeof(*range), GFP_KERNEL); 2809 if (!range) 2810 return -ENOMEM; 2811 range->start = start; 2812 range->len = len; 2813 list_add_tail(&range->list, head); 2814 return 0; 2815 } 2816 btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2817 static int btrfs_fallocate_update_isize(struct inode *inode, 2818 const u64 end, 2819 const int mode) 2820 { 2821 struct btrfs_trans_handle *trans; 2822 struct btrfs_root *root = BTRFS_I(inode)->root; 2823 int ret; 2824 int ret2; 2825 2826 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2827 return 0; 2828 2829 trans = btrfs_start_transaction(root, 1); 2830 if (IS_ERR(trans)) 2831 return PTR_ERR(trans); 2832 2833 inode_set_ctime_current(inode); 2834 i_size_write(inode, end); 2835 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2836 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2837 ret2 = btrfs_end_transaction(trans); 2838 2839 return ret ? ret : ret2; 2840 } 2841 2842 enum { 2843 RANGE_BOUNDARY_WRITTEN_EXTENT, 2844 RANGE_BOUNDARY_PREALLOC_EXTENT, 2845 RANGE_BOUNDARY_HOLE, 2846 }; 2847 btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2848 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2849 u64 offset) 2850 { 2851 const u64 sectorsize = inode->root->fs_info->sectorsize; 2852 struct extent_map *em; 2853 int ret; 2854 2855 offset = round_down(offset, sectorsize); 2856 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2857 if (IS_ERR(em)) 2858 return PTR_ERR(em); 2859 2860 if (em->block_start == EXTENT_MAP_HOLE) 2861 ret = RANGE_BOUNDARY_HOLE; 2862 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2863 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2864 else 2865 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2866 2867 free_extent_map(em); 2868 return ret; 2869 } 2870 btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2871 static int btrfs_zero_range(struct inode *inode, 2872 loff_t offset, 2873 loff_t len, 2874 const int mode) 2875 { 2876 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2877 struct extent_map *em; 2878 struct extent_changeset *data_reserved = NULL; 2879 int ret; 2880 u64 alloc_hint = 0; 2881 const u64 sectorsize = fs_info->sectorsize; 2882 u64 alloc_start = round_down(offset, sectorsize); 2883 u64 alloc_end = round_up(offset + len, sectorsize); 2884 u64 bytes_to_reserve = 0; 2885 bool space_reserved = false; 2886 2887 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2888 alloc_end - alloc_start); 2889 if (IS_ERR(em)) { 2890 ret = PTR_ERR(em); 2891 goto out; 2892 } 2893 2894 /* 2895 * Avoid hole punching and extent allocation for some cases. More cases 2896 * could be considered, but these are unlikely common and we keep things 2897 * as simple as possible for now. Also, intentionally, if the target 2898 * range contains one or more prealloc extents together with regular 2899 * extents and holes, we drop all the existing extents and allocate a 2900 * new prealloc extent, so that we get a larger contiguous disk extent. 2901 */ 2902 if (em->start <= alloc_start && 2903 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2904 const u64 em_end = em->start + em->len; 2905 2906 if (em_end >= offset + len) { 2907 /* 2908 * The whole range is already a prealloc extent, 2909 * do nothing except updating the inode's i_size if 2910 * needed. 2911 */ 2912 free_extent_map(em); 2913 ret = btrfs_fallocate_update_isize(inode, offset + len, 2914 mode); 2915 goto out; 2916 } 2917 /* 2918 * Part of the range is already a prealloc extent, so operate 2919 * only on the remaining part of the range. 2920 */ 2921 alloc_start = em_end; 2922 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2923 len = offset + len - alloc_start; 2924 offset = alloc_start; 2925 alloc_hint = em->block_start + em->len; 2926 } 2927 free_extent_map(em); 2928 2929 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2930 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2931 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2932 sectorsize); 2933 if (IS_ERR(em)) { 2934 ret = PTR_ERR(em); 2935 goto out; 2936 } 2937 2938 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2939 free_extent_map(em); 2940 ret = btrfs_fallocate_update_isize(inode, offset + len, 2941 mode); 2942 goto out; 2943 } 2944 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2945 free_extent_map(em); 2946 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2947 