xref: /openbmc/linux/drivers/infiniband/core/device.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /*
149  * xarray has this behavior where it won't iterate over NULL values stored in
150  * allocated arrays.  So we need our own iterator to see all values stored in
151  * the array. This does the same thing as xa_for_each except that it also
152  * returns NULL valued entries if the array is allocating. Simplified to only
153  * work on simple xarrays.
154  */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 			     xa_mark_t filter)
157 {
158 	XA_STATE(xas, xa, *indexp);
159 	void *entry;
160 
161 	rcu_read_lock();
162 	do {
163 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 		if (xa_is_zero(entry))
165 			break;
166 	} while (xas_retry(&xas, entry));
167 	rcu_read_unlock();
168 
169 	if (entry) {
170 		*indexp = xas.xa_index;
171 		if (xa_is_zero(entry))
172 			return NULL;
173 		return entry;
174 	}
175 	return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter)                          \
178 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179 	     !xa_is_err(entry);                                                \
180 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181 
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185 
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 			      void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193 
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 			   struct va_format *vaf)
196 {
197 	if (ibdev && ibdev->dev.parent)
198 		dev_printk_emit(level[1] - '0',
199 				ibdev->dev.parent,
200 				"%s %s %s: %pV",
201 				dev_driver_string(ibdev->dev.parent),
202 				dev_name(ibdev->dev.parent),
203 				dev_name(&ibdev->dev),
204 				vaf);
205 	else if (ibdev)
206 		printk("%s%s: %pV",
207 		       level, dev_name(&ibdev->dev), vaf);
208 	else
209 		printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211 
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 		  const char *format, ...)
214 {
215 	struct va_format vaf;
216 	va_list args;
217 
218 	va_start(args, format);
219 
220 	vaf.fmt = format;
221 	vaf.va = &args;
222 
223 	__ibdev_printk(level, ibdev, &vaf);
224 
225 	va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228 
229 #define define_ibdev_printk_level(func, level)                  \
230 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231 {                                                               \
232 	struct va_format vaf;                                   \
233 	va_list args;                                           \
234 								\
235 	va_start(args, fmt);                                    \
236 								\
237 	vaf.fmt = fmt;                                          \
238 	vaf.va = &args;                                         \
239 								\
240 	__ibdev_printk(level, ibdev, &vaf);                     \
241 								\
242 	va_end(args);                                           \
243 }                                                               \
244 EXPORT_SYMBOL(func);
245 
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253 
254 static struct notifier_block ibdev_lsm_nb = {
255 	.notifier_call = ib_security_change,
256 };
257 
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 				 struct net *net);
260 
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 	struct rcu_head rcu_head;
264 	struct ib_port_data pdata[];
265 };
266 
ib_device_check_mandatory(struct ib_device * device)267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 	static const struct {
271 		size_t offset;
272 		char  *name;
273 	} mandatory_table[] = {
274 		IB_MANDATORY_FUNC(query_device),
275 		IB_MANDATORY_FUNC(query_port),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(reg_user_mr),
289 		IB_MANDATORY_FUNC(dereg_mr),
290 		IB_MANDATORY_FUNC(get_port_immutable)
291 	};
292 	int i;
293 
294 	device->kverbs_provider = true;
295 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 		if (!*(void **) ((void *) &device->ops +
297 				 mandatory_table[i].offset)) {
298 			device->kverbs_provider = false;
299 			break;
300 		}
301 	}
302 }
303 
304 /*
305  * Caller must perform ib_device_put() to return the device reference count
306  * when ib_device_get_by_index() returns valid device pointer.
307  */
ib_device_get_by_index(const struct net * net,u32 index)308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 	struct ib_device *device;
311 
312 	down_read(&devices_rwsem);
313 	device = xa_load(&devices, index);
314 	if (device) {
315 		if (!rdma_dev_access_netns(device, net)) {
316 			device = NULL;
317 			goto out;
318 		}
319 
320 		if (!ib_device_try_get(device))
321 			device = NULL;
322 	}
323 out:
324 	up_read(&devices_rwsem);
325 	return device;
326 }
327 
328 /**
329  * ib_device_put - Release IB device reference
330  * @device: device whose reference to be released
331  *
332  * ib_device_put() releases reference to the IB device to allow it to be
333  * unregistered and eventually free.
334  */
ib_device_put(struct ib_device * device)335 void ib_device_put(struct ib_device *device)
336 {
337 	if (refcount_dec_and_test(&device->refcount))
338 		complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341 
__ib_device_get_by_name(const char * name)342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 	struct ib_device *device;
345 	unsigned long index;
346 
347 	xa_for_each (&devices, index, device)
348 		if (!strcmp(name, dev_name(&device->dev)))
349 			return device;
350 
351 	return NULL;
352 }
353 
354 /**
355  * ib_device_get_by_name - Find an IB device by name
356  * @name: The name to look for
357  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358  *
359  * Find and hold an ib_device by its name. The caller must call
360  * ib_device_put() on the returned pointer.
361  */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)362 struct ib_device *ib_device_get_by_name(const char *name,
363 					enum rdma_driver_id driver_id)
364 {
365 	struct ib_device *device;
366 
367 	down_read(&devices_rwsem);
368 	device = __ib_device_get_by_name(name);
369 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 	    device->ops.driver_id != driver_id)
371 		device = NULL;
372 
373 	if (device) {
374 		if (!ib_device_try_get(device))
375 			device = NULL;
376 	}
377 	up_read(&devices_rwsem);
378 	return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381 
rename_compat_devs(struct ib_device * device)382 static int rename_compat_devs(struct ib_device *device)
383 {
384 	struct ib_core_device *cdev;
385 	unsigned long index;
386 	int ret = 0;
387 
388 	mutex_lock(&device->compat_devs_mutex);
389 	xa_for_each (&device->compat_devs, index, cdev) {
390 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 		if (ret) {
392 			dev_warn(&cdev->dev,
393 				 "Fail to rename compatdev to new name %s\n",
394 				 dev_name(&device->dev));
395 			break;
396 		}
397 	}
398 	mutex_unlock(&device->compat_devs_mutex);
399 	return ret;
400 }
401 
ib_device_rename(struct ib_device * ibdev,const char * name)402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 	unsigned long index;
405 	void *client_data;
406 	int ret;
407 
408 	down_write(&devices_rwsem);
409 	if (!strcmp(name, dev_name(&ibdev->dev))) {
410 		up_write(&devices_rwsem);
411 		return 0;
412 	}
413 
414 	if (__ib_device_get_by_name(name)) {
415 		up_write(&devices_rwsem);
416 		return -EEXIST;
417 	}
418 
419 	ret = device_rename(&ibdev->dev, name);
420 	if (ret) {
421 		up_write(&devices_rwsem);
422 		return ret;
423 	}
424 
425 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 	ret = rename_compat_devs(ibdev);
427 
428 	downgrade_write(&devices_rwsem);
429 	down_read(&ibdev->client_data_rwsem);
430 	xan_for_each_marked(&ibdev->client_data, index, client_data,
431 			    CLIENT_DATA_REGISTERED) {
432 		struct ib_client *client = xa_load(&clients, index);
433 
434 		if (!client || !client->rename)
435 			continue;
436 
437 		client->rename(ibdev, client_data);
438 	}
439 	up_read(&ibdev->client_data_rwsem);
440 	up_read(&devices_rwsem);
441 	return 0;
442 }
443 
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 	if (use_dim > 1)
447 		return -EINVAL;
448 	ibdev->use_cq_dim = use_dim;
449 
450 	return 0;
451 }
452 
alloc_name(struct ib_device * ibdev,const char * name)453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 	struct ib_device *device;
456 	unsigned long index;
457 	struct ida inuse;
458 	int rc;
459 	int i;
460 
461 	lockdep_assert_held_write(&devices_rwsem);
462 	ida_init(&inuse);
463 	xa_for_each (&devices, index, device) {
464 		char buf[IB_DEVICE_NAME_MAX];
465 
466 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 			continue;
468 		if (i < 0 || i >= INT_MAX)
469 			continue;
470 		snprintf(buf, sizeof buf, name, i);
471 		if (strcmp(buf, dev_name(&device->dev)) != 0)
472 			continue;
473 
474 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 		if (rc < 0)
476 			goto out;
477 	}
478 
479 	rc = ida_alloc(&inuse, GFP_KERNEL);
480 	if (rc < 0)
481 		goto out;
482 
483 	rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 	ida_destroy(&inuse);
486 	return rc;
487 }
488 
ib_device_release(struct device * device)489 static void ib_device_release(struct device *device)
490 {
491 	struct ib_device *dev = container_of(device, struct ib_device, dev);
492 
493 	free_netdevs(dev);
494 	WARN_ON(refcount_read(&dev->refcount));
495 	if (dev->hw_stats_data)
496 		ib_device_release_hw_stats(dev->hw_stats_data);
497 	if (dev->port_data) {
498 		ib_cache_release_one(dev);
499 		ib_security_release_port_pkey_list(dev);
500 		rdma_counter_release(dev);
501 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 				       pdata[0]),
503 			  rcu_head);
504 	}
505 
506 	mutex_destroy(&dev->unregistration_lock);
507 	mutex_destroy(&dev->compat_devs_mutex);
508 
509 	xa_destroy(&dev->compat_devs);
510 	xa_destroy(&dev->client_data);
511 	kfree_rcu(dev, rcu_head);
512 }
513 
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)514 static int ib_device_uevent(const struct device *device,
515 			    struct kobj_uevent_env *env)
516 {
517 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 		return -ENOMEM;
519 
520 	/*
521 	 * It would be nice to pass the node GUID with the event...
