xref: /openbmc/linux/fs/btrfs/file.c (revision fd5e9fccbd504c5179ab57ff695c610bca8809d6)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/fs.h>
7  #include <linux/pagemap.h>
8  #include <linux/time.h>
9  #include <linux/init.h>
10  #include <linux/string.h>
11  #include <linux/backing-dev.h>
12  #include <linux/falloc.h>
13  #include <linux/writeback.h>
14  #include <linux/compat.h>
15  #include <linux/slab.h>
16  #include <linux/btrfs.h>
17  #include <linux/uio.h>
18  #include <linux/iversion.h>
19  #include <linux/fsverity.h>
20  #include "ctree.h"
21  #include "disk-io.h"
22  #include "transaction.h"
23  #include "btrfs_inode.h"
24  #include "print-tree.h"
25  #include "tree-log.h"
26  #include "locking.h"
27  #include "volumes.h"
28  #include "qgroup.h"
29  #include "compression.h"
30  #include "delalloc-space.h"
31  #include "reflink.h"
32  #include "subpage.h"
33  #include "fs.h"
34  #include "accessors.h"
35  #include "extent-tree.h"
36  #include "file-item.h"
37  #include "ioctl.h"
38  #include "file.h"
39  #include "super.h"
40  
41  /* simple helper to fault in pages and copy.  This should go away
42   * and be replaced with calls into generic code.
43   */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)44  static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45  					 struct page **prepared_pages,
46  					 struct iov_iter *i)
47  {
48  	size_t copied = 0;
49  	size_t total_copied = 0;
50  	int pg = 0;
51  	int offset = offset_in_page(pos);
52  
53  	while (write_bytes > 0) {
54  		size_t count = min_t(size_t,
55  				     PAGE_SIZE - offset, write_bytes);
56  		struct page *page = prepared_pages[pg];
57  		/*
58  		 * Copy data from userspace to the current page
59  		 */
60  		copied = copy_page_from_iter_atomic(page, offset, count, i);
61  
62  		/* Flush processor's dcache for this page */
63  		flush_dcache_page(page);
64  
65  		/*
66  		 * if we get a partial write, we can end up with
67  		 * partially up to date pages.  These add
68  		 * a lot of complexity, so make sure they don't
69  		 * happen by forcing this copy to be retried.
70  		 *
71  		 * The rest of the btrfs_file_write code will fall
72  		 * back to page at a time copies after we return 0.
73  		 */
74  		if (unlikely(copied < count)) {
75  			if (!PageUptodate(page)) {
76  				iov_iter_revert(i, copied);
77  				copied = 0;
78  			}
79  			if (!copied)
80  				break;
81  		}
82  
83  		write_bytes -= copied;
84  		total_copied += copied;
85  		offset += copied;
86  		if (offset == PAGE_SIZE) {
87  			pg++;
88  			offset = 0;
89  		}
90  	}
91  	return total_copied;
92  }
93  
94  /*
95   * unlocks pages after btrfs_file_write is done with them
96   */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)97  static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98  			     struct page **pages, size_t num_pages,
99  			     u64 pos, u64 copied)
100  {
101  	size_t i;
102  	u64 block_start = round_down(pos, fs_info->sectorsize);
103  	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104  
105  	ASSERT(block_len <= U32_MAX);
106  	for (i = 0; i < num_pages; i++) {
107  		/* page checked is some magic around finding pages that
108  		 * have been modified without going through btrfs_set_page_dirty
109  		 * clear it here. There should be no need to mark the pages
110  		 * accessed as prepare_pages should have marked them accessed
111  		 * in prepare_pages via find_or_create_page()
112  		 */
113  		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114  					       block_len);
115  		unlock_page(pages[i]);
116  		put_page(pages[i]);
117  	}
118  }
119  
120  /*
121   * After btrfs_copy_from_user(), update the following things for delalloc:
122   * - Mark newly dirtied pages as DELALLOC in the io tree.
123   *   Used to advise which range is to be written back.
124   * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125   * - Update inode size for past EOF write
126   */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)127  int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128  		      size_t num_pages, loff_t pos, size_t write_bytes,
129  		      struct extent_state **cached, bool noreserve)
130  {
131  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
132  	int err = 0;
133  	int i;
134  	u64 num_bytes;
135  	u64 start_pos;
136  	u64 end_of_last_block;
137  	u64 end_pos = pos + write_bytes;
138  	loff_t isize = i_size_read(&inode->vfs_inode);
139  	unsigned int extra_bits = 0;
140  
141  	if (write_bytes == 0)
142  		return 0;
143  
144  	if (noreserve)
145  		extra_bits |= EXTENT_NORESERVE;
146  
147  	start_pos = round_down(pos, fs_info->sectorsize);
148  	num_bytes = round_up(write_bytes + pos - start_pos,
149  			     fs_info->sectorsize);
150  	ASSERT(num_bytes <= U32_MAX);
151  
152  	end_of_last_block = start_pos + num_bytes - 1;
153  
154  	/*
155  	 * The pages may have already been dirty, clear out old accounting so
156  	 * we can set things up properly
157  	 */
158  	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159  			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160  			 cached);
161  
162  	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163  					extra_bits, cached);
164  	if (err)
165  		return err;
166  
167  	for (i = 0; i < num_pages; i++) {
168  		struct page *p = pages[i];
169  
170  		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171  		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172  		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173  	}
174  
175  	/*
176  	 * we've only changed i_size in ram, and we haven't updated
177  	 * the disk i_size.  There is no need to log the inode
178  	 * at this time.
179  	 */
180  	if (end_pos > isize)
181  		i_size_write(&inode->vfs_inode, end_pos);
182  	return 0;
183  }
184  
185  /*
186   * this is very complex, but the basic idea is to drop all extents
187   * in the range start - end.  hint_block is filled in with a block number
188   * that would be a good hint to the block allocator for this file.
189   *
190   * If an extent intersects the range but is not entirely inside the range
191   * it is either truncated or split.  Anything entirely inside the range
192   * is deleted from the tree.
193   *
194   * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195   * to deal with that. We set the field 'bytes_found' of the arguments structure
196   * with the number of allocated bytes found in the target range, so that the
197   * caller can update the inode's number of bytes in an atomic way when
198   * replacing extents in a range to avoid races with stat(2).
199   */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)200  int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201  		       struct btrfs_root *root, struct btrfs_inode *inode,
202  		       struct btrfs_drop_extents_args *args)
203  {
204  	struct btrfs_fs_info *fs_info = root->fs_info;
205  	struct extent_buffer *leaf;
206  	struct btrfs_file_extent_item *fi;
207  	struct btrfs_ref ref = { 0 };
208  	struct btrfs_key key;
209  	struct btrfs_key new_key;
210  	u64 ino = btrfs_ino(inode);
211  	u64 search_start = args->start;
212  	u64 disk_bytenr = 0;
213  	u64 num_bytes = 0;
214  	u64 extent_offset = 0;
215  	u64 extent_end = 0;
216  	u64 last_end = args->start;
217  	int del_nr = 0;
218  	int del_slot = 0;
219  	int extent_type;
220  	int recow;
221  	int ret;
222  	int modify_tree = -1;
223  	int update_refs;
224  	int found = 0;
225  	struct btrfs_path *path = args->path;
226  
227  	args->bytes_found = 0;
228  	args->extent_inserted = false;
229  
230  	/* Must always have a path if ->replace_extent is true */
231  	ASSERT(!(args->replace_extent && !args->path));
232  
233  	if (!path) {
234  		path = btrfs_alloc_path();
235  		if (!path) {
236  			ret = -ENOMEM;
237  			goto out;
238  		}
239  	}
240  
241  	if (args->drop_cache)
242  		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243  
244  	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
245  		modify_tree = 0;
246  
247  	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248  	while (1) {
249  		recow = 0;
250  		ret = btrfs_lookup_file_extent(trans, root, path, ino,
251  					       search_start, modify_tree);
252  		if (ret < 0)
253  			break;
254  		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255  			leaf = path->nodes[0];
256  			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257  			if (key.objectid == ino &&
258  			    key.type == BTRFS_EXTENT_DATA_KEY)
259  				path->slots[0]--;
260  		}
261  		ret = 0;
262  next_slot:
263  		leaf = path->nodes[0];
264  		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265  			BUG_ON(del_nr > 0);
266  			ret = btrfs_next_leaf(root, path);
267  			if (ret < 0)
268  				break;
269  			if (ret > 0) {
270  				ret = 0;
271  				break;
272  			}
273  			leaf = path->nodes[0];
274  			recow = 1;
275  		}
276  
277  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278  
279  		if (key.objectid > ino)
280  			break;
281  		if (WARN_ON_ONCE(key.objectid < ino) ||
282  		    key.type < BTRFS_EXTENT_DATA_KEY) {
283  			ASSERT(del_nr == 0);
284  			path->slots[0]++;
285  			goto next_slot;
286  		}
287  		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288  			break;
289  
290  		fi = btrfs_item_ptr(leaf, path->slots[0],
291  				    struct btrfs_file_extent_item);
292  		extent_type = btrfs_file_extent_type(leaf, fi);
293  
294  		if (extent_type == BTRFS_FILE_EXTENT_REG ||
295  		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296  			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297  			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298  			extent_offset = btrfs_file_extent_offset(leaf, fi);
299  			extent_end = key.offset +
300  				btrfs_file_extent_num_bytes(leaf, fi);
301  		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302  			extent_end = key.offset +
303  				btrfs_file_extent_ram_bytes(leaf, fi);
304  		} else {
305  			/* can't happen */
306  			BUG();
307  		}
308  
309  		/*
310  		 * Don't skip extent items representing 0 byte lengths. They
311  		 * used to be created (bug) if while punching holes we hit
312  		 * -ENOSPC condition. So if we find one here, just ensure we
313  		 * delete it, otherwise we would insert a new file extent item
314  		 * with the same key (offset) as that 0 bytes length file
315  		 * extent item in the call to setup_items_for_insert() later
316  		 * in this function.
317  		 */
318  		if (extent_end == key.offset && extent_end >= search_start) {
319  			last_end = extent_end;
320  			goto delete_extent_item;
321  		}
322  
323  		if (extent_end <= search_start) {
324  			path->slots[0]++;
325  			goto next_slot;
326  		}
327  
328  		found = 1;
329  		search_start = max(key.offset, args->start);
330  		if (recow || !modify_tree) {
331  			modify_tree = -1;
332  			btrfs_release_path(path);
333  			continue;
334  		}
335  
336  		/*
337  		 *     | - range to drop - |
338  		 *  | -------- extent -------- |
339  		 */
340  		if (args->start > key.offset && args->end < extent_end) {
341  			BUG_ON(del_nr > 0);
342  			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343  				ret = -EOPNOTSUPP;
344  				break;
345  			}
346  
347  			memcpy(&new_key, &key, sizeof(new_key));
348  			new_key.offset = args->start;
349  			ret = btrfs_duplicate_item(trans, root, path,
350  						   &new_key);
351  			if (ret == -EAGAIN) {
352  				btrfs_release_path(path);
353  				continue;
354  			}
355  			if (ret < 0)
356  				break;
357  
358  			leaf = path->nodes[0];
359  			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360  					    struct btrfs_file_extent_item);
361  			btrfs_set_file_extent_num_bytes(leaf, fi,
362  							args->start - key.offset);
363  
364  			fi = btrfs_item_ptr(leaf, path->slots[0],
365  					    struct btrfs_file_extent_item);
366  
367  			extent_offset += args->start - key.offset;
368  			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369  			btrfs_set_file_extent_num_bytes(leaf, fi,
370  							extent_end - args->start);
371  			btrfs_mark_buffer_dirty(trans, leaf);
372  
373  			if (update_refs && disk_bytenr > 0) {
374  				btrfs_init_generic_ref(&ref,
375  						BTRFS_ADD_DELAYED_REF,
376  						disk_bytenr, num_bytes, 0);
377  				btrfs_init_data_ref(&ref,
378  						root->root_key.objectid,
379  						new_key.objectid,
380  						args->start - extent_offset,
381  						0, false);
382  				ret = btrfs_inc_extent_ref(trans, &ref);
383  				if (ret) {
384  					btrfs_abort_transaction(trans, ret);
385  					break;
386  				}
387  			}
388  			key.offset = args->start;
389  		}
390  		/*
391  		 * From here on out we will have actually dropped something, so
392  		 * last_end can be updated.
393  		 */
394  		last_end = extent_end;
395  
396  		/*
397  		 *  | ---- range to drop ----- |
398  		 *      | -------- extent -------- |
399  		 */
400  		if (args->start <= key.offset && args->end < extent_end) {
401  			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402  				ret = -EOPNOTSUPP;
403  				break;
404  			}
405  
406  			memcpy(&new_key, &key, sizeof(new_key));
407  			new_key.offset = args->end;
408  			btrfs_set_item_key_safe(trans, path, &new_key);
409  
410  			extent_offset += args->end - key.offset;
411  			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412  			btrfs_set_file_extent_num_bytes(leaf, fi,
413  							extent_end - args->end);
414  			btrfs_mark_buffer_dirty(trans, leaf);
415  			if (update_refs && disk_bytenr > 0)
416  				args->bytes_found += args->end - key.offset;
417  			break;
418  		}
419  
420  		search_start = extent_end;
421  		/*
422  		 *       | ---- range to drop ----- |
423  		 *  | -------- extent -------- |
424  		 */
425  		if (args->start > key.offset && args->end >= extent_end) {
426  			BUG_ON(del_nr > 0);
427  			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428  				ret = -EOPNOTSUPP;
429  				break;
430  			}
431  
432  			btrfs_set_file_extent_num_bytes(leaf, fi,
433  							args->start - key.offset);
434  			btrfs_mark_buffer_dirty(trans, leaf);
435  			if (update_refs && disk_bytenr > 0)
436  				args->bytes_found += extent_end - args->start;
437  			if (args->end == extent_end)
438  				break;
439  
440  			path->slots[0]++;
441  			goto next_slot;
442  		}
443  
444  		/*
445  		 *  | ---- range to drop ----- |
446  		 *    | ------ extent ------ |
447  		 */
448  		if (args->start <= key.offset && args->end >= extent_end) {
449  delete_extent_item:
450  			if (del_nr == 0) {
451  				del_slot = path->slots[0];
452  				del_nr = 1;
453  			} else {
454  				BUG_ON(del_slot + del_nr != path->slots[0]);
455  				del_nr++;
456  			}
457  
458  			if (update_refs &&
459  			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
460  				args->bytes_found += extent_end - key.offset;
461  				extent_end = ALIGN(extent_end,
462  						   fs_info->sectorsize);
463  			} else if (update_refs && disk_bytenr > 0) {
464  				btrfs_init_generic_ref(&ref,
465  						BTRFS_DROP_DELAYED_REF,
466  						disk_bytenr, num_bytes, 0);
467  				btrfs_init_data_ref(&ref,
468  						root->root_key.objectid,
469  						key.objectid,
470  						key.offset - extent_offset, 0,
471  						false);
472  				ret = btrfs_free_extent(trans, &ref);
473  				if (ret) {
474  					btrfs_abort_transaction(trans, ret);
475  					break;
476  				}
477  				args->bytes_found += extent_end - key.offset;
478  			}
479  
480  			if (args->end == extent_end)
481  				break;
482  
483  			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484  				path->slots[0]++;
485  				goto next_slot;
486  			}
487  
488  			ret = btrfs_del_items(trans, root, path, del_slot,
489  					      del_nr);
490  			if (ret) {
491  				btrfs_abort_transaction(trans, ret);
492  				break;
493  			}
494  
495  			del_nr = 0;
496  			del_slot = 0;
497  
498  			btrfs_release_path(path);
499  			continue;
500  		}
501  
502  		BUG();
503  	}
504  
505  	if (!ret && del_nr > 0) {
506  		/*
507  		 * Set path->slots[0] to first slot, so that after the delete
508  		 * if items are move off from our leaf to its immediate left or
509  		 * right neighbor leafs, we end up with a correct and adjusted
510  		 * path->slots[0] for our insertion (if args->replace_extent).