0); 2948 if (!ret) 2949 ret = btrfs_fallocate_update_isize(inode, 2950 offset + len, 2951 mode); 2952 return ret; 2953 } 2954 free_extent_map(em); 2955 alloc_start = round_down(offset, sectorsize); 2956 alloc_end = alloc_start + sectorsize; 2957 goto reserve_space; 2958 } 2959 2960 alloc_start = round_up(offset, sectorsize); 2961 alloc_end = round_down(offset + len, sectorsize); 2962 2963 /* 2964 * For unaligned ranges, check the pages at the boundaries, they might 2965 * map to an extent, in which case we need to partially zero them, or 2966 * they might map to a hole, in which case we need our allocation range 2967 * to cover them. 2968 */ 2969 if (!IS_ALIGNED(offset, sectorsize)) { 2970 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2971 offset); 2972 if (ret < 0) 2973 goto out; 2974 if (ret == RANGE_BOUNDARY_HOLE) { 2975 alloc_start = round_down(offset, sectorsize); 2976 ret = 0; 2977 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2978 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2979 if (ret) 2980 goto out; 2981 } else { 2982 ret = 0; 2983 } 2984 } 2985 2986 if (!IS_ALIGNED(offset + len, sectorsize)) { 2987 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2988 offset + len); 2989 if (ret < 0) 2990 goto out; 2991 if (ret == RANGE_BOUNDARY_HOLE) { 2992 alloc_end = round_up(offset + len, sectorsize); 2993 ret = 0; 2994 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2995 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2996 0, 1); 2997 if (ret) 2998 goto out; 2999 } else { 3000 ret = 0; 3001 } 3002 } 3003 3004 reserve_space: 3005 if (alloc_start < alloc_end) { 3006 struct extent_state *cached_state = NULL; 3007 const u64 lockstart = alloc_start; 3008 const u64 lockend = alloc_end - 1; 3009 3010 bytes_to_reserve = alloc_end - alloc_start; 3011 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3012 bytes_to_reserve); 3013 if (ret < 0) 3014 goto out; 3015 space_reserved = true; 3016 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3017 &cached_state); 3018 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3019 alloc_start, bytes_to_reserve); 3020 if (ret) { 3021 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3022 lockend, &cached_state); 3023 goto out; 3024 } 3025 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3026 alloc_end - alloc_start, 3027 i_blocksize(inode), 3028 offset + len, &alloc_hint); 3029 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3030 &cached_state); 3031 /* btrfs_prealloc_file_range releases reserved space on error */ 3032 if (ret) { 3033 space_reserved = false; 3034 goto out; 3035 } 3036 } 3037 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3038 out: 3039 if (ret && space_reserved) 3040 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3041 alloc_start, bytes_to_reserve); 3042 extent_changeset_free(data_reserved); 3043 3044 return ret; 3045 } 3046 btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3047 static long btrfs_fallocate(struct file *file, int mode, 3048 loff_t offset, loff_t len) 3049 { 3050 struct inode *inode = file_inode(file); 3051 struct extent_state *cached_state = NULL; 3052 struct extent_changeset *data_reserved = NULL; 3053 struct falloc_range *range; 3054 struct falloc_range *tmp; 3055 LIST_HEAD(reserve_list); 3056 u64 cur_offset; 3057 u64 last_byte; 3058 u64 alloc_start; 3059 u64 alloc_end; 3060 u64 alloc_hint = 0; 3061 u64 locked_end; 3062 u64 actual_end = 0; 3063 u64 data_space_needed = 0; 3064 u64 data_space_reserved = 0; 3065 u64 qgroup_reserved = 0; 3066 struct extent_map *em; 3067 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3068 int ret; 3069 3070 /* Do not allow fallocate in ZONED mode */ 3071 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3072 return -EOPNOTSUPP; 3073 3074 alloc_start = round_down(offset, blocksize); 3075 alloc_end = round_up(offset + len, blocksize); 3076 cur_offset = alloc_start; 3077 3078 /* Make sure we aren't being give some crap mode */ 3079 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3080 FALLOC_FL_ZERO_RANGE)) 3081 return -EOPNOTSUPP; 3082 3083 if (mode & FALLOC_FL_PUNCH_HOLE) 3084 return btrfs_punch_hole(file, offset, len); 3085 3086 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3087 3088 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3089 ret = inode_newsize_ok(inode, offset + len); 3090 if (ret) 3091 goto out; 3092 } 3093 3094 ret = file_modified(file); 3095 if (ret) 3096 goto out; 3097 3098 /* 3099 * TODO: Move these two operations after we have checked 3100 * accurate reserved space, or fallocate can still fail but 3101 * with page truncated or size expanded. 