522 	 */
523 
524 	return 0;
525 }
526 
net_namespace(const struct device * d)527 static const void *net_namespace(const struct device *d)
528 {
529 	const struct ib_core_device *coredev =
530 			container_of(d, struct ib_core_device, dev);
531 
532 	return read_pnet(&coredev->rdma_net);
533 }
534 
535 static struct class ib_class = {
536 	.name    = "infiniband",
537 	.dev_release = ib_device_release,
538 	.dev_uevent = ib_device_uevent,
539 	.ns_type = &net_ns_type_operations,
540 	.namespace = net_namespace,
541 };
542 
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 			      struct ib_device *dev, struct net *net)
545 {
546 	bool is_full_dev = &dev->coredev == coredev;
547 
548 	/* This BUILD_BUG_ON is intended to catch layout change
549 	 * of union of ib_core_device and device.
550 	 * dev must be the first element as ib_core and providers
551 	 * driver uses it. Adding anything in ib_core_device before
552 	 * device will break this assumption.
553 	 */
554 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
555 		     offsetof(struct ib_device, dev));
556 
557 	coredev->dev.class = &ib_class;
558 	coredev->dev.groups = dev->groups;
559 
560 	/*
561 	 * Don't expose hw counters outside of the init namespace.
562 	 */
563 	if (!is_full_dev && dev->hw_stats_attr_index)
564 		coredev->dev.groups[dev->hw_stats_attr_index] = NULL;
565 
566 	device_initialize(&coredev->dev);
567 	coredev->owner = dev;
568 	INIT_LIST_HEAD(&coredev->port_list);
569 	write_pnet(&coredev->rdma_net, net);
570 }
571 
572 /**
573  * _ib_alloc_device - allocate an IB device struct
574  * @size:size of structure to allocate
575  *
576  * Low-level drivers should use ib_alloc_device() to allocate &struct
577  * ib_device.  @size is the size of the structure to be allocated,
578  * including any private data used by the low-level driver.
579  * ib_dealloc_device() must be used to free structures allocated with
580  * ib_alloc_device().
581  */
_ib_alloc_device(size_t size)582 struct ib_device *_ib_alloc_device(size_t size)
583 {
584 	struct ib_device *device;
585 	unsigned int i;
586 
587 	if (WARN_ON(size < sizeof(struct ib_device)))
588 		return NULL;
589 
590 	device = kzalloc(size, GFP_KERNEL);
591 	if (!device)
592 		return NULL;
593 
594 	if (rdma_restrack_init(device)) {
595 		kfree(device);
596 		return NULL;
597 	}
598 
599 	rdma_init_coredev(&device->coredev, device, &init_net);
600 
601 	INIT_LIST_HEAD(&device->event_handler_list);
602 	spin_lock_init(&device->qp_open_list_lock);
603 	init_rwsem(&device->event_handler_rwsem);
604 	mutex_init(&device->unregistration_lock);
605 	/*
606 	 * client_data needs to be alloc because we don't want our mark to be
607 	 * destroyed if the user stores NULL in the client data.
608 	 */
609 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
610 	init_rwsem(&device->client_data_rwsem);
611 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
612 	mutex_init(&device->compat_devs_mutex);
613 	init_completion(&device->unreg_completion);
614 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
615 
616 	spin_lock_init(&device->cq_pools_lock);
617 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
618 		INIT_LIST_HEAD(&device->cq_pools[i]);
619 
620 	rwlock_init(&device->cache_lock);
621 
622 	device->uverbs_cmd_mask =
623 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
624 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
625 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
626 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
627 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
628 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
629 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
630 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
631 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
632 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
633 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
634 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
635 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
636 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
637 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
638 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
639 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
640 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
641 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
642 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
643 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
644 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
645 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
646 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
647 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
648 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
649 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
650 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
651 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
652 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
653 	return device;
654 }
655 EXPORT_SYMBOL(_ib_alloc_device);
656 
657 /**
658  * ib_dealloc_device - free an IB device struct
659  * @device:structure to free
660  *
661  * Free a structure allocated with ib_alloc_device().
662  */
ib_dealloc_device(struct ib_device * device)663 void ib_dealloc_device(struct ib_device *device)
664 {
665 	if (device->ops.dealloc_driver)
666 		device->ops.dealloc_driver(device);
667 
668 	/*
669 	 * ib_unregister_driver() requires all devices to remain in the xarray
670 	 * while their ops are callable. The last op we call is dealloc_driver
671 	 * above.  This is needed to create a fence on op callbacks prior to
672 	 * allowing the driver module to unload.
673 	 */
674 	down_write(&devices_rwsem);
675 	if (xa_load(&devices, device->index) == device)
676 		xa_erase(&devices, device->index);
677 	up_write(&devices_rwsem);
678 
679 	/* Expedite releasing netdev references */
680 	free_netdevs(device);
681 
682 	WARN_ON(!xa_empty(&device->compat_devs));
683 	WARN_ON(!xa_empty(&device->client_data));
684 	WARN_ON(refcount_read(&device->refcount));
685 	rdma_restrack_clean(device);
686 	/* Balances with device_initialize */
687 	put_device(&device->dev);
688 }
689 EXPORT_SYMBOL(ib_dealloc_device);
690 
691 /*
692  * add_client_context() and remove_client_context() must be safe against
693  * parallel calls on the same device - registration/unregistration of both the
694  * device and client can be occurring in parallel.
695  *
696  * The routines need to be a fence, any caller must not return until the add
697  * or remove is fully completed.
698  */
add_client_context(struct ib_device * device,struct ib_client * client)699 static int add_client_context(struct ib_device *device,
700 			      struct ib_client *client)
701 {
702 	int ret = 0;
703 
704 	if (!device->kverbs_provider && !client->no_kverbs_req)
705 		return 0;
706 
707 	down_write(&device->client_data_rwsem);
708 	/*
709 	 * So long as the client is registered hold both the client and device
710 	 * unregistration locks.
711 	 */
712 	if (!refcount_inc_not_zero(&client->uses))
713 		goto out_unlock;
714 	refcount_inc(&device->refcount);
715 
716 	/*
717 	 * Another caller to add_client_context got here first and has already
718 	 * completely initialized context.
719 	 */
720 	if (xa_get_mark(&device->client_data, client->client_id,
721 		    CLIENT_DATA_REGISTERED))
722 		goto out;
723 
724 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
725 			      GFP_KERNEL));
726 	if (ret)
727 		goto out;
728 	downgrade_write(&device->client_data_rwsem);
729 	if (client->add) {
730 		if (client->add(device)) {
731 			/*
732 			 * If a client fails to add then the error code is
733 			 * ignored, but we won't call any more ops on this
734 			 * client.
735 			 */
736 			xa_erase(&device->client_data, client->client_id);
737 			up_read(&device->client_data_rwsem);
738 			ib_device_put(device);
739 			ib_client_put(client);
740 			return 0;
741 		}
742 	}
743 
744 	/* Readers shall not see a client until add has been completed */
745 	xa_set_mark(&device->client_data, client->client_id,
746 		    CLIENT_DATA_REGISTERED);
747 	up_read(&device->client_data_rwsem);
748 	return 0;
749 
750 out:
751 	ib_device_put(device);
752 	ib_client_put(client);
753 out_unlock:
754 	up_write(&device->client_data_rwsem);
755 	return ret;
756 }
757 
remove_client_context(struct ib_device * device,unsigned int client_id)758 static void remove_client_context(struct ib_device *device,
759 				  unsigned int client_id)
760 {
761 	struct ib_client *client;
762 	void *client_data;
763 
764 	down_write(&device->client_data_rwsem);
765 	if (!xa_get_mark(&device->client_data, client_id,
766 			 CLIENT_DATA_REGISTERED)) {
767 		up_write(&device->client_data_rwsem);
768 		return;
769 	}
770 	client_data = xa_load(&device->client_data, client_id);
771 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
772 	client = xa_load(&clients, client_id);
773 	up_write(&device->client_data_rwsem);
774 
775 	/*
776 	 * Notice we cannot be holding any exclusive locks when calling the
777 	 * remove callback as the remove callback can recurse back into any
778 	 * public functions in this module and thus try for any locks those
779 	 * functions take.
780 	 *
781 	 * For this reason clients and drivers should not call the
782 	 * unregistration functions will holdling any locks.