511  		 */
512  		path->slots[0] = del_slot;
513  		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514  		if (ret)
515  			btrfs_abort_transaction(trans, ret);
516  	}
517  
518  	leaf = path->nodes[0];
519  	/*
520  	 * If btrfs_del_items() was called, it might have deleted a leaf, in
521  	 * which case it unlocked our path, so check path->locks[0] matches a
522  	 * write lock.
523  	 */
524  	if (!ret && args->replace_extent &&
525  	    path->locks[0] == BTRFS_WRITE_LOCK &&
526  	    btrfs_leaf_free_space(leaf) >=
527  	    sizeof(struct btrfs_item) + args->extent_item_size) {
528  
529  		key.objectid = ino;
530  		key.type = BTRFS_EXTENT_DATA_KEY;
531  		key.offset = args->start;
532  		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533  			struct btrfs_key slot_key;
534  
535  			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536  			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537  				path->slots[0]++;
538  		}
539  		btrfs_setup_item_for_insert(trans, root, path, &key,
540  					    args->extent_item_size);
541  		args->extent_inserted = true;
542  	}
543  
544  	if (!args->path)
545  		btrfs_free_path(path);
546  	else if (!args->extent_inserted)
547  		btrfs_release_path(path);
548  out:
549  	args->drop_end = found ? min(args->end, last_end) : args->end;
550  
551  	return ret;
552  }
553  
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)554  static int extent_mergeable(struct extent_buffer *leaf, int slot,
555  			    u64 objectid, u64 bytenr, u64 orig_offset,
556  			    u64 *start, u64 *end)
557  {
558  	struct btrfs_file_extent_item *fi;
559  	struct btrfs_key key;
560  	u64 extent_end;
561  
562  	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
563  		return 0;
564  
565  	btrfs_item_key_to_cpu(leaf, &key, slot);
566  	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
567  		return 0;
568  
569  	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
570  	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
571  	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
572  	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
573  	    btrfs_file_extent_compression(leaf, fi) ||
574  	    btrfs_file_extent_encryption(leaf, fi) ||
575  	    btrfs_file_extent_other_encoding(leaf, fi))
576  		return 0;
577  
578  	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
579  	if ((*start && *start != key.offset) || (*end && *end != extent_end))
580  		return 0;
581  
582  	*start = key.offset;
583  	*end = extent_end;
584  	return 1;
585  }
586  
587  /*
588   * Mark extent in the range start - end as written.
589   *
590   * This changes extent type from 'pre-allocated' to 'regular'. If only
591   * part of extent is marked as written, the extent will be split into
592   * two or three.
593   */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)594  int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
595  			      struct btrfs_inode *inode, u64 start, u64 end)
596  {
597  	struct btrfs_root *root = inode->root;
598  	struct extent_buffer *leaf;
599  	struct btrfs_path *path;
600  	struct btrfs_file_extent_item *fi;
601  	struct btrfs_ref ref = { 0 };
602  	struct btrfs_key key;
603  	struct btrfs_key new_key;
604  	u64 bytenr;
605  	u64 num_bytes;
606  	u64 extent_end;
607  	u64 orig_offset;
608  	u64 other_start;
609  	u64 other_end;
610  	u64 split;
611  	int del_nr = 0;
612  	int del_slot = 0;
613  	int recow;
614  	int ret = 0;
615  	u64 ino = btrfs_ino(inode);
616  
617  	path = btrfs_alloc_path();
618  	if (!path)
619  		return -ENOMEM;
620  again:
621  	recow = 0;
622  	split = start;
623  	key.objectid = ino;
624  	key.type = BTRFS_EXTENT_DATA_KEY;
625  	key.offset = split;
626  
627  	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628  	if (ret < 0)
629  		goto out;
630  	if (ret > 0 && path->slots[0] > 0)
631  		path->slots[0]--;
632  
633  	leaf = path->nodes[0];
634  	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635  	if (key.objectid != ino ||
636  	    key.type != BTRFS_EXTENT_DATA_KEY) {
637  		ret = -EINVAL;
638  		btrfs_abort_transaction(trans, ret);
639  		goto out;
640  	}
641  	fi = btrfs_item_ptr(leaf, path->slots[0],
642  			    struct btrfs_file_extent_item);
643  	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644  		ret = -EINVAL;
645  		btrfs_abort_transaction(trans, ret);
646  		goto out;
647  	}
648  	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649  	if (key.offset > start || extent_end < end) {
650  		ret = -EINVAL;
651  		btrfs_abort_transaction(trans, ret);
652  		goto out;
653  	}
654  
655  	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656  	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657  	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658  	memcpy(&new_key, &key, sizeof(new_key));
659  
660  	if (start == key.offset && end < extent_end) {
661  		other_start = 0;
662  		other_end = start;
663  		if (extent_mergeable(leaf, path->slots[0] - 1,
664  				     ino, bytenr, orig_offset,
665  				     &other_start, &other_end)) {
666  			new_key.offset = end;
667  			btrfs_set_item_key_safe(trans, path, &new_key);
668  			fi = btrfs_item_ptr(leaf, path->slots[0],
669  					    struct btrfs_file_extent_item);
670  			btrfs_set_file_extent_generation(leaf, fi,
671  							 trans->transid);
672  			btrfs_set_file_extent_num_bytes(leaf, fi,
673  							extent_end - end);
674  			btrfs_set_file_extent_offset(leaf, fi,
675  						     end - orig_offset);
676  			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677  					    struct btrfs_file_extent_item);
678  			btrfs_set_file_extent_generation(leaf, fi,
679  							 trans->transid);
680  			btrfs_set_file_extent_num_bytes(leaf, fi,
681  							end - other_start);
682  			btrfs_mark_buffer_dirty(trans, leaf);
683  			goto out;
684  		}
685  	}
686  
687  	if (start > key.offset && end == extent_end) {
688  		other_start = end;
689  		other_end = 0;
690  		if (extent_mergeable(leaf, path->slots[0] + 1,
691  				     ino, bytenr, orig_offset,
692  				     &other_start, &other_end)) {
693  			fi = btrfs_item_ptr(leaf, path->slots[0],
694  					    struct btrfs_file_extent_item);
695  			btrfs_set_file_extent_num_bytes(leaf, fi,
696  							start - key.offset);
697  			btrfs_set_file_extent_generation(leaf, fi,
698  							 trans->transid);
699  			path->slots[0]++;
700  			new_key.offset = start;
701  			btrfs_set_item_key_safe(trans, path, &new_key);
702  
703  			fi = btrfs_item_ptr(leaf, path->slots[0],
704  					    struct btrfs_file_extent_item);
705  			btrfs_set_file_extent_generation(leaf, fi,
706  							 trans->transid);
707  			btrfs_set_file_extent_num_bytes(leaf, fi,
708  							other_end - start);
709  			btrfs_set_file_extent_offset(leaf, fi,
710  						     start - orig_offset);
711  			btrfs_mark_buffer_dirty(trans, leaf);
712  			goto out;
713  		}
714  	}
715  
716  	while (start > key.offset || end < extent_end) {
717  		if (key.offset == start)
718  			split = end;
719  
720  		new_key.offset = split;
721  		ret = btrfs_duplicate_item(trans, root, path, &new_key);
722  		if (ret == -EAGAIN) {
723  			btrfs_release_path(path);
724  			goto again;
725  		}
726  		if (ret < 0) {
727  			btrfs_abort_transaction(trans, ret);
728  			goto out;
729  		}
730  
731  		leaf = path->nodes[0];
732  		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733  				    struct btrfs_file_extent_item);
734  		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735  		btrfs_set_file_extent_num_bytes(leaf, fi,
736  						split - key.offset);
737  
738  		fi = btrfs_item_ptr(leaf, path->slots[0],
739  				    struct btrfs_file_extent_item);
740  
741  		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742  		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743  		btrfs_set_file_extent_num_bytes(leaf, fi,
744  						extent_end - split);
745  		btrfs_mark_buffer_dirty(trans, leaf);
746  
747  		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748  				       num_bytes, 0);
749  		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750  				    orig_offset, 0, false);
751  		ret = btrfs_inc_extent_ref(trans, &ref);
752  		if (ret) {
753  			btrfs_abort_transaction(trans, ret);
754  			goto out;
755  		}
756  
757  		if (split == start) {
758  			key.offset = start;
759  		} else {
760  			if (start != key.offset) {
761  				ret = -EINVAL;
762  				btrfs_abort_transaction(trans, ret);
763  				goto out;
764  			}
765  			path->slots[0]--;
766  			extent_end = end;
767  		}
768  		recow = 1;
769  	}
770  
771  	other_start = end;
772  	other_end = 0;
773  	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774  			       num_bytes, 0);
775  	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776  			    0, false);
777  	if (extent_mergeable(leaf, path->slots[0] + 1,
778  			     ino, bytenr, orig_offset,
779  			     &other_start, &other_end)) {
780  		if (recow) {
781  			btrfs_release_path(path);
782  			goto again;
783  		}
784  		extent_end = other_end;
785  		del_slot = path->slots[0] + 1;
786  		del_nr++;
787  		ret = btrfs_free_extent(trans, &ref);
788  		if (ret) {
789  			btrfs_abort_transaction(trans, ret);
790  			goto out;
791  		}
792  	}
793  	other_start = 0;
794  	other_end = start;
795  	if (extent_mergeable(leaf, path->slots[0] - 1,
796  			     ino, bytenr, orig_offset,
797  			     &other_start, &other_end)) {
798  		if (recow) {
799  			btrfs_release_path(path);
800  			goto again;
801  		}
802  		key.offset = other_start;
803  		del_slot = path->slots[0];
804  		del_nr++;
805  		ret = btrfs_free_extent(trans, &ref);
806  		if (ret) {
807  			btrfs_abort_transaction(trans, ret);
808  			goto out;
809  		}
810  	}
811  	if (del_nr == 0) {
812  		fi = btrfs_item_ptr(leaf, path->slots[0],
813  			   struct btrfs_file_extent_item);
814  		btrfs_set_file_extent_type(leaf, fi,
815  					   BTRFS_FILE_EXTENT_REG);
816  		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817  		btrfs_mark_buffer_dirty(trans, leaf);
818  	} else {
819  		fi = btrfs_item_ptr(leaf, del_slot - 1,
820  			   struct btrfs_file_extent_item);
821  		btrfs_set_file_extent_type(leaf, fi,
822  					   BTRFS_FILE_EXTENT_REG);
823  		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824  		btrfs_set_file_extent_num_bytes(leaf, fi,
825  						extent_end - key.offset);
826  		btrfs_mark_buffer_dirty(trans, leaf);
827  
828  		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829  		if (ret < 0) {
830  			btrfs_abort_transaction(trans, ret);
831  			goto out;
832  		}
833  	}
834  out:
835  	btrfs_free_path(path);
836  	return ret;
837  }
838  
839  /*
840   * on error we return an unlocked page and the error value
841   * on success we return a locked page and 0
842   */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)843  static int prepare_uptodate_page(struct inode *inode,
844  				 struct page *page, u64 pos,
845  				 bool force_uptodate)
846  {
847  	struct folio *folio = page_folio(page);
848  	int ret = 0;
849  
850  	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851  	    !PageUptodate(page)) {
852  		ret = btrfs_read_folio(NULL, folio);
853  		if (ret)
854  			return ret;
855  		lock_page(page);
856  		if (!PageUptodate(page)) {
857  			unlock_page(page);
858  			return -EIO;
859  		}
860  
861  		/*
862  		 * Since btrfs_read_folio() will unlock the folio before it
863  		 * returns, there is a window where btrfs_release_folio() can be
864  		 * called to release the page.  Here we check both inode
865  		 * mapping and PagePrivate() to make sure the page was not
866  		 * released.
867  		 *
868  		 * The private flag check is essential for subpage as we need
869  		 * to store extra bitmap using page->private.
870  		 */
871  		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872  			unlock_page(page);
873  			return -EAGAIN;
874  		}
875  	}
876  	return 0;
877  }
878  
get_prepare_fgp_flags(bool nowait)879  static fgf_t get_prepare_fgp_flags(bool nowait)
880  {
881  	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882  
883  	if (nowait)
884  		fgp_flags |= FGP_NOWAIT;
885  
886  	return fgp_flags;
887  }
888  
get_prepare_gfp_flags(struct inode * inode,bool nowait)889  static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890  {
891  	gfp_t gfp;
892  
893  	gfp = btrfs_alloc_write_mask(inode->i_mapping);
894  	if (nowait) {
895  		gfp &= ~__GFP_DIRECT_RECLAIM;
896  		gfp |= GFP_NOWAIT;
897  	}
898  
899  	return gfp;
900  }
901  
902  /*
903   * this just gets pages into the page cache and locks them down.
904   */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)905  static noinline int prepare_pages(struct inode *inode, struct page **pages,
906  				  size_t num_pages, loff_t pos,
907  				  size_t write_bytes, bool force_uptodate,
908  				  bool nowait)
909  {
910  	int i;
911  	unsigned long index = pos >> PAGE_SHIFT;
912  	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913  	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914  	int err = 0;
915  	int faili;
916  
917  	for (i = 0; i < num_pages; i++) {
918  again:
919  		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920  					      fgp_flags, mask | __GFP_WRITE);
921  		if (!pages[i]) {
922  			faili = i - 1;
923  			if (nowait)
924  				err = -EAGAIN;
925  			else
926  				err = -ENOMEM;
927  			goto fail;
928  		}
929  
930  		err = set_page_extent_mapped(pages[i]);
931  		if (err < 0) {
932  			faili = i;
933  			goto fail;
934  		}
935  
936  		if (i == 0)
937  			err = prepare_uptodate_page(inode, pages[i], pos,
938  						    force_uptodate);
939  		if (!err && i == num_pages - 1)
940  			err = prepare_uptodate_page(inode, pages[i],
941  						    pos + write_bytes, false);
942  		if (err) {
943  			put_page(pages[i]);
944  			if (!nowait && err == -EAGAIN) {
945  				err = 0;
946  				goto again;
947  			}
948  			faili = i - 1;
949  			goto fail;
950  		}
951  		wait_on_page_writeback(pages[i]);
952  	}
953  
954  	return 0;
955  fail:
956  	while (faili >= 0) {
957  		unlock_page(pages[faili]);
958  		put_page(pages[faili]);
959  		faili--;
960  	}
961  	return err;
962  
963  }
964  
965  /*
966   * This function locks the extent and properly waits for data=ordered extents
967   * to finish before allowing the pages to be modified if need.
968   *
969   * The return value:
970   * 1 - the extent is locked
971   * 0 - the extent is not locked, and everything is OK
972   * -EAGAIN - need re-prepare the pages
973   * the other < 0 number - Something wrong happens
974   */
975  static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)976  lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977  				size_t num_pages, loff_t pos,
978  				size_t write_bytes,
979  				u64 *lockstart, u64 *lockend, bool nowait,
980  				struct extent_state **cached_state)
981  {
982  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
983  	u64 start_pos;
984  	u64 last_pos;
985  	int i;
986  	int ret = 0;
987  
988  	start_pos = round_down(pos, fs_info->sectorsize);
989  	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990  
991  	if (start_pos < inode->vfs_inode.i_size) {
992  		struct btrfs_ordered_extent *ordered;
993  
994  		if (nowait) {
995  			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996  					     cached_state)) {
997  				for (i = 0; i < num_pages; i++) {
998  					unlock_page(pages[i]);
999  					put_page(pages[i]);
1000  					pages[i] = NULL;
1001  				}
1002  
1003  				return -EAGAIN;
1004  			}
1005  		} else {
1006  			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007  		}
1008  
1009  		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010  						     last_pos - start_pos + 1);
1011  		if (ordered &&
1012  		    ordered->file_offset + ordered->num_bytes > start_pos &&
1013  		    ordered->file_offset <= last_pos) {
1014  			unlock_extent(&inode->io_tree, start_pos, last_pos,
1015  				      cached_state);
1016  			for (i = 0; i < num_pages; i++) {
1017  				unlock_page(pages[i]);
1018  				put_page(pages[i]);
1019  			}
1020  			btrfs_start_ordered_extent(ordered);
1021  			btrfs_put_ordered_extent(ordered);
1022  			return -EAGAIN;
1023  		}
1024  		if (ordered)
1025  			btrfs_put_ordered_extent(ordered);
1026  
1027  		*lockstart = start_pos;
1028  		*lockend = last_pos;
1029  		ret = 1;
1030  	}
1031  
1032  	/*
1033  	 * We should be called after prepare_pages() which should have locked
1034  	 * all pages in the range.
