1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62
63 /*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86 /*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 if (refcount_dec_and_test(&client->uses))
105 complete(&client->uses_zero);
106 }
107
108 /*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113
114 unsigned int rdma_dev_net_id;
115
116 /*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 "Share device among net namespaces; default=1 (shared)");
131 /**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 * from a specified net namespace or not.
134 * @dev: Pointer to rdma device which needs to be checked
135 * @net: Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 return (ib_devices_shared_netns ||
144 net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147
148 /*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays. So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 xa_mark_t filter)
157 {
158 XA_STATE(xas, xa, *indexp);
159 void *entry;
160
161 rcu_read_lock();
162 do {
163 entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 if (xa_is_zero(entry))
165 break;
166 } while (xas_retry(&xas, entry));
167 rcu_read_unlock();
168
169 if (entry) {
170 *indexp = xas.xa_index;
171 if (xa_is_zero(entry))
172 return NULL;
173 return entry;
174 }
175 return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter) \
178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
179 !xa_is_err(entry); \
180 (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 struct va_format *vaf)
196 {
197 if (ibdev && ibdev->dev.parent)
198 dev_printk_emit(level[1] - '0',
199 ibdev->dev.parent,
200 "%s %s %s: %pV",
201 dev_driver_string(ibdev->dev.parent),
202 dev_name(ibdev->dev.parent),
203 dev_name(&ibdev->dev),
204 vaf);
205 else if (ibdev)
206 printk("%s%s: %pV",
207 level, dev_name(&ibdev->dev), vaf);
208 else
209 printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 const char *format, ...)
214 {
215 struct va_format vaf;
216 va_list args;
217
218 va_start(args, format);
219
220 vaf.fmt = format;
221 vaf.va = &args;
222
223 __ibdev_printk(level, ibdev, &vaf);
224
225 va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228
229 #define define_ibdev_printk_level(func, level) \
230 void func(const struct ib_device *ibdev, const char *fmt, ...) \
231 { \
232 struct va_format vaf; \
233 va_list args; \
234 \
235 va_start(args, fmt); \
236 \
237 vaf.fmt = fmt; \
238 vaf.va = &args; \
239 \
240 __ibdev_printk(level, ibdev, &vaf); \
241 \
242 va_end(args); \
243 } \
244 EXPORT_SYMBOL(func);
245
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253
254 static struct notifier_block ibdev_lsm_nb = {
255 .notifier_call = ib_security_change,
256 };
257
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 struct net *net);
260
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 struct rcu_head rcu_head;
264 struct ib_port_data pdata[];
265 };
266
ib_device_check_mandatory(struct ib_device * device)267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 static const struct {
271 size_t offset;
272 char *name;
273 } mandatory_table[] = {
274 IB_MANDATORY_FUNC(query_device),
275 IB_MANDATORY_FUNC(query_port),
276 IB_MANDATORY_FUNC(alloc_pd),
277 IB_MANDATORY_FUNC(dealloc_pd),
278 IB_MANDATORY_FUNC(create_qp),
279 IB_MANDATORY_FUNC(modify_qp),
280 IB_MANDATORY_FUNC(destroy_qp),
281 IB_MANDATORY_FUNC(post_send),
282 IB_MANDATORY_FUNC(post_recv),
283 IB_MANDATORY_FUNC(create_cq),
284 IB_MANDATORY_FUNC(destroy_cq),
285 IB_MANDATORY_FUNC(poll_cq),
286 IB_MANDATORY_FUNC(req_notify_cq),
287 IB_MANDATORY_FUNC(get_dma_mr),
288 IB_MANDATORY_FUNC(reg_user_mr),
289 IB_MANDATORY_FUNC(dereg_mr),
290 IB_MANDATORY_FUNC(get_port_immutable)
291 };
292 int i;
293
294 device->kverbs_provider = true;
295 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 if (!*(void **) ((void *) &device->ops +
297 mandatory_table[i].offset)) {
298 device->kverbs_provider = false;
299 break;
300 }
301 }
302 }
303
304 /*
305 * Caller must perform ib_device_put() to return the device reference count
306 * when ib_device_get_by_index() returns valid device pointer.
307 */
ib_device_get_by_index(const struct net * net,u32 index)308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 struct ib_device *device;
311
312 down_read(&devices_rwsem);
313 device = xa_load(&devices, index);
314 if (device) {
315 if (!rdma_dev_access_netns(device, net)) {
316 device = NULL;
317 goto out;
318 }
319
320 if (!ib_device_try_get(device))
321 device = NULL;
322 }
323 out:
324 up_read(&devices_rwsem);
325 return device;
326 }
327
328 /**
329 * ib_device_put - Release IB device reference
330 * @device: device whose reference to be released
331 *
332 * ib_device_put() releases reference to the IB device to allow it to be
333 * unregistered and eventually free.
334 */
ib_device_put(struct ib_device * device)335 void ib_device_put(struct ib_device *device)
336 {
337 if (refcount_dec_and_test(&device->refcount))
338 complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341
__ib_device_get_by_name(const char * name)342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 struct ib_device *device;
345 unsigned long index;
346
347 xa_for_each (&devices, index, device)
348 if (!strcmp(name, dev_name(&device->dev)))
349 return device;
350
351 return NULL;
352 }
353
354 /**
355 * ib_device_get_by_name - Find an IB device by name
356 * @name: The name to look for
357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358 *
359 * Find and hold an ib_device by its name. The caller must call
360 * ib_device_put() on the returned pointer.
361 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)362 struct ib_device *ib_device_get_by_name(const char *name,
363 enum rdma_driver_id driver_id)
364 {
365 struct ib_device *device;
366
367 down_read(&devices_rwsem);
368 device = __ib_device_get_by_name(name);
369 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 device->ops.driver_id != driver_id)
371 device = NULL;
372
373 if (device) {
374 if (!ib_device_try_get(device))
375 device = NULL;
376 }
377 up_read(&devices_rwsem);
378 return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381
rename_compat_devs(struct ib_device * device)382 static int rename_compat_devs(struct ib_device *device)
383 {
384 struct ib_core_device *cdev;
385 unsigned long index;
386 int ret = 0;
387
388 mutex_lock(&device->compat_devs_mutex);
389 xa_for_each (&device->compat_devs, index, cdev) {
390 ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 if (ret) {
392 dev_warn(&cdev->dev,
393 "Fail to rename compatdev to new name %s\n",
394 dev_name(&device->dev));
395 break;
396 }
397 }
398 mutex_unlock(&device->compat_devs_mutex);
399 return ret;
400 }
401
ib_device_rename(struct ib_device * ibdev,const char * name)402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 unsigned long index;
405 void *client_data;
406 int ret;
407
408 down_write(&devices_rwsem);
409 if (!strcmp(name, dev_name(&ibdev->dev))) {
410 up_write(&devices_rwsem);
411 return 0;
412 }
413
414 if (__ib_device_get_by_name(name)) {
415 up_write(&devices_rwsem);
416 return -EEXIST;
417 }
418
419 ret = device_rename(&ibdev->dev, name);
420 if (ret) {
421 up_write(&devices_rwsem);
422 return ret;
423 }
424
425 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 ret = rename_compat_devs(ibdev);
427
428 downgrade_write(&devices_rwsem);
429 down_read(&ibdev->client_data_rwsem);
430 xan_for_each_marked(&ibdev->client_data, index, client_data,
431 CLIENT_DATA_REGISTERED) {
432 struct ib_client *client = xa_load(&clients, index);
433
434 if (!client || !client->rename)
435 continue;
436
437 client->rename(ibdev, client_data);
438 }
439 up_read(&ibdev->client_data_rwsem);
440 up_read(&devices_rwsem);
441 return 0;
442 }
443
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 if (use_dim > 1)
447 return -EINVAL;
448 ibdev->use_cq_dim = use_dim;
449
450 return 0;
451 }
452
alloc_name(struct ib_device * ibdev,const char * name)453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 struct ib_device *device;
456 unsigned long index;
457 struct ida inuse;
458 int rc;
459 int i;
460
461 lockdep_assert_held_write(&devices_rwsem);
462 ida_init(&inuse);
463 xa_for_each (&devices, index, device) {
464 char buf[IB_DEVICE_NAME_MAX];
465
466 if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 continue;
468 if (i < 0 || i >= INT_MAX)
469 continue;
470 snprintf(buf, sizeof buf, name, i);
471 if (strcmp(buf, dev_name(&device->dev)) != 0)
472 continue;
473
474 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 if (rc < 0)
476 goto out;
477 }
478
479 rc = ida_alloc(&inuse, GFP_KERNEL);
480 if (rc < 0)
481 goto out;
482
483 rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 ida_destroy(&inuse);
486 return rc;
487 }
488
ib_device_release(struct device * device)489 static void ib_device_release(struct device *device)
490 {
491 struct ib_device *dev = container_of(device, struct ib_device, dev);
492
493 free_netdevs(dev);
494 WARN_ON(refcount_read(&dev->refcount));
495 if (dev->hw_stats_data)
496 ib_device_release_hw_stats(dev->hw_stats_data);
497 if (dev->port_data) {
498 ib_cache_release_one(dev);
499 ib_security_release_port_pkey_list(dev);
500 rdma_counter_release(dev);
501 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 pdata[0]),
503 rcu_head);
504 }
505
506 mutex_destroy(&dev->unregistration_lock);
507 mutex_destroy(&dev->compat_devs_mutex);
508
509 xa_destroy(&dev->compat_devs);
510 xa_destroy(&dev->client_data);
511 kfree_rcu(dev, rcu_head);
512 }
513
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)514 static int ib_device_uevent(const struct device *device,
515 struct kobj_uevent_env *env)
516 {
517 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 return -ENOMEM;
519
520 /*
521 * It would be nice to pass the node GUID with the event...
522 */
523
524 return 0;
525 }
526
net_namespace(const struct device * d)527 static const void *net_namespace(const struct device *d)
528 {
529 const struct ib_core_device *coredev =
530 container_of(d, struct ib_core_device, dev);
531
532 return read_pnet(&coredev->rdma_net);
533 }
534
535 static struct class ib_class = {
536 .name = "infiniband",
537 .dev_release = ib_device_release,
538 .dev_uevent = ib_device_uevent,
539 .ns_type = &net_ns_type_operations,
540 .namespace = net_namespace,
541 };
542
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 struct ib_device *dev, struct net *net)
545 {
546 bool is_full_dev = &dev->coredev == coredev;
547
548 /* This BUILD_BUG_ON is intended to catch layout change
549 * of union of ib_core_device and device.
550 * dev must be the first element as ib_core and providers
551 * driver uses it. Adding anything in ib_core_device before
552 * device will break this assumption.
553 */
554 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
555 offsetof(struct ib_device, dev));
556
557 coredev->dev.class = &ib_class;
558 coredev->dev.groups = dev->groups;
559
560 /*
561 * Don't expose hw counters outside of the init namespace.