783 	 */
784 	if (client->remove)
785 		client->remove(device, client_data);
786 
787 	xa_erase(&device->client_data, client_id);
788 	ib_device_put(device);
789 	ib_client_put(client);
790 }
791 
alloc_port_data(struct ib_device * device)792 static int alloc_port_data(struct ib_device *device)
793 {
794 	struct ib_port_data_rcu *pdata_rcu;
795 	u32 port;
796 
797 	if (device->port_data)
798 		return 0;
799 
800 	/* This can only be called once the physical port range is defined */
801 	if (WARN_ON(!device->phys_port_cnt))
802 		return -EINVAL;
803 
804 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
805 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
806 		return -EINVAL;
807 
808 	/*
809 	 * device->port_data is indexed directly by the port number to make
810 	 * access to this data as efficient as possible.
811 	 *
812 	 * Therefore port_data is declared as a 1 based array with potential
813 	 * empty slots at the beginning.
814 	 */
815 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
816 					size_add(rdma_end_port(device), 1)),
817 			    GFP_KERNEL);
818 	if (!pdata_rcu)
819 		return -ENOMEM;
820 	/*
821 	 * The rcu_head is put in front of the port data array and the stored
822 	 * pointer is adjusted since we never need to see that member until
823 	 * kfree_rcu.
824 	 */
825 	device->port_data = pdata_rcu->pdata;
826 
827 	rdma_for_each_port (device, port) {
828 		struct ib_port_data *pdata = &device->port_data[port];
829 
830 		pdata->ib_dev = device;
831 		spin_lock_init(&pdata->pkey_list_lock);
832 		INIT_LIST_HEAD(&pdata->pkey_list);
833 		spin_lock_init(&pdata->netdev_lock);
834 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
835 	}
836 	return 0;
837 }
838 
verify_immutable(const struct ib_device * dev,u32 port)839 static int verify_immutable(const struct ib_device *dev, u32 port)
840 {
841 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
842 			    rdma_max_mad_size(dev, port) != 0);
843 }
844 
setup_port_data(struct ib_device * device)845 static int setup_port_data(struct ib_device *device)
846 {
847 	u32 port;
848 	int ret;
849 
850 	ret = alloc_port_data(device);
851 	if (ret)
852 		return ret;
853 
854 	rdma_for_each_port (device, port) {
855 		struct ib_port_data *pdata = &device->port_data[port];
856 
857 		ret = device->ops.get_port_immutable(device, port,
858 						     &pdata->immutable);
859 		if (ret)
860 			return ret;
861 
862 		if (verify_immutable(device, port))
863 			return -EINVAL;
864 	}
865 	return 0;
866 }
867 
868 /**
869  * ib_port_immutable_read() - Read rdma port's immutable data
870  * @dev: IB device
871  * @port: port number whose immutable data to read. It starts with index 1 and
872  *        valid upto including rdma_end_port().
873  */
874 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)875 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
876 {
877 	WARN_ON(!rdma_is_port_valid(dev, port));
878 	return &dev->port_data[port].immutable;
879 }
880 EXPORT_SYMBOL(ib_port_immutable_read);
881 
ib_get_device_fw_str(struct ib_device * dev,char * str)882 void ib_get_device_fw_str(struct ib_device *dev, char *str)
883 {
884 	if (dev->ops.get_dev_fw_str)
885 		dev->ops.get_dev_fw_str(dev, str);
886 	else
887 		str[0] = '\0';
888 }
889 EXPORT_SYMBOL(ib_get_device_fw_str);
890 
ib_policy_change_task(struct work_struct * work)891 static void ib_policy_change_task(struct work_struct *work)
892 {
893 	struct ib_device *dev;
894 	unsigned long index;
895 
896 	down_read(&devices_rwsem);
897 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
898 		unsigned int i;
899 
900 		rdma_for_each_port (dev, i) {
901 			u64 sp;
902 			ib_get_cached_subnet_prefix(dev, i, &sp);
903 			ib_security_cache_change(dev, i, sp);
904 		}
905 	}
906 	up_read(&devices_rwsem);
907 }
908 
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)909 static int ib_security_change(struct notifier_block *nb, unsigned long event,
910 			      void *lsm_data)
911 {
912 	if (event != LSM_POLICY_CHANGE)
913 		return NOTIFY_DONE;
914 
915 	schedule_work(&ib_policy_change_work);
916 	ib_mad_agent_security_change();
917 
918 	return NOTIFY_OK;
919 }
920 
compatdev_release(struct device * dev)921 static void compatdev_release(struct device *dev)
922 {
923 	struct ib_core_device *cdev =
924 		container_of(dev, struct ib_core_device, dev);
925 
926 	kfree(cdev);
927 }
928 
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)929 static int add_one_compat_dev(struct ib_device *device,
930 			      struct rdma_dev_net *rnet)
931 {
932 	struct ib_core_device *cdev;
933 	int ret;
934 
935 	lockdep_assert_held(&rdma_nets_rwsem);
936 	if (!ib_devices_shared_netns)
937 		return 0;
938 
939 	/*
940 	 * Create and add compat device in all namespaces other than where it
941 	 * is currently bound to.
942 	 */
943 	if (net_eq(read_pnet(&rnet->net),
944 		   read_pnet(&device->coredev.rdma_net)))
945 		return 0;
946 
947 	/*
948 	 * The first of init_net() or ib_register_device() to take the
949 	 * compat_devs_mutex wins and gets to add the device. Others will wait
950 	 * for completion here.
951 	 */
952 	mutex_lock(&device->compat_devs_mutex);
953 	cdev = xa_load(&device->compat_devs, rnet->id);
954 	if (cdev) {
955 		ret = 0;
956 		goto done;
957 	}
958 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
959 	if (ret)
960 		goto done;
961 
962 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
963 	if (!cdev) {
964 		ret = -ENOMEM;
965 		goto cdev_err;
966 	}
967 
968 	cdev->dev.parent = device->dev.parent;
969 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
970 	cdev->dev.release = compatdev_release;
971 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
972 	if (ret)
973 		goto add_err;
974 
975 	ret = device_add(&cdev->dev);
976 	if (ret)
977 		goto add_err;
978 	ret = ib_setup_port_attrs(cdev);
979 	if (ret)
980 		goto port_err;
981 
982 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
983 			      cdev, GFP_KERNEL));
984 	if (ret)
985 		goto insert_err;
986 
987 	mutex_unlock(&device->compat_devs_mutex);
988 	return 0;
989 
990 insert_err:
991 	ib_free_port_attrs(cdev);
992 port_err:
993 	device_del(&cdev->dev);
994 add_err:
995 	put_device(&cdev->dev);
996 cdev_err:
997 	xa_release(&device->compat_devs, rnet->id);
998 done:
999 	mutex_unlock(&device->compat_devs_mutex);
1000 	return ret;
1001 }
1002 
remove_one_compat_dev(struct ib_device * device,u32 id)1003 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1004 {
1005 	struct ib_core_device *cdev;
1006 
1007 	mutex_lock(&device->compat_devs_mutex);
1008 	cdev = xa_erase(&device->compat_devs, id);
1009 	mutex_unlock(&device->compat_devs_mutex);
1010 	if (cdev) {
1011 		ib_free_port_attrs(cdev);
1012 		device_del(&cdev->dev);
1013 		put_device(&cdev->dev);
1014 	}
1015 }
1016 
remove_compat_devs(struct ib_device * device)1017 static void remove_compat_devs(struct ib_device *device)
1018 {
1019 	struct ib_core_device *cdev;
1020 	unsigned long index;
1021 
1022 	xa_for_each (&device->compat_devs, index, cdev)
1023 		remove_one_compat_dev(device, index);
1024 }
1025 
add_compat_devs(struct ib_device * device)1026 static int add_compat_devs(struct ib_device *device)
1027 {
1028 	struct rdma_dev_net *rnet;
1029 	unsigned long index;
1030 	int ret = 0;
1031 
1032 	lockdep_assert_held(&devices_rwsem);
1033 
1034 	down_read(&rdma_nets_rwsem);
1035 	xa_for_each (&rdma_nets, index, rnet) {
1036 		ret = add_one_compat_dev(device, rnet);
1037 		if (ret)
1038 			break;
1039 	}
1040 	up_read(&rdma_nets_rwsem);
1041 	return ret;
1042 }
1043 
remove_all_compat_devs(void)1044 static void remove_all_compat_devs(void)
1045 {
1046 	struct ib_compat_device *cdev;
1047 	struct ib_device *dev;
1048 	unsigned long index;
1049 
1050 	down_read(&devices_rwsem);
1051 	xa_for_each (&devices, index, dev) {
1052 		unsigned long c_index = 0;
1053 
1054 		/* Hold nets_rwsem so that any other thread modifying this
1055 		 * system param can sync with this thread.
1056 		 */
1057 		down_read(&rdma_nets_rwsem);
1058 		xa_for_each (&dev->compat_devs, c_index, cdev)
1059 			remove_one_compat_dev(dev, c_index);
1060 		up_read(&rdma_nets_rwsem);
1061 	}
1062 	up_read(&devices_rwsem);
1063 }
1064 
add_all_compat_devs(void)1065 static int add_all_compat_devs(void)
1066 {
1067 	struct rdma_dev_net *rnet;
1068 	struct ib_device *dev;
1069 	unsigned long index;
1070 	int ret = 0;
1071 
1072 	down_read(&devices_rwsem);
1073 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1074 		unsigned long net_index = 0;
1075 
1076 		/* Hold nets_rwsem so that any other thread modifying this
1077 		 * system param can sync with this thread.