1035  	 */
1036  	for (i = 0; i < num_pages; i++)
1037  		WARN_ON(!PageLocked(pages[i]));
1038  
1039  	return ret;
1040  }
1041  
1042  /*
1043   * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044   *
1045   * @pos:         File offset.
1046   * @write_bytes: The length to write, will be updated to the nocow writeable
1047   *               range.
1048   *
1049   * This function will flush ordered extents in the range to ensure proper
1050   * nocow checks.
1051   *
1052   * Return:
1053   * > 0          If we can nocow, and updates @write_bytes.
1054   *  0           If we can't do a nocow write.
1055   * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1056   *              root is in progress.
1057   * < 0          If an error happened.
1058   *
1059   * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060   */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1061  int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062  			   size_t *write_bytes, bool nowait)
1063  {
1064  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065  	struct btrfs_root *root = inode->root;
1066  	struct extent_state *cached_state = NULL;
1067  	u64 lockstart, lockend;
1068  	u64 num_bytes;
1069  	int ret;
1070  
1071  	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072  		return 0;
1073  
1074  	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075  		return -EAGAIN;
1076  
1077  	lockstart = round_down(pos, fs_info->sectorsize);
1078  	lockend = round_up(pos + *write_bytes,
1079  			   fs_info->sectorsize) - 1;
1080  	num_bytes = lockend - lockstart + 1;
1081  
1082  	if (nowait) {
1083  		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084  						  &cached_state)) {
1085  			btrfs_drew_write_unlock(&root->snapshot_lock);
1086  			return -EAGAIN;
1087  		}
1088  	} else {
1089  		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090  						   &cached_state);
1091  	}
1092  	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093  			NULL, NULL, NULL, nowait, false);
1094  	if (ret <= 0)
1095  		btrfs_drew_write_unlock(&root->snapshot_lock);
1096  	else
1097  		*write_bytes = min_t(size_t, *write_bytes ,
1098  				     num_bytes - pos + lockstart);
1099  	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100  
1101  	return ret;
1102  }
1103  
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1104  void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105  {
1106  	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107  }
1108  
update_time_for_write(struct inode * inode)1109  static void update_time_for_write(struct inode *inode)
1110  {
1111  	struct timespec64 now, ctime;
1112  
1113  	if (IS_NOCMTIME(inode))
1114  		return;
1115  
1116  	now = current_time(inode);
1117  	if (!timespec64_equal(&inode->i_mtime, &now))
1118  		inode->i_mtime = now;
1119  
1120  	ctime = inode_get_ctime(inode);
1121  	if (!timespec64_equal(&ctime, &now))
1122  		inode_set_ctime_to_ts(inode, now);
1123  
1124  	if (IS_I_VERSION(inode))
1125  		inode_inc_iversion(inode);
1126  }
1127  
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1128  static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1129  			     size_t count)
1130  {
1131  	struct file *file = iocb->ki_filp;
1132  	struct inode *inode = file_inode(file);
1133  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1134  	loff_t pos = iocb->ki_pos;
1135  	int ret;
1136  	loff_t oldsize;
1137  
1138  	/*
1139  	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140  	 * prealloc flags, as without those flags we always have to COW. We will
1141  	 * later check if we can really COW into the target range (using
1142  	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1143  	 */
1144  	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145  	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1146  		return -EAGAIN;
1147  
1148  	ret = file_remove_privs(file);
1149  	if (ret)
1150  		return ret;
1151  
1152  	/*
1153  	 * We reserve space for updating the inode when we reserve space for the
1154  	 * extent we are going to write, so we will enospc out there.  We don't
1155  	 * need to start yet another transaction to update the inode as we will
1156  	 * update the inode when we finish writing whatever data we write.
1157  	 */
1158  	update_time_for_write(inode);
1159  
1160  	oldsize = i_size_read(inode);
1161  	if (pos > oldsize) {
1162  		/* Expand hole size to cover write data, preventing empty gap */
1163  		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1164  
1165  		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1166  		if (ret)
1167  			return ret;
1168  	}
1169  
1170  	return 0;
1171  }
1172  
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1173  static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1174  					       struct iov_iter *i)
1175  {
1176  	struct file *file = iocb->ki_filp;
1177  	loff_t pos;
1178  	struct inode *inode = file_inode(file);
1179  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1180  	struct page **pages = NULL;
1181  	struct extent_changeset *data_reserved = NULL;
1182  	u64 release_bytes = 0;
1183  	u64 lockstart;
1184  	u64 lockend;
1185  	size_t num_written = 0;
1186  	int nrptrs;
1187  	ssize_t ret;
1188  	bool only_release_metadata = false;
1189  	bool force_page_uptodate = false;
1190  	loff_t old_isize = i_size_read(inode);
1191  	unsigned int ilock_flags = 0;
1192  	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1193  	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1194  
1195  	if (nowait)
1196  		ilock_flags |= BTRFS_ILOCK_TRY;
1197  
1198  	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1199  	if (ret < 0)
1200  		return ret;
1201  
1202  	ret = generic_write_checks(iocb, i);
1203  	if (ret <= 0)
1204  		goto out;
1205  
1206  	ret = btrfs_write_check(iocb, i, ret);
1207  	if (ret < 0)
1208  		goto out;
1209  
1210  	pos = iocb->ki_pos;
1211  	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1212  			PAGE_SIZE / (sizeof(struct page *)));
1213  	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1214  	nrptrs = max(nrptrs, 8);
1215  	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1216  	if (!pages) {
1217  		ret = -ENOMEM;
1218  		goto out;
1219  	}
1220  
1221  	while (iov_iter_count(i) > 0) {
1222  		struct extent_state *cached_state = NULL;
1223  		size_t offset = offset_in_page(pos);
1224  		size_t sector_offset;
1225  		size_t write_bytes = min(iov_iter_count(i),
1226  					 nrptrs * (size_t)PAGE_SIZE -
1227  					 offset);
1228  		size_t num_pages;
1229  		size_t reserve_bytes;
1230  		size_t dirty_pages;
1231  		size_t copied;
1232  		size_t dirty_sectors;
1233  		size_t num_sectors;
1234  		int extents_locked;
1235  
1236  		/*
1237  		 * Fault pages before locking them in prepare_pages
1238  		 * to avoid recursive lock
1239  		 */
1240  		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1241  			ret = -EFAULT;
1242  			break;
1243  		}
1244  
1245  		only_release_metadata = false;
1246  		sector_offset = pos & (fs_info->sectorsize - 1);
1247  
1248  		extent_changeset_release(data_reserved);
1249  		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1250  						  &data_reserved, pos,
1251  						  write_bytes, nowait);
1252  		if (ret < 0) {
1253  			int can_nocow;
1254  
1255  			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1256  				ret = -EAGAIN;
1257  				break;
1258  			}
1259  
1260  			/*
1261  			 * If we don't have to COW at the offset, reserve
1262  			 * metadata only. write_bytes may get smaller than
1263  			 * requested here.
1264  			 */
1265  			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1266  							   &write_bytes, nowait);
1267  			if (can_nocow < 0)
1268  				ret = can_nocow;
1269  			if (can_nocow > 0)
1270  				ret = 0;
1271  			if (ret)
1272  				break;
1273  			only_release_metadata = true;
1274  		}
1275  
1276  		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1277  		WARN_ON(num_pages > nrptrs);
1278  		reserve_bytes = round_up(write_bytes + sector_offset,
1279  					 fs_info->sectorsize);
1280  		WARN_ON(reserve_bytes == 0);
1281  		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1282  						      reserve_bytes,
1283  						      reserve_bytes, nowait);
1284  		if (ret) {
1285  			if (!only_release_metadata)
1286  				btrfs_free_reserved_data_space(BTRFS_I(inode),
1287  						data_reserved, pos,
1288  						write_bytes);
1289  			else
1290  				btrfs_check_nocow_unlock(BTRFS_I(inode));
1291  
1292  			if (nowait && ret == -ENOSPC)
1293  				ret = -EAGAIN;
1294  			break;
1295  		}
1296  
1297  		release_bytes = reserve_bytes;
1298  again:
1299  		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1300  		if (ret) {
1301  			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1302  			break;
1303  		}
1304  
1305  		/*
1306  		 * This is going to setup the pages array with the number of
1307  		 * pages we want, so we don't really need to worry about the
1308  		 * contents of pages from loop to loop
1309  		 */
1310  		ret = prepare_pages(inode, pages, num_pages,
1311  				    pos, write_bytes, force_page_uptodate, false);
1312  		if (ret) {
1313  			btrfs_delalloc_release_extents(BTRFS_I(inode),
1314  						       reserve_bytes);
1315  			break;
1316  		}
1317  
1318  		extents_locked = lock_and_cleanup_extent_if_need(
1319  				BTRFS_I(inode), pages,
1320  				num_pages, pos, write_bytes, &lockstart,
1321  				&lockend, nowait, &cached_state);
1322  		if (extents_locked < 0) {
1323  			if (!nowait && extents_locked == -EAGAIN)
1324  				goto again;
1325  
1326  			btrfs_delalloc_release_extents(BTRFS_I(inode),
1327  						       reserve_bytes);
1328  			ret = extents_locked;
1329  			break;
1330  		}
1331  
1332  		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1333  
1334  		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1335  		dirty_sectors = round_up(copied + sector_offset,
1336  					fs_info->sectorsize);
1337  		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1338  
1339  		/*
1340  		 * if we have trouble faulting in the pages, fall
1341  		 * back to one page at a time
1342  		 */
1343  		if (copied < write_bytes)
1344  			nrptrs = 1;
1345  
1346  		if (copied == 0) {
1347  			force_page_uptodate = true;
1348  			dirty_sectors = 0;
1349  			dirty_pages = 0;
1350  		} else {
1351  			force_page_uptodate = false;
1352  			dirty_pages = DIV_ROUND_UP(copied + offset,
1353  						   PAGE_SIZE);
1354  		}
1355  
1356  		if (num_sectors > dirty_sectors) {
1357  			/* release everything except the sectors we dirtied */
1358  			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1359  			if (only_release_metadata) {
1360  				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1361  							release_bytes, true);
1362  			} else {
1363  				u64 __pos;
1364  
1365  				__pos = round_down(pos,
1366  						   fs_info->sectorsize) +
1367  					(dirty_pages << PAGE_SHIFT);
1368  				btrfs_delalloc_release_space(BTRFS_I(inode),
1369  						data_reserved, __pos,
1370  						release_bytes, true);
1371  			}
1372  		}
1373  
1374  		release_bytes = round_up(copied + sector_offset,
1375  					fs_info->sectorsize);
1376  
1377  		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1378  					dirty_pages, pos, copied,
1379  					&cached_state, only_release_metadata);
1380  
1381  		/*
1382  		 * If we have not locked the extent range, because the range's
1383  		 * start offset is >= i_size, we might still have a non-NULL
1384  		 * cached extent state, acquired while marking the extent range
1385  		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1386  		 * possible cached extent state to avoid a memory leak.
1387  		 */
1388  		if (extents_locked)
1389  			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1390  				      lockend, &cached_state);
1391  		else
1392  			free_extent_state(cached_state);
1393  
1394  		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1395  		if (ret) {
1396  			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1397  			break;
1398  		}
1399  
1400  		release_bytes = 0;
1401  		if (only_release_metadata)
1402  			btrfs_check_nocow_unlock(BTRFS_I(inode));
1403  
1404  		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1405  
1406  		cond_resched();
1407  
1408  		pos += copied;
1409  		num_written += copied;
1410  	}
1411  
1412  	kfree(pages);
1413  
1414  	if (release_bytes) {
1415  		if (only_release_metadata) {
1416  			btrfs_check_nocow_unlock(BTRFS_I(inode));
1417  			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1418  					release_bytes, true);
1419  		} else {
1420  			btrfs_delalloc_release_space(BTRFS_I(inode),
1421  					data_reserved,
1422  					round_down(pos, fs_info->sectorsize),
1423  					release_bytes, true);
1424  		}
1425  	}
1426  
1427  	extent_changeset_free(data_reserved);
1428  	if (num_written > 0) {
1429  		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1430  		iocb->ki_pos += num_written;
1431  	}
1432  out:
1433  	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1434  	return num_written ? num_written : ret;
1435  }
1436  
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1437  static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1438  			       const struct iov_iter *iter, loff_t offset)
1439  {
1440  	const u32 blocksize_mask = fs_info->sectorsize - 1;
1441  
1442  	if (offset & blocksize_mask)
1443  		return -EINVAL;
1444  
1445  	if (iov_iter_alignment(iter) & blocksize_mask)
1446  		return -EINVAL;
1447  
1448  	return 0;
1449  }
1450  
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1451  static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1452  {
1453  	struct file *file = iocb->ki_filp;
1454  	struct inode *inode = file_inode(file);
1455  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1456  	loff_t pos;
1457  	ssize_t written = 0;
1458  	ssize_t written_buffered;
1459  	size_t prev_left = 0;
1460  	loff_t endbyte;
1461  	ssize_t err;
1462  	unsigned int ilock_flags = 0;
1463  	struct iomap_dio *dio;
1464  
1465  	if (iocb->ki_flags & IOCB_NOWAIT)
1466  		ilock_flags |= BTRFS_ILOCK_TRY;
1467  
1468  	/*
1469  	 * If the write DIO is within EOF, use a shared lock and also only if
1470  	 * security bits will likely not be dropped by file_remove_privs() called
1471  	 * from btrfs_write_check(). Either will need to be rechecked after the
1472  	 * lock was acquired.
1473  	 */
1474  	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1475  		ilock_flags |= BTRFS_ILOCK_SHARED;
1476  
1477  relock:
1478  	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1479  	if (err < 0)
1480  		return err;
1481  
1482  	/* Shared lock cannot be used with security bits set. */
1483  	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1484  		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1485  		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1486  		goto relock;
1487  	}
1488  
1489  	err = generic_write_checks(iocb, from);
1490  	if (err <= 0) {
1491  		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1492  		return err;
1493  	}
1494  
1495  	err = btrfs_write_check(iocb, from, err);
1496  	if (err < 0) {
1497  		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1498  		goto out;
1499  	}
1500  
1501  	pos = iocb->ki_pos;
1502  	/*
1503  	 * Re-check since file size may have changed just before taking the
1504  	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1505  	 */
1506  	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1507  	    pos + iov_iter_count(from) > i_size_read(inode)) {
1508  		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1509  		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1510  		goto relock;
1511  	}
1512  
1513  	if (check_direct_IO(fs_info, from, pos)) {
1514  		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1515  		goto buffered;
1516  	}
1517  
1518  	/*
1519  	 * The iov_iter can be mapped to the same file range we are writing to.
1520  	 * If that's the case, then we will deadlock in the iomap code, because
1521  	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1522  	 * an ordered extent, and after that it will fault in the pages that the
1523  	 * iov_iter refers to. During the fault in we end up in the readahead
1524  	 * pages code (starting at btrfs_readahead()), which will lock the range,
1525  	 * find that ordered extent and then wait for it to complete (at
1526  	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1527  	 * obviously the ordered extent can never complete as we didn't submit
1528  	 * yet the respective bio(s). This always happens when the buffer is
1529  	 * memory mapped to the same file range, since the iomap DIO code always
1530  	 * invalidates pages in the target file range (after starting and waiting
1531  	 * for any writeback).
1532  	 *
1533  	 * So here we disable page faults in the iov_iter and then retry if we
1534  	 * got -EFAULT, faulting in the pages before the retry.