562 */
563 if (!is_full_dev && dev->hw_stats_attr_index)
564 coredev->dev.groups[dev->hw_stats_attr_index] = NULL;
565
566 device_initialize(&coredev->dev);
567 coredev->owner = dev;
568 INIT_LIST_HEAD(&coredev->port_list);
569 write_pnet(&coredev->rdma_net, net);
570 }
571
572 /**
573 * _ib_alloc_device - allocate an IB device struct
574 * @size:size of structure to allocate
575 *
576 * Low-level drivers should use ib_alloc_device() to allocate &struct
577 * ib_device. @size is the size of the structure to be allocated,
578 * including any private data used by the low-level driver.
579 * ib_dealloc_device() must be used to free structures allocated with
580 * ib_alloc_device().
581 */
_ib_alloc_device(size_t size)582 struct ib_device *_ib_alloc_device(size_t size)
583 {
584 struct ib_device *device;
585 unsigned int i;
586
587 if (WARN_ON(size < sizeof(struct ib_device)))
588 return NULL;
589
590 device = kzalloc(size, GFP_KERNEL);
591 if (!device)
592 return NULL;
593
594 if (rdma_restrack_init(device)) {
595 kfree(device);
596 return NULL;
597 }
598
599 rdma_init_coredev(&device->coredev, device, &init_net);
600
601 INIT_LIST_HEAD(&device->event_handler_list);
602 spin_lock_init(&device->qp_open_list_lock);
603 init_rwsem(&device->event_handler_rwsem);
604 mutex_init(&device->unregistration_lock);
605 /*
606 * client_data needs to be alloc because we don't want our mark to be
607 * destroyed if the user stores NULL in the client data.
608 */
609 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
610 init_rwsem(&device->client_data_rwsem);
611 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
612 mutex_init(&device->compat_devs_mutex);
613 init_completion(&device->unreg_completion);
614 INIT_WORK(&device->unregistration_work, ib_unregister_work);
615
616 spin_lock_init(&device->cq_pools_lock);
617 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
618 INIT_LIST_HEAD(&device->cq_pools[i]);
619
620 rwlock_init(&device->cache_lock);
621
622 device->uverbs_cmd_mask =
623 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
624 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
625 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
626 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
627 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
628 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
629 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
630 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
631 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
632 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
633 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
634 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
635 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
636 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
637 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
638 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
639 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
640 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
641 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
642 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
643 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
644 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
645 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
646 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
647 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
648 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
649 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
650 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
651 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
652 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
653 return device;
654 }
655 EXPORT_SYMBOL(_ib_alloc_device);
656
657 /**
658 * ib_dealloc_device - free an IB device struct
659 * @device:structure to free
660 *
661 * Free a structure allocated with ib_alloc_device().
662 */
ib_dealloc_device(struct ib_device * device)663 void ib_dealloc_device(struct ib_device *device)
664 {
665 if (device->ops.dealloc_driver)
666 device->ops.dealloc_driver(device);
667
668 /*
669 * ib_unregister_driver() requires all devices to remain in the xarray
670 * while their ops are callable. The last op we call is dealloc_driver
671 * above. This is needed to create a fence on op callbacks prior to
672 * allowing the driver module to unload.
673 */
674 down_write(&devices_rwsem);
675 if (xa_load(&devices, device->index) == device)
676 xa_erase(&devices, device->index);
677 up_write(&devices_rwsem);
678
679 /* Expedite releasing netdev references */
680 free_netdevs(device);
681
682 WARN_ON(!xa_empty(&device->compat_devs));
683 WARN_ON(!xa_empty(&device->client_data));
684 WARN_ON(refcount_read(&device->refcount));
685 rdma_restrack_clean(device);
686 /* Balances with device_initialize */
687 put_device(&device->dev);
688 }
689 EXPORT_SYMBOL(ib_dealloc_device);
690
691 /*
692 * add_client_context() and remove_client_context() must be safe against
693 * parallel calls on the same device - registration/unregistration of both the
694 * device and client can be occurring in parallel.
695 *
696 * The routines need to be a fence, any caller must not return until the add
697 * or remove is fully completed.
698 */
add_client_context(struct ib_device * device,struct ib_client * client)699 static int add_client_context(struct ib_device *device,
700 struct ib_client *client)
701 {
702 int ret = 0;
703
704 if (!device->kverbs_provider && !client->no_kverbs_req)
705 return 0;
706
707 down_write(&device->client_data_rwsem);
708 /*
709 * So long as the client is registered hold both the client and device
710 * unregistration locks.
711 */
712 if (!refcount_inc_not_zero(&client->uses))
713 goto out_unlock;
714 refcount_inc(&device->refcount);
715
716 /*
717 * Another caller to add_client_context got here first and has already
718 * completely initialized context.
719 */
720 if (xa_get_mark(&device->client_data, client->client_id,
721 CLIENT_DATA_REGISTERED))
722 goto out;
723
724 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
725 GFP_KERNEL));
726 if (ret)
727 goto out;
728 downgrade_write(&device->client_data_rwsem);
729 if (client->add) {
730 if (client->add(device)) {
731 /*
732 * If a client fails to add then the error code is
733 * ignored, but we won't call any more ops on this
734 * client.
735 */
736 xa_erase(&device->client_data, client->client_id);
737 up_read(&device->client_data_rwsem);
738 ib_device_put(device);
739 ib_client_put(client);
740 return 0;
741 }
742 }
743
744 /* Readers shall not see a client until add has been completed */
745 xa_set_mark(&device->client_data, client->client_id,
746 CLIENT_DATA_REGISTERED);
747 up_read(&device->client_data_rwsem);
748 return 0;
749
750 out:
751 ib_device_put(device);
752 ib_client_put(client);
753 out_unlock:
754 up_write(&device->client_data_rwsem);
755 return ret;
756 }
757
remove_client_context(struct ib_device * device,unsigned int client_id)758 static void remove_client_context(struct ib_device *device,
759 unsigned int client_id)
760 {
761 struct ib_client *client;
762 void *client_data;
763
764 down_write(&device->client_data_rwsem);
765 if (!xa_get_mark(&device->client_data, client_id,
766 CLIENT_DATA_REGISTERED)) {
767 up_write(&device->client_data_rwsem);
768 return;
769 }
770 client_data = xa_load(&device->client_data, client_id);
771 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
772 client = xa_load(&clients, client_id);
773 up_write(&device->client_data_rwsem);
774
775 /*
776 * Notice we cannot be holding any exclusive locks when calling the
777 * remove callback as the remove callback can recurse back into any
778 * public functions in this module and thus try for any locks those
779 * functions take.
780 *
781 * For this reason clients and drivers should not call the
782 * unregistration functions will holdling any locks.
783 */
784 if (client->remove)
785 client->remove(device, client_data);
786
787 xa_erase(&device->client_data, client_id);
788 ib_device_put(device);
789 ib_client_put(client);
790 }
791
alloc_port_data(struct ib_device * device)792 static int alloc_port_data(struct ib_device *device)
793 {
794 struct ib_port_data_rcu *pdata_rcu;
795 u32 port;
796
797 if (device->port_data)
798 return 0;
799
800 /* This can only be called once the physical port range is defined */
801 if (WARN_ON(!device->phys_port_cnt))
802 return -EINVAL;
803
804 /* Reserve U32_MAX so the logic to go over all the ports is sane */
805 if (WARN_ON(device->phys_port_cnt == U32_MAX))
806 return -EINVAL;
807
808 /*
809 * device->port_data is indexed directly by the port number to make
810 * access to this data as efficient as possible.
811 *
812 * Therefore port_data is declared as a 1 based array with potential
813 * empty slots at the beginning.
814 */
815 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
816 size_add(rdma_end_port(device), 1)),
817 GFP_KERNEL);
818 if (!pdata_rcu)
819 return -ENOMEM;
820 /*
821 * The rcu_head is put in front of the port data array and the stored
822 * pointer is adjusted since we never need to see that member until
823 * kfree_rcu.
824 */
825 device->port_data = pdata_rcu->pdata;
826
827 rdma_for_each_port (device, port) {
828 struct ib_port_data *pdata = &device->port_data[port];
829
830 pdata->ib_dev = device;
831 spin_lock_init(&pdata->pkey_list_lock);
832 INIT_LIST_HEAD(&pdata->pkey_list);
833 spin_lock_init(&pdata->netdev_lock);
834 INIT_HLIST_NODE(&pdata->ndev_hash_link);
835 }
836 return 0;
837 }
838
verify_immutable(const struct ib_device * dev,u32 port)839 static int verify_immutable(const struct ib_device *dev, u32 port)
840 {
841 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
842 rdma_max_mad_size(dev, port) != 0);
843 }
844
setup_port_data(struct ib_device * device)845 static int setup_port_data(struct ib_device *device)
846 {
847 u32 port;
848 int ret;
849
850 ret = alloc_port_data(device);
851 if (ret)
852 return ret;
853
854 rdma_for_each_port (device, port) {
855 struct ib_port_data *pdata = &device->port_data[port];
856
857 ret = device->ops.get_port_immutable(device, port,
858 &pdata->immutable);
859 if (ret)
860 return ret;
861
862 if (verify_immutable(device, port))
863 return -EINVAL;
864 }
865 return 0;
866 }
867
868 /**
869 * ib_port_immutable_read() - Read rdma port's immutable data
870 * @dev: IB device
871 * @port: port number whose immutable data to read. It starts with index 1 and
872 * valid upto including rdma_end_port().
873 */
874 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)875 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
876 {
877 WARN_ON(!rdma_is_port_valid(dev, port));
878 return &dev->port_data[port].immutable;
879 }
880 EXPORT_SYMBOL(ib_port_immutable_read);
881
ib_get_device_fw_str(struct ib_device * dev,char * str)882 void ib_get_device_fw_str(struct ib_device *dev, char *str)
883 {
884 if (dev->ops.get_dev_fw_str)
885 dev->ops.get_dev_fw_str(dev, str);
886 else
887 str[0] = '\0';
888 }
889 EXPORT_SYMBOL(ib_get_device_fw_str);
890
ib_policy_change_task(struct work_struct * work)891 static void ib_policy_change_task(struct work_struct *work)
892 {
893 struct ib_device *dev;
894 unsigned long index;
895
896 down_read(&devices_rwsem);
897 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
898 unsigned int i;
899
900 rdma_for_each_port (dev, i) {
901 u64 sp;
902 ib_get_cached_subnet_prefix(dev, i, &sp);
903 ib_security_cache_change(dev, i, sp);
904 }
905 }
906 up_read(&devices_rwsem);
907 }
908
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)909 static int ib_security_change(struct notifier_block *nb, unsigned long event,
910 void *lsm_data)
911 {
912 if (event != LSM_POLICY_CHANGE)
913 return NOTIFY_DONE;
914
915 schedule_work(&ib_policy_change_work);
916 ib_mad_agent_security_change();
917
918 return NOTIFY_OK;
919 }
920
compatdev_release(struct device * dev)921 static void compatdev_release(struct device *dev)
922 {
923 struct ib_core_device *cdev =
924 container_of(dev, struct ib_core_device, dev);
925
926 kfree(cdev);
927 }
928
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)929 static int add_one_compat_dev(struct ib_device *device,
930 struct rdma_dev_net *rnet)
931 {
932 struct ib_core_device *cdev;
933 int ret;
934
935 lockdep_assert_held(&rdma_nets_rwsem);
936 if (!ib_devices_shared_netns)
937 return 0;
938
939 /*
940 * Create and add compat device in all namespaces other than where it
941 * is currently bound to.