1078 		 */
1079 		down_read(&rdma_nets_rwsem);
1080 		xa_for_each (&rdma_nets, net_index, rnet) {
1081 			ret = add_one_compat_dev(dev, rnet);
1082 			if (ret)
1083 				break;
1084 		}
1085 		up_read(&rdma_nets_rwsem);
1086 	}
1087 	up_read(&devices_rwsem);
1088 	if (ret)
1089 		remove_all_compat_devs();
1090 	return ret;
1091 }
1092 
rdma_compatdev_set(u8 enable)1093 int rdma_compatdev_set(u8 enable)
1094 {
1095 	struct rdma_dev_net *rnet;
1096 	unsigned long index;
1097 	int ret = 0;
1098 
1099 	down_write(&rdma_nets_rwsem);
1100 	if (ib_devices_shared_netns == enable) {
1101 		up_write(&rdma_nets_rwsem);
1102 		return 0;
1103 	}
1104 
1105 	/* enable/disable of compat devices is not supported
1106 	 * when more than default init_net exists.
1107 	 */
1108 	xa_for_each (&rdma_nets, index, rnet) {
1109 		ret++;
1110 		break;
1111 	}
1112 	if (!ret)
1113 		ib_devices_shared_netns = enable;
1114 	up_write(&rdma_nets_rwsem);
1115 	if (ret)
1116 		return -EBUSY;
1117 
1118 	if (enable)
1119 		ret = add_all_compat_devs();
1120 	else
1121 		remove_all_compat_devs();
1122 	return ret;
1123 }
1124 
rdma_dev_exit_net(struct net * net)1125 static void rdma_dev_exit_net(struct net *net)
1126 {
1127 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1128 	struct ib_device *dev;
1129 	unsigned long index;
1130 	int ret;
1131 
1132 	down_write(&rdma_nets_rwsem);
1133 	/*
1134 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1135 	 */
1136 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1137 	WARN_ON(ret);
1138 	up_write(&rdma_nets_rwsem);
1139 
1140 	down_read(&devices_rwsem);
1141 	xa_for_each (&devices, index, dev) {
1142 		get_device(&dev->dev);
1143 		/*
1144 		 * Release the devices_rwsem so that pontentially blocking
1145 		 * device_del, doesn't hold the devices_rwsem for too long.
1146 		 */
1147 		up_read(&devices_rwsem);
1148 
1149 		remove_one_compat_dev(dev, rnet->id);
1150 
1151 		/*
1152 		 * If the real device is in the NS then move it back to init.
1153 		 */
1154 		rdma_dev_change_netns(dev, net, &init_net);
1155 
1156 		put_device(&dev->dev);
1157 		down_read(&devices_rwsem);
1158 	}
1159 	up_read(&devices_rwsem);
1160 
1161 	rdma_nl_net_exit(rnet);
1162 	xa_erase(&rdma_nets, rnet->id);
1163 }
1164 
rdma_dev_init_net(struct net * net)1165 static __net_init int rdma_dev_init_net(struct net *net)
1166 {
1167 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1168 	unsigned long index;
1169 	struct ib_device *dev;
1170 	int ret;
1171 
1172 	write_pnet(&rnet->net, net);
1173 
1174 	ret = rdma_nl_net_init(rnet);
1175 	if (ret)
1176 		return ret;
1177 
1178 	/* No need to create any compat devices in default init_net. */
1179 	if (net_eq(net, &init_net))
1180 		return 0;
1181 
1182 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1183 	if (ret) {
1184 		rdma_nl_net_exit(rnet);
1185 		return ret;
1186 	}
1187 
1188 	down_read(&devices_rwsem);
1189 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1190 		/* Hold nets_rwsem so that netlink command cannot change
1191 		 * system configuration for device sharing mode.
1192 		 */
1193 		down_read(&rdma_nets_rwsem);
1194 		ret = add_one_compat_dev(dev, rnet);
1195 		up_read(&rdma_nets_rwsem);
1196 		if (ret)
1197 			break;
1198 	}
1199 	up_read(&devices_rwsem);
1200 
1201 	if (ret)
1202 		rdma_dev_exit_net(net);
1203 
1204 	return ret;
1205 }
1206 
1207 /*
1208  * Assign the unique string device name and the unique device index. This is
1209  * undone by ib_dealloc_device.
1210  */
assign_name(struct ib_device * device,const char * name)1211 static int assign_name(struct ib_device *device, const char *name)
1212 {
1213 	static u32 last_id;
1214 	int ret;
1215 
1216 	down_write(&devices_rwsem);
1217 	/* Assign a unique name to the device */
1218 	if (strchr(name, '%'))
1219 		ret = alloc_name(device, name);
1220 	else
1221 		ret = dev_set_name(&device->dev, name);
1222 	if (ret)
1223 		goto out;
1224 
1225 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1226 		ret = -ENFILE;
1227 		goto out;
1228 	}
1229 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1230 
1231 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1232 			&last_id, GFP_KERNEL);
1233 	if (ret > 0)
1234 		ret = 0;
1235 
1236 out:
1237 	up_write(&devices_rwsem);
1238 	return ret;
1239 }
1240 
1241 /*
1242  * setup_device() allocates memory and sets up data that requires calling the
1243  * device ops, this is the only reason these actions are not done during
1244  * ib_alloc_device. It is undone by ib_dealloc_device().
1245  */
setup_device(struct ib_device * device)1246 static int setup_device(struct ib_device *device)
1247 {
1248 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1249 	int ret;
1250 
1251 	ib_device_check_mandatory(device);
1252 
1253 	ret = setup_port_data(device);
1254 	if (ret) {
1255 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1256 		return ret;
1257 	}
1258 
1259 	memset(&device->attrs, 0, sizeof(device->attrs));
1260 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1261 	if (ret) {
1262 		dev_warn(&device->dev,
1263 			 "Couldn't query the device attributes\n");
1264 		return ret;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
disable_device(struct ib_device * device)1270 static void disable_device(struct ib_device *device)
1271 {
1272 	u32 cid;
1273 
1274 	WARN_ON(!refcount_read(&device->refcount));
1275 
1276 	down_write(&devices_rwsem);
1277 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1278 	up_write(&devices_rwsem);
1279 
1280 	/*
1281 	 * Remove clients in LIFO order, see assign_client_id. This could be
1282 	 * more efficient if xarray learns to reverse iterate. Since no new
1283 	 * clients can be added to this ib_device past this point we only need
1284 	 * the maximum possible client_id value here.
1285 	 */
1286 	down_read(&clients_rwsem);
1287 	cid = highest_client_id;
1288 	up_read(&clients_rwsem);
1289 	while (cid) {
1290 		cid--;
1291 		remove_client_context(device, cid);
1292 	}
1293 
1294 	ib_cq_pool_cleanup(device);
1295 
1296 	/* Pairs with refcount_set in enable_device */
1297 	ib_device_put(device);
1298 	wait_for_completion(&device->unreg_completion);
1299 
1300 	/*
1301 	 * compat devices must be removed after device refcount drops to zero.
1302 	 * Otherwise init_net() may add more compatdevs after removing compat
1303 	 * devices and before device is disabled.
1304 	 */
1305 	remove_compat_devs(device);
1306 }
1307 
1308 /*
1309  * An enabled device is visible to all clients and to all the public facing
1310  * APIs that return a device pointer. This always returns with a new get, even
1311  * if it fails.
1312  */
enable_device_and_get(struct ib_device * device)1313 static int enable_device_and_get(struct ib_device *device)
1314 {
1315 	struct ib_client *client;
1316 	unsigned long index;
1317 	int ret = 0;
1318 
1319 	/*
1320 	 * One ref belongs to the xa and the other belongs to this
1321 	 * thread. This is needed to guard against parallel unregistration.
1322 	 */
1323 	refcount_set(&device->refcount, 2);
1324 	down_write(&devices_rwsem);
1325 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1326 
1327 	/*
1328 	 * By using downgrade_write() we ensure that no other thread can clear
1329 	 * DEVICE_REGISTERED while we are completing the client setup.
1330 	 */
1331 	downgrade_write(&devices_rwsem);
1332 
1333 	if (device->ops.enable_driver) {
1334 		ret = device->ops.enable_driver(device);
1335 		if (ret)
1336 			goto out;
1337 	}
1338 
1339 	down_read(&clients_rwsem);
1340 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1341 		ret = add_client_context(device, client);
1342 		if (ret)
1343 			break;
1344 	}
1345 	up_read(&clients_rwsem);
1346 	if (!ret)
1347 		ret = add_compat_devs(device);
1348 out:
1349 	up_read(&devices_rwsem);
1350 	return ret;
1351 }
1352 
prevent_dealloc_device(struct ib_device * ib_dev)1353 static void prevent_dealloc_device(struct ib_device *ib_dev)
1354 {
1355 }
1356 
1357 /**
1358  * ib_register_device - Register an IB device with IB core
1359  * @device: Device to register
1360  * @name: unique string device name. This may include a '%' which will
1361  * 	  cause a unique index to be added to the passed device name.