1535  	 */
1536  again:
1537  	from->nofault = true;
1538  	dio = btrfs_dio_write(iocb, from, written);
1539  	from->nofault = false;
1540  
1541  	if (IS_ERR_OR_NULL(dio)) {
1542  		err = PTR_ERR_OR_ZERO(dio);
1543  	} else {
1544  		/*
1545  		 * If we have a synchoronous write, we must make sure the fsync
1546  		 * triggered by the iomap_dio_complete() call below doesn't
1547  		 * deadlock on the inode lock - we are already holding it and we
1548  		 * can't call it after unlocking because we may need to complete
1549  		 * partial writes due to the input buffer (or parts of it) not
1550  		 * being already faulted in.
1551  		 */
1552  		ASSERT(current->journal_info == NULL);
1553  		current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB;
1554  		err = iomap_dio_complete(dio);
1555  		current->journal_info = NULL;
1556  	}
1557  
1558  	/* No increment (+=) because iomap returns a cumulative value. */
1559  	if (err > 0)
1560  		written = err;
1561  
1562  	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1563  		const size_t left = iov_iter_count(from);
1564  		/*
1565  		 * We have more data left to write. Try to fault in as many as
1566  		 * possible of the remainder pages and retry. We do this without
1567  		 * releasing and locking again the inode, to prevent races with
1568  		 * truncate.
1569  		 *
1570  		 * Also, in case the iov refers to pages in the file range of the
1571  		 * file we want to write to (due to a mmap), we could enter an
1572  		 * infinite loop if we retry after faulting the pages in, since
1573  		 * iomap will invalidate any pages in the range early on, before
1574  		 * it tries to fault in the pages of the iov. So we keep track of
1575  		 * how much was left of iov in the previous EFAULT and fallback
1576  		 * to buffered IO in case we haven't made any progress.
1577  		 */
1578  		if (left == prev_left) {
1579  			err = -ENOTBLK;
1580  		} else {
1581  			fault_in_iov_iter_readable(from, left);
1582  			prev_left = left;
1583  			goto again;
1584  		}
1585  	}
1586  
1587  	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1588  
1589  	/*
1590  	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1591  	 * we must fallback to buffered IO.
1592  	 */
1593  	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1594  		goto out;
1595  
1596  buffered:
1597  	/*
1598  	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1599  	 * it must retry the operation in a context where blocking is acceptable,
1600  	 * because even if we end up not blocking during the buffered IO attempt
1601  	 * below, we will block when flushing and waiting for the IO.
1602  	 */
1603  	if (iocb->ki_flags & IOCB_NOWAIT) {
1604  		err = -EAGAIN;
1605  		goto out;
1606  	}
1607  
1608  	pos = iocb->ki_pos;
1609  	written_buffered = btrfs_buffered_write(iocb, from);
1610  	if (written_buffered < 0) {
1611  		err = written_buffered;
1612  		goto out;
1613  	}
1614  	/*
1615  	 * Ensure all data is persisted. We want the next direct IO read to be
1616  	 * able to read what was just written.
1617  	 */
1618  	endbyte = pos + written_buffered - 1;
1619  	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1620  	if (err)
1621  		goto out;
1622  	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1623  	if (err)
1624  		goto out;
1625  	written += written_buffered;
1626  	iocb->ki_pos = pos + written_buffered;
1627  	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1628  				 endbyte >> PAGE_SHIFT);
1629  out:
1630  	return err < 0 ? err : written;
1631  }
1632  
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1633  static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1634  			const struct btrfs_ioctl_encoded_io_args *encoded)
1635  {
1636  	struct file *file = iocb->ki_filp;
1637  	struct inode *inode = file_inode(file);
1638  	loff_t count;
1639  	ssize_t ret;
1640  
1641  	btrfs_inode_lock(BTRFS_I(inode), 0);
1642  	count = encoded->len;
1643  	ret = generic_write_checks_count(iocb, &count);
1644  	if (ret == 0 && count != encoded->len) {
1645  		/*
1646  		 * The write got truncated by generic_write_checks_count(). We
1647  		 * can't do a partial encoded write.
1648  		 */
1649  		ret = -EFBIG;
1650  	}
1651  	if (ret || encoded->len == 0)
1652  		goto out;
1653  
1654  	ret = btrfs_write_check(iocb, from, encoded->len);
1655  	if (ret < 0)
1656  		goto out;
1657  
1658  	ret = btrfs_do_encoded_write(iocb, from, encoded);
1659  out:
1660  	btrfs_inode_unlock(BTRFS_I(inode), 0);
1661  	return ret;
1662  }
1663  
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1664  ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1665  			    const struct btrfs_ioctl_encoded_io_args *encoded)
1666  {
1667  	struct file *file = iocb->ki_filp;
1668  	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1669  	ssize_t num_written, num_sync;
1670  
1671  	/*
1672  	 * If the fs flips readonly due to some impossible error, although we
1673  	 * have opened a file as writable, we have to stop this write operation
1674  	 * to ensure consistency.
1675  	 */
1676  	if (BTRFS_FS_ERROR(inode->root->fs_info))
1677  		return -EROFS;
1678  
1679  	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1680  		return -EOPNOTSUPP;
1681  
1682  	if (encoded) {
1683  		num_written = btrfs_encoded_write(iocb, from, encoded);
1684  		num_sync = encoded->len;
1685  	} else if (iocb->ki_flags & IOCB_DIRECT) {
1686  		num_written = btrfs_direct_write(iocb, from);
1687  		num_sync = num_written;
1688  	} else {
1689  		num_written = btrfs_buffered_write(iocb, from);
1690  		num_sync = num_written;
1691  	}
1692  
1693  	btrfs_set_inode_last_sub_trans(inode);
1694  
1695  	if (num_sync > 0) {
1696  		num_sync = generic_write_sync(iocb, num_sync);
1697  		if (num_sync < 0)
1698  			num_written = num_sync;
1699  	}
1700  
1701  	return num_written;
1702  }
1703  
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1704  static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1705  {
1706  	return btrfs_do_write_iter(iocb, from, NULL);
1707  }
1708  
btrfs_release_file(struct inode * inode,struct file * filp)1709  int btrfs_release_file(struct inode *inode, struct file *filp)
1710  {
1711  	struct btrfs_file_private *private = filp->private_data;
1712  
1713  	if (private) {
1714  		kfree(private->filldir_buf);
1715  		free_extent_state(private->llseek_cached_state);
1716  		kfree(private);
1717  		filp->private_data = NULL;
1718  	}
1719  
1720  	/*
1721  	 * Set by setattr when we are about to truncate a file from a non-zero
1722  	 * size to a zero size.  This tries to flush down new bytes that may
1723  	 * have been written if the application were using truncate to replace
1724  	 * a file in place.
1725  	 */
1726  	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1727  			       &BTRFS_I(inode)->runtime_flags))
1728  			filemap_flush(inode->i_mapping);
1729  	return 0;
1730  }
1731  
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1732  static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1733  {
1734  	int ret;
1735  	struct blk_plug plug;
1736  
1737  	/*
1738  	 * This is only called in fsync, which would do synchronous writes, so
1739  	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1740  	 * multiple disks using raid profile, a large IO can be split to
1741  	 * several segments of stripe length (currently 64K).
1742  	 */
1743  	blk_start_plug(&plug);
1744  	ret = btrfs_fdatawrite_range(inode, start, end);
1745  	blk_finish_plug(&plug);
1746  
1747  	return ret;
1748  }
1749  
skip_inode_logging(const struct btrfs_log_ctx * ctx)1750  static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1751  {
1752  	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1753  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1754  
1755  	if (btrfs_inode_in_log(inode, fs_info->generation) &&
1756  	    list_empty(&ctx->ordered_extents))
1757  		return true;
1758  
1759  	/*
1760  	 * If we are doing a fast fsync we can not bail out if the inode's
1761  	 * last_trans is <= then the last committed transaction, because we only
1762  	 * update the last_trans of the inode during ordered extent completion,
1763  	 * and for a fast fsync we don't wait for that, we only wait for the
1764  	 * writeback to complete.
1765  	 */
1766  	if (inode->last_trans <= fs_info->last_trans_committed &&
1767  	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1768  	     list_empty(&ctx->ordered_extents)))
1769  		return true;
1770  
1771  	return false;
1772  }
1773  
1774  /*
1775   * fsync call for both files and directories.  This logs the inode into
1776   * the tree log instead of forcing full commits whenever possible.
1777   *
1778   * It needs to call filemap_fdatawait so that all ordered extent updates are
1779   * in the metadata btree are up to date for copying to the log.
1780   *
1781   * It drops the inode mutex before doing the tree log commit.  This is an
1782   * important optimization for directories because holding the mutex prevents
1783   * new operations on the dir while we write to disk.
1784   */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1785  int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1786  {
1787  	struct dentry *dentry = file_dentry(file);
1788  	struct inode *inode = d_inode(dentry);
1789  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1790  	struct btrfs_root *root = BTRFS_I(inode)->root;
1791  	struct btrfs_trans_handle *trans;
1792  	struct btrfs_log_ctx ctx;
1793  	int ret = 0, err;
1794  	u64 len;
1795  	bool full_sync;
1796  	bool skip_ilock = false;
1797  
1798  	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1799  		skip_ilock = true;
1800  		current->journal_info = NULL;
1801  		lockdep_assert_held(&inode->i_rwsem);
1802  	}
1803  
1804  	trace_btrfs_sync_file(file, datasync);
1805  
1806  	btrfs_init_log_ctx(&ctx, inode);
1807  
1808  	/*
1809  	 * Always set the range to a full range, otherwise we can get into
1810  	 * several problems, from missing file extent items to represent holes
1811  	 * when not using the NO_HOLES feature, to log tree corruption due to
1812  	 * races between hole detection during logging and completion of ordered
1813  	 * extents outside the range, to missing checksums due to ordered extents
1814  	 * for which we flushed only a subset of their pages.
1815  	 */
1816  	start = 0;
1817  	end = LLONG_MAX;
1818  	len = (u64)LLONG_MAX + 1;
1819  
1820  	/*
1821  	 * We write the dirty pages in the range and wait until they complete
1822  	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1823  	 * multi-task, and make the performance up.  See
1824  	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1825  	 */
1826  	ret = start_ordered_ops(inode, start, end);
1827  	if (ret)
1828  		goto out;
1829  
1830  	if (skip_ilock)
1831  		down_write(&BTRFS_I(inode)->i_mmap_lock);
1832  	else
1833  		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1834  
1835  	atomic_inc(&root->log_batch);
1836  
1837  	/*
1838  	 * Before we acquired the inode's lock and the mmap lock, someone may
1839  	 * have dirtied more pages in the target range. We need to make sure
1840  	 * that writeback for any such pages does not start while we are logging
1841  	 * the inode, because if it does, any of the following might happen when
1842  	 * we are not doing a full inode sync:
1843  	 *
1844  	 * 1) We log an extent after its writeback finishes but before its
1845  	 *    checksums are added to the csum tree, leading to -EIO errors
1846  	 *    when attempting to read the extent after a log replay.
1847  	 *
1848  	 * 2) We can end up logging an extent before its writeback finishes.
1849  	 *    Therefore after the log replay we will have a file extent item
1850  	 *    pointing to an unwritten extent (and no data checksums as well).
1851  	 *
1852  	 * So trigger writeback for any eventual new dirty pages and then we
1853  	 * wait for all ordered extents to complete below.
1854  	 */
1855  	ret = start_ordered_ops(inode, start, end);
1856  	if (ret) {
1857  		if (skip_ilock)
1858  			up_write(&BTRFS_I(inode)->i_mmap_lock);
1859  		else
1860  			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1861  		goto out;
1862  	}
1863  
1864  	/*
1865  	 * Always check for the full sync flag while holding the inode's lock,
1866  	 * to avoid races with other tasks. The flag must be either set all the
1867  	 * time during logging or always off all the time while logging.
1868  	 * We check the flag here after starting delalloc above, because when
1869  	 * running delalloc the full sync flag may be set if we need to drop
1870  	 * extra extent map ranges due to temporary memory allocation failures.
1871  	 */
1872  	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1873  			     &BTRFS_I(inode)->runtime_flags);
1874  
1875  	/*
1876  	 * We have to do this here to avoid the priority inversion of waiting on
1877  	 * IO of a lower priority task while holding a transaction open.
1878  	 *
1879  	 * For a full fsync we wait for the ordered extents to complete while
1880  	 * for a fast fsync we wait just for writeback to complete, and then
1881  	 * attach the ordered extents to the transaction so that a transaction
1882  	 * commit waits for their completion, to avoid data loss if we fsync,
1883  	 * the current transaction commits before the ordered extents complete
1884  	 * and a power failure happens right after that.
1885  	 *
1886  	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1887  	 * logical address recorded in the ordered extent may change. We need
1888  	 * to wait for the IO to stabilize the logical address.
1889  	 */
1890  	if (full_sync || btrfs_is_zoned(fs_info)) {
1891  		ret = btrfs_wait_ordered_range(inode, start, len);
1892  	} else {
1893  		/*
1894  		 * Get our ordered extents as soon as possible to avoid doing
1895  		 * checksum lookups in the csum tree, and use instead the
1896  		 * checksums attached to the ordered extents.
1897  		 */
1898  		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1899  						      &ctx.ordered_extents);
1900  		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1901  	}
1902  
1903  	if (ret)
1904  		goto out_release_extents;
1905  
1906  	atomic_inc(&root->log_batch);
1907  
1908  	smp_mb();
1909  	if (skip_inode_logging(&ctx)) {
1910  		/*
1911  		 * We've had everything committed since the last time we were
1912  		 * modified so clear this flag in case it was set for whatever
1913  		 * reason, it's no longer relevant.
1914  		 */
1915  		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1916  			  &BTRFS_I(inode)->runtime_flags);
1917  		/*
1918  		 * An ordered extent might have started before and completed
1919  		 * already with io errors, in which case the inode was not
1920  		 * updated and we end up here. So check the inode's mapping
1921  		 * for any errors that might have happened since we last
1922  		 * checked called fsync.
1923  		 */
1924  		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1925  		goto out_release_extents;
1926  	}
1927  
1928  	/*
1929  	 * We use start here because we will need to wait on the IO to complete
1930  	 * in btrfs_sync_log, which could require joining a transaction (for
1931  	 * example checking cross references in the nocow path).  If we use join
1932  	 * here we could get into a situation where we're waiting on IO to
1933  	 * happen that is blocked on a transaction trying to commit.  With start
1934  	 * we inc the extwriter counter, so we wait for all extwriters to exit
1935  	 * before we start blocking joiners.  This comment is to keep somebody
1936  	 * from thinking they are super smart and changing this to
1937  	 * btrfs_join_transaction *cough*Josef*cough*.
1938  	 */
1939  	trans = btrfs_start_transaction(root, 0);
1940  	if (IS_ERR(trans)) {
1941  		ret = PTR_ERR(trans);
1942  		goto out_release_extents;
1943  	}
1944  	trans->in_fsync = true;
1945  
1946  	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1947  	btrfs_release_log_ctx_extents(&ctx);
1948  	if (ret < 0) {
1949  		/* Fallthrough and commit/free transaction. */
1950  		ret = BTRFS_LOG_FORCE_COMMIT;
1951  	}
1952  
1953  	/* we've logged all the items and now have a consistent
1954  	 * version of the file in the log.  It is possible that
1955  	 * someone will come in and modify the file, but that's
1956  	 * fine because the log is consistent on disk, and we
1957  	 * have references to all of the file's extents
1958  	 *
1959  	 * It is possible that someone will come in and log the
1960  	 * file again, but that will end up using the synchronization
1961  	 * inside btrfs_sync_log to keep things safe.
1962  	 */
1963  	if (skip_ilock)
1964  		up_write(&BTRFS_I(inode)->i_mmap_lock);
1965  	else
1966  		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1967  
1968  	if (ret == BTRFS_NO_LOG_SYNC) {
1969  		ret = btrfs_end_transaction(trans);
1970  		goto out;
1971  	}
1972  
1973  	/* We successfully logged the inode, attempt to sync the log. */
1974  	if (!ret) {
1975  		ret = btrfs_sync_log(trans, root, &ctx);
1976  		if (!ret) {
1977  			ret = btrfs_end_transaction(trans);
1978  			goto out;
1979  		}
1980  	}
1981  
1982  	/*
1983  	 * At this point we need to commit the transaction because we had
1984  	 * btrfs_need_log_full_commit() or some other error.