942 */
943 if (net_eq(read_pnet(&rnet->net),
944 read_pnet(&device->coredev.rdma_net)))
945 return 0;
946
947 /*
948 * The first of init_net() or ib_register_device() to take the
949 * compat_devs_mutex wins and gets to add the device. Others will wait
950 * for completion here.
951 */
952 mutex_lock(&device->compat_devs_mutex);
953 cdev = xa_load(&device->compat_devs, rnet->id);
954 if (cdev) {
955 ret = 0;
956 goto done;
957 }
958 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
959 if (ret)
960 goto done;
961
962 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
963 if (!cdev) {
964 ret = -ENOMEM;
965 goto cdev_err;
966 }
967
968 cdev->dev.parent = device->dev.parent;
969 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
970 cdev->dev.release = compatdev_release;
971 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
972 if (ret)
973 goto add_err;
974
975 ret = device_add(&cdev->dev);
976 if (ret)
977 goto add_err;
978 ret = ib_setup_port_attrs(cdev);
979 if (ret)
980 goto port_err;
981
982 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
983 cdev, GFP_KERNEL));
984 if (ret)
985 goto insert_err;
986
987 mutex_unlock(&device->compat_devs_mutex);
988 return 0;
989
990 insert_err:
991 ib_free_port_attrs(cdev);
992 port_err:
993 device_del(&cdev->dev);
994 add_err:
995 put_device(&cdev->dev);
996 cdev_err:
997 xa_release(&device->compat_devs, rnet->id);
998 done:
999 mutex_unlock(&device->compat_devs_mutex);
1000 return ret;
1001 }
1002
remove_one_compat_dev(struct ib_device * device,u32 id)1003 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1004 {
1005 struct ib_core_device *cdev;
1006
1007 mutex_lock(&device->compat_devs_mutex);
1008 cdev = xa_erase(&device->compat_devs, id);
1009 mutex_unlock(&device->compat_devs_mutex);
1010 if (cdev) {
1011 ib_free_port_attrs(cdev);
1012 device_del(&cdev->dev);
1013 put_device(&cdev->dev);
1014 }
1015 }
1016
remove_compat_devs(struct ib_device * device)1017 static void remove_compat_devs(struct ib_device *device)
1018 {
1019 struct ib_core_device *cdev;
1020 unsigned long index;
1021
1022 xa_for_each (&device->compat_devs, index, cdev)
1023 remove_one_compat_dev(device, index);
1024 }
1025
add_compat_devs(struct ib_device * device)1026 static int add_compat_devs(struct ib_device *device)
1027 {
1028 struct rdma_dev_net *rnet;
1029 unsigned long index;
1030 int ret = 0;
1031
1032 lockdep_assert_held(&devices_rwsem);
1033
1034 down_read(&rdma_nets_rwsem);
1035 xa_for_each (&rdma_nets, index, rnet) {
1036 ret = add_one_compat_dev(device, rnet);
1037 if (ret)
1038 break;
1039 }
1040 up_read(&rdma_nets_rwsem);
1041 return ret;
1042 }
1043
remove_all_compat_devs(void)1044 static void remove_all_compat_devs(void)
1045 {
1046 struct ib_compat_device *cdev;
1047 struct ib_device *dev;
1048 unsigned long index;
1049
1050 down_read(&devices_rwsem);
1051 xa_for_each (&devices, index, dev) {
1052 unsigned long c_index = 0;
1053
1054 /* Hold nets_rwsem so that any other thread modifying this
1055 * system param can sync with this thread.
1056 */
1057 down_read(&rdma_nets_rwsem);
1058 xa_for_each (&dev->compat_devs, c_index, cdev)
1059 remove_one_compat_dev(dev, c_index);
1060 up_read(&rdma_nets_rwsem);
1061 }
1062 up_read(&devices_rwsem);
1063 }
1064
add_all_compat_devs(void)1065 static int add_all_compat_devs(void)
1066 {
1067 struct rdma_dev_net *rnet;
1068 struct ib_device *dev;
1069 unsigned long index;
1070 int ret = 0;
1071
1072 down_read(&devices_rwsem);
1073 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1074 unsigned long net_index = 0;
1075
1076 /* Hold nets_rwsem so that any other thread modifying this
1077 * system param can sync with this thread.
1078 */
1079 down_read(&rdma_nets_rwsem);
1080 xa_for_each (&rdma_nets, net_index, rnet) {
1081 ret = add_one_compat_dev(dev, rnet);
1082 if (ret)
1083 break;
1084 }
1085 up_read(&rdma_nets_rwsem);
1086 }
1087 up_read(&devices_rwsem);
1088 if (ret)
1089 remove_all_compat_devs();
1090 return ret;
1091 }
1092
rdma_compatdev_set(u8 enable)1093 int rdma_compatdev_set(u8 enable)
1094 {
1095 struct rdma_dev_net *rnet;
1096 unsigned long index;
1097 int ret = 0;
1098
1099 down_write(&rdma_nets_rwsem);
1100 if (ib_devices_shared_netns == enable) {
1101 up_write(&rdma_nets_rwsem);
1102 return 0;
1103 }
1104
1105 /* enable/disable of compat devices is not supported
1106 * when more than default init_net exists.
1107 */
1108 xa_for_each (&rdma_nets, index, rnet) {
1109 ret++;
1110 break;
1111 }
1112 if (!ret)
1113 ib_devices_shared_netns = enable;
1114 up_write(&rdma_nets_rwsem);
1115 if (ret)
1116 return -EBUSY;
1117
1118 if (enable)
1119 ret = add_all_compat_devs();
1120 else
1121 remove_all_compat_devs();
1122 return ret;
1123 }
1124
rdma_dev_exit_net(struct net * net)1125 static void rdma_dev_exit_net(struct net *net)
1126 {
1127 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1128 struct ib_device *dev;
1129 unsigned long index;
1130 int ret;
1131
1132 down_write(&rdma_nets_rwsem);
1133 /*
1134 * Prevent the ID from being re-used and hide the id from xa_for_each.
1135 */
1136 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1137 WARN_ON(ret);
1138 up_write(&rdma_nets_rwsem);
1139
1140 down_read(&devices_rwsem);
1141 xa_for_each (&devices, index, dev) {
1142 get_device(&dev->dev);
1143 /*
1144 * Release the devices_rwsem so that pontentially blocking
1145 * device_del, doesn't hold the devices_rwsem for too long.
1146 */
1147 up_read(&devices_rwsem);
1148
1149 remove_one_compat_dev(dev, rnet->id);
1150
1151 /*
1152 * If the real device is in the NS then move it back to init.
1153 */
1154 rdma_dev_change_netns(dev, net, &init_net);
1155
1156 put_device(&dev->dev);
1157 down_read(&devices_rwsem);
1158 }
1159 up_read(&devices_rwsem);
1160
1161 rdma_nl_net_exit(rnet);
1162 xa_erase(&rdma_nets, rnet->id);
1163 }
1164
rdma_dev_init_net(struct net * net)1165 static __net_init int rdma_dev_init_net(struct net *net)
1166 {
1167 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1168 unsigned long index;
1169 struct ib_device *dev;
1170 int ret;
1171
1172 write_pnet(&rnet->net, net);
1173
1174 ret = rdma_nl_net_init(rnet);
1175 if (ret)
1176 return ret;
1177
1178 /* No need to create any compat devices in default init_net. */
1179 if (net_eq(net, &init_net))
1180 return 0;
1181
1182 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1183 if (ret) {
1184 rdma_nl_net_exit(rnet);
1185 return ret;
1186 }
1187
1188 down_read(&devices_rwsem);
1189 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1190 /* Hold nets_rwsem so that netlink command cannot change
1191 * system configuration for device sharing mode.
1192 */
1193 down_read(&rdma_nets_rwsem);
1194 ret = add_one_compat_dev(dev, rnet);
1195 up_read(&rdma_nets_rwsem);
1196 if (ret)
1197 break;
1198 }
1199 up_read(&devices_rwsem);
1200
1201 if (ret)
1202 rdma_dev_exit_net(net);
1203
1204 return ret;
1205 }
1206
1207 /*
1208 * Assign the unique string device name and the unique device index. This is
1209 * undone by ib_dealloc_device.
1210 */
assign_name(struct ib_device * device,const char * name)1211 static int assign_name(struct ib_device *device, const char *name)
1212 {
1213 static u32 last_id;
1214 int ret;
1215
1216 down_write(&devices_rwsem);
1217 /* Assign a unique name to the device */
1218 if (strchr(name, '%'))
1219 ret = alloc_name(device, name);
1220 else
1221 ret = dev_set_name(&device->dev, name);
1222 if (ret)
1223 goto out;
1224
1225 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1226 ret = -ENFILE;
1227 goto out;
1228 }
1229 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1230
1231 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1232 &last_id, GFP_KERNEL);
1233 if (ret > 0)
1234 ret = 0;
1235
1236 out:
1237 up_write(&devices_rwsem);
1238 return ret;
1239 }
1240
1241 /*
1242 * setup_device() allocates memory and sets up data that requires calling the
1243 * device ops, this is the only reason these actions are not done during
1244 * ib_alloc_device. It is undone by ib_dealloc_device().
1245 */
setup_device(struct ib_device * device)1246 static int setup_device(struct ib_device *device)
1247 {
1248 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1249 int ret;
1250
1251 ib_device_check_mandatory(device);
1252
1253 ret = setup_port_data(device);
1254 if (ret) {
1255 dev_warn(&device->dev, "Couldn't create per-port data\n");
1256 return ret;
1257 }
1258
1259 memset(&device->attrs, 0, sizeof(device->attrs));
1260 ret = device->ops.query_device(device, &device->attrs, &uhw);
1261 if (ret) {
1262 dev_warn(&device->dev,
1263 "Couldn't query the device attributes\n");
1264 return ret;
1265 }
1266
1267 return 0;
1268 }
1269
disable_device(struct ib_device * device)1270 static void disable_device(struct ib_device *device)
1271 {
1272 u32 cid;
1273
1274 WARN_ON(!refcount_read(&device->refcount));
1275
1276 down_write(&devices_rwsem);
1277 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1278 up_write(&devices_rwsem);
1279
1280 /*
1281 * Remove clients in LIFO order, see assign_client_id. This could be
1282 * more efficient if xarray learns to reverse iterate. Since no new
1283 * clients can be added to this ib_device past this point we only need
1284 * the maximum possible client_id value here.