1362  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1363  *	        device will be used. In this case the caller should fully
1364  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1365  *
1366  * Low-level drivers use ib_register_device() to register their
1367  * devices with the IB core.  All registered clients will receive a
1368  * callback for each device that is added. @device must be allocated
1369  * with ib_alloc_device().
1370  *
1371  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1372  * asynchronously then the device pointer may become freed as soon as this
1373  * function returns.
1374  */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1375 int ib_register_device(struct ib_device *device, const char *name,
1376 		       struct device *dma_device)
1377 {
1378 	int ret;
1379 
1380 	ret = assign_name(device, name);
1381 	if (ret)
1382 		return ret;
1383 
1384 	/*
1385 	 * If the caller does not provide a DMA capable device then the IB core
1386 	 * will set up ib_sge and scatterlist structures that stash the kernel
1387 	 * virtual address into the address field.
1388 	 */
1389 	WARN_ON(dma_device && !dma_device->dma_parms);
1390 	device->dma_device = dma_device;
1391 
1392 	ret = setup_device(device);
1393 	if (ret)
1394 		return ret;
1395 
1396 	ret = ib_cache_setup_one(device);
1397 	if (ret) {
1398 		dev_warn(&device->dev,
1399 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1400 		return ret;
1401 	}
1402 
1403 	device->groups[0] = &ib_dev_attr_group;
1404 	device->groups[1] = device->ops.device_group;
1405 	ret = ib_setup_device_attrs(device);
1406 	if (ret)
1407 		goto cache_cleanup;
1408 
1409 	ib_device_register_rdmacg(device);
1410 
1411 	rdma_counter_init(device);
1412 
1413 	/*
1414 	 * Ensure that ADD uevent is not fired because it
1415 	 * is too early amd device is not initialized yet.
1416 	 */
1417 	dev_set_uevent_suppress(&device->dev, true);
1418 	ret = device_add(&device->dev);
1419 	if (ret)
1420 		goto cg_cleanup;
1421 
1422 	ret = ib_setup_port_attrs(&device->coredev);
1423 	if (ret) {
1424 		dev_warn(&device->dev,
1425 			 "Couldn't register device with driver model\n");
1426 		goto dev_cleanup;
1427 	}
1428 
1429 	ret = enable_device_and_get(device);
1430 	if (ret) {
1431 		void (*dealloc_fn)(struct ib_device *);
1432 
1433 		/*
1434 		 * If we hit this error flow then we don't want to
1435 		 * automatically dealloc the device since the caller is
1436 		 * expected to call ib_dealloc_device() after
1437 		 * ib_register_device() fails. This is tricky due to the
1438 		 * possibility for a parallel unregistration along with this
1439 		 * error flow. Since we have a refcount here we know any
1440 		 * parallel flow is stopped in disable_device and will see the
1441 		 * special dealloc_driver pointer, causing the responsibility to
1442 		 * ib_dealloc_device() to revert back to this thread.
1443 		 */
1444 		dealloc_fn = device->ops.dealloc_driver;
1445 		device->ops.dealloc_driver = prevent_dealloc_device;
1446 		ib_device_put(device);
1447 		__ib_unregister_device(device);
1448 		device->ops.dealloc_driver = dealloc_fn;
1449 		dev_set_uevent_suppress(&device->dev, false);
1450 		return ret;
1451 	}
1452 	dev_set_uevent_suppress(&device->dev, false);
1453 	/* Mark for userspace that device is ready */
1454 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1455 	ib_device_put(device);
1456 
1457 	return 0;
1458 
1459 dev_cleanup:
1460 	device_del(&device->dev);
1461 cg_cleanup:
1462 	dev_set_uevent_suppress(&device->dev, false);
1463 	ib_device_unregister_rdmacg(device);
1464 cache_cleanup:
1465 	ib_cache_cleanup_one(device);
1466 	return ret;
1467 }
1468 EXPORT_SYMBOL(ib_register_device);
1469 
1470 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1471 static void __ib_unregister_device(struct ib_device *ib_dev)
1472 {
1473 	/*
1474 	 * We have a registration lock so that all the calls to unregister are
1475 	 * fully fenced, once any unregister returns the device is truely
1476 	 * unregistered even if multiple callers are unregistering it at the
1477 	 * same time. This also interacts with the registration flow and
1478 	 * provides sane semantics if register and unregister are racing.
1479 	 */
1480 	mutex_lock(&ib_dev->unregistration_lock);
1481 	if (!refcount_read(&ib_dev->refcount))
1482 		goto out;
1483 
1484 	disable_device(ib_dev);
1485 
1486 	/* Expedite removing unregistered pointers from the hash table */
1487 	free_netdevs(ib_dev);
1488 
1489 	ib_free_port_attrs(&ib_dev->coredev);
1490 	device_del(&ib_dev->dev);
1491 	ib_device_unregister_rdmacg(ib_dev);
1492 	ib_cache_cleanup_one(ib_dev);
1493 
1494 	/*
1495 	 * Drivers using the new flow may not call ib_dealloc_device except
1496 	 * in error unwind prior to registration success.
1497 	 */
1498 	if (ib_dev->ops.dealloc_driver &&
1499 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1500 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1501 		ib_dealloc_device(ib_dev);
1502 	}
1503 out:
1504 	mutex_unlock(&ib_dev->unregistration_lock);
1505 }
1506 
1507 /**
1508  * ib_unregister_device - Unregister an IB device
1509  * @ib_dev: The device to unregister
1510  *
1511  * Unregister an IB device.  All clients will receive a remove callback.
1512  *
1513  * Callers should call this routine only once, and protect against races with
1514  * registration. Typically it should only be called as part of a remove
1515  * callback in an implementation of driver core's struct device_driver and
1516  * related.
1517  *
1518  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1519  * this function.
1520  */
ib_unregister_device(struct ib_device * ib_dev)1521 void ib_unregister_device(struct ib_device *ib_dev)
1522 {
1523 	get_device(&ib_dev->dev);
1524 	__ib_unregister_device(ib_dev);
1525 	put_device(&ib_dev->dev);
1526 }
1527 EXPORT_SYMBOL(ib_unregister_device);
1528 
1529 /**
1530  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1531  * @ib_dev: The device to unregister
1532  *
1533  * This is the same as ib_unregister_device(), except it includes an internal
1534  * ib_device_put() that should match a 'get' obtained by the caller.
1535  *
1536  * It is safe to call this routine concurrently from multiple threads while
1537  * holding the 'get'. When the function returns the device is fully
1538  * unregistered.
1539  *
1540  * Drivers using this flow MUST use the driver_unregister callback to clean up
1541  * their resources associated with the device and dealloc it.
1542  */
ib_unregister_device_and_put(struct ib_device * ib_dev)1543 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1544 {
1545 	WARN_ON(!ib_dev->ops.dealloc_driver);
1546 	get_device(&ib_dev->dev);
1547 	ib_device_put(ib_dev);
1548 	__ib_unregister_device(ib_dev);
1549 	put_device(&ib_dev->dev);
1550 }
1551 EXPORT_SYMBOL(ib_unregister_device_and_put);
1552 
1553 /**
1554  * ib_unregister_driver - Unregister all IB devices for a driver
1555  * @driver_id: The driver to unregister
1556  *
1557  * This implements a fence for device unregistration. It only returns once all
1558  * devices associated with the driver_id have fully completed their
1559  * unregistration and returned from ib_unregister_device*().
1560  *
1561  * If device's are not yet unregistered it goes ahead and starts unregistering
1562  * them.
1563  *
1564  * This does not block creation of new devices with the given driver_id, that
1565  * is the responsibility of the caller.
1566  */
ib_unregister_driver(enum rdma_driver_id driver_id)1567 void ib_unregister_driver(enum rdma_driver_id driver_id)
1568 {
1569 	struct ib_device *ib_dev;
1570 	unsigned long index;
1571 
1572 	down_read(&devices_rwsem);
1573 	xa_for_each (&devices, index, ib_dev) {
1574 		if (ib_dev->ops.driver_id != driver_id)
1575 			continue;
1576 
1577 		get_device(&ib_dev->dev);
1578 		up_read(&devices_rwsem);
1579 
1580 		WARN_ON(!ib_dev->ops.dealloc_driver);
1581 		__ib_unregister_device(ib_dev);
1582 
1583 		put_device(&ib_dev->dev);
1584 		down_read(&devices_rwsem);
1585 	}
1586 	up_read(&devices_rwsem);
1587 }
1588 EXPORT_SYMBOL(ib_unregister_driver);
1589 
ib_unregister_work(struct work_struct * work)1590 static void ib_unregister_work(struct work_struct *work)
1591 {
1592 	struct ib_device *ib_dev =
1593 		container_of(work, struct ib_device, unregistration_work);
1594 
1595 	__ib_unregister_device(ib_dev);
1596 	put_device(&ib_dev->dev);
1597 }
1598 
1599 /**
1600  * ib_unregister_device_queued - Unregister a device using a work queue
1601  * @ib_dev: The device to unregister
1602  *
1603  * This schedules an asynchronous unregistration using a WQ for the device. A
1604  * driver should use this to avoid holding locks while doing unregistration,
1605  * such as holding the RTNL lock.