1985  	 *
1986  	 * If we didn't do a full sync we have to stop the trans handle, wait on
1987  	 * the ordered extents, start it again and commit the transaction.  If
1988  	 * we attempt to wait on the ordered extents here we could deadlock with
1989  	 * something like fallocate() that is holding the extent lock trying to
1990  	 * start a transaction while some other thread is trying to commit the
1991  	 * transaction while we (fsync) are currently holding the transaction
1992  	 * open.
1993  	 */
1994  	if (!full_sync) {
1995  		ret = btrfs_end_transaction(trans);
1996  		if (ret)
1997  			goto out;
1998  		ret = btrfs_wait_ordered_range(inode, start, len);
1999  		if (ret)
2000  			goto out;
2001  
2002  		/*
2003  		 * This is safe to use here because we're only interested in
2004  		 * making sure the transaction that had the ordered extents is
2005  		 * committed.  We aren't waiting on anything past this point,
2006  		 * we're purely getting the transaction and committing it.
2007  		 */
2008  		trans = btrfs_attach_transaction_barrier(root);
2009  		if (IS_ERR(trans)) {
2010  			ret = PTR_ERR(trans);
2011  
2012  			/*
2013  			 * We committed the transaction and there's no currently
2014  			 * running transaction, this means everything we care
2015  			 * about made it to disk and we are done.
2016  			 */
2017  			if (ret == -ENOENT)
2018  				ret = 0;
2019  			goto out;
2020  		}
2021  	}
2022  
2023  	ret = btrfs_commit_transaction(trans);
2024  out:
2025  	ASSERT(list_empty(&ctx.list));
2026  	ASSERT(list_empty(&ctx.conflict_inodes));
2027  	err = file_check_and_advance_wb_err(file);
2028  	if (!ret)
2029  		ret = err;
2030  	return ret > 0 ? -EIO : ret;
2031  
2032  out_release_extents:
2033  	btrfs_release_log_ctx_extents(&ctx);
2034  	if (skip_ilock)
2035  		up_write(&BTRFS_I(inode)->i_mmap_lock);
2036  	else
2037  		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2038  	goto out;
2039  }
2040  
2041  static const struct vm_operations_struct btrfs_file_vm_ops = {
2042  	.fault		= filemap_fault,
2043  	.map_pages	= filemap_map_pages,
2044  	.page_mkwrite	= btrfs_page_mkwrite,
2045  };
2046  
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2047  static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2048  {
2049  	struct address_space *mapping = filp->f_mapping;
2050  
2051  	if (!mapping->a_ops->read_folio)
2052  		return -ENOEXEC;
2053  
2054  	file_accessed(filp);
2055  	vma->vm_ops = &btrfs_file_vm_ops;
2056  
2057  	return 0;
2058  }
2059  
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2060  static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2061  			  int slot, u64 start, u64 end)
2062  {
2063  	struct btrfs_file_extent_item *fi;
2064  	struct btrfs_key key;
2065  
2066  	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2067  		return 0;
2068  
2069  	btrfs_item_key_to_cpu(leaf, &key, slot);
2070  	if (key.objectid != btrfs_ino(inode) ||
2071  	    key.type != BTRFS_EXTENT_DATA_KEY)
2072  		return 0;
2073  
2074  	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2075  
2076  	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2077  		return 0;
2078  
2079  	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2080  		return 0;
2081  
2082  	if (key.offset == end)
2083  		return 1;
2084  	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2085  		return 1;
2086  	return 0;
2087  }
2088  
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2089  static int fill_holes(struct btrfs_trans_handle *trans,
2090  		struct btrfs_inode *inode,
2091  		struct btrfs_path *path, u64 offset, u64 end)
2092  {
2093  	struct btrfs_fs_info *fs_info = trans->fs_info;
2094  	struct btrfs_root *root = inode->root;
2095  	struct extent_buffer *leaf;
2096  	struct btrfs_file_extent_item *fi;
2097  	struct extent_map *hole_em;
2098  	struct btrfs_key key;
2099  	int ret;
2100  
2101  	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2102  		goto out;
2103  
2104  	key.objectid = btrfs_ino(inode);
2105  	key.type = BTRFS_EXTENT_DATA_KEY;
2106  	key.offset = offset;
2107  
2108  	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2109  	if (ret <= 0) {
2110  		/*
2111  		 * We should have dropped this offset, so if we find it then
2112  		 * something has gone horribly wrong.
2113  		 */
2114  		if (ret == 0)
2115  			ret = -EINVAL;
2116  		return ret;
2117  	}
2118  
2119  	leaf = path->nodes[0];
2120  	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2121  		u64 num_bytes;
2122  
2123  		path->slots[0]--;
2124  		fi = btrfs_item_ptr(leaf, path->slots[0],
2125  				    struct btrfs_file_extent_item);
2126  		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2127  			end - offset;
2128  		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2129  		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2130  		btrfs_set_file_extent_offset(leaf, fi, 0);
2131  		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2132  		btrfs_mark_buffer_dirty(trans, leaf);
2133  		goto out;
2134  	}
2135  
2136  	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2137  		u64 num_bytes;
2138  
2139  		key.offset = offset;
2140  		btrfs_set_item_key_safe(trans, path, &key);
2141  		fi = btrfs_item_ptr(leaf, path->slots[0],
2142  				    struct btrfs_file_extent_item);
2143  		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2144  			offset;
2145  		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2146  		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2147  		btrfs_set_file_extent_offset(leaf, fi, 0);
2148  		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2149  		btrfs_mark_buffer_dirty(trans, leaf);
2150  		goto out;
2151  	}
2152  	btrfs_release_path(path);
2153  
2154  	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2155  				       end - offset);
2156  	if (ret)
2157  		return ret;
2158  
2159  out:
2160  	btrfs_release_path(path);
2161  
2162  	hole_em = alloc_extent_map();
2163  	if (!hole_em) {
2164  		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2165  		btrfs_set_inode_full_sync(inode);
2166  	} else {
2167  		hole_em->start = offset;
2168  		hole_em->len = end - offset;
2169  		hole_em->ram_bytes = hole_em->len;
2170  		hole_em->orig_start = offset;
2171  
2172  		hole_em->block_start = EXTENT_MAP_HOLE;
2173  		hole_em->block_len = 0;
2174  		hole_em->orig_block_len = 0;
2175  		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2176  		hole_em->generation = trans->transid;
2177  
2178  		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2179  		free_extent_map(hole_em);
2180  		if (ret)
2181  			btrfs_set_inode_full_sync(inode);
2182  	}
2183  
2184  	return 0;
2185  }
2186  
2187  /*
2188   * Find a hole extent on given inode and change start/len to the end of hole
2189   * extent.(hole/vacuum extent whose em->start <= start &&
2190   *	   em->start + em->len > start)
2191   * When a hole extent is found, return 1 and modify start/len.
2192   */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2193  static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2194  {
2195  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2196  	struct extent_map *em;
2197  	int ret = 0;
2198  
2199  	em = btrfs_get_extent(inode, NULL, 0,
2200  			      round_down(*start, fs_info->sectorsize),
2201  			      round_up(*len, fs_info->sectorsize));
2202  	if (IS_ERR(em))
2203  		return PTR_ERR(em);
2204  
2205  	/* Hole or vacuum extent(only exists in no-hole mode) */
2206  	if (em->block_start == EXTENT_MAP_HOLE) {
2207  		ret = 1;
2208  		*len = em->start + em->len > *start + *len ?
2209  		       0 : *start + *len - em->start - em->len;
2210  		*start = em->start + em->len;
2211  	}
2212  	free_extent_map(em);
2213  	return ret;
2214  }
2215  
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2216  static void btrfs_punch_hole_lock_range(struct inode *inode,
2217  					const u64 lockstart,
2218  					const u64 lockend,
2219  					struct extent_state **cached_state)
2220  {
2221  	/*
2222  	 * For subpage case, if the range is not at page boundary, we could
2223  	 * have pages at the leading/tailing part of the range.
2224  	 * This could lead to dead loop since filemap_range_has_page()
2225  	 * will always return true.
2226  	 * So here we need to do extra page alignment for
2227  	 * filemap_range_has_page().
2228  	 */
2229  	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2230  	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2231  
2232  	while (1) {
2233  		truncate_pagecache_range(inode, lockstart, lockend);
2234  
2235  		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2236  			    cached_state);
2237  		/*
2238  		 * We can't have ordered extents in the range, nor dirty/writeback
2239  		 * pages, because we have locked the inode's VFS lock in exclusive
2240  		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2241  		 * we have flushed all delalloc in the range and we have waited
2242  		 * for any ordered extents in the range to complete.
2243  		 * We can race with anyone reading pages from this range, so after
2244  		 * locking the range check if we have pages in the range, and if
2245  		 * we do, unlock the range and retry.
2246  		 */
2247  		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2248  					    page_lockend))
2249  			break;
2250  
2251  		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2252  			      cached_state);
2253  	}
2254  
2255  	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2256  }
2257  
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2258  static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2259  				     struct btrfs_inode *inode,
2260  				     struct btrfs_path *path,
2261  				     struct btrfs_replace_extent_info *extent_info,
2262  				     const u64 replace_len,
2263  				     const u64 bytes_to_drop)
2264  {
2265  	struct btrfs_fs_info *fs_info = trans->fs_info;
2266  	struct btrfs_root *root = inode->root;
2267  	struct btrfs_file_extent_item *extent;
2268  	struct extent_buffer *leaf;
2269  	struct btrfs_key key;
2270  	int slot;
2271  	struct btrfs_ref ref = { 0 };
2272  	int ret;
2273  
2274  	if (replace_len == 0)
2275  		return 0;
2276  
2277  	if (extent_info->disk_offset == 0 &&
2278  	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2279  		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2280  		return 0;
2281  	}
2282  
2283  	key.objectid = btrfs_ino(inode);
2284  	key.type = BTRFS_EXTENT_DATA_KEY;
2285  	key.offset = extent_info->file_offset;
2286  	ret = btrfs_insert_empty_item(trans, root, path, &key,
2287  				      sizeof(struct btrfs_file_extent_item));
2288  	if (ret)
2289  		return ret;
2290  	leaf = path->nodes[0];
2291  	slot = path->slots[0];
2292  	write_extent_buffer(leaf, extent_info->extent_buf,
2293  			    btrfs_item_ptr_offset(leaf, slot),
2294  			    sizeof(struct btrfs_file_extent_item));
2295  	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2296  	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2297  	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2298  	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2299  	if (extent_info->is_new_extent)
2300  		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2301  	btrfs_mark_buffer_dirty(trans, leaf);
2302  	btrfs_release_path(path);
2303  
2304  	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2305  						replace_len);
2306  	if (ret)
2307  		return ret;
2308  
2309  	/* If it's a hole, nothing more needs to be done. */
2310  	if (extent_info->disk_offset == 0) {
2311  		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2312  		return 0;
2313  	}
2314  
2315  	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2316  
2317  	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2318  		key.objectid = extent_info->disk_offset;
2319  		key.type = BTRFS_EXTENT_ITEM_KEY;
2320  		key.offset = extent_info->disk_len;
2321  		ret = btrfs_alloc_reserved_file_extent(trans, root,
2322  						       btrfs_ino(inode),
2323  						       extent_info->file_offset,
2324  						       extent_info->qgroup_reserved,
2325  						       &key);
2326  	} else {
2327  		u64 ref_offset;
2328  
2329  		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2330  				       extent_info->disk_offset,
2331  				       extent_info->disk_len, 0);
2332  		ref_offset = extent_info->file_offset - extent_info->data_offset;
2333  		btrfs_init_data_ref(&ref, root->root_key.objectid,
2334  				    btrfs_ino(inode), ref_offset, 0, false);
2335  		ret = btrfs_inc_extent_ref(trans, &ref);
2336  	}
2337  
2338  	extent_info->insertions++;
2339  
2340  	return ret;
2341  }
2342  
2343  /*
2344   * The respective range must have been previously locked, as well as the inode.
2345   * The end offset is inclusive (last byte of the range).
2346   * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2347   * the file range with an extent.
2348   * When not punching a hole, we don't want to end up in a state where we dropped
2349   * extents without inserting a new one, so we must abort the transaction to avoid
2350   * a corruption.
2351   */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2352  int btrfs_replace_file_extents(struct btrfs_inode *inode,
2353  			       struct btrfs_path *path, const u64 start,
2354  			       const u64 end,
2355  			       struct btrfs_replace_extent_info *extent_info,
2356  			       struct btrfs_trans_handle **trans_out)
2357  {
2358  	struct btrfs_drop_extents_args drop_args = { 0 };
2359  	struct btrfs_root *root = inode->root;
2360  	struct btrfs_fs_info *fs_info = root->fs_info;
2361  	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2362  	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2363  	struct btrfs_trans_handle *trans = NULL;
2364  	struct btrfs_block_rsv *rsv;
2365  	unsigned int rsv_count;
2366  	u64 cur_offset;
2367  	u64 len = end - start;
2368  	int ret = 0;
2369  
2370  	if (end <= start)
2371  		return -EINVAL;
2372  
2373  	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2374  	if (!rsv) {
2375  		ret = -ENOMEM;
2376  		goto out;
2377  	}
2378  	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2379  	rsv->failfast = true;
2380  
2381  	/*
2382  	 * 1 - update the inode
2383  	 * 1 - removing the extents in the range
2384  	 * 1 - adding the hole extent if no_holes isn't set or if we are
2385  	 *     replacing the range with a new extent
2386  	 */
2387  	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2388  		rsv_count = 3;
2389  	else
2390  		rsv_count = 2;
2391  
2392  	trans = btrfs_start_transaction(root, rsv_count);
2393  	if (IS_ERR(trans)) {
2394  		ret = PTR_ERR(trans);
2395  		trans = NULL;
2396  		goto out_free;
2397  	}
2398  
2399  	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2400  				      min_size, false);
2401  	if (WARN_ON(ret))
2402  		goto out_trans;
2403  	trans->block_rsv = rsv;
2404  
2405  	cur_offset = start;
2406  	drop_args.path = path;
2407  	drop_args.end = end + 1;
2408  	drop_args.drop_cache = true;
2409  	while (cur_offset < end) {
2410  		drop_args.start = cur_offset;
2411  		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2412  		/* If we are punching a hole decrement the inode's byte count */
2413  		if (!extent_info)
2414  			btrfs_update_inode_bytes(inode, 0,
2415  						 drop_args.bytes_found);
2416  		if (ret != -ENOSPC) {
2417  			/*
2418  			 * The only time we don't want to abort is if we are
2419  			 * attempting to clone a partial inline extent, in which
2420  			 * case we'll get EOPNOTSUPP.  However if we aren't
2421  			 * clone we need to abort no matter what, because if we
2422  			 * got EOPNOTSUPP via prealloc then we messed up and
2423  			 * need to abort.
2424  			 */
2425  			if (ret &&
2426  			    (ret != -EOPNOTSUPP ||
2427  			     (extent_info && extent_info->is_new_extent)))
2428  				btrfs_abort_transaction(trans, ret);
2429  			break;
2430  		}
2431  
2432  		trans->block_rsv = &fs_info->trans_block_rsv;
2433  
2434  		if (!extent_info && cur_offset < drop_args.drop_end &&
2435  		    cur_offset < ino_size) {
2436  			ret = fill_holes(trans, inode, path, cur_offset,
2437  					 drop_args.drop_end);
2438  			if (ret) {
2439  				/*
2440  				 * If we failed then we didn't insert our hole
2441  				 * entries for the area we dropped, so now the
2442  				 * fs is corrupted, so we must abort the
2443  				 * transaction.
2444  				 */
2445  				btrfs_abort_transaction(trans, ret);
2446  				break;
2447  			}
2448  		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2449  			/*
2450  			 * We are past the i_size here, but since we didn't
2451  			 * insert holes we need to clear the mapped area so we
2452  			 * know to not set disk_i_size in this area until a new
2453  			 * file extent is inserted here.