1285 */
1286 down_read(&clients_rwsem);
1287 cid = highest_client_id;
1288 up_read(&clients_rwsem);
1289 while (cid) {
1290 cid--;
1291 remove_client_context(device, cid);
1292 }
1293
1294 ib_cq_pool_cleanup(device);
1295
1296 /* Pairs with refcount_set in enable_device */
1297 ib_device_put(device);
1298 wait_for_completion(&device->unreg_completion);
1299
1300 /*
1301 * compat devices must be removed after device refcount drops to zero.
1302 * Otherwise init_net() may add more compatdevs after removing compat
1303 * devices and before device is disabled.
1304 */
1305 remove_compat_devs(device);
1306 }
1307
1308 /*
1309 * An enabled device is visible to all clients and to all the public facing
1310 * APIs that return a device pointer. This always returns with a new get, even
1311 * if it fails.
1312 */
enable_device_and_get(struct ib_device * device)1313 static int enable_device_and_get(struct ib_device *device)
1314 {
1315 struct ib_client *client;
1316 unsigned long index;
1317 int ret = 0;
1318
1319 /*
1320 * One ref belongs to the xa and the other belongs to this
1321 * thread. This is needed to guard against parallel unregistration.
1322 */
1323 refcount_set(&device->refcount, 2);
1324 down_write(&devices_rwsem);
1325 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1326
1327 /*
1328 * By using downgrade_write() we ensure that no other thread can clear
1329 * DEVICE_REGISTERED while we are completing the client setup.
1330 */
1331 downgrade_write(&devices_rwsem);
1332
1333 if (device->ops.enable_driver) {
1334 ret = device->ops.enable_driver(device);
1335 if (ret)
1336 goto out;
1337 }
1338
1339 down_read(&clients_rwsem);
1340 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1341 ret = add_client_context(device, client);
1342 if (ret)
1343 break;
1344 }
1345 up_read(&clients_rwsem);
1346 if (!ret)
1347 ret = add_compat_devs(device);
1348 out:
1349 up_read(&devices_rwsem);
1350 return ret;
1351 }
1352
prevent_dealloc_device(struct ib_device * ib_dev)1353 static void prevent_dealloc_device(struct ib_device *ib_dev)
1354 {
1355 }
1356
1357 /**
1358 * ib_register_device - Register an IB device with IB core
1359 * @device: Device to register
1360 * @name: unique string device name. This may include a '%' which will
1361 * cause a unique index to be added to the passed device name.
1362 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1363 * device will be used. In this case the caller should fully
1364 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1365 *
1366 * Low-level drivers use ib_register_device() to register their
1367 * devices with the IB core. All registered clients will receive a
1368 * callback for each device that is added. @device must be allocated
1369 * with ib_alloc_device().
1370 *
1371 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1372 * asynchronously then the device pointer may become freed as soon as this
1373 * function returns.
1374 */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1375 int ib_register_device(struct ib_device *device, const char *name,
1376 struct device *dma_device)
1377 {
1378 int ret;
1379
1380 ret = assign_name(device, name);
1381 if (ret)
1382 return ret;
1383
1384 /*
1385 * If the caller does not provide a DMA capable device then the IB core
1386 * will set up ib_sge and scatterlist structures that stash the kernel
1387 * virtual address into the address field.
1388 */
1389 WARN_ON(dma_device && !dma_device->dma_parms);
1390 device->dma_device = dma_device;
1391
1392 ret = setup_device(device);
1393 if (ret)
1394 return ret;
1395
1396 ret = ib_cache_setup_one(device);
1397 if (ret) {
1398 dev_warn(&device->dev,
1399 "Couldn't set up InfiniBand P_Key/GID cache\n");
1400 return ret;
1401 }
1402
1403 device->groups[0] = &ib_dev_attr_group;
1404 device->groups[1] = device->ops.device_group;
1405 ret = ib_setup_device_attrs(device);
1406 if (ret)
1407 goto cache_cleanup;
1408
1409 ib_device_register_rdmacg(device);
1410
1411 rdma_counter_init(device);
1412
1413 /*
1414 * Ensure that ADD uevent is not fired because it
1415 * is too early amd device is not initialized yet.
1416 */
1417 dev_set_uevent_suppress(&device->dev, true);
1418 ret = device_add(&device->dev);
1419 if (ret)
1420 goto cg_cleanup;
1421
1422 ret = ib_setup_port_attrs(&device->coredev);
1423 if (ret) {
1424 dev_warn(&device->dev,
1425 "Couldn't register device with driver model\n");
1426 goto dev_cleanup;
1427 }
1428
1429 ret = enable_device_and_get(device);
1430 if (ret) {
1431 void (*dealloc_fn)(struct ib_device *);
1432
1433 /*
1434 * If we hit this error flow then we don't want to
1435 * automatically dealloc the device since the caller is
1436 * expected to call ib_dealloc_device() after
1437 * ib_register_device() fails. This is tricky due to the
1438 * possibility for a parallel unregistration along with this
1439 * error flow. Since we have a refcount here we know any
1440 * parallel flow is stopped in disable_device and will see the
1441 * special dealloc_driver pointer, causing the responsibility to
1442 * ib_dealloc_device() to revert back to this thread.
1443 */
1444 dealloc_fn = device->ops.dealloc_driver;
1445 device->ops.dealloc_driver = prevent_dealloc_device;
1446 ib_device_put(device);
1447 __ib_unregister_device(device);
1448 device->ops.dealloc_driver = dealloc_fn;
1449 dev_set_uevent_suppress(&device->dev, false);
1450 return ret;
1451 }
1452 dev_set_uevent_suppress(&device->dev, false);
1453 /* Mark for userspace that device is ready */
1454 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1455 ib_device_put(device);
1456
1457 return 0;
1458
1459 dev_cleanup:
1460 device_del(&device->dev);
1461 cg_cleanup:
1462 dev_set_uevent_suppress(&device->dev, false);
1463 ib_device_unregister_rdmacg(device);
1464 cache_cleanup:
1465 ib_cache_cleanup_one(device);
1466 return ret;
1467 }
1468 EXPORT_SYMBOL(ib_register_device);
1469
1470 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1471 static void __ib_unregister_device(struct ib_device *ib_dev)
1472 {
1473 /*
1474 * We have a registration lock so that all the calls to unregister are
1475 * fully fenced, once any unregister returns the device is truely
1476 * unregistered even if multiple callers are unregistering it at the
1477 * same time. This also interacts with the registration flow and
1478 * provides sane semantics if register and unregister are racing.
1479 */
1480 mutex_lock(&ib_dev->unregistration_lock);
1481 if (!refcount_read(&ib_dev->refcount))
1482 goto out;
1483
1484 disable_device(ib_dev);
1485
1486 /* Expedite removing unregistered pointers from the hash table */
1487 free_netdevs(ib_dev);
1488
1489 ib_free_port_attrs(&ib_dev->coredev);
1490 device_del(&ib_dev->dev);
1491 ib_device_unregister_rdmacg(ib_dev);
1492 ib_cache_cleanup_one(ib_dev);
1493
1494 /*
1495 * Drivers using the new flow may not call ib_dealloc_device except
1496 * in error unwind prior to registration success.
1497 */
1498 if (ib_dev->ops.dealloc_driver &&
1499 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1500 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1501 ib_dealloc_device(ib_dev);
1502 }
1503 out:
1504 mutex_unlock(&ib_dev->unregistration_lock);
1505 }
1506
1507 /**
1508 * ib_unregister_device - Unregister an IB device
1509 * @ib_dev: The device to unregister
1510 *
1511 * Unregister an IB device. All clients will receive a remove callback.
1512 *
1513 * Callers should call this routine only once, and protect against races with
1514 * registration. Typically it should only be called as part of a remove
1515 * callback in an implementation of driver core's struct device_driver and
1516 * related.
1517 *
1518 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1519 * this function.
1520 */
ib_unregister_device(struct ib_device * ib_dev)1521 void ib_unregister_device(struct ib_device *ib_dev)
1522 {
1523 get_device(&ib_dev->dev);
1524 __ib_unregister_device(ib_dev);
1525 put_device(&ib_dev->dev);
1526 }
1527 EXPORT_SYMBOL(ib_unregister_device);
1528
1529 /**
1530 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1531 * @ib_dev: The device to unregister
1532 *
1533 * This is the same as ib_unregister_device(), except it includes an internal
1534 * ib_device_put() that should match a 'get' obtained by the caller.
1535 *
1536 * It is safe to call this routine concurrently from multiple threads while
1537 * holding the 'get'. When the function returns the device is fully
1538 * unregistered.
1539 *
1540 * Drivers using this flow MUST use the driver_unregister callback to clean up
1541 * their resources associated with the device and dealloc it.
1542 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1543 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1544 {
1545 WARN_ON(!ib_dev->ops.dealloc_driver);
1546 get_device(&ib_dev->dev);
1547 ib_device_put(ib_dev);
1548 __ib_unregister_device(ib_dev);
1549 put_device(&ib_dev->dev);
1550 }
1551 EXPORT_SYMBOL(ib_unregister_device_and_put);
1552
1553 /**
1554 * ib_unregister_driver - Unregister all IB devices for a driver
1555 * @driver_id: The driver to unregister
1556 *
1557 * This implements a fence for device unregistration. It only returns once all
1558 * devices associated with the driver_id have fully completed their
1559 * unregistration and returned from ib_unregister_device*().
1560 *
1561 * If device's are not yet unregistered it goes ahead and starts unregistering
1562 * them.
1563 *
1564 * This does not block creation of new devices with the given driver_id, that
1565 * is the responsibility of the caller.
1566 */
ib_unregister_driver(enum rdma_driver_id driver_id)1567 void ib_unregister_driver(enum rdma_driver_id driver_id)
1568 {
1569 struct ib_device *ib_dev;
1570 unsigned long index;
1571
1572 down_read(&devices_rwsem);
1573 xa_for_each (&devices, index, ib_dev) {
1574 if (ib_dev->ops.driver_id != driver_id)
1575 continue;
1576
1577 get_device(&ib_dev->dev);
1578 up_read(&devices_rwsem);
1579
1580 WARN_ON(!ib_dev->ops.dealloc_driver);
1581 __ib_unregister_device(ib_dev);
1582
1583 put_device(&ib_dev->dev);
1584 down_read(&devices_rwsem);
1585 }
1586 up_read(&devices_rwsem);
1587 }
1588 EXPORT_SYMBOL(ib_unregister_driver);
1589
ib_unregister_work(struct work_struct * work)1590 static void ib_unregister_work(struct work_struct *work)
1591 {
1592 struct ib_device *ib_dev =
1593 container_of(work, struct ib_device, unregistration_work);
1594
1595 __ib_unregister_device(ib_dev);
1596 put_device(&ib_dev->dev);
1597 }
1598
1599 /**
1600 * ib_unregister_device_queued - Unregister a device using a work queue
1601 * @ib_dev: The device to unregister
1602 *
1603 * This schedules an asynchronous unregistration using a WQ for the device. A
1604 * driver should use this to avoid holding locks while doing unregistration,
1605 * such as holding the RTNL lock.