1606  *
1607  * Drivers using this API must use ib_unregister_driver before module unload
1608  * to ensure that all scheduled unregistrations have completed.
1609  */
ib_unregister_device_queued(struct ib_device * ib_dev)1610 void ib_unregister_device_queued(struct ib_device *ib_dev)
1611 {
1612 	WARN_ON(!refcount_read(&ib_dev->refcount));
1613 	WARN_ON(!ib_dev->ops.dealloc_driver);
1614 	get_device(&ib_dev->dev);
1615 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1616 		put_device(&ib_dev->dev);
1617 }
1618 EXPORT_SYMBOL(ib_unregister_device_queued);
1619 
1620 /*
1621  * The caller must pass in a device that has the kref held and the refcount
1622  * released. If the device is in cur_net and still registered then it is moved
1623  * into net.
1624  */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1625 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1626 				 struct net *net)
1627 {
1628 	int ret2 = -EINVAL;
1629 	int ret;
1630 
1631 	mutex_lock(&device->unregistration_lock);
1632 
1633 	/*
1634 	 * If a device not under ib_device_get() or if the unregistration_lock
1635 	 * is not held, the namespace can be changed, or it can be unregistered.
1636 	 * Check again under the lock.
1637 	 */
1638 	if (refcount_read(&device->refcount) == 0 ||
1639 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1640 		ret = -ENODEV;
1641 		goto out;
1642 	}
1643 
1644 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1645 	disable_device(device);
1646 
1647 	/*
1648 	 * At this point no one can be using the device, so it is safe to
1649 	 * change the namespace.
1650 	 */
1651 	write_pnet(&device->coredev.rdma_net, net);
1652 
1653 	down_read(&devices_rwsem);
1654 	/*
1655 	 * Currently rdma devices are system wide unique. So the device name
1656 	 * is guaranteed free in the new namespace. Publish the new namespace
1657 	 * at the sysfs level.
1658 	 */
1659 	ret = device_rename(&device->dev, dev_name(&device->dev));
1660 	up_read(&devices_rwsem);
1661 	if (ret) {
1662 		dev_warn(&device->dev,
1663 			 "%s: Couldn't rename device after namespace change\n",
1664 			 __func__);
1665 		/* Try and put things back and re-enable the device */
1666 		write_pnet(&device->coredev.rdma_net, cur_net);
1667 	}
1668 
1669 	ret2 = enable_device_and_get(device);
1670 	if (ret2) {
1671 		/*
1672 		 * This shouldn't really happen, but if it does, let the user
1673 		 * retry at later point. So don't disable the device.
1674 		 */
1675 		dev_warn(&device->dev,
1676 			 "%s: Couldn't re-enable device after namespace change\n",
1677 			 __func__);
1678 	}
1679 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1680 
1681 	ib_device_put(device);
1682 out:
1683 	mutex_unlock(&device->unregistration_lock);
1684 	if (ret)
1685 		return ret;
1686 	return ret2;
1687 }
1688 
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1689 int ib_device_set_netns_put(struct sk_buff *skb,
1690 			    struct ib_device *dev, u32 ns_fd)
1691 {
1692 	struct net *net;
1693 	int ret;
1694 
1695 	net = get_net_ns_by_fd(ns_fd);
1696 	if (IS_ERR(net)) {
1697 		ret = PTR_ERR(net);
1698 		goto net_err;
1699 	}
1700 
1701 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1702 		ret = -EPERM;
1703 		goto ns_err;
1704 	}
1705 
1706 	/*
1707 	 * All the ib_clients, including uverbs, are reset when the namespace is
1708 	 * changed and this cannot be blocked waiting for userspace to do
1709 	 * something, so disassociation is mandatory.
1710 	 */
1711 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1712 		ret = -EOPNOTSUPP;
1713 		goto ns_err;
1714 	}
1715 
1716 	get_device(&dev->dev);
1717 	ib_device_put(dev);
1718 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1719 	put_device(&dev->dev);
1720 
1721 	put_net(net);
1722 	return ret;
1723 
1724 ns_err:
1725 	put_net(net);
1726 net_err:
1727 	ib_device_put(dev);
1728 	return ret;
1729 }
1730 
1731 static struct pernet_operations rdma_dev_net_ops = {
1732 	.init = rdma_dev_init_net,
1733 	.exit = rdma_dev_exit_net,
1734 	.id = &rdma_dev_net_id,
1735 	.size = sizeof(struct rdma_dev_net),
1736 };
1737 
assign_client_id(struct ib_client * client)1738 static int assign_client_id(struct ib_client *client)
1739 {
1740 	int ret;
1741 
1742 	lockdep_assert_held(&clients_rwsem);
1743 	/*
1744 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1745 	 * achieve this we assign client_ids so they are sorted in
1746 	 * registration order.
1747 	 */
1748 	client->client_id = highest_client_id;
1749 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1750 	if (ret)
1751 		return ret;
1752 
1753 	highest_client_id++;
1754 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1755 	return 0;
1756 }
1757 
remove_client_id(struct ib_client * client)1758 static void remove_client_id(struct ib_client *client)
1759 {
1760 	down_write(&clients_rwsem);
1761 	xa_erase(&clients, client->client_id);
1762 	for (; highest_client_id; highest_client_id--)
1763 		if (xa_load(&clients, highest_client_id - 1))
1764 			break;
1765 	up_write(&clients_rwsem);
1766 }
1767 
1768 /**
1769  * ib_register_client - Register an IB client
1770  * @client:Client to register
1771  *
1772  * Upper level users of the IB drivers can use ib_register_client() to
1773  * register callbacks for IB device addition and removal.  When an IB
1774  * device is added, each registered client's add method will be called
1775  * (in the order the clients were registered), and when a device is
1776  * removed, each client's remove method will be called (in the reverse
1777  * order that clients were registered).  In addition, when
1778  * ib_register_client() is called, the client will receive an add
1779  * callback for all devices already registered.
1780  */
ib_register_client(struct ib_client * client)1781 int ib_register_client(struct ib_client *client)
1782 {
1783 	struct ib_device *device;
1784 	unsigned long index;
1785 	bool need_unreg = false;
1786 	int ret;
1787 
1788 	refcount_set(&client->uses, 1);
1789 	init_completion(&client->uses_zero);
1790 
1791 	/*
1792 	 * The devices_rwsem is held in write mode to ensure that a racing
1793 	 * ib_register_device() sees a consisent view of clients and devices.
1794 	 */
1795 	down_write(&devices_rwsem);
1796 	down_write(&clients_rwsem);
1797 	ret = assign_client_id(client);
1798 	if (ret)
1799 		goto out;
1800 
1801 	need_unreg = true;
1802 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1803 		ret = add_client_context(device, client);
1804 		if (ret)
1805 			goto out;
1806 	}
1807 	ret = 0;
1808 out:
1809 	up_write(&clients_rwsem);
1810 	up_write(&devices_rwsem);
1811 	if (need_unreg && ret)
1812 		ib_unregister_client(client);
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL(ib_register_client);
1816 
1817 /**
1818  * ib_unregister_client - Unregister an IB client
1819  * @client:Client to unregister
1820  *
1821  * Upper level users use ib_unregister_client() to remove their client
1822  * registration.  When ib_unregister_client() is called, the client
1823  * will receive a remove callback for each IB device still registered.
1824  *
1825  * This is a full fence, once it returns no client callbacks will be called,
1826  * or are running in another thread.
1827  */
ib_unregister_client(struct ib_client * client)1828 void ib_unregister_client(struct ib_client *client)
1829 {
1830 	struct ib_device *device;
1831 	unsigned long index;
1832 
1833 	down_write(&clients_rwsem);
1834 	ib_client_put(client);
1835 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1836 	up_write(&clients_rwsem);
1837 
1838 	/* We do not want to have locks while calling client->remove() */
1839 	rcu_read_lock();
1840 	xa_for_each (&devices, index, device) {
1841 		if (!ib_device_try_get(device))
1842 			continue;
1843 		rcu_read_unlock();
1844 
1845 		remove_client_context(device, client->client_id);
1846 
1847 		ib_device_put(device);
1848 		rcu_read_lock();
1849 	}
1850 	rcu_read_unlock();
1851 
1852 	/*
1853 	 * remove_client_context() is not a fence, it can return even though a
1854 	 * removal is ongoing. Wait until all removals are completed.