3102 * 3103 * But that's a minor problem and won't do much harm BTW. 3104 */ 3105 if (alloc_start > inode->i_size) { 3106 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3107 alloc_start); 3108 if (ret) 3109 goto out; 3110 } else if (offset + len > inode->i_size) { 3111 /* 3112 * If we are fallocating from the end of the file onward we 3113 * need to zero out the end of the block if i_size lands in the 3114 * middle of a block. 3115 */ 3116 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3117 if (ret) 3118 goto out; 3119 } 3120 3121 /* 3122 * We have locked the inode at the VFS level (in exclusive mode) and we 3123 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3124 * locking the file range, flush all dealloc in the range and wait for 3125 * all ordered extents in the range to complete. After this we can lock 3126 * the file range and, due to the previous locking we did, we know there 3127 * can't be more delalloc or ordered extents in the range. 3128 */ 3129 ret = btrfs_wait_ordered_range(inode, alloc_start, 3130 alloc_end - alloc_start); 3131 if (ret) 3132 goto out; 3133 3134 if (mode & FALLOC_FL_ZERO_RANGE) { 3135 ret = btrfs_zero_range(inode, offset, len, mode); 3136 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3137 return ret; 3138 } 3139 3140 locked_end = alloc_end - 1; 3141 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3142 &cached_state); 3143 3144 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3145 3146 /* First, check if we exceed the qgroup limit */ 3147 while (cur_offset < alloc_end) { 3148 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3149 alloc_end - cur_offset); 3150 if (IS_ERR(em)) { 3151 ret = PTR_ERR(em); 3152 break; 3153 } 3154 last_byte = min(extent_map_end(em), alloc_end); 3155 actual_end = min_t(u64, extent_map_end(em), offset + len); 3156 last_byte = ALIGN(last_byte, blocksize); 3157 if (em->block_start == EXTENT_MAP_HOLE || 3158 (cur_offset >= inode->i_size && 3159 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3160 const u64 range_len = last_byte - cur_offset; 3161 3162 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3163 if (ret < 0) { 3164 free_extent_map(em); 3165 break; 3166 } 3167 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3168 &data_reserved, cur_offset, range_len); 3169 if (ret < 0) { 3170 free_extent_map(em); 3171 break; 3172 } 3173 qgroup_reserved += range_len; 3174 data_space_needed += range_len; 3175 } 3176 free_extent_map(em); 3177 cur_offset = last_byte; 3178 } 3179 3180 if (!ret && data_space_needed > 0) { 3181 /* 3182 * We are safe to reserve space here as we can't have delalloc 3183 * in the range, see above. 3184 */ 3185 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3186 data_space_needed); 3187 if (!ret) 3188 data_space_reserved = data_space_needed; 3189 } 3190 3191 /* 3192 * If ret is still 0, means we're OK to fallocate. 3193 * Or just cleanup the list and exit. 3194 */ 3195 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3196 if (!ret) { 3197 ret = btrfs_prealloc_file_range(inode, mode, 3198 range->start, 3199 range->len, i_blocksize(inode), 3200 offset + len, &alloc_hint); 3201 /* 3202 * btrfs_prealloc_file_range() releases space even 3203 * if it returns an error. 3204 */ 3205 data_space_reserved -= range->len; 3206 qgroup_reserved -= range->len; 3207 } else if (data_space_reserved > 0) { 3208 btrfs_free_reserved_data_space(BTRFS_I(inode), 3209 data_reserved, range->start, 3210 range->len); 3211 data_space_reserved -= range->len; 3212 qgroup_reserved -= range->len; 3213 } else if (qgroup_reserved > 0) { 3214 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3215 range->start, range->len, NULL); 3216 qgroup_reserved -= range->len; 3217 } 3218 list_del(&range->list); 3219 kfree(range); 3220 } 3221 if (ret < 0) 3222 goto out_unlock; 3223 3224 /* 3225 * We didn't need to allocate any more space, but we still extended the 3226 * size of the file so we need to update i_size and the inode item. 3227 */ 3228 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3229 out_unlock: 3230 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3231 &cached_state); 3232 out: 3233 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3234 extent_changeset_free(data_reserved); 3235 return ret; 3236 } 3237 3238 /* 3239 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3240 * that has unflushed and/or flushing delalloc. There might be other adjacent 3241 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3242 * looping while it gets adjacent subranges, and merging them together. 