1606 *
1607 * Drivers using this API must use ib_unregister_driver before module unload
1608 * to ensure that all scheduled unregistrations have completed.
1609 */
ib_unregister_device_queued(struct ib_device * ib_dev)1610 void ib_unregister_device_queued(struct ib_device *ib_dev)
1611 {
1612 WARN_ON(!refcount_read(&ib_dev->refcount));
1613 WARN_ON(!ib_dev->ops.dealloc_driver);
1614 get_device(&ib_dev->dev);
1615 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1616 put_device(&ib_dev->dev);
1617 }
1618 EXPORT_SYMBOL(ib_unregister_device_queued);
1619
1620 /*
1621 * The caller must pass in a device that has the kref held and the refcount
1622 * released. If the device is in cur_net and still registered then it is moved
1623 * into net.
1624 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1625 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1626 struct net *net)
1627 {
1628 int ret2 = -EINVAL;
1629 int ret;
1630
1631 mutex_lock(&device->unregistration_lock);
1632
1633 /*
1634 * If a device not under ib_device_get() or if the unregistration_lock
1635 * is not held, the namespace can be changed, or it can be unregistered.
1636 * Check again under the lock.
1637 */
1638 if (refcount_read(&device->refcount) == 0 ||
1639 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1640 ret = -ENODEV;
1641 goto out;
1642 }
1643
1644 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1645 disable_device(device);
1646
1647 /*
1648 * At this point no one can be using the device, so it is safe to
1649 * change the namespace.
1650 */
1651 write_pnet(&device->coredev.rdma_net, net);
1652
1653 down_read(&devices_rwsem);
1654 /*
1655 * Currently rdma devices are system wide unique. So the device name
1656 * is guaranteed free in the new namespace. Publish the new namespace
1657 * at the sysfs level.
1658 */
1659 ret = device_rename(&device->dev, dev_name(&device->dev));
1660 up_read(&devices_rwsem);
1661 if (ret) {
1662 dev_warn(&device->dev,
1663 "%s: Couldn't rename device after namespace change\n",
1664 __func__);
1665 /* Try and put things back and re-enable the device */
1666 write_pnet(&device->coredev.rdma_net, cur_net);
1667 }
1668
1669 ret2 = enable_device_and_get(device);
1670 if (ret2) {
1671 /*
1672 * This shouldn't really happen, but if it does, let the user
1673 * retry at later point. So don't disable the device.
1674 */
1675 dev_warn(&device->dev,
1676 "%s: Couldn't re-enable device after namespace change\n",
1677 __func__);
1678 }
1679 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1680
1681 ib_device_put(device);
1682 out:
1683 mutex_unlock(&device->unregistration_lock);
1684 if (ret)
1685 return ret;
1686 return ret2;
1687 }
1688
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1689 int ib_device_set_netns_put(struct sk_buff *skb,
1690 struct ib_device *dev, u32 ns_fd)
1691 {
1692 struct net *net;
1693 int ret;
1694
1695 net = get_net_ns_by_fd(ns_fd);
1696 if (IS_ERR(net)) {
1697 ret = PTR_ERR(net);
1698 goto net_err;
1699 }
1700
1701 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1702 ret = -EPERM;
1703 goto ns_err;
1704 }
1705
1706 /*
1707 * All the ib_clients, including uverbs, are reset when the namespace is
1708 * changed and this cannot be blocked waiting for userspace to do
1709 * something, so disassociation is mandatory.
1710 */
1711 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1712 ret = -EOPNOTSUPP;
1713 goto ns_err;
1714 }
1715
1716 get_device(&dev->dev);
1717 ib_device_put(dev);
1718 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1719 put_device(&dev->dev);
1720
1721 put_net(net);
1722 return ret;
1723
1724 ns_err:
1725 put_net(net);
1726 net_err:
1727 ib_device_put(dev);
1728 return ret;
1729 }
1730
1731 static struct pernet_operations rdma_dev_net_ops = {
1732 .init = rdma_dev_init_net,
1733 .exit = rdma_dev_exit_net,
1734 .id = &rdma_dev_net_id,
1735 .size = sizeof(struct rdma_dev_net),
1736 };
1737
assign_client_id(struct ib_client * client)1738 static int assign_client_id(struct ib_client *client)
1739 {
1740 int ret;
1741
1742 lockdep_assert_held(&clients_rwsem);
1743 /*
1744 * The add/remove callbacks must be called in FIFO/LIFO order. To
1745 * achieve this we assign client_ids so they are sorted in
1746 * registration order.
1747 */
1748 client->client_id = highest_client_id;
1749 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1750 if (ret)
1751 return ret;
1752
1753 highest_client_id++;
1754 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1755 return 0;
1756 }
1757
remove_client_id(struct ib_client * client)1758 static void remove_client_id(struct ib_client *client)
1759 {
1760 down_write(&clients_rwsem);
1761 xa_erase(&clients, client->client_id);
1762 for (; highest_client_id; highest_client_id--)
1763 if (xa_load(&clients, highest_client_id - 1))
1764 break;
1765 up_write(&clients_rwsem);
1766 }
1767
1768 /**
1769 * ib_register_client - Register an IB client
1770 * @client:Client to register
1771 *
1772 * Upper level users of the IB drivers can use ib_register_client() to
1773 * register callbacks for IB device addition and removal. When an IB
1774 * device is added, each registered client's add method will be called
1775 * (in the order the clients were registered), and when a device is
1776 * removed, each client's remove method will be called (in the reverse
1777 * order that clients were registered). In addition, when
1778 * ib_register_client() is called, the client will receive an add
1779 * callback for all devices already registered.
1780 */
ib_register_client(struct ib_client * client)1781 int ib_register_client(struct ib_client *client)
1782 {
1783 struct ib_device *device;
1784 unsigned long index;
1785 bool need_unreg = false;
1786 int ret;
1787
1788 refcount_set(&client->uses, 1);
1789 init_completion(&client->uses_zero);
1790
1791 /*
1792 * The devices_rwsem is held in write mode to ensure that a racing
1793 * ib_register_device() sees a consisent view of clients and devices.
1794 */
1795 down_write(&devices_rwsem);
1796 down_write(&clients_rwsem);
1797 ret = assign_client_id(client);
1798 if (ret)
1799 goto out;
1800
1801 need_unreg = true;
1802 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1803 ret = add_client_context(device, client);
1804 if (ret)
1805 goto out;
1806 }
1807 ret = 0;
1808 out:
1809 up_write(&clients_rwsem);
1810 up_write(&devices_rwsem);
1811 if (need_unreg && ret)
1812 ib_unregister_client(client);
1813 return ret;
1814 }
1815 EXPORT_SYMBOL(ib_register_client);
1816
1817 /**
1818 * ib_unregister_client - Unregister an IB client
1819 * @client:Client to unregister
1820 *
1821 * Upper level users use ib_unregister_client() to remove their client
1822 * registration. When ib_unregister_client() is called, the client
1823 * will receive a remove callback for each IB device still registered.
1824 *
1825 * This is a full fence, once it returns no client callbacks will be called,
1826 * or are running in another thread.
1827 */
ib_unregister_client(struct ib_client * client)1828 void ib_unregister_client(struct ib_client *client)
1829 {
1830 struct ib_device *device;
1831 unsigned long index;
1832
1833 down_write(&clients_rwsem);
1834 ib_client_put(client);
1835 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1836 up_write(&clients_rwsem);
1837
1838 /* We do not want to have locks while calling client->remove() */
1839 rcu_read_lock();
1840 xa_for_each (&devices, index, device) {
1841 if (!ib_device_try_get(device))
1842 continue;
1843 rcu_read_unlock();
1844
1845 remove_client_context(device, client->client_id);
1846
1847 ib_device_put(device);
1848 rcu_read_lock();
1849 }
1850 rcu_read_unlock();
1851
1852 /*
1853 * remove_client_context() is not a fence, it can return even though a
1854 * removal is ongoing. Wait until all removals are completed.
1855 */
1856 wait_for_completion(&client->uses_zero);
1857 remove_client_id(client);
1858 }
1859 EXPORT_SYMBOL(ib_unregister_client);
1860
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1861 static int __ib_get_global_client_nl_info(const char *client_name,
1862 struct ib_client_nl_info *res)
1863 {
1864 struct ib_client *client;
1865 unsigned long index;
1866 int ret = -ENOENT;
1867
1868 down_read(&clients_rwsem);
1869 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1870 if (strcmp(client->name, client_name) != 0)
1871 continue;
1872 if (!client->get_global_nl_info) {
1873 ret = -EOPNOTSUPP;
1874 break;
1875 }
1876 ret = client->get_global_nl_info(res);
1877 if (WARN_ON(ret == -ENOENT))
1878 ret = -EINVAL;
1879 if (!ret && res->cdev)
1880 get_device(res->cdev);
1881 break;
1882 }
1883 up_read(&clients_rwsem);
1884 return ret;
1885 }
1886
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1887 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1888 const char *client_name,
1889 struct ib_client_nl_info *res)
1890 {
1891 unsigned long index;
1892 void *client_data;
1893 int ret = -ENOENT;
1894
1895 down_read(&ibdev->client_data_rwsem);
1896 xan_for_each_marked (&ibdev->client_data, index, client_data,
1897 CLIENT_DATA_REGISTERED) {
1898 struct ib_client *client = xa_load(&clients, index);
1899
1900 if (!client || strcmp(client->name, client_name) != 0)
1901 continue;
1902 if (!client->get_nl_info) {
1903 ret = -EOPNOTSUPP;
1904 break;
1905 }
1906 ret = client->get_nl_info(ibdev, client_data, res);
1907 if (WARN_ON(ret == -ENOENT))
1908 ret = -EINVAL;
1909
1910 /*
1911 * The cdev is guaranteed valid as long as we are inside the
1912 * client_data_rwsem as remove_one can't be called. Keep it
1913 * valid for the caller.