2454  			 */
2455  			ret = btrfs_inode_clear_file_extent_range(inode,
2456  					cur_offset,
2457  					drop_args.drop_end - cur_offset);
2458  			if (ret) {
2459  				/*
2460  				 * We couldn't clear our area, so we could
2461  				 * presumably adjust up and corrupt the fs, so
2462  				 * we need to abort.
2463  				 */
2464  				btrfs_abort_transaction(trans, ret);
2465  				break;
2466  			}
2467  		}
2468  
2469  		if (extent_info &&
2470  		    drop_args.drop_end > extent_info->file_offset) {
2471  			u64 replace_len = drop_args.drop_end -
2472  					  extent_info->file_offset;
2473  
2474  			ret = btrfs_insert_replace_extent(trans, inode,	path,
2475  					extent_info, replace_len,
2476  					drop_args.bytes_found);
2477  			if (ret) {
2478  				btrfs_abort_transaction(trans, ret);
2479  				break;
2480  			}
2481  			extent_info->data_len -= replace_len;
2482  			extent_info->data_offset += replace_len;
2483  			extent_info->file_offset += replace_len;
2484  		}
2485  
2486  		/*
2487  		 * We are releasing our handle on the transaction, balance the
2488  		 * dirty pages of the btree inode and flush delayed items, and
2489  		 * then get a new transaction handle, which may now point to a
2490  		 * new transaction in case someone else may have committed the
2491  		 * transaction we used to replace/drop file extent items. So
2492  		 * bump the inode's iversion and update mtime and ctime except
2493  		 * if we are called from a dedupe context. This is because a
2494  		 * power failure/crash may happen after the transaction is
2495  		 * committed and before we finish replacing/dropping all the
2496  		 * file extent items we need.
2497  		 */
2498  		inode_inc_iversion(&inode->vfs_inode);
2499  
2500  		if (!extent_info || extent_info->update_times)
2501  			inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2502  
2503  		ret = btrfs_update_inode(trans, root, inode);
2504  		if (ret)
2505  			break;
2506  
2507  		btrfs_end_transaction(trans);
2508  		btrfs_btree_balance_dirty(fs_info);
2509  
2510  		trans = btrfs_start_transaction(root, rsv_count);
2511  		if (IS_ERR(trans)) {
2512  			ret = PTR_ERR(trans);
2513  			trans = NULL;
2514  			break;
2515  		}
2516  
2517  		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2518  					      rsv, min_size, false);
2519  		if (WARN_ON(ret))
2520  			break;
2521  		trans->block_rsv = rsv;
2522  
2523  		cur_offset = drop_args.drop_end;
2524  		len = end - cur_offset;
2525  		if (!extent_info && len) {
2526  			ret = find_first_non_hole(inode, &cur_offset, &len);
2527  			if (unlikely(ret < 0))
2528  				break;
2529  			if (ret && !len) {
2530  				ret = 0;
2531  				break;
2532  			}
2533  		}
2534  	}
2535  
2536  	/*
2537  	 * If we were cloning, force the next fsync to be a full one since we
2538  	 * we replaced (or just dropped in the case of cloning holes when
2539  	 * NO_HOLES is enabled) file extent items and did not setup new extent
2540  	 * maps for the replacement extents (or holes).
2541  	 */
2542  	if (extent_info && !extent_info->is_new_extent)
2543  		btrfs_set_inode_full_sync(inode);
2544  
2545  	if (ret)
2546  		goto out_trans;
2547  
2548  	trans->block_rsv = &fs_info->trans_block_rsv;
2549  	/*
2550  	 * If we are using the NO_HOLES feature we might have had already an
2551  	 * hole that overlaps a part of the region [lockstart, lockend] and
2552  	 * ends at (or beyond) lockend. Since we have no file extent items to
2553  	 * represent holes, drop_end can be less than lockend and so we must
2554  	 * make sure we have an extent map representing the existing hole (the
2555  	 * call to __btrfs_drop_extents() might have dropped the existing extent
2556  	 * map representing the existing hole), otherwise the fast fsync path
2557  	 * will not record the existence of the hole region
2558  	 * [existing_hole_start, lockend].
2559  	 */
2560  	if (drop_args.drop_end <= end)
2561  		drop_args.drop_end = end + 1;
2562  	/*
2563  	 * Don't insert file hole extent item if it's for a range beyond eof
2564  	 * (because it's useless) or if it represents a 0 bytes range (when
2565  	 * cur_offset == drop_end).
2566  	 */
2567  	if (!extent_info && cur_offset < ino_size &&
2568  	    cur_offset < drop_args.drop_end) {
2569  		ret = fill_holes(trans, inode, path, cur_offset,
2570  				 drop_args.drop_end);
2571  		if (ret) {
2572  			/* Same comment as above. */
2573  			btrfs_abort_transaction(trans, ret);
2574  			goto out_trans;
2575  		}
2576  	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2577  		/* See the comment in the loop above for the reasoning here. */
2578  		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2579  					drop_args.drop_end - cur_offset);
2580  		if (ret) {
2581  			btrfs_abort_transaction(trans, ret);
2582  			goto out_trans;
2583  		}
2584  
2585  	}
2586  	if (extent_info) {
2587  		ret = btrfs_insert_replace_extent(trans, inode, path,
2588  				extent_info, extent_info->data_len,
2589  				drop_args.bytes_found);
2590  		if (ret) {
2591  			btrfs_abort_transaction(trans, ret);
2592  			goto out_trans;
2593  		}
2594  	}
2595  
2596  out_trans:
2597  	if (!trans)
2598  		goto out_free;
2599  
2600  	trans->block_rsv = &fs_info->trans_block_rsv;
2601  	if (ret)
2602  		btrfs_end_transaction(trans);
2603  	else
2604  		*trans_out = trans;
2605  out_free:
2606  	btrfs_free_block_rsv(fs_info, rsv);
2607  out:
2608  	return ret;
2609  }
2610  
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2611  static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2612  {
2613  	struct inode *inode = file_inode(file);
2614  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2615  	struct btrfs_root *root = BTRFS_I(inode)->root;
2616  	struct extent_state *cached_state = NULL;
2617  	struct btrfs_path *path;
2618  	struct btrfs_trans_handle *trans = NULL;
2619  	u64 lockstart;
2620  	u64 lockend;
2621  	u64 tail_start;
2622  	u64 tail_len;
2623  	u64 orig_start = offset;
2624  	int ret = 0;
2625  	bool same_block;
2626  	u64 ino_size;
2627  	bool truncated_block = false;
2628  	bool updated_inode = false;
2629  
2630  	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2631  
2632  	ret = btrfs_wait_ordered_range(inode, offset, len);
2633  	if (ret)
2634  		goto out_only_mutex;
2635  
2636  	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2637  	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2638  	if (ret < 0)
2639  		goto out_only_mutex;
2640  	if (ret && !len) {
2641  		/* Already in a large hole */
2642  		ret = 0;
2643  		goto out_only_mutex;
2644  	}
2645  
2646  	ret = file_modified(file);
2647  	if (ret)
2648  		goto out_only_mutex;
2649  
2650  	lockstart = round_up(offset, fs_info->sectorsize);
2651  	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2652  	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2653  		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2654  	/*
2655  	 * We needn't truncate any block which is beyond the end of the file
2656  	 * because we are sure there is no data there.
2657  	 */
2658  	/*
2659  	 * Only do this if we are in the same block and we aren't doing the
2660  	 * entire block.
2661  	 */
2662  	if (same_block && len < fs_info->sectorsize) {
2663  		if (offset < ino_size) {
2664  			truncated_block = true;
2665  			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2666  						   0);
2667  		} else {
2668  			ret = 0;
2669  		}
2670  		goto out_only_mutex;
2671  	}
2672  
2673  	/* zero back part of the first block */
2674  	if (offset < ino_size) {
2675  		truncated_block = true;
2676  		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2677  		if (ret) {
2678  			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2679  			return ret;
2680  		}
2681  	}
2682  
2683  	/* Check the aligned pages after the first unaligned page,
2684  	 * if offset != orig_start, which means the first unaligned page
2685  	 * including several following pages are already in holes,
2686  	 * the extra check can be skipped */
2687  	if (offset == orig_start) {
2688  		/* after truncate page, check hole again */
2689  		len = offset + len - lockstart;
2690  		offset = lockstart;
2691  		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2692  		if (ret < 0)
2693  			goto out_only_mutex;
2694  		if (ret && !len) {
2695  			ret = 0;
2696  			goto out_only_mutex;
2697  		}
2698  		lockstart = offset;
2699  	}
2700  
2701  	/* Check the tail unaligned part is in a hole */
2702  	tail_start = lockend + 1;
2703  	tail_len = offset + len - tail_start;
2704  	if (tail_len) {
2705  		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2706  		if (unlikely(ret < 0))
2707  			goto out_only_mutex;
2708  		if (!ret) {
2709  			/* zero the front end of the last page */
2710  			if (tail_start + tail_len < ino_size) {
2711  				truncated_block = true;
2712  				ret = btrfs_truncate_block(BTRFS_I(inode),
2713  							tail_start + tail_len,
2714  							0, 1);
2715  				if (ret)
2716  					goto out_only_mutex;
2717  			}
2718  		}
2719  	}
2720  
2721  	if (lockend < lockstart) {
2722  		ret = 0;
2723  		goto out_only_mutex;
2724  	}
2725  
2726  	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2727  
2728  	path = btrfs_alloc_path();
2729  	if (!path) {
2730  		ret = -ENOMEM;
2731  		goto out;
2732  	}
2733  
2734  	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2735  					 lockend, NULL, &trans);
2736  	btrfs_free_path(path);
2737  	if (ret)
2738  		goto out;
2739  
2740  	ASSERT(trans != NULL);
2741  	inode_inc_iversion(inode);
2742  	inode->i_mtime = inode_set_ctime_current(inode);
2743  	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2744  	updated_inode = true;
2745  	btrfs_end_transaction(trans);
2746  	btrfs_btree_balance_dirty(fs_info);
2747  out:
2748  	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2749  		      &cached_state);
2750  out_only_mutex:
2751  	if (!updated_inode && truncated_block && !ret) {
2752  		/*
2753  		 * If we only end up zeroing part of a page, we still need to
2754  		 * update the inode item, so that all the time fields are
2755  		 * updated as well as the necessary btrfs inode in memory fields
2756  		 * for detecting, at fsync time, if the inode isn't yet in the
2757  		 * log tree or it's there but not up to date.
2758  		 */
2759  		struct timespec64 now = inode_set_ctime_current(inode);
2760  
2761  		inode_inc_iversion(inode);
2762  		inode->i_mtime = now;
2763  		trans = btrfs_start_transaction(root, 1);
2764  		if (IS_ERR(trans)) {
2765  			ret = PTR_ERR(trans);
2766  		} else {
2767  			int ret2;
2768  
2769  			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2770  			ret2 = btrfs_end_transaction(trans);
2771  			if (!ret)
2772  				ret = ret2;
2773  		}
2774  	}
2775  	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2776  	return ret;
2777  }
2778  
2779  /* Helper structure to record which range is already reserved */
2780  struct falloc_range {
2781  	struct list_head list;
2782  	u64 start;
2783  	u64 len;
2784  };
2785  
2786  /*
2787   * Helper function to add falloc range
2788   *
2789   * Caller should have locked the larger range of extent containing
2790   * [start, len)
2791   */
add_falloc_range(struct list_head * head,u64 start,u64 len)2792  static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2793  {
2794  	struct falloc_range *range = NULL;
2795  
2796  	if (!list_empty(head)) {
2797  		/*
2798  		 * As fallocate iterates by bytenr order, we only need to check
2799  		 * the last range.
2800  		 */
2801  		range = list_last_entry(head, struct falloc_range, list);
2802  		if (range->start + range->len == start) {
2803  			range->len += len;
2804  			return 0;
2805  		}
2806  	}
2807  
2808  	range = kmalloc(sizeof(*range), GFP_KERNEL);
2809  	if (!range)
2810  		return -ENOMEM;
2811  	range->start = start;
2812  	range->len = len;
2813  	list_add_tail(&range->list, head);
2814  	return 0;
2815  }
2816  
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2817  static int btrfs_fallocate_update_isize(struct inode *inode,
2818  					const u64 end,
2819  					const int mode)
2820  {
2821  	struct btrfs_trans_handle *trans;
2822  	struct btrfs_root *root = BTRFS_I(inode)->root;
2823  	int ret;
2824  	int ret2;
2825  
2826  	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2827  		return 0;
2828  
2829  	trans = btrfs_start_transaction(root, 1);
2830  	if (IS_ERR(trans))
2831  		return PTR_ERR(trans);
2832  
2833  	inode_set_ctime_current(inode);
2834  	i_size_write(inode, end);
2835  	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2836  	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2837  	ret2 = btrfs_end_transaction(trans);
2838  
2839  	return ret ? ret : ret2;
2840  }
2841  
2842  enum {
2843  	RANGE_BOUNDARY_WRITTEN_EXTENT,
2844  	RANGE_BOUNDARY_PREALLOC_EXTENT,
2845  	RANGE_BOUNDARY_HOLE,
2846  };
2847  
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2848  static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2849  						 u64 offset)
2850  {
2851  	const u64 sectorsize = inode->root->fs_info->sectorsize;
2852  	struct extent_map *em;
2853  	int ret;
2854  
2855  	offset = round_down(offset, sectorsize);
2856  	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2857  	if (IS_ERR(em))
2858  		return PTR_ERR(em);
2859  
2860  	if (em->block_start == EXTENT_MAP_HOLE)
2861  		ret = RANGE_BOUNDARY_HOLE;
2862  	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2863  		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2864  	else
2865  		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2866  
2867  	free_extent_map(em);
2868  	return ret;
2869  }
2870  
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2871  static int btrfs_zero_range(struct inode *inode,
2872  			    loff_t offset,
2873  			    loff_t len,
2874  			    const int mode)
2875  {
2876  	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2877  	struct extent_map *em;
2878  	struct extent_changeset *data_reserved = NULL;
2879  	int ret;
2880  	u64 alloc_hint = 0;
2881  	const u64 sectorsize = fs_info->sectorsize;
2882  	u64 alloc_start = round_down(offset, sectorsize);
2883  	u64 alloc_end = round_up(offset + len, sectorsize);
2884  	u64 bytes_to_reserve = 0;
2885  	bool space_reserved = false;
2886  
2887  	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2888  			      alloc_end - alloc_start);
2889  	if (IS_ERR(em)) {
2890  		ret = PTR_ERR(em);
2891  		goto out;
2892  	}
2893  
2894  	/*
2895  	 * Avoid hole punching and extent allocation for some cases. More cases
2896  	 * could be considered, but these are unlikely common and we keep things
2897  	 * as simple as possible for now. Also, intentionally, if the target
2898  	 * range contains one or more prealloc extents together with regular
2899  	 * extents and holes, we drop all the existing extents and allocate a
2900  	 * new prealloc extent, so that we get a larger contiguous disk extent.
2901  	 */
2902  	if (em->start <= alloc_start &&
2903  	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2904  		const u64 em_end = em->start + em->len;
2905  
2906  		if (em_end >= offset + len) {
2907  			/*
2908  			 * The whole range is already a prealloc extent,
2909  			 * do nothing except updating the inode's i_size if
2910  			 * needed.
2911  			 */
2912  			free_extent_map(em);
2913  			ret = btrfs_fallocate_update_isize(inode, offset + len,
2914  							   mode);
2915  			goto out;
2916  		}
2917  		/*
2918  		 * Part of the range is already a prealloc extent, so operate
2919  		 * only on the remaining part of the range.