3243 */ find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3244 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3245 struct extent_state **cached_state, 3246 bool *search_io_tree, 3247 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3248 { 3249 u64 len = end + 1 - start; 3250 u64 delalloc_len = 0; 3251 struct btrfs_ordered_extent *oe; 3252 u64 oe_start; 3253 u64 oe_end; 3254 3255 /* 3256 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3257 * means we have delalloc (dirty pages) for which writeback has not 3258 * started yet. 3259 */ 3260 if (*search_io_tree) { 3261 spin_lock(&inode->lock); 3262 if (inode->delalloc_bytes > 0) { 3263 spin_unlock(&inode->lock); 3264 *delalloc_start_ret = start; 3265 delalloc_len = count_range_bits(&inode->io_tree, 3266 delalloc_start_ret, end, 3267 len, EXTENT_DELALLOC, 1, 3268 cached_state); 3269 } else { 3270 spin_unlock(&inode->lock); 3271 } 3272 } 3273 3274 if (delalloc_len > 0) { 3275 /* 3276 * If delalloc was found then *delalloc_start_ret has a sector size 3277 * aligned value (rounded down). 3278 */ 3279 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3280 3281 if (*delalloc_start_ret == start) { 3282 /* Delalloc for the whole range, nothing more to do. */ 3283 if (*delalloc_end_ret == end) 3284 return true; 3285 /* Else trim our search range for ordered extents. */ 3286 start = *delalloc_end_ret + 1; 3287 len = end + 1 - start; 3288 } 3289 } else { 3290 /* No delalloc, future calls don't need to search again. */ 3291 *search_io_tree = false; 3292 } 3293 3294 /* 3295 * Now also check if there's any ordered extent in the range. 3296 * We do this because: 3297 * 3298 * 1) When delalloc is flushed, the file range is locked, we clear the 3299 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3300 * an ordered extent for the write. So we might just have been called 3301 * after delalloc is flushed and before the ordered extent completes 3302 * and inserts the new file extent item in the subvolume's btree; 3303 * 3304 * 2) We may have an ordered extent created by flushing delalloc for a 3305 * subrange that starts before the subrange we found marked with 3306 * EXTENT_DELALLOC in the io tree. 3307 * 3308 * We could also use the extent map tree to find such delalloc that is 3309 * being flushed, but using the ordered extents tree is more efficient 3310 * because it's usually much smaller as ordered extents are removed from 3311 * the tree once they complete. With the extent maps, we mau have them 3312 * in the extent map tree for a very long time, and they were either 3313 * created by previous writes or loaded by read operations. 3314 */ 3315 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3316 if (!oe) 3317 return (delalloc_len > 0); 3318 3319 /* The ordered extent may span beyond our search range. */ 3320 oe_start = max(oe->file_offset, start); 3321 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3322 3323 btrfs_put_ordered_extent(oe); 3324 3325 /* Don't have unflushed delalloc, return the ordered extent range. */ 3326 if (delalloc_len == 0) { 3327 *delalloc_start_ret = oe_start; 3328 *delalloc_end_ret = oe_end; 3329 return true; 3330 } 3331 3332 /* 3333 * We have both unflushed delalloc (io_tree) and an ordered extent. 3334 * If the ranges are adjacent returned a combined range, otherwise 3335 * return the leftmost range. 3336 */ 3337 if (oe_start < *delalloc_start_ret) { 3338 if (oe_end < *delalloc_start_ret) 3339 *delalloc_end_ret = oe_end; 3340 *delalloc_start_ret = oe_start; 3341 } else if (*delalloc_end_ret + 1 == oe_start) { 3342 *delalloc_end_ret = oe_end; 3343 } 3344 3345 return true; 3346 } 3347 3348 /* 3349 * Check if there's delalloc in a given range. 3350 * 3351 * @inode: The inode. 3352 * @start: The start offset of the range. It does not need to be 3353 * sector size aligned. 3354 * @end: The end offset (inclusive value) of the search range. 