1914 */
1915 if (!ret && res->cdev)
1916 get_device(res->cdev);
1917 break;
1918 }
1919 up_read(&ibdev->client_data_rwsem);
1920
1921 return ret;
1922 }
1923
1924 /**
1925 * ib_get_client_nl_info - Fetch the nl_info from a client
1926 * @ibdev: IB device
1927 * @client_name: Name of the client
1928 * @res: Result of the query
1929 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1930 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1931 struct ib_client_nl_info *res)
1932 {
1933 int ret;
1934
1935 if (ibdev)
1936 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1937 else
1938 ret = __ib_get_global_client_nl_info(client_name, res);
1939 #ifdef CONFIG_MODULES
1940 if (ret == -ENOENT) {
1941 request_module("rdma-client-%s", client_name);
1942 if (ibdev)
1943 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1944 else
1945 ret = __ib_get_global_client_nl_info(client_name, res);
1946 }
1947 #endif
1948 if (ret) {
1949 if (ret == -ENOENT)
1950 return -EOPNOTSUPP;
1951 return ret;
1952 }
1953
1954 if (WARN_ON(!res->cdev))
1955 return -EINVAL;
1956 return 0;
1957 }
1958
1959 /**
1960 * ib_set_client_data - Set IB client context
1961 * @device:Device to set context for
1962 * @client:Client to set context for
1963 * @data:Context to set
1964 *
1965 * ib_set_client_data() sets client context data that can be retrieved with
1966 * ib_get_client_data(). This can only be called while the client is
1967 * registered to the device, once the ib_client remove() callback returns this
1968 * cannot be called.
1969 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1970 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1971 void *data)
1972 {
1973 void *rc;
1974
1975 if (WARN_ON(IS_ERR(data)))
1976 data = NULL;
1977
1978 rc = xa_store(&device->client_data, client->client_id, data,
1979 GFP_KERNEL);
1980 WARN_ON(xa_is_err(rc));
1981 }
1982 EXPORT_SYMBOL(ib_set_client_data);
1983
1984 /**
1985 * ib_register_event_handler - Register an IB event handler
1986 * @event_handler:Handler to register
1987 *
1988 * ib_register_event_handler() registers an event handler that will be
1989 * called back when asynchronous IB events occur (as defined in
1990 * chapter 11 of the InfiniBand Architecture Specification). This
1991 * callback occurs in workqueue context.
1992 */
ib_register_event_handler(struct ib_event_handler * event_handler)1993 void ib_register_event_handler(struct ib_event_handler *event_handler)
1994 {
1995 down_write(&event_handler->device->event_handler_rwsem);
1996 list_add_tail(&event_handler->list,
1997 &event_handler->device->event_handler_list);
1998 up_write(&event_handler->device->event_handler_rwsem);
1999 }
2000 EXPORT_SYMBOL(ib_register_event_handler);
2001
2002 /**
2003 * ib_unregister_event_handler - Unregister an event handler
2004 * @event_handler:Handler to unregister
2005 *
2006 * Unregister an event handler registered with
2007 * ib_register_event_handler().
2008 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2009 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2010 {
2011 down_write(&event_handler->device->event_handler_rwsem);
2012 list_del(&event_handler->list);
2013 up_write(&event_handler->device->event_handler_rwsem);
2014 }
2015 EXPORT_SYMBOL(ib_unregister_event_handler);
2016
ib_dispatch_event_clients(struct ib_event * event)2017 void ib_dispatch_event_clients(struct ib_event *event)
2018 {
2019 struct ib_event_handler *handler;
2020
2021 down_read(&event->device->event_handler_rwsem);
2022
2023 list_for_each_entry(handler, &event->device->event_handler_list, list)
2024 handler->handler(handler, event);
2025
2026 up_read(&event->device->event_handler_rwsem);
2027 }
2028
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2029 static int iw_query_port(struct ib_device *device,
2030 u32 port_num,
2031 struct ib_port_attr *port_attr)
2032 {
2033 struct in_device *inetdev;
2034 struct net_device *netdev;
2035
2036 memset(port_attr, 0, sizeof(*port_attr));
2037
2038 netdev = ib_device_get_netdev(device, port_num);
2039 if (!netdev)
2040 return -ENODEV;
2041
2042 port_attr->max_mtu = IB_MTU_4096;
2043 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2044
2045 if (!netif_carrier_ok(netdev)) {
2046 port_attr->state = IB_PORT_DOWN;
2047 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2048 } else {
2049 rcu_read_lock();
2050 inetdev = __in_dev_get_rcu(netdev);
2051
2052 if (inetdev && inetdev->ifa_list) {
2053 port_attr->state = IB_PORT_ACTIVE;
2054 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2055 } else {
2056 port_attr->state = IB_PORT_INIT;
2057 port_attr->phys_state =
2058 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2059 }
2060
2061 rcu_read_unlock();
2062 }
2063
2064 dev_put(netdev);
2065 return device->ops.query_port(device, port_num, port_attr);
2066 }
2067
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2068 static int __ib_query_port(struct ib_device *device,
2069 u32 port_num,
2070 struct ib_port_attr *port_attr)
2071 {
2072 int err;
2073
2074 memset(port_attr, 0, sizeof(*port_attr));
2075
2076 err = device->ops.query_port(device, port_num, port_attr);
2077 if (err || port_attr->subnet_prefix)
2078 return err;
2079
2080 if (rdma_port_get_link_layer(device, port_num) !=
2081 IB_LINK_LAYER_INFINIBAND)
2082 return 0;
2083
2084 ib_get_cached_subnet_prefix(device, port_num,
2085 &port_attr->subnet_prefix);
2086 return 0;
2087 }
2088
2089 /**
2090 * ib_query_port - Query IB port attributes
2091 * @device:Device to query
2092 * @port_num:Port number to query
2093 * @port_attr:Port attributes
2094 *
2095 * ib_query_port() returns the attributes of a port through the
2096 * @port_attr pointer.
2097 */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2098 int ib_query_port(struct ib_device *device,
2099 u32 port_num,
2100 struct ib_port_attr *port_attr)
2101 {
2102 if (!rdma_is_port_valid(device, port_num))
2103 return -EINVAL;
2104
2105 if (rdma_protocol_iwarp(device, port_num))
2106 return iw_query_port(device, port_num, port_attr);
2107 else
2108 return __ib_query_port(device, port_num, port_attr);
2109 }
2110 EXPORT_SYMBOL(ib_query_port);
2111
add_ndev_hash(struct ib_port_data * pdata)2112 static void add_ndev_hash(struct ib_port_data *pdata)
2113 {
2114 unsigned long flags;
2115
2116 might_sleep();
2117
2118 spin_lock_irqsave(&ndev_hash_lock, flags);
2119 if (hash_hashed(&pdata->ndev_hash_link)) {
2120 hash_del_rcu(&pdata->ndev_hash_link);
2121 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2122 /*
2123 * We cannot do hash_add_rcu after a hash_del_rcu until the
2124 * grace period
2125 */
2126 synchronize_rcu();
2127 spin_lock_irqsave(&ndev_hash_lock, flags);
2128 }
2129 if (pdata->netdev)
2130 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2131 (uintptr_t)pdata->netdev);
2132 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2133 }
2134
2135 /**
2136 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2137 * @ib_dev: Device to modify
2138 * @ndev: net_device to affiliate, may be NULL
2139 * @port: IB port the net_device is connected to
2140 *
2141 * Drivers should use this to link the ib_device to a netdev so the netdev
2142 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2143 * affiliated with any port.
2144 *
2145 * The caller must ensure that the given ndev is not unregistered or
2146 * unregistering, and that either the ib_device is unregistered or
2147 * ib_device_set_netdev() is called with NULL when the ndev sends a
2148 * NETDEV_UNREGISTER event.
2149 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2150 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2151 u32 port)
2152 {
2153 struct net_device *old_ndev;
2154 struct ib_port_data *pdata;
2155 unsigned long flags;
2156 int ret;
2157
2158 if (!rdma_is_port_valid(ib_dev, port))
2159 return -EINVAL;
2160
2161 /*
2162 * Drivers wish to call this before ib_register_driver, so we have to
2163 * setup the port data early.
2164 */
2165 ret = alloc_port_data(ib_dev);
2166 if (ret)
2167 return ret;
2168
2169 pdata = &ib_dev->port_data[port];
2170 spin_lock_irqsave(&pdata->netdev_lock, flags);
2171 old_ndev = rcu_dereference_protected(
2172 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2173 if (old_ndev == ndev) {
2174 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2175 return 0;
2176 }
2177
2178 rcu_assign_pointer(pdata->netdev, ndev);
2179 netdev_put(old_ndev, &pdata->netdev_tracker);
2180 netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2181 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2182
2183 add_ndev_hash(pdata);
2184 return 0;
2185 }
2186 EXPORT_SYMBOL(ib_device_set_netdev);
2187
free_netdevs(struct ib_device * ib_dev)2188 static void free_netdevs(struct ib_device *ib_dev)
2189 {
2190 unsigned long flags;
2191 u32 port;
2192
2193 if (!ib_dev->port_data)
2194 return;
2195
2196 rdma_for_each_port (ib_dev, port) {
2197 struct ib_port_data *pdata = &ib_dev->port_data[port];
2198 struct net_device *ndev;
2199
2200 spin_lock_irqsave(&pdata->netdev_lock, flags);
2201 ndev = rcu_dereference_protected(
2202 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2203 if (ndev) {
2204 spin_lock(&ndev_hash_lock);
2205 hash_del_rcu(&pdata->ndev_hash_link);
2206 spin_unlock(&ndev_hash_lock);
2207
2208 /*
2209 * If this is the last dev_put there is still a
2210 * synchronize_rcu before the netdev is kfreed, so we
2211 * can continue to rely on unlocked pointer
2212 * comparisons after the put
2213 */
2214 rcu_assign_pointer(pdata->netdev, NULL);
2215 netdev_put(ndev, &pdata->netdev_tracker);
2216 }
2217 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2218 }
2219 }
2220
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2221 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2222 u32 port)
2223 {
2224 struct ib_port_data *pdata;
2225 struct net_device *res;
2226
2227 if (!rdma_is_port_valid(ib_dev, port))
2228 return NULL;
2229
2230 pdata = &ib_dev->port_data[port];
2231
2232 /*
2233 * New drivers should use ib_device_set_netdev() not the legacy
2234 * get_netdev().
2235 */
2236 if (ib_dev->ops.get_netdev)
2237 res = ib_dev->ops.get_netdev(ib_dev, port);
2238 else {
2239 spin_lock(&pdata->netdev_lock);
2240 res = rcu_dereference_protected(
2241 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2242 dev_hold(res);
2243 spin_unlock(&pdata->netdev_lock);
2244 }
2245
2246 /*
2247 * If we are starting to unregister expedite things by preventing
2248 * propagation of an unregistering netdev.
2249 */
2250 if (res && res->reg_state != NETREG_REGISTERED) {
2251 dev_put(res);
2252 return NULL;
2253 }
2254
2255 return res;
2256 }
2257
2258 /**
2259 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2260 * @ndev: netdev to locate
2261 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2262 *
2263 * Find and hold an ib_device that is associated with a netdev via
2264 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2265 * returned pointer.