1855 	 */
1856 	wait_for_completion(&client->uses_zero);
1857 	remove_client_id(client);
1858 }
1859 EXPORT_SYMBOL(ib_unregister_client);
1860 
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1861 static int __ib_get_global_client_nl_info(const char *client_name,
1862 					  struct ib_client_nl_info *res)
1863 {
1864 	struct ib_client *client;
1865 	unsigned long index;
1866 	int ret = -ENOENT;
1867 
1868 	down_read(&clients_rwsem);
1869 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1870 		if (strcmp(client->name, client_name) != 0)
1871 			continue;
1872 		if (!client->get_global_nl_info) {
1873 			ret = -EOPNOTSUPP;
1874 			break;
1875 		}
1876 		ret = client->get_global_nl_info(res);
1877 		if (WARN_ON(ret == -ENOENT))
1878 			ret = -EINVAL;
1879 		if (!ret && res->cdev)
1880 			get_device(res->cdev);
1881 		break;
1882 	}
1883 	up_read(&clients_rwsem);
1884 	return ret;
1885 }
1886 
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1887 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1888 				   const char *client_name,
1889 				   struct ib_client_nl_info *res)
1890 {
1891 	unsigned long index;
1892 	void *client_data;
1893 	int ret = -ENOENT;
1894 
1895 	down_read(&ibdev->client_data_rwsem);
1896 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1897 			     CLIENT_DATA_REGISTERED) {
1898 		struct ib_client *client = xa_load(&clients, index);
1899 
1900 		if (!client || strcmp(client->name, client_name) != 0)
1901 			continue;
1902 		if (!client->get_nl_info) {
1903 			ret = -EOPNOTSUPP;
1904 			break;
1905 		}
1906 		ret = client->get_nl_info(ibdev, client_data, res);
1907 		if (WARN_ON(ret == -ENOENT))
1908 			ret = -EINVAL;
1909 
1910 		/*
1911 		 * The cdev is guaranteed valid as long as we are inside the
1912 		 * client_data_rwsem as remove_one can't be called. Keep it
1913 		 * valid for the caller.
1914 		 */
1915 		if (!ret && res->cdev)
1916 			get_device(res->cdev);
1917 		break;
1918 	}
1919 	up_read(&ibdev->client_data_rwsem);
1920 
1921 	return ret;
1922 }
1923 
1924 /**
1925  * ib_get_client_nl_info - Fetch the nl_info from a client
1926  * @ibdev: IB device
1927  * @client_name: Name of the client
1928  * @res: Result of the query
1929  */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1930 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1931 			  struct ib_client_nl_info *res)
1932 {
1933 	int ret;
1934 
1935 	if (ibdev)
1936 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1937 	else
1938 		ret = __ib_get_global_client_nl_info(client_name, res);
1939 #ifdef CONFIG_MODULES
1940 	if (ret == -ENOENT) {
1941 		request_module("rdma-client-%s", client_name);
1942 		if (ibdev)
1943 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1944 		else
1945 			ret = __ib_get_global_client_nl_info(client_name, res);
1946 	}
1947 #endif
1948 	if (ret) {
1949 		if (ret == -ENOENT)
1950 			return -EOPNOTSUPP;
1951 		return ret;
1952 	}
1953 
1954 	if (WARN_ON(!res->cdev))
1955 		return -EINVAL;
1956 	return 0;
1957 }
1958 
1959 /**
1960  * ib_set_client_data - Set IB client context
1961  * @device:Device to set context for
1962  * @client:Client to set context for
1963  * @data:Context to set
1964  *
1965  * ib_set_client_data() sets client context data that can be retrieved with
1966  * ib_get_client_data(). This can only be called while the client is
1967  * registered to the device, once the ib_client remove() callback returns this
1968  * cannot be called.
1969  */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1970 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1971 			void *data)
1972 {
1973 	void *rc;
1974 
1975 	if (WARN_ON(IS_ERR(data)))
1976 		data = NULL;
1977 
1978 	rc = xa_store(&device->client_data, client->client_id, data,
1979 		      GFP_KERNEL);
1980 	WARN_ON(xa_is_err(rc));
1981 }
1982 EXPORT_SYMBOL(ib_set_client_data);
1983 
1984 /**
1985  * ib_register_event_handler - Register an IB event handler
1986  * @event_handler:Handler to register
1987  *
1988  * ib_register_event_handler() registers an event handler that will be
1989  * called back when asynchronous IB events occur (as defined in
1990  * chapter 11 of the InfiniBand Architecture Specification). This
1991  * callback occurs in workqueue context.
1992  */
ib_register_event_handler(struct ib_event_handler * event_handler)1993 void ib_register_event_handler(struct ib_event_handler *event_handler)
1994 {
1995 	down_write(&event_handler->device->event_handler_rwsem);
1996 	list_add_tail(&event_handler->list,
1997 		      &event_handler->device->event_handler_list);
1998 	up_write(&event_handler->device->event_handler_rwsem);
1999 }
2000 EXPORT_SYMBOL(ib_register_event_handler);
2001 
2002 /**
2003  * ib_unregister_event_handler - Unregister an event handler
2004  * @event_handler:Handler to unregister
2005  *
2006  * Unregister an event handler registered with
2007  * ib_register_event_handler().
2008  */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2009 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2010 {
2011 	down_write(&event_handler->device->event_handler_rwsem);
2012 	list_del(&event_handler->list);
2013 	up_write(&event_handler->device->event_handler_rwsem);
2014 }
2015 EXPORT_SYMBOL(ib_unregister_event_handler);
2016 
ib_dispatch_event_clients(struct ib_event * event)2017 void ib_dispatch_event_clients(struct ib_event *event)
2018 {
2019 	struct ib_event_handler *handler;
2020 
2021 	down_read(&event->device->event_handler_rwsem);
2022 
2023 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2024 		handler->handler(handler, event);
2025 
2026 	up_read(&event->device->event_handler_rwsem);
2027 }
2028 
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2029 static int iw_query_port(struct ib_device *device,
2030 			   u32 port_num,
2031 			   struct ib_port_attr *port_attr)
2032 {
2033 	struct in_device *inetdev;
2034 	struct net_device *netdev;
2035 
2036 	memset(port_attr, 0, sizeof(*port_attr));
2037 
2038 	netdev = ib_device_get_netdev(device, port_num);
2039 	if (!netdev)
2040 		return -ENODEV;
2041 
2042 	port_attr->max_mtu = IB_MTU_4096;
2043 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2044 
2045 	if (!netif_carrier_ok(netdev)) {
2046 		port_attr->state = IB_PORT_DOWN;
2047 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2048 	} else {
2049 		rcu_read_lock();
2050 		inetdev = __in_dev_get_rcu(netdev);
2051 
2052 		if (inetdev && inetdev->ifa_list) {
2053 			port_attr->state = IB_PORT_ACTIVE;
2054 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2055 		} else {
2056 			port_attr->state = IB_PORT_INIT;
2057 			port_attr->phys_state =
2058 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2059 		}
2060 
2061 		rcu_read_unlock();
2062 	}
2063 
2064 	dev_put(netdev);
2065 	return device->ops.query_port(device, port_num, port_attr);
2066 }
2067 
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2068 static int __ib_query_port(struct ib_device *device,
2069 			   u32 port_num,
2070 			   struct ib_port_attr *port_attr)
2071 {
2072 	int err;
2073 
2074 	memset(port_attr, 0, sizeof(*port_attr));
2075 
2076 	err = device->ops.query_port(device, port_num, port_attr);
2077 	if (err || port_attr->subnet_prefix)
2078 		return err;
2079 
2080 	if (rdma_port_get_link_layer(device, port_num) !=
2081 	    IB_LINK_LAYER_INFINIBAND)
2082 		return 0;
2083 
2084 	ib_get_cached_subnet_prefix(device, port_num,
2085 				    &port_attr->subnet_prefix);
2086 	return 0;
2087 }
2088 
2089 /**
2090  * ib_query_port - Query IB port attributes
2091  * @device:Device to query
2092  * @port_num:Port number to query
2093  * @port_attr:Port attributes
2094  *
2095  * ib_query_port() returns the attributes of a port through the
2096  * @port_attr pointer.
2097  */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2098 int ib_query_port(struct ib_device *device,
2099 		  u32 port_num,
2100 		  struct ib_port_attr *port_attr)
2101 {
2102 	if (!rdma_is_port_valid(device, port_num))
2103 		return -EINVAL;
2104 
2105 	if (rdma_protocol_iwarp(device, port_num))
2106 		return iw_query_port(device, port_num, port_attr);
2107 	else
2108 		return __ib_query_port(device, port_num, port_attr);
2109 }
2110 EXPORT_SYMBOL(ib_query_port);
2111 
add_ndev_hash(struct ib_port_data * pdata)2112 static void add_ndev_hash(struct ib_port_data *pdata)
2113 {
2114 	unsigned long flags;
2115 
2116 	might_sleep();
2117 
2118 	spin_lock_irqsave(&ndev_hash_lock, flags);
2119 	if (hash_hashed(&pdata->ndev_hash_link)) {
2120 		hash_del_rcu(&pdata->ndev_hash_link);
2121 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2122 		/*
2123 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2124 		 * grace period
2125 		 */
2126 		synchronize_rcu();
2127 		spin_lock_irqsave(&ndev_hash_lock, flags);
2128 	}
2129 	if (pdata->netdev)
2130 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2131 			     (uintptr_t)pdata->netdev);
2132 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2133 }
2134 
2135 /**
2136  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2137  * @ib_dev: Device to modify
2138  * @ndev: net_device to affiliate, may be NULL
2139  * @port: IB port the net_device is connected to
2140  *
2141  * Drivers should use this to link the ib_device to a netdev so the netdev
2142  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2143  * affiliated with any port.