3355 * It does not need to be sector size aligned. 3356 * @cached_state: Extent state record used for speeding up delalloc 3357 * searches in the inode's io_tree. Can be NULL. 3358 * @delalloc_start_ret: Output argument, set to the start offset of the 3359 * subrange found with delalloc (may not be sector size 3360 * aligned). 3361 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3362 * of the subrange found with delalloc. 3363 * 3364 * Returns true if a subrange with delalloc is found within the given range, and 3365 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3366 * end offsets of the subrange. 3367 */ btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3368 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3369 struct extent_state **cached_state, 3370 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3371 { 3372 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3373 u64 prev_delalloc_end = 0; 3374 bool search_io_tree = true; 3375 bool ret = false; 3376 3377 while (cur_offset <= end) { 3378 u64 delalloc_start; 3379 u64 delalloc_end; 3380 bool delalloc; 3381 3382 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3383 cached_state, &search_io_tree, 3384 &delalloc_start, 3385 &delalloc_end); 3386 if (!delalloc) 3387 break; 3388 3389 if (prev_delalloc_end == 0) { 3390 /* First subrange found. */ 3391 *delalloc_start_ret = max(delalloc_start, start); 3392 *delalloc_end_ret = delalloc_end; 3393 ret = true; 3394 } else if (delalloc_start == prev_delalloc_end + 1) { 3395 /* Subrange adjacent to the previous one, merge them. */ 3396 *delalloc_end_ret = delalloc_end; 3397 } else { 3398 /* Subrange not adjacent to the previous one, exit. */ 3399 break; 3400 } 3401 3402 prev_delalloc_end = delalloc_end; 3403 cur_offset = delalloc_end + 1; 3404 cond_resched(); 3405 } 3406 3407 return ret; 3408 } 3409 3410 /* 3411 * Check if there's a hole or delalloc range in a range representing a hole (or 3412 * prealloc extent) found in the inode's subvolume btree. 3413 * 3414 * @inode: The inode. 3415 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3416 * @start: Start offset of the hole region. It does not need to be sector 3417 * size aligned. 3418 * @end: End offset (inclusive value) of the hole region. It does not 3419 * need to be sector size aligned. 3420 * @start_ret: Return parameter, used to set the start of the subrange in the 3421 * hole that matches the search criteria (seek mode), if such 3422 * subrange is found (return value of the function is true). 3423 * The value returned here may not be sector size aligned. 3424 * 3425 * Returns true if a subrange matching the given seek mode is found, and if one 3426 * is found, it updates @start_ret with the start of the subrange. 3427 */ find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3428 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3429 struct extent_state **cached_state, 3430 u64 start, u64 end, u64 *start_ret) 3431 { 3432 u64 delalloc_start; 3433 u64 delalloc_end; 3434 bool delalloc; 3435 3436 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3437 &delalloc_start, &delalloc_end); 3438 if (delalloc && whence == SEEK_DATA) { 3439 *start_ret = delalloc_start; 3440 return true; 3441 } 3442 3443 if (delalloc && whence == SEEK_HOLE) { 3444 /* 3445 * We found delalloc but it starts after out start offset. So we 3446 * have a hole between our start offset and the delalloc start. 3447 */ 3448 if (start < delalloc_start) { 3449 *start_ret = start; 3450 return true; 3451 } 3452 /* 3453 * Delalloc range starts at our start offset. 3454 * If the delalloc range's length is smaller than our range, 3455 * then it means we have a hole that starts where the delalloc 3456 * subrange ends. 3457 */ 3458 if (delalloc_end < end) { 3459 *start_ret = delalloc_end + 1; 3460 return true; 3461 } 3462 3463 /* There's delalloc for the whole range. */ 3464 return false; 3465 } 3466 3467 if (!delalloc && whence == SEEK_HOLE) { 3468 *start_ret = start; 3469 return true; 3470 } 3471 3472 /* 3473 * No delalloc in the range and we are seeking for data. The caller has 3474 * to iterate to the next extent item in the subvolume btree. 