2266 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2267 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2268 enum rdma_driver_id driver_id)
2269 {
2270 struct ib_device *res = NULL;
2271 struct ib_port_data *cur;
2272
2273 rcu_read_lock();
2274 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2275 (uintptr_t)ndev) {
2276 if (rcu_access_pointer(cur->netdev) == ndev &&
2277 (driver_id == RDMA_DRIVER_UNKNOWN ||
2278 cur->ib_dev->ops.driver_id == driver_id) &&
2279 ib_device_try_get(cur->ib_dev)) {
2280 res = cur->ib_dev;
2281 break;
2282 }
2283 }
2284 rcu_read_unlock();
2285
2286 return res;
2287 }
2288 EXPORT_SYMBOL(ib_device_get_by_netdev);
2289
2290 /**
2291 * ib_enum_roce_netdev - enumerate all RoCE ports
2292 * @ib_dev : IB device we want to query
2293 * @filter: Should we call the callback?
2294 * @filter_cookie: Cookie passed to filter
2295 * @cb: Callback to call for each found RoCE ports
2296 * @cookie: Cookie passed back to the callback
2297 *
2298 * Enumerates all of the physical RoCE ports of ib_dev
2299 * which are related to netdevice and calls callback() on each
2300 * device for which filter() function returns non zero.
2301 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2302 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2303 roce_netdev_filter filter,
2304 void *filter_cookie,
2305 roce_netdev_callback cb,
2306 void *cookie)
2307 {
2308 u32 port;
2309
2310 rdma_for_each_port (ib_dev, port)
2311 if (rdma_protocol_roce(ib_dev, port)) {
2312 struct net_device *idev =
2313 ib_device_get_netdev(ib_dev, port);
2314
2315 if (filter(ib_dev, port, idev, filter_cookie))
2316 cb(ib_dev, port, idev, cookie);
2317 dev_put(idev);
2318 }
2319 }
2320
2321 /**
2322 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2323 * @filter: Should we call the callback?
2324 * @filter_cookie: Cookie passed to filter
2325 * @cb: Callback to call for each found RoCE ports
2326 * @cookie: Cookie passed back to the callback
2327 *
2328 * Enumerates all RoCE devices' physical ports which are related
2329 * to netdevices and calls callback() on each device for which
2330 * filter() function returns non zero.
2331 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2332 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2333 void *filter_cookie,
2334 roce_netdev_callback cb,
2335 void *cookie)
2336 {
2337 struct ib_device *dev;
2338 unsigned long index;
2339
2340 down_read(&devices_rwsem);
2341 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2342 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2343 up_read(&devices_rwsem);
2344 }
2345
2346 /*
2347 * ib_enum_all_devs - enumerate all ib_devices
2348 * @cb: Callback to call for each found ib_device
2349 *
2350 * Enumerates all ib_devices and calls callback() on each device.
2351 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2352 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2353 struct netlink_callback *cb)
2354 {
2355 unsigned long index;
2356 struct ib_device *dev;
2357 unsigned int idx = 0;
2358 int ret = 0;
2359
2360 down_read(&devices_rwsem);
2361 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2362 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2363 continue;
2364
2365 ret = nldev_cb(dev, skb, cb, idx);
2366 if (ret)
2367 break;
2368 idx++;
2369 }
2370 up_read(&devices_rwsem);
2371 return ret;
2372 }
2373
2374 /**
2375 * ib_query_pkey - Get P_Key table entry
2376 * @device:Device to query
2377 * @port_num:Port number to query
2378 * @index:P_Key table index to query
2379 * @pkey:Returned P_Key
2380 *
2381 * ib_query_pkey() fetches the specified P_Key table entry.
2382 */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2383 int ib_query_pkey(struct ib_device *device,
2384 u32 port_num, u16 index, u16 *pkey)
2385 {
2386 if (!rdma_is_port_valid(device, port_num))
2387 return -EINVAL;
2388
2389 if (!device->ops.query_pkey)
2390 return -EOPNOTSUPP;
2391
2392 return device->ops.query_pkey(device, port_num, index, pkey);
2393 }
2394 EXPORT_SYMBOL(ib_query_pkey);
2395
2396 /**
2397 * ib_modify_device - Change IB device attributes
2398 * @device:Device to modify
2399 * @device_modify_mask:Mask of attributes to change
2400 * @device_modify:New attribute values
2401 *
2402 * ib_modify_device() changes a device's attributes as specified by
2403 * the @device_modify_mask and @device_modify structure.
2404 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2405 int ib_modify_device(struct ib_device *device,
2406 int device_modify_mask,
2407 struct ib_device_modify *device_modify)
2408 {
2409 if (!device->ops.modify_device)
2410 return -EOPNOTSUPP;
2411
2412 return device->ops.modify_device(device, device_modify_mask,
2413 device_modify);
2414 }
2415 EXPORT_SYMBOL(ib_modify_device);
2416
2417 /**
2418 * ib_modify_port - Modifies the attributes for the specified port.
2419 * @device: The device to modify.
2420 * @port_num: The number of the port to modify.
2421 * @port_modify_mask: Mask used to specify which attributes of the port
2422 * to change.
2423 * @port_modify: New attribute values for the port.
2424 *
2425 * ib_modify_port() changes a port's attributes as specified by the
2426 * @port_modify_mask and @port_modify structure.
2427 */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2428 int ib_modify_port(struct ib_device *device,
2429 u32 port_num, int port_modify_mask,
2430 struct ib_port_modify *port_modify)
2431 {
2432 int rc;
2433
2434 if (!rdma_is_port_valid(device, port_num))
2435 return -EINVAL;
2436
2437 if (device->ops.modify_port)
2438 rc = device->ops.modify_port(device, port_num,
2439 port_modify_mask,
2440 port_modify);
2441 else if (rdma_protocol_roce(device, port_num) &&
2442 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2443 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2444 rc = 0;
2445 else
2446 rc = -EOPNOTSUPP;
2447 return rc;
2448 }
2449 EXPORT_SYMBOL(ib_modify_port);
2450
2451 /**
2452 * ib_find_gid - Returns the port number and GID table index where
2453 * a specified GID value occurs. Its searches only for IB link layer.
2454 * @device: The device to query.
2455 * @gid: The GID value to search for.
2456 * @port_num: The port number of the device where the GID value was found.
2457 * @index: The index into the GID table where the GID was found. This
2458 * parameter may be NULL.
2459 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2460 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2461 u32 *port_num, u16 *index)
2462 {
2463 union ib_gid tmp_gid;
2464 u32 port;
2465 int ret, i;
2466
2467 rdma_for_each_port (device, port) {
2468 if (!rdma_protocol_ib(device, port))
2469 continue;
2470
2471 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2472 ++i) {
2473 ret = rdma_query_gid(device, port, i, &tmp_gid);
2474 if (ret)
2475 continue;
2476
2477 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2478 *port_num = port;
2479 if (index)
2480 *index = i;
2481 return 0;
2482 }
2483 }
2484 }
2485
2486 return -ENOENT;
2487 }
2488 EXPORT_SYMBOL(ib_find_gid);
2489
2490 /**
2491 * ib_find_pkey - Returns the PKey table index where a specified
2492 * PKey value occurs.
2493 * @device: The device to query.
2494 * @port_num: The port number of the device to search for the PKey.
2495 * @pkey: The PKey value to search for.
2496 * @index: The index into the PKey table where the PKey was found.
2497 */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2498 int ib_find_pkey(struct ib_device *device,
2499 u32 port_num, u16 pkey, u16 *index)
2500 {
2501 int ret, i;
2502 u16 tmp_pkey;
2503 int partial_ix = -1;
2504
2505 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2506 ++i) {
2507 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2508 if (ret)
2509 return ret;
2510 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2511 /* if there is full-member pkey take it.*/
2512 if (tmp_pkey & 0x8000) {
2513 *index = i;
2514 return 0;
2515 }
2516 if (partial_ix < 0)
2517 partial_ix = i;
2518 }
2519 }
2520
2521 /*no full-member, if exists take the limited*/
2522 if (partial_ix >= 0) {
2523 *index = partial_ix;
2524 return 0;
2525 }
2526 return -ENOENT;
2527 }
2528 EXPORT_SYMBOL(ib_find_pkey);
2529
2530 /**
2531 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2532 * for a received CM request
2533 * @dev: An RDMA device on which the request has been received.
2534 * @port: Port number on the RDMA device.
2535 * @pkey: The Pkey the request came on.
2536 * @gid: A GID that the net_dev uses to communicate.
2537 * @addr: Contains the IP address that the request specified as its
2538 * destination.