2920  		 */
2921  		alloc_start = em_end;
2922  		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2923  		len = offset + len - alloc_start;
2924  		offset = alloc_start;
2925  		alloc_hint = em->block_start + em->len;
2926  	}
2927  	free_extent_map(em);
2928  
2929  	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2930  	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2931  		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2932  				      sectorsize);
2933  		if (IS_ERR(em)) {
2934  			ret = PTR_ERR(em);
2935  			goto out;
2936  		}
2937  
2938  		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2939  			free_extent_map(em);
2940  			ret = btrfs_fallocate_update_isize(inode, offset + len,
2941  							   mode);
2942  			goto out;
2943  		}
2944  		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2945  			free_extent_map(em);
2946  			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2947  						   0);
2948  			if (!ret)
2949  				ret = btrfs_fallocate_update_isize(inode,
2950  								   offset + len,
2951  								   mode);
2952  			return ret;
2953  		}
2954  		free_extent_map(em);
2955  		alloc_start = round_down(offset, sectorsize);
2956  		alloc_end = alloc_start + sectorsize;
2957  		goto reserve_space;
2958  	}
2959  
2960  	alloc_start = round_up(offset, sectorsize);
2961  	alloc_end = round_down(offset + len, sectorsize);
2962  
2963  	/*
2964  	 * For unaligned ranges, check the pages at the boundaries, they might
2965  	 * map to an extent, in which case we need to partially zero them, or
2966  	 * they might map to a hole, in which case we need our allocation range
2967  	 * to cover them.
2968  	 */
2969  	if (!IS_ALIGNED(offset, sectorsize)) {
2970  		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2971  							    offset);
2972  		if (ret < 0)
2973  			goto out;
2974  		if (ret == RANGE_BOUNDARY_HOLE) {
2975  			alloc_start = round_down(offset, sectorsize);
2976  			ret = 0;
2977  		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2978  			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2979  			if (ret)
2980  				goto out;
2981  		} else {
2982  			ret = 0;
2983  		}
2984  	}
2985  
2986  	if (!IS_ALIGNED(offset + len, sectorsize)) {
2987  		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2988  							    offset + len);
2989  		if (ret < 0)
2990  			goto out;
2991  		if (ret == RANGE_BOUNDARY_HOLE) {
2992  			alloc_end = round_up(offset + len, sectorsize);
2993  			ret = 0;
2994  		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2995  			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2996  						   0, 1);
2997  			if (ret)
2998  				goto out;
2999  		} else {
3000  			ret = 0;
3001  		}
3002  	}
3003  
3004  reserve_space:
3005  	if (alloc_start < alloc_end) {
3006  		struct extent_state *cached_state = NULL;
3007  		const u64 lockstart = alloc_start;
3008  		const u64 lockend = alloc_end - 1;
3009  
3010  		bytes_to_reserve = alloc_end - alloc_start;
3011  		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3012  						      bytes_to_reserve);
3013  		if (ret < 0)
3014  			goto out;
3015  		space_reserved = true;
3016  		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3017  					    &cached_state);
3018  		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3019  						alloc_start, bytes_to_reserve);
3020  		if (ret) {
3021  			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3022  				      lockend, &cached_state);
3023  			goto out;
3024  		}
3025  		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3026  						alloc_end - alloc_start,
3027  						i_blocksize(inode),
3028  						offset + len, &alloc_hint);
3029  		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3030  			      &cached_state);
3031  		/* btrfs_prealloc_file_range releases reserved space on error */
3032  		if (ret) {
3033  			space_reserved = false;
3034  			goto out;
3035  		}
3036  	}
3037  	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3038   out:
3039  	if (ret && space_reserved)
3040  		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3041  					       alloc_start, bytes_to_reserve);
3042  	extent_changeset_free(data_reserved);
3043  
3044  	return ret;
3045  }
3046  
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3047  static long btrfs_fallocate(struct file *file, int mode,
3048  			    loff_t offset, loff_t len)
3049  {
3050  	struct inode *inode = file_inode(file);
3051  	struct extent_state *cached_state = NULL;
3052  	struct extent_changeset *data_reserved = NULL;
3053  	struct falloc_range *range;
3054  	struct falloc_range *tmp;
3055  	LIST_HEAD(reserve_list);
3056  	u64 cur_offset;
3057  	u64 last_byte;
3058  	u64 alloc_start;
3059  	u64 alloc_end;
3060  	u64 alloc_hint = 0;
3061  	u64 locked_end;
3062  	u64 actual_end = 0;
3063  	u64 data_space_needed = 0;
3064  	u64 data_space_reserved = 0;
3065  	u64 qgroup_reserved = 0;
3066  	struct extent_map *em;
3067  	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3068  	int ret;
3069  
3070  	/* Do not allow fallocate in ZONED mode */
3071  	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3072  		return -EOPNOTSUPP;
3073  
3074  	alloc_start = round_down(offset, blocksize);
3075  	alloc_end = round_up(offset + len, blocksize);
3076  	cur_offset = alloc_start;
3077  
3078  	/* Make sure we aren't being give some crap mode */
3079  	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3080  		     FALLOC_FL_ZERO_RANGE))
3081  		return -EOPNOTSUPP;
3082  
3083  	if (mode & FALLOC_FL_PUNCH_HOLE)
3084  		return btrfs_punch_hole(file, offset, len);
3085  
3086  	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3087  
3088  	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3089  		ret = inode_newsize_ok(inode, offset + len);
3090  		if (ret)
3091  			goto out;
3092  	}
3093  
3094  	ret = file_modified(file);
3095  	if (ret)
3096  		goto out;
3097  
3098  	/*
3099  	 * TODO: Move these two operations after we have checked
3100  	 * accurate reserved space, or fallocate can still fail but
3101  	 * with page truncated or size expanded.
3102  	 *
3103  	 * But that's a minor problem and won't do much harm BTW.
3104  	 */
3105  	if (alloc_start > inode->i_size) {
3106  		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3107  					alloc_start);
3108  		if (ret)
3109  			goto out;
3110  	} else if (offset + len > inode->i_size) {
3111  		/*
3112  		 * If we are fallocating from the end of the file onward we
3113  		 * need to zero out the end of the block if i_size lands in the
3114  		 * middle of a block.
3115  		 */
3116  		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3117  		if (ret)
3118  			goto out;
3119  	}
3120  
3121  	/*
3122  	 * We have locked the inode at the VFS level (in exclusive mode) and we
3123  	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3124  	 * locking the file range, flush all dealloc in the range and wait for
3125  	 * all ordered extents in the range to complete. After this we can lock
3126  	 * the file range and, due to the previous locking we did, we know there
3127  	 * can't be more delalloc or ordered extents in the range.
3128  	 */
3129  	ret = btrfs_wait_ordered_range(inode, alloc_start,
3130  				       alloc_end - alloc_start);
3131  	if (ret)
3132  		goto out;
3133  
3134  	if (mode & FALLOC_FL_ZERO_RANGE) {
3135  		ret = btrfs_zero_range(inode, offset, len, mode);
3136  		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3137  		return ret;
3138  	}
3139  
3140  	locked_end = alloc_end - 1;
3141  	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3142  		    &cached_state);
3143  
3144  	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3145  
3146  	/* First, check if we exceed the qgroup limit */
3147  	while (cur_offset < alloc_end) {
3148  		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3149  				      alloc_end - cur_offset);
3150  		if (IS_ERR(em)) {
3151  			ret = PTR_ERR(em);
3152  			break;
3153  		}
3154  		last_byte = min(extent_map_end(em), alloc_end);
3155  		actual_end = min_t(u64, extent_map_end(em), offset + len);
3156  		last_byte = ALIGN(last_byte, blocksize);
3157  		if (em->block_start == EXTENT_MAP_HOLE ||
3158  		    (cur_offset >= inode->i_size &&
3159  		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3160  			const u64 range_len = last_byte - cur_offset;
3161  
3162  			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3163  			if (ret < 0) {
3164  				free_extent_map(em);
3165  				break;
3166  			}
3167  			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3168  					&data_reserved, cur_offset, range_len);
3169  			if (ret < 0) {
3170  				free_extent_map(em);
3171  				break;
3172  			}
3173  			qgroup_reserved += range_len;
3174  			data_space_needed += range_len;
3175  		}
3176  		free_extent_map(em);
3177  		cur_offset = last_byte;
3178  	}
3179  
3180  	if (!ret && data_space_needed > 0) {
3181  		/*
3182  		 * We are safe to reserve space here as we can't have delalloc
3183  		 * in the range, see above.
3184  		 */
3185  		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3186  						      data_space_needed);
3187  		if (!ret)
3188  			data_space_reserved = data_space_needed;
3189  	}
3190  
3191  	/*
3192  	 * If ret is still 0, means we're OK to fallocate.
3193  	 * Or just cleanup the list and exit.
3194  	 */
3195  	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3196  		if (!ret) {
3197  			ret = btrfs_prealloc_file_range(inode, mode,
3198  					range->start,
3199  					range->len, i_blocksize(inode),
3200  					offset + len, &alloc_hint);
3201  			/*
3202  			 * btrfs_prealloc_file_range() releases space even
3203  			 * if it returns an error.
3204  			 */
3205  			data_space_reserved -= range->len;
3206  			qgroup_reserved -= range->len;
3207  		} else if (data_space_reserved > 0) {
3208  			btrfs_free_reserved_data_space(BTRFS_I(inode),
3209  					       data_reserved, range->start,
3210  					       range->len);
3211  			data_space_reserved -= range->len;
3212  			qgroup_reserved -= range->len;
3213  		} else if (qgroup_reserved > 0) {
3214  			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3215  					       range->start, range->len, NULL);
3216  			qgroup_reserved -= range->len;
3217  		}
3218  		list_del(&range->list);
3219  		kfree(range);
3220  	}
3221  	if (ret < 0)
3222  		goto out_unlock;
3223  
3224  	/*
3225  	 * We didn't need to allocate any more space, but we still extended the
3226  	 * size of the file so we need to update i_size and the inode item.
3227  	 */
3228  	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3229  out_unlock:
3230  	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3231  		      &cached_state);
3232  out:
3233  	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3234  	extent_changeset_free(data_reserved);
3235  	return ret;
3236  }
3237  
3238  /*
3239   * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3240   * that has unflushed and/or flushing delalloc. There might be other adjacent
3241   * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3242   * looping while it gets adjacent subranges, and merging them together.
3243   */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3244  static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3245  				   struct extent_state **cached_state,
3246  				   bool *search_io_tree,
3247  				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3248  {
3249  	u64 len = end + 1 - start;
3250  	u64 delalloc_len = 0;
3251  	struct btrfs_ordered_extent *oe;
3252  	u64 oe_start;
3253  	u64 oe_end;
3254  
3255  	/*
3256  	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3257  	 * means we have delalloc (dirty pages) for which writeback has not
3258  	 * started yet.
3259  	 */
3260  	if (*search_io_tree) {
3261  		spin_lock(&inode->lock);
3262  		if (inode->delalloc_bytes > 0) {
3263  			spin_unlock(&inode->lock);
3264  			*delalloc_start_ret = start;
3265  			delalloc_len = count_range_bits(&inode->io_tree,
3266  							delalloc_start_ret, end,
3267  							len, EXTENT_DELALLOC, 1,
3268  							cached_state);
3269  		} else {
3270  			spin_unlock(&inode->lock);
3271  		}
3272  	}
3273  
3274  	if (delalloc_len > 0) {
3275  		/*
3276  		 * If delalloc was found then *delalloc_start_ret has a sector size
3277  		 * aligned value (rounded down).
3278  		 */
3279  		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3280  
3281  		if (*delalloc_start_ret == start) {
3282  			/* Delalloc for the whole range, nothing more to do. */
3283  			if (*delalloc_end_ret == end)
3284  				return true;
3285  			/* Else trim our search range for ordered extents. */
3286  			start = *delalloc_end_ret + 1;
3287  			len = end + 1 - start;
3288  		}
3289  	} else {
3290  		/* No delalloc, future calls don't need to search again. */
3291  		*search_io_tree = false;
3292  	}
3293  
3294  	/*
3295  	 * Now also check if there's any ordered extent in the range.
3296  	 * We do this because:
3297  	 *
3298  	 * 1) When delalloc is flushed, the file range is locked, we clear the
3299  	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3300  	 *    an ordered extent for the write. So we might just have been called
3301  	 *    after delalloc is flushed and before the ordered extent completes
3302  	 *    and inserts the new file extent item in the subvolume's btree;
3303  	 *
3304  	 * 2) We may have an ordered extent created by flushing delalloc for a
3305  	 *    subrange that starts before the subrange we found marked with
3306  	 *    EXTENT_DELALLOC in the io tree.
3307  	 *
3308  	 * We could also use the extent map tree to find such delalloc that is
3309  	 * being flushed, but using the ordered extents tree is more efficient
3310  	 * because it's usually much smaller as ordered extents are removed from
3311  	 * the tree once they complete. With the extent maps, we mau have them
3312  	 * in the extent map tree for a very long time, and they were either
3313  	 * created by previous writes or loaded by read operations.
3314  	 */
3315  	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3316  	if (!oe)
3317  		return (delalloc_len > 0);
3318  
3319  	/* The ordered extent may span beyond our search range. */
3320  	oe_start = max(oe->file_offset, start);
3321  	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3322  
3323  	btrfs_put_ordered_extent(oe);
3324  
3325  	/* Don't have unflushed delalloc, return the ordered extent range. */
3326  	if (delalloc_len == 0) {
3327  		*delalloc_start_ret = oe_start;
3328  		*delalloc_end_ret = oe_end;
3329  		return true;
3330  	}
3331  
3332  	/*
3333  	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3334  	 * If the ranges are adjacent returned a combined range, otherwise
3335  	 * return the leftmost range.
3336  	 */
3337  	if (oe_start < *delalloc_start_ret) {
3338  		if (oe_end < *delalloc_start_ret)
3339  			*delalloc_end_ret = oe_end;
3340  		*delalloc_start_ret = oe_start;
3341  	} else if (*delalloc_end_ret + 1 == oe_start) {
3342  		*delalloc_end_ret = oe_end;
3343  	}
3344  
3345  	return true;
3346  }
3347  
3348  /*
3349   * Check if there's delalloc in a given range.
3350   *
3351   * @inode:               The inode.
3352   * @start:               The start offset of the range. It does not need to be
3353   *                       sector size aligned.
3354   * @end:                 The end offset (inclusive value) of the search range.
3355   *                       It does not need to be sector size aligned.
3356   * @cached_state:        Extent state record used for speeding up delalloc
3357   *                       searches in the inode's io_tree. Can be NULL.
3358   * @delalloc_start_ret:  Output argument, set to the start offset of the
3359   *                       subrange found with delalloc (may not be sector size
3360   *                       aligned).
3361   * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3362   *                       of the subrange found with delalloc.
3363   *
3364   * Returns true if a subrange with delalloc is found within the given range, and
3365   * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3366   * end offsets of the subrange.
3367   */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3368  bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3369  				  struct extent_state **cached_state,
3370  				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3371  {
3372  	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3373  	u64 prev_delalloc_end = 0;
3374  	bool search_io_tree = true;
3375  	bool ret = false;
3376  
3377  	while (cur_offset <= end) {
3378  		u64 delalloc_start;
3379  		u64 delalloc_end;
3380  		bool delalloc;
3381  
3382  		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3383  						  cached_state, &search_io_tree,
3384  						  &delalloc_start,
3385  						  &delalloc_end);
3386  		if (!delalloc)
3387  			break;
3388  
3389  		if (prev_delalloc_end == 0) {
3390  			/* First subrange found. */
3391  			*delalloc_start_ret = max(delalloc_start, start);
3392  			*delalloc_end_ret = delalloc_end;
3393  			ret = true;
3394  		} else if (delalloc_start == prev_delalloc_end + 1) {
3395  			/* Subrange adjacent to the previous one, merge them. */
3396  			*delalloc_end_ret = delalloc_end;
3397  		} else {
3398  			/* Subrange not adjacent to the previous one, exit. */
3399  			break;
3400  		}
3401  
3402  		prev_delalloc_end = delalloc_end;
3403  		cur_offset = delalloc_end + 1;
3404  		cond_resched();
3405  	}
3406  
3407  	return ret;
3408  }
3409  
3410  /*
3411   * Check if there's a hole or delalloc range in a range representing a hole (or
3412   * prealloc extent) found in the inode's subvolume btree.
3413   *
3414   * @inode:      The inode.
3415   * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3416   * @start:      Start offset of the hole region. It does not need to be sector
3417   *              size aligned.
3418   * @end:        End offset (inclusive value) of the hole region. It does not
3419   *              need to be sector size aligned.
3420   * @start_ret:  Return parameter, used to set the start of the subrange in the
3421   *              hole that matches the search criteria (seek mode), if such
3422   *              subrange is found (return value of the function is true).