3475 */ 3476 return false; 3477 } 3478 find_desired_extent(struct file * file,loff_t offset,int whence)3479 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3480 { 3481 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3482 struct btrfs_file_private *private; 3483 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3484 struct extent_state *cached_state = NULL; 3485 struct extent_state **delalloc_cached_state; 3486 const loff_t i_size = i_size_read(&inode->vfs_inode); 3487 const u64 ino = btrfs_ino(inode); 3488 struct btrfs_root *root = inode->root; 3489 struct btrfs_path *path; 3490 struct btrfs_key key; 3491 u64 last_extent_end; 3492 u64 lockstart; 3493 u64 lockend; 3494 u64 start; 3495 int ret; 3496 bool found = false; 3497 3498 if (i_size == 0 || offset >= i_size) 3499 return -ENXIO; 3500 3501 /* 3502 * Quick path. If the inode has no prealloc extents and its number of 3503 * bytes used matches its i_size, then it can not have holes. 3504 */ 3505 if (whence == SEEK_HOLE && 3506 !(inode->flags & BTRFS_INODE_PREALLOC) && 3507 inode_get_bytes(&inode->vfs_inode) == i_size) 3508 return i_size; 3509 3510 spin_lock(&inode->lock); 3511 private = file->private_data; 3512 spin_unlock(&inode->lock); 3513 3514 if (private && private->owner_task != current) { 3515 /* 3516 * Not allocated by us, don't use it as its cached state is used 3517 * by the task that allocated it and we don't want neither to 3518 * mess with it nor get incorrect results because it reflects an 3519 * invalid state for the current task. 3520 */ 3521 private = NULL; 3522 } else if (!private) { 3523 private = kzalloc(sizeof(*private), GFP_KERNEL); 3524 /* 3525 * No worries if memory allocation failed. 3526 * The private structure is used only for speeding up multiple 3527 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3528 * so everything will still be correct. 3529 */ 3530 if (private) { 3531 bool free = false; 3532 3533 private->owner_task = current; 3534 3535 spin_lock(&inode->lock); 3536 if (file->private_data) 3537 free = true; 3538 else 3539 file->private_data = private; 3540 spin_unlock(&inode->lock); 3541 3542 if (free) { 3543 kfree(private); 3544 private = NULL; 3545 } 3546 } 3547 } 3548 3549 if (private) 3550 delalloc_cached_state = &private->llseek_cached_state; 3551 else 3552 delalloc_cached_state = NULL; 3553 3554 /* 3555 * offset can be negative, in this case we start finding DATA/HOLE from 3556 * the very start of the file. 3557 */ 3558 start = max_t(loff_t, 0, offset); 3559 3560 lockstart = round_down(start, fs_info->sectorsize); 3561 lockend = round_up(i_size, fs_info->sectorsize); 3562 if (lockend <= lockstart) 3563 lockend = lockstart + fs_info->sectorsize; 3564 lockend--; 3565 3566 path = btrfs_alloc_path(); 3567 if (!path) 3568 return -ENOMEM; 3569 path->reada = READA_FORWARD; 3570 3571 key.objectid = ino; 3572 key.type = BTRFS_EXTENT_DATA_KEY; 3573 key.offset = start; 3574 3575 last_extent_end = lockstart; 3576 3577 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3578 3579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3580 if (ret < 0) { 3581 goto out; 3582 } else if (ret > 0 && path->slots[0] > 0) { 3583 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3584 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3585 path->slots[0]--; 3586 } 3587 3588 while (start < i_size) { 3589 struct extent_buffer *leaf = path->nodes[0]; 3590 struct btrfs_file_extent_item *extent; 3591 u64 extent_end; 3592 u8 type; 3593 3594 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3595 ret = btrfs_next_leaf(root, path); 3596 if (ret < 0) 3597 goto out; 3598 else if (ret > 0) 3599 break; 3600 3601 leaf = path->nodes[0]; 3602 } 3603 3604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3605 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3606 break; 3607 3608 extent_end = btrfs_file_extent_end(path); 3609 3610 /* 3611 * In the first iteration we may have a slot that points to an 3612 * extent that ends before our start offset, so skip it. 3613 */ 3614 if (extent_end <= start) { 3615 path->slots[0]++; 3616 continue; 3617 } 3618 3619 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3620 if (last_extent_end < key.offset) { 3621 u64 search_start = last_extent_end; 3622 u64 found_start; 3623 3624 /* 3625 * First iteration, @start matches @offset and it's 3626 * within the hole. 3627 */ 3628 if (start == offset) 3629 search_start = offset; 3630 3631 found = find_desired_extent_in_hole(inode, whence, 3632 delalloc_cached_state, 3633 search_start, 3634 key.offset - 1, 3635 &found_start); 3636 if (found) { 3637 start = found_start; 3638 break; 3639 } 3640 /* 3641 * Didn't find data or a hole (due to delalloc) in the 3642 * implicit hole range, so need to analyze the extent. 