2539 *
2540 */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2541 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2542 u32 port,
2543 u16 pkey,
2544 const union ib_gid *gid,
2545 const struct sockaddr *addr)
2546 {
2547 struct net_device *net_dev = NULL;
2548 unsigned long index;
2549 void *client_data;
2550
2551 if (!rdma_protocol_ib(dev, port))
2552 return NULL;
2553
2554 /*
2555 * Holding the read side guarantees that the client will not become
2556 * unregistered while we are calling get_net_dev_by_params()
2557 */
2558 down_read(&dev->client_data_rwsem);
2559 xan_for_each_marked (&dev->client_data, index, client_data,
2560 CLIENT_DATA_REGISTERED) {
2561 struct ib_client *client = xa_load(&clients, index);
2562
2563 if (!client || !client->get_net_dev_by_params)
2564 continue;
2565
2566 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2567 addr, client_data);
2568 if (net_dev)
2569 break;
2570 }
2571 up_read(&dev->client_data_rwsem);
2572
2573 return net_dev;
2574 }
2575 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2576
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2577 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2578 {
2579 struct ib_device_ops *dev_ops = &dev->ops;
2580 #define SET_DEVICE_OP(ptr, name) \
2581 do { \
2582 if (ops->name) \
2583 if (!((ptr)->name)) \
2584 (ptr)->name = ops->name; \
2585 } while (0)
2586
2587 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2588
2589 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2590 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2591 dev_ops->driver_id != ops->driver_id);
2592 dev_ops->driver_id = ops->driver_id;
2593 }
2594 if (ops->owner) {
2595 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2596 dev_ops->owner = ops->owner;
2597 }
2598 if (ops->uverbs_abi_ver)
2599 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2600
2601 dev_ops->uverbs_no_driver_id_binding |=
2602 ops->uverbs_no_driver_id_binding;
2603
2604 SET_DEVICE_OP(dev_ops, add_gid);
2605 SET_DEVICE_OP(dev_ops, advise_mr);
2606 SET_DEVICE_OP(dev_ops, alloc_dm);
2607 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2608 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2609 SET_DEVICE_OP(dev_ops, alloc_mr);
2610 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2611 SET_DEVICE_OP(dev_ops, alloc_mw);
2612 SET_DEVICE_OP(dev_ops, alloc_pd);
2613 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2614 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2615 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2616 SET_DEVICE_OP(dev_ops, attach_mcast);
2617 SET_DEVICE_OP(dev_ops, check_mr_status);
2618 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2619 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2620 SET_DEVICE_OP(dev_ops, counter_dealloc);
2621 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2622 SET_DEVICE_OP(dev_ops, counter_update_stats);
2623 SET_DEVICE_OP(dev_ops, create_ah);
2624 SET_DEVICE_OP(dev_ops, create_counters);
2625 SET_DEVICE_OP(dev_ops, create_cq);
2626 SET_DEVICE_OP(dev_ops, create_flow);
2627 SET_DEVICE_OP(dev_ops, create_qp);
2628 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2629 SET_DEVICE_OP(dev_ops, create_srq);
2630 SET_DEVICE_OP(dev_ops, create_user_ah);
2631 SET_DEVICE_OP(dev_ops, create_wq);
2632 SET_DEVICE_OP(dev_ops, dealloc_dm);
2633 SET_DEVICE_OP(dev_ops, dealloc_driver);
2634 SET_DEVICE_OP(dev_ops, dealloc_mw);
2635 SET_DEVICE_OP(dev_ops, dealloc_pd);
2636 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2637 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2638 SET_DEVICE_OP(dev_ops, del_gid);
2639 SET_DEVICE_OP(dev_ops, dereg_mr);
2640 SET_DEVICE_OP(dev_ops, destroy_ah);
2641 SET_DEVICE_OP(dev_ops, destroy_counters);
2642 SET_DEVICE_OP(dev_ops, destroy_cq);
2643 SET_DEVICE_OP(dev_ops, destroy_flow);
2644 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2645 SET_DEVICE_OP(dev_ops, destroy_qp);
2646 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2647 SET_DEVICE_OP(dev_ops, destroy_srq);
2648 SET_DEVICE_OP(dev_ops, destroy_wq);
2649 SET_DEVICE_OP(dev_ops, device_group);
2650 SET_DEVICE_OP(dev_ops, detach_mcast);
2651 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2652 SET_DEVICE_OP(dev_ops, drain_rq);
2653 SET_DEVICE_OP(dev_ops, drain_sq);
2654 SET_DEVICE_OP(dev_ops, enable_driver);
2655 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2656 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2657 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2658 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2659 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2660 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2661 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2662 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2663 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2664 SET_DEVICE_OP(dev_ops, get_dma_mr);
2665 SET_DEVICE_OP(dev_ops, get_hw_stats);
2666 SET_DEVICE_OP(dev_ops, get_link_layer);
2667 SET_DEVICE_OP(dev_ops, get_netdev);
2668 SET_DEVICE_OP(dev_ops, get_numa_node);
2669 SET_DEVICE_OP(dev_ops, get_port_immutable);
2670 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2671 SET_DEVICE_OP(dev_ops, get_vf_config);
2672 SET_DEVICE_OP(dev_ops, get_vf_guid);
2673 SET_DEVICE_OP(dev_ops, get_vf_stats);
2674 SET_DEVICE_OP(dev_ops, iw_accept);
2675 SET_DEVICE_OP(dev_ops, iw_add_ref);
2676 SET_DEVICE_OP(dev_ops, iw_connect);
2677 SET_DEVICE_OP(dev_ops, iw_create_listen);
2678 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2679 SET_DEVICE_OP(dev_ops, iw_get_qp);
2680 SET_DEVICE_OP(dev_ops, iw_reject);
2681 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2682 SET_DEVICE_OP(dev_ops, map_mr_sg);
2683 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2684 SET_DEVICE_OP(dev_ops, mmap);
2685 SET_DEVICE_OP(dev_ops, mmap_free);
2686 SET_DEVICE_OP(dev_ops, modify_ah);
2687 SET_DEVICE_OP(dev_ops, modify_cq);
2688 SET_DEVICE_OP(dev_ops, modify_device);
2689 SET_DEVICE_OP(dev_ops, modify_hw_stat);
2690 SET_DEVICE_OP(dev_ops, modify_port);
2691 SET_DEVICE_OP(dev_ops, modify_qp);
2692 SET_DEVICE_OP(dev_ops, modify_srq);
2693 SET_DEVICE_OP(dev_ops, modify_wq);
2694 SET_DEVICE_OP(dev_ops, peek_cq);
2695 SET_DEVICE_OP(dev_ops, poll_cq);
2696 SET_DEVICE_OP(dev_ops, port_groups);
2697 SET_DEVICE_OP(dev_ops, post_recv);
2698 SET_DEVICE_OP(dev_ops, post_send);
2699 SET_DEVICE_OP(dev_ops, post_srq_recv);
2700 SET_DEVICE_OP(dev_ops, process_mad);
2701 SET_DEVICE_OP(dev_ops, query_ah);
2702 SET_DEVICE_OP(dev_ops, query_device);
2703 SET_DEVICE_OP(dev_ops, query_gid);
2704 SET_DEVICE_OP(dev_ops, query_pkey);
2705 SET_DEVICE_OP(dev_ops, query_port);
2706 SET_DEVICE_OP(dev_ops, query_qp);
2707 SET_DEVICE_OP(dev_ops, query_srq);
2708 SET_DEVICE_OP(dev_ops, query_ucontext);
2709 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2710 SET_DEVICE_OP(dev_ops, read_counters);
2711 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2712 SET_DEVICE_OP(dev_ops, reg_user_mr);
2713 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2714 SET_DEVICE_OP(dev_ops, req_notify_cq);
2715 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2716 SET_DEVICE_OP(dev_ops, resize_cq);
2717 SET_DEVICE_OP(dev_ops, set_vf_guid);
2718 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2719
2720 SET_OBJ_SIZE(dev_ops, ib_ah);
2721 SET_OBJ_SIZE(dev_ops, ib_counters);
2722 SET_OBJ_SIZE(dev_ops, ib_cq);
2723 SET_OBJ_SIZE(dev_ops, ib_mw);
2724 SET_OBJ_SIZE(dev_ops, ib_pd);
2725 SET_OBJ_SIZE(dev_ops, ib_qp);
2726 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2727 SET_OBJ_SIZE(dev_ops, ib_srq);
2728 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2729 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2730 }
2731 EXPORT_SYMBOL(ib_set_device_ops);
2732
2733 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2734 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2735 {
2736 struct scatterlist *s;
2737 int i;
2738
2739 for_each_sg(sg, s, nents, i) {
2740 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2741 sg_dma_len(s) = s->length;
2742 }
2743 return nents;
2744 }
2745 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2746 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2747
2748 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2749 [RDMA_NL_LS_OP_RESOLVE] = {
2750 .doit = ib_nl_handle_resolve_resp,
2751 .flags = RDMA_NL_ADMIN_PERM,
2752 },
2753 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2754 .doit = ib_nl_handle_set_timeout,
2755 .flags = RDMA_NL_ADMIN_PERM,
2756 },
2757 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2758 .doit = ib_nl_handle_ip_res_resp,
2759 .flags = RDMA_NL_ADMIN_PERM,
2760 },
2761 };
2762
ib_core_init(void)2763 static int __init ib_core_init(void)
2764 {
2765 int ret = -ENOMEM;
2766
2767 ib_wq = alloc_workqueue("infiniband", 0, 0);
2768 if (!ib_wq)
2769 return -ENOMEM;
2770
2771 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2772 WQ_UNBOUND_MAX_ACTIVE);
2773 if (!ib_unreg_wq)
2774 goto err;
2775
2776 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2777 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2778 if (!ib_comp_wq)
2779 goto err_unbound;
2780
2781 ib_comp_unbound_wq =
2782 alloc_workqueue("ib-comp-unb-wq",
2783 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2784 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2785 if (!ib_comp_unbound_wq)
2786 goto err_comp;
2787
2788 ret = class_register(&ib_class);
2789 if (ret) {
2790 pr_warn("Couldn't create InfiniBand device class\n");
2791 goto err_comp_unbound;
2792 }
2793
2794 rdma_nl_init();
2795
2796 ret = addr_init();
2797 if (ret) {
2798 pr_warn("Couldn't init IB address resolution\n");
2799 goto err_ibnl;
2800 }
2801
2802 ret = ib_mad_init();
2803 if (ret) {
2804 pr_warn("Couldn't init IB MAD\n");
2805 goto err_addr;
2806 }
2807
2808 ret = ib_sa_init();
2809 if (ret) {
2810 pr_warn("Couldn't init SA\n");
2811 goto err_mad;
2812 }
2813
2814 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2815 if (ret) {
2816 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2817 goto err_sa;
2818 }
2819
2820 ret = register_pernet_device(&rdma_dev_net_ops);
2821 if (ret) {
2822 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2823 goto err_compat;
2824 }
2825
2826 nldev_init();
2827 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2828 ret = roce_gid_mgmt_init();
2829 if (ret) {
2830 pr_warn("Couldn't init RoCE GID management\n");
2831 goto err_parent;
2832 }
2833
2834 return 0;
2835
2836 err_parent:
2837 rdma_nl_unregister(RDMA_NL_LS);
2838 nldev_exit();
2839 unregister_pernet_device(&rdma_dev_net_ops);
2840 err_compat:
2841 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2842 err_sa:
2843 ib_sa_cleanup();
2844 err_mad:
2845 ib_mad_cleanup();
2846 err_addr:
2847 addr_cleanup();
2848 err_ibnl:
2849 class_unregister(&ib_class);
2850 err_comp_unbound:
2851 destroy_workqueue(ib_comp_unbound_wq);
2852 err_comp:
2853 destroy_workqueue(ib_comp_wq);
2854 err_unbound:
2855 destroy_workqueue(ib_unreg_wq);
2856 err:
2857 destroy_workqueue(ib_wq);
2858 return ret;
2859 }
2860
ib_core_cleanup(void)2861 static void __exit ib_core_cleanup(void)
2862 {
2863 roce_gid_mgmt_cleanup();
2864 rdma_nl_unregister(RDMA_NL_LS);
2865 nldev_exit();
2866 unregister_pernet_device(&rdma_dev_net_ops);
2867 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2868 ib_sa_cleanup();
2869 ib_mad_cleanup();
2870 addr_cleanup();
2871 rdma_nl_exit();
2872 class_unregister(&ib_class);
2873 destroy_workqueue(ib_comp_unbound_wq);
2874 destroy_workqueue(ib_comp_wq);
2875 /* Make sure that any pending umem accounting work is done. */
2876 destroy_workqueue(ib_wq);
2877 destroy_workqueue(ib_unreg_wq);
2878 WARN_ON(!xa_empty(&clients));
2879 WARN_ON(!xa_empty(&devices));
2880 }
2881
2882 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2883
2884 /* ib core relies on netdev stack to first register net_ns_type_operations
2885 * ns kobject type before ib_core initialization.
2886 */
2887 fs_initcall(ib_core_init);
2888 module_exit(ib_core_cleanup);
2889