3423   *              The value returned here may not be sector size aligned.
3424   *
3425   * Returns true if a subrange matching the given seek mode is found, and if one
3426   * is found, it updates @start_ret with the start of the subrange.
3427   */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3428  static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3429  					struct extent_state **cached_state,
3430  					u64 start, u64 end, u64 *start_ret)
3431  {
3432  	u64 delalloc_start;
3433  	u64 delalloc_end;
3434  	bool delalloc;
3435  
3436  	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3437  						&delalloc_start, &delalloc_end);
3438  	if (delalloc && whence == SEEK_DATA) {
3439  		*start_ret = delalloc_start;
3440  		return true;
3441  	}
3442  
3443  	if (delalloc && whence == SEEK_HOLE) {
3444  		/*
3445  		 * We found delalloc but it starts after out start offset. So we
3446  		 * have a hole between our start offset and the delalloc start.
3447  		 */
3448  		if (start < delalloc_start) {
3449  			*start_ret = start;
3450  			return true;
3451  		}
3452  		/*
3453  		 * Delalloc range starts at our start offset.
3454  		 * If the delalloc range's length is smaller than our range,
3455  		 * then it means we have a hole that starts where the delalloc
3456  		 * subrange ends.
3457  		 */
3458  		if (delalloc_end < end) {
3459  			*start_ret = delalloc_end + 1;
3460  			return true;
3461  		}
3462  
3463  		/* There's delalloc for the whole range. */
3464  		return false;
3465  	}
3466  
3467  	if (!delalloc && whence == SEEK_HOLE) {
3468  		*start_ret = start;
3469  		return true;
3470  	}
3471  
3472  	/*
3473  	 * No delalloc in the range and we are seeking for data. The caller has
3474  	 * to iterate to the next extent item in the subvolume btree.
3475  	 */
3476  	return false;
3477  }
3478  
find_desired_extent(struct file * file,loff_t offset,int whence)3479  static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3480  {
3481  	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3482  	struct btrfs_file_private *private;
3483  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3484  	struct extent_state *cached_state = NULL;
3485  	struct extent_state **delalloc_cached_state;
3486  	const loff_t i_size = i_size_read(&inode->vfs_inode);
3487  	const u64 ino = btrfs_ino(inode);
3488  	struct btrfs_root *root = inode->root;
3489  	struct btrfs_path *path;
3490  	struct btrfs_key key;
3491  	u64 last_extent_end;
3492  	u64 lockstart;
3493  	u64 lockend;
3494  	u64 start;
3495  	int ret;
3496  	bool found = false;
3497  
3498  	if (i_size == 0 || offset >= i_size)
3499  		return -ENXIO;
3500  
3501  	/*
3502  	 * Quick path. If the inode has no prealloc extents and its number of
3503  	 * bytes used matches its i_size, then it can not have holes.
3504  	 */
3505  	if (whence == SEEK_HOLE &&
3506  	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3507  	    inode_get_bytes(&inode->vfs_inode) == i_size)
3508  		return i_size;
3509  
3510  	spin_lock(&inode->lock);
3511  	private = file->private_data;
3512  	spin_unlock(&inode->lock);
3513  
3514  	if (private && private->owner_task != current) {
3515  		/*
3516  		 * Not allocated by us, don't use it as its cached state is used
3517  		 * by the task that allocated it and we don't want neither to
3518  		 * mess with it nor get incorrect results because it reflects an
3519  		 * invalid state for the current task.
3520  		 */
3521  		private = NULL;
3522  	} else if (!private) {
3523  		private = kzalloc(sizeof(*private), GFP_KERNEL);
3524  		/*
3525  		 * No worries if memory allocation failed.
3526  		 * The private structure is used only for speeding up multiple
3527  		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3528  		 * so everything will still be correct.
3529  		 */
3530  		if (private) {
3531  			bool free = false;
3532  
3533  			private->owner_task = current;
3534  
3535  			spin_lock(&inode->lock);
3536  			if (file->private_data)
3537  				free = true;
3538  			else
3539  				file->private_data = private;
3540  			spin_unlock(&inode->lock);
3541  
3542  			if (free) {
3543  				kfree(private);
3544  				private = NULL;
3545  			}
3546  		}
3547  	}
3548  
3549  	if (private)
3550  		delalloc_cached_state = &private->llseek_cached_state;
3551  	else
3552  		delalloc_cached_state = NULL;
3553  
3554  	/*
3555  	 * offset can be negative, in this case we start finding DATA/HOLE from
3556  	 * the very start of the file.
3557  	 */
3558  	start = max_t(loff_t, 0, offset);
3559  
3560  	lockstart = round_down(start, fs_info->sectorsize);
3561  	lockend = round_up(i_size, fs_info->sectorsize);
3562  	if (lockend <= lockstart)
3563  		lockend = lockstart + fs_info->sectorsize;
3564  	lockend--;
3565  
3566  	path = btrfs_alloc_path();
3567  	if (!path)
3568  		return -ENOMEM;
3569  	path->reada = READA_FORWARD;
3570  
3571  	key.objectid = ino;
3572  	key.type = BTRFS_EXTENT_DATA_KEY;
3573  	key.offset = start;
3574  
3575  	last_extent_end = lockstart;
3576  
3577  	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3578  
3579  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3580  	if (ret < 0) {
3581  		goto out;
3582  	} else if (ret > 0 && path->slots[0] > 0) {
3583  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3584  		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3585  			path->slots[0]--;
3586  	}
3587  
3588  	while (start < i_size) {
3589  		struct extent_buffer *leaf = path->nodes[0];
3590  		struct btrfs_file_extent_item *extent;
3591  		u64 extent_end;
3592  		u8 type;
3593  
3594  		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3595  			ret = btrfs_next_leaf(root, path);
3596  			if (ret < 0)
3597  				goto out;
3598  			else if (ret > 0)
3599  				break;
3600  
3601  			leaf = path->nodes[0];
3602  		}
3603  
3604  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3605  		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3606  			break;
3607  
3608  		extent_end = btrfs_file_extent_end(path);
3609  
3610  		/*
3611  		 * In the first iteration we may have a slot that points to an
3612  		 * extent that ends before our start offset, so skip it.
3613  		 */
3614  		if (extent_end <= start) {
3615  			path->slots[0]++;
3616  			continue;
3617  		}
3618  
3619  		/* We have an implicit hole, NO_HOLES feature is likely set. */
3620  		if (last_extent_end < key.offset) {
3621  			u64 search_start = last_extent_end;
3622  			u64 found_start;
3623  
3624  			/*
3625  			 * First iteration, @start matches @offset and it's
3626  			 * within the hole.
3627  			 */
3628  			if (start == offset)
3629  				search_start = offset;
3630  
3631  			found = find_desired_extent_in_hole(inode, whence,
3632  							    delalloc_cached_state,
3633  							    search_start,
3634  							    key.offset - 1,
3635  							    &found_start);
3636  			if (found) {
3637  				start = found_start;
3638  				break;
3639  			}
3640  			/*
3641  			 * Didn't find data or a hole (due to delalloc) in the
3642  			 * implicit hole range, so need to analyze the extent.
3643  			 */
3644  		}
3645  
3646  		extent = btrfs_item_ptr(leaf, path->slots[0],
3647  					struct btrfs_file_extent_item);
3648  		type = btrfs_file_extent_type(leaf, extent);
3649  
3650  		/*
3651  		 * Can't access the extent's disk_bytenr field if this is an
3652  		 * inline extent, since at that offset, it's where the extent
3653  		 * data starts.
3654  		 */
3655  		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3656  		    (type == BTRFS_FILE_EXTENT_REG &&
3657  		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3658  			/*
3659  			 * Explicit hole or prealloc extent, search for delalloc.
3660  			 * A prealloc extent is treated like a hole.
3661  			 */
3662  			u64 search_start = key.offset;
3663  			u64 found_start;
3664  
3665  			/*
3666  			 * First iteration, @start matches @offset and it's
3667  			 * within the hole.
3668  			 */
3669  			if (start == offset)
3670  				search_start = offset;
3671  
3672  			found = find_desired_extent_in_hole(inode, whence,
3673  							    delalloc_cached_state,
3674  							    search_start,
3675  							    extent_end - 1,
3676  							    &found_start);
3677  			if (found) {
3678  				start = found_start;
3679  				break;
3680  			}
3681  			/*
3682  			 * Didn't find data or a hole (due to delalloc) in the
3683  			 * implicit hole range, so need to analyze the next
3684  			 * extent item.
3685  			 */
3686  		} else {
3687  			/*
3688  			 * Found a regular or inline extent.
3689  			 * If we are seeking for data, adjust the start offset
3690  			 * and stop, we're done.
3691  			 */
3692  			if (whence == SEEK_DATA) {
3693  				start = max_t(u64, key.offset, offset);
3694  				found = true;
3695  				break;
3696  			}
3697  			/*
3698  			 * Else, we are seeking for a hole, check the next file
3699  			 * extent item.
3700  			 */
3701  		}
3702  
3703  		start = extent_end;
3704  		last_extent_end = extent_end;
3705  		path->slots[0]++;
3706  		if (fatal_signal_pending(current)) {
3707  			ret = -EINTR;
3708  			goto out;
3709  		}
3710  		cond_resched();
3711  	}
3712  
3713  	/* We have an implicit hole from the last extent found up to i_size. */
3714  	if (!found && start < i_size) {
3715  		found = find_desired_extent_in_hole(inode, whence,
3716  						    delalloc_cached_state, start,
3717  						    i_size - 1, &start);
3718  		if (!found)
3719  			start = i_size;
3720  	}
3721  
3722  out:
3723  	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3724  	btrfs_free_path(path);
3725  
3726  	if (ret < 0)
3727  		return ret;
3728  
3729  	if (whence == SEEK_DATA && start >= i_size)
3730  		return -ENXIO;
3731  
3732  	return min_t(loff_t, start, i_size);
3733  }
3734  
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3735  static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3736  {
3737  	struct inode *inode = file->f_mapping->host;
3738  
3739  	switch (whence) {
3740  	default:
3741  		return generic_file_llseek(file, offset, whence);
3742  	case SEEK_DATA:
3743  	case SEEK_HOLE:
3744  		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3745  		offset = find_desired_extent(file, offset, whence);
3746  		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3747  		break;
3748  	}
3749  
3750  	if (offset < 0)
3751  		return offset;
3752  
3753  	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3754  }
3755  
btrfs_file_open(struct inode * inode,struct file * filp)3756  static int btrfs_file_open(struct inode *inode, struct file *filp)
3757  {
3758  	int ret;
3759  
3760  	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3761  		        FMODE_CAN_ODIRECT;
3762  
3763  	ret = fsverity_file_open(inode, filp);
3764  	if (ret)
3765  		return ret;
3766  	return generic_file_open(inode, filp);
3767  }
3768  
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3769  static int check_direct_read(struct btrfs_fs_info *fs_info,
3770  			     const struct iov_iter *iter, loff_t offset)
3771  {
3772  	int ret;
3773  	int i, seg;
3774  
3775  	ret = check_direct_IO(fs_info, iter, offset);
3776  	if (ret < 0)
3777  		return ret;
3778  
3779  	if (!iter_is_iovec(iter))
3780  		return 0;
3781  
3782  	for (seg = 0; seg < iter->nr_segs; seg++) {
3783  		for (i = seg + 1; i < iter->nr_segs; i++) {
3784  			const struct iovec *iov1 = iter_iov(iter) + seg;
3785  			const struct iovec *iov2 = iter_iov(iter) + i;
3786  
3787  			if (iov1->iov_base == iov2->iov_base)
3788  				return -EINVAL;
3789  		}
3790  	}
3791  	return 0;
3792  }
3793  
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3794  static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3795  {
3796  	struct inode *inode = file_inode(iocb->ki_filp);
3797  	size_t prev_left = 0;
3798  	ssize_t read = 0;
3799  	ssize_t ret;
3800  
3801  	if (fsverity_active(inode))
3802  		return 0;
3803  
3804  	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3805  		return 0;
3806  
3807  	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3808  again:
3809  	/*
3810  	 * This is similar to what we do for direct IO writes, see the comment
3811  	 * at btrfs_direct_write(), but we also disable page faults in addition
3812  	 * to disabling them only at the iov_iter level. This is because when
3813  	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3814  	 * which can still trigger page fault ins despite having set ->nofault
3815  	 * to true of our 'to' iov_iter.
3816  	 *
3817  	 * The difference to direct IO writes is that we deadlock when trying
3818  	 * to lock the extent range in the inode's tree during he page reads
3819  	 * triggered by the fault in (while for writes it is due to waiting for
3820  	 * our own ordered extent). This is because for direct IO reads,
3821  	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3822  	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3823  	 */
3824  	pagefault_disable();
3825  	to->nofault = true;
3826  	ret = btrfs_dio_read(iocb, to, read);
3827  	to->nofault = false;
3828  	pagefault_enable();
3829  
3830  	/* No increment (+=) because iomap returns a cumulative value. */
3831  	if (ret > 0)
3832  		read = ret;
3833  
3834  	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3835  		const size_t left = iov_iter_count(to);
3836  
3837  		if (left == prev_left) {
3838  			/*
3839  			 * We didn't make any progress since the last attempt,
3840  			 * fallback to a buffered read for the remainder of the
3841  			 * range. This is just to avoid any possibility of looping
3842  			 * for too long.
3843  			 */
3844  			ret = read;
3845  		} else {
3846  			/*
3847  			 * We made some progress since the last retry or this is
3848  			 * the first time we are retrying. Fault in as many pages
3849  			 * as possible and retry.
3850  			 */
3851  			fault_in_iov_iter_writeable(to, left);
3852  			prev_left = left;
3853  			goto again;
3854  		}
3855  	}
3856  	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3857  	return ret < 0 ? ret : read;
3858  }
3859  
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3860  static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3861  {
3862  	ssize_t ret = 0;
3863  
3864  	if (iocb->ki_flags & IOCB_DIRECT) {
3865  		ret = btrfs_direct_read(iocb, to);
3866  		if (ret < 0 || !iov_iter_count(to) ||
3867  		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3868  			return ret;
3869  	}
3870  
3871  	return filemap_read(iocb, to, ret);
3872  }
3873  
3874  const struct file_operations btrfs_file_operations = {
3875  	.llseek		= btrfs_file_llseek,
3876  	.read_iter      = btrfs_file_read_iter,
3877  	.splice_read	= filemap_splice_read,
3878  	.write_iter	= btrfs_file_write_iter,
3879  	.splice_write	= iter_file_splice_write,
3880  	.mmap		= btrfs_file_mmap,
3881  	.open		= btrfs_file_open,
3882  	.release	= btrfs_release_file,
3883  	.get_unmapped_area = thp_get_unmapped_area,
3884  	.fsync		= btrfs_sync_file,
3885  	.fallocate	= btrfs_fallocate,
3886  	.unlocked_ioctl	= btrfs_ioctl,
3887  #ifdef CONFIG_COMPAT
3888  	.compat_ioctl	= btrfs_compat_ioctl,
3889  #endif
3890  	.remap_file_range = btrfs_remap_file_range,
3891  };
3892  
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3893  int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3894  {
3895  	int ret;
3896  
3897  	/*
3898  	 * So with compression we will find and lock a dirty page and clear the
3899  	 * first one as dirty, setup an async extent, and immediately return
3900  	 * with the entire range locked but with nobody actually marked with
3901  	 * writeback.  So we can't just filemap_write_and_wait_range() and
3902  	 * expect it to work since it will just kick off a thread to do the
3903  	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3904  	 * since it will wait on the page lock, which won't be unlocked until
3905  	 * after the pages have been marked as writeback and so we're good to go
3906  	 * from there.  We have to do this otherwise we'll miss the ordered
3907  	 * extents and that results in badness.  Please Josef, do not think you
3908  	 * know better and pull this out at some point in the future, it is
3909  	 * right and you are wrong.
3910  	 */
3911  	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3912  	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3913  			     &BTRFS_I(inode)->runtime_flags))
3914  		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3915  
3916  	return ret;
3917  }
3918