3643 */ 3644 } 3645 3646 extent = btrfs_item_ptr(leaf, path->slots[0], 3647 struct btrfs_file_extent_item); 3648 type = btrfs_file_extent_type(leaf, extent); 3649 3650 /* 3651 * Can't access the extent's disk_bytenr field if this is an 3652 * inline extent, since at that offset, it's where the extent 3653 * data starts. 3654 */ 3655 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3656 (type == BTRFS_FILE_EXTENT_REG && 3657 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3658 /* 3659 * Explicit hole or prealloc extent, search for delalloc. 3660 * A prealloc extent is treated like a hole. 3661 */ 3662 u64 search_start = key.offset; 3663 u64 found_start; 3664 3665 /* 3666 * First iteration, @start matches @offset and it's 3667 * within the hole. 3668 */ 3669 if (start == offset) 3670 search_start = offset; 3671 3672 found = find_desired_extent_in_hole(inode, whence, 3673 delalloc_cached_state, 3674 search_start, 3675 extent_end - 1, 3676 &found_start); 3677 if (found) { 3678 start = found_start; 3679 break; 3680 } 3681 /* 3682 * Didn't find data or a hole (due to delalloc) in the 3683 * implicit hole range, so need to analyze the next 3684 * extent item. 3685 */ 3686 } else { 3687 /* 3688 * Found a regular or inline extent. 3689 * If we are seeking for data, adjust the start offset 3690 * and stop, we're done. 3691 */ 3692 if (whence == SEEK_DATA) { 3693 start = max_t(u64, key.offset, offset); 3694 found = true; 3695 break; 3696 } 3697 /* 3698 * Else, we are seeking for a hole, check the next file 3699 * extent item. 3700 */ 3701 } 3702 3703 start = extent_end; 3704 last_extent_end = extent_end; 3705 path->slots[0]++; 3706 if (fatal_signal_pending(current)) { 3707 ret = -EINTR; 3708 goto out; 3709 } 3710 cond_resched(); 3711 } 3712 3713 /* We have an implicit hole from the last extent found up to i_size. */ 3714 if (!found && start < i_size) { 3715 found = find_desired_extent_in_hole(inode, whence, 3716 delalloc_cached_state, start, 3717 i_size - 1, &start); 3718 if (!found) 3719 start = i_size; 3720 } 3721 3722 out: 3723 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3724 btrfs_free_path(path); 3725 3726 if (ret < 0) 3727 return ret; 3728 3729 if (whence == SEEK_DATA && start >= i_size) 3730 return -ENXIO; 3731 3732 return min_t(loff_t, start, i_size); 3733 } 3734 btrfs_file_llseek(struct file * file,loff_t offset,int whence)3735 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3736 { 3737 struct inode *inode = file->f_mapping->host; 3738 3739 switch (whence) { 3740 default: 3741 return generic_file_llseek(file, offset, whence); 3742 case SEEK_DATA: 3743 case SEEK_HOLE: 3744 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3745 offset = find_desired_extent(file, offset, whence); 3746 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3747 break; 3748 } 3749 3750 if (offset < 0) 3751 return offset; 3752 3753 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3754 } 3755 btrfs_file_open(struct inode * inode,struct file * filp)3756 static int btrfs_file_open(struct inode *inode, struct file *filp) 3757 { 3758 int ret; 3759 3760 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3761 FMODE_CAN_ODIRECT; 3762 3763 ret = fsverity_file_open(inode, filp); 3764 if (ret) 3765 return ret; 3766 return generic_file_open(inode, filp); 3767 } 3768 check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3769 static int check_direct_read(struct btrfs_fs_info *fs_info, 3770 const struct iov_iter *iter, loff_t offset) 3771 { 3772 int ret; 3773 int i, seg; 3774 3775 ret = check_direct_IO(fs_info, iter, offset); 3776 if (ret < 0) 3777 return ret; 3778 3779 if (!iter_is_iovec(iter)) 3780 return 0; 3781 3782 for (seg = 0; seg < iter->nr_segs; seg++) { 3783 for (i = seg + 1; i < iter->nr_segs; i++) { 3784 const struct iovec *iov1 = iter_iov(iter) + seg; 3785 const struct iovec *iov2 = iter_iov(iter) + i; 3786 3787 if (iov1->iov_base == iov2->iov_base) 3788 return -EINVAL; 3789 } 3790 } 3791 return 0; 3792 } 3793 btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3794 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3795 { 3796 struct inode *inode = file_inode(iocb->ki_filp); 3797 size_t prev_left = 0; 3798 ssize_t read = 0; 3799 ssize_t ret; 3800 3801 if (fsverity_active(inode)) 3802 return 0; 3803 3804 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3805 return 0; 3806 3807 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3808 again: 3809 /* 3810 * This is similar to what we do for direct IO writes, see the comment 3811 * at btrfs_direct_write(), but we also disable page faults in addition 3812 * to disabling them only at the iov_iter level. This is because when 3813 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3814 * which can still trigger page fault ins despite having set ->nofault 3815 * to true of our 'to' iov_iter. 3816 * 3817 * The difference to direct IO writes is that we deadlock when trying 3818 * to lock the extent range in the inode's tree during he page reads 3819 * triggered by the fault in (while for writes it is due to waiting for 3820 * our own ordered extent). This is because for direct IO reads, 3821 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3822 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3823 */ 3824 pagefault_disable(); 3825 to->nofault = true; 3826 ret = btrfs_dio_read(iocb, to, read); 3827 to->nofault = false; 3828 pagefault_enable(); 3829 3830 /* No increment (+=) because iomap returns a cumulative value. */ 3831 if (ret > 0) 3832 read = ret; 3833 3834 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3835 const size_t left = iov_iter_count(to); 3836 3837 if (left == prev_left) { 3838 /* 3839 * We didn't make any progress since the last attempt, 3840 * fallback to a buffered read for the remainder of the 3841 * range. This is just to avoid any possibility of looping 3842 * for too long. 3843 */ 3844 ret = read; 3845 } else { 3846 /* 3847 * We made some progress since the last retry or this is 3848 * the first time we are retrying. Fault in as many pages 3849 * as possible and retry. 3850 */ 3851 fault_in_iov_iter_writeable(to, left); 3852 prev_left = left; 3853 goto again; 3854 } 3855 } 3856 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3857 return ret < 0 ? ret : read; 3858 } 3859 btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3860 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3861 { 3862 ssize_t ret = 0; 3863 3864 if (iocb->ki_flags & IOCB_DIRECT) { 3865 ret = btrfs_direct_read(iocb, to); 3866 if (ret < 0 || !iov_iter_count(to) || 3867 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3868 return ret; 3869 } 3870 3871 return filemap_read(iocb, to, ret); 3872 } 3873 3874 const struct file_operations btrfs_file_operations = { 3875 .llseek = btrfs_file_llseek, 3876 .read_iter = btrfs_file_read_iter, 3877 .splice_read = filemap_splice_read, 3878 .write_iter = btrfs_file_write_iter, 3879 .splice_write = iter_file_splice_write, 3880 .mmap = btrfs_file_mmap, 3881 .open = btrfs_file_open, 3882 .release = btrfs_release_file, 3883 .get_unmapped_area = thp_get_unmapped_area, 3884 .fsync = btrfs_sync_file, 3885 .fallocate = btrfs_fallocate, 3886 .unlocked_ioctl = btrfs_ioctl, 3887 #ifdef CONFIG_COMPAT 3888 .compat_ioctl = btrfs_compat_ioctl, 3889 #endif 3890 .remap_file_range = btrfs_remap_file_range, 3891 }; 3892 btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3893 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3894 { 3895 int ret; 3896 3897 /* 3898 * So with compression we will find and lock a dirty page and clear the 3899 * first one as dirty, setup an async extent, and immediately return 3900 * with the entire range locked but with nobody actually marked with 3901 * writeback. So we can't just filemap_write_and_wait_range() and 3902 * expect it to work since it will just kick off a thread to do the 3903 * actual work. So we need to call filemap_fdatawrite_range _again_ 3904 * since it will wait on the page lock, which won't be unlocked until 3905 * after the pages have been marked as writeback and so we're good to go 3906 * from there. We have to do this otherwise we'll miss the ordered 3907 * extents and that results in badness. Please Josef, do not think you 3908 * know better and pull this out at some point in the future, it is 3909 * right and you are wrong. 3910 */ 3911 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3912 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3913 &BTRFS_I(inode)->runtime_flags)) 3914 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3915 3916 return ret; 3917 } 3918