2144  *
2145  * The caller must ensure that the given ndev is not unregistered or
2146  * unregistering, and that either the ib_device is unregistered or
2147  * ib_device_set_netdev() is called with NULL when the ndev sends a
2148  * NETDEV_UNREGISTER event.
2149  */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2150 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2151 			 u32 port)
2152 {
2153 	struct net_device *old_ndev;
2154 	struct ib_port_data *pdata;
2155 	unsigned long flags;
2156 	int ret;
2157 
2158 	if (!rdma_is_port_valid(ib_dev, port))
2159 		return -EINVAL;
2160 
2161 	/*
2162 	 * Drivers wish to call this before ib_register_driver, so we have to
2163 	 * setup the port data early.
2164 	 */
2165 	ret = alloc_port_data(ib_dev);
2166 	if (ret)
2167 		return ret;
2168 
2169 	pdata = &ib_dev->port_data[port];
2170 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2171 	old_ndev = rcu_dereference_protected(
2172 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2173 	if (old_ndev == ndev) {
2174 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2175 		return 0;
2176 	}
2177 
2178 	rcu_assign_pointer(pdata->netdev, ndev);
2179 	netdev_put(old_ndev, &pdata->netdev_tracker);
2180 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2181 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2182 
2183 	add_ndev_hash(pdata);
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL(ib_device_set_netdev);
2187 
free_netdevs(struct ib_device * ib_dev)2188 static void free_netdevs(struct ib_device *ib_dev)
2189 {
2190 	unsigned long flags;
2191 	u32 port;
2192 
2193 	if (!ib_dev->port_data)
2194 		return;
2195 
2196 	rdma_for_each_port (ib_dev, port) {
2197 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2198 		struct net_device *ndev;
2199 
2200 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2201 		ndev = rcu_dereference_protected(
2202 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2203 		if (ndev) {
2204 			spin_lock(&ndev_hash_lock);
2205 			hash_del_rcu(&pdata->ndev_hash_link);
2206 			spin_unlock(&ndev_hash_lock);
2207 
2208 			/*
2209 			 * If this is the last dev_put there is still a
2210 			 * synchronize_rcu before the netdev is kfreed, so we
2211 			 * can continue to rely on unlocked pointer
2212 			 * comparisons after the put
2213 			 */
2214 			rcu_assign_pointer(pdata->netdev, NULL);
2215 			netdev_put(ndev, &pdata->netdev_tracker);
2216 		}
2217 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2218 	}
2219 }
2220 
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2221 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2222 					u32 port)
2223 {
2224 	struct ib_port_data *pdata;
2225 	struct net_device *res;
2226 
2227 	if (!rdma_is_port_valid(ib_dev, port))
2228 		return NULL;
2229 
2230 	pdata = &ib_dev->port_data[port];
2231 
2232 	/*
2233 	 * New drivers should use ib_device_set_netdev() not the legacy
2234 	 * get_netdev().
2235 	 */
2236 	if (ib_dev->ops.get_netdev)
2237 		res = ib_dev->ops.get_netdev(ib_dev, port);
2238 	else {
2239 		spin_lock(&pdata->netdev_lock);
2240 		res = rcu_dereference_protected(
2241 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2242 		dev_hold(res);
2243 		spin_unlock(&pdata->netdev_lock);
2244 	}
2245 
2246 	/*
2247 	 * If we are starting to unregister expedite things by preventing
2248 	 * propagation of an unregistering netdev.
2249 	 */
2250 	if (res && res->reg_state != NETREG_REGISTERED) {
2251 		dev_put(res);
2252 		return NULL;
2253 	}
2254 
2255 	return res;
2256 }
2257 
2258 /**
2259  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2260  * @ndev: netdev to locate
2261  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2262  *
2263  * Find and hold an ib_device that is associated with a netdev via
2264  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2265  * returned pointer.
2266  */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2267 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2268 					  enum rdma_driver_id driver_id)
2269 {
2270 	struct ib_device *res = NULL;
2271 	struct ib_port_data *cur;
2272 
2273 	rcu_read_lock();
2274 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2275 				    (uintptr_t)ndev) {
2276 		if (rcu_access_pointer(cur->netdev) == ndev &&
2277 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2278 		     cur->ib_dev->ops.driver_id == driver_id) &&
2279 		    ib_device_try_get(cur->ib_dev)) {
2280 			res = cur->ib_dev;
2281 			break;
2282 		}
2283 	}
2284 	rcu_read_unlock();
2285 
2286 	return res;
2287 }
2288 EXPORT_SYMBOL(ib_device_get_by_netdev);
2289 
2290 /**
2291  * ib_enum_roce_netdev - enumerate all RoCE ports
2292  * @ib_dev : IB device we want to query
2293  * @filter: Should we call the callback?
2294  * @filter_cookie: Cookie passed to filter
2295  * @cb: Callback to call for each found RoCE ports
2296  * @cookie: Cookie passed back to the callback
2297  *
2298  * Enumerates all of the physical RoCE ports of ib_dev
2299  * which are related to netdevice and calls callback() on each
2300  * device for which filter() function returns non zero.
2301  */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2302 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2303 			 roce_netdev_filter filter,
2304 			 void *filter_cookie,
2305 			 roce_netdev_callback cb,
2306 			 void *cookie)
2307 {
2308 	u32 port;
2309 
2310 	rdma_for_each_port (ib_dev, port)
2311 		if (rdma_protocol_roce(ib_dev, port)) {
2312 			struct net_device *idev =
2313 				ib_device_get_netdev(ib_dev, port);
2314 
2315 			if (filter(ib_dev, port, idev, filter_cookie))
2316 				cb(ib_dev, port, idev, cookie);
2317 			dev_put(idev);
2318 		}
2319 }
2320 
2321 /**
2322  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2323  * @filter: Should we call the callback?
2324  * @filter_cookie: Cookie passed to filter
2325  * @cb: Callback to call for each found RoCE ports
2326  * @cookie: Cookie passed back to the callback
2327  *
2328  * Enumerates all RoCE devices' physical ports which are related
2329  * to netdevices and calls callback() on each device for which
2330  * filter() function returns non zero.
2331  */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2332 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2333 			      void *filter_cookie,
2334 			      roce_netdev_callback cb,
2335 			      void *cookie)
2336 {
2337 	struct ib_device *dev;
2338 	unsigned long index;
2339 
2340 	down_read(&devices_rwsem);
2341 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2342 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2343 	up_read(&devices_rwsem);
2344 }
2345 
2346 /*
2347  * ib_enum_all_devs - enumerate all ib_devices
2348  * @cb: Callback to call for each found ib_device
2349  *
2350  * Enumerates all ib_devices and calls callback() on each device.
2351  */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2352 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2353 		     struct netlink_callback *cb)
2354 {
2355 	unsigned long index;
2356 	struct ib_device *dev;
2357 	unsigned int idx = 0;
2358 	int ret = 0;
2359 
2360 	down_read(&devices_rwsem);
2361 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2362 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2363 			continue;
2364 
2365 		ret = nldev_cb(dev, skb, cb, idx);
2366 		if (ret)
2367 			break;
2368 		idx++;
2369 	}
2370 	up_read(&devices_rwsem);
2371 	return ret;
2372 }
2373 
2374 /**
2375  * ib_query_pkey - Get P_Key table entry
2376  * @device:Device to query
2377  * @port_num:Port number to query
2378  * @index:P_Key table index to query
2379  * @pkey:Returned P_Key
2380  *
2381  * ib_query_pkey() fetches the specified P_Key table entry.
2382  */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2383 int ib_query_pkey(struct ib_device *device,
2384 		  u32 port_num, u16 index, u16 *pkey)
2385 {
2386 	if (!rdma_is_port_valid(device, port_num))
2387 		return -EINVAL;
2388 
2389 	if (!device->ops.query_pkey)
2390 		return -EOPNOTSUPP;
2391 
2392 	return device->ops.query_pkey(device, port_num, index, pkey);
2393 }
2394 EXPORT_SYMBOL(ib_query_pkey);
2395 
2396 /**
2397  * ib_modify_device - Change IB device attributes
2398  * @device:Device to modify
2399  * @device_modify_mask:Mask of attributes to change
2400  * @device_modify:New attribute values
2401  *
2402  * ib_modify_device() changes a device's attributes as specified by
2403  * the @device_modify_mask and @device_modify structure.
2404  */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2405 int ib_modify_device(struct ib_device *device,
2406 		     int device_modify_mask,
2407 		     struct ib_device_modify *device_modify)
2408 {
2409 	if (!device->ops.modify_device)
2410 		return -EOPNOTSUPP;
2411 
2412 	return device->ops.modify_device(device, device_modify_mask,
2413 					 device_modify);
2414 }
2415 EXPORT_SYMBOL(ib_modify_device);
2416 
2417 /**
2418  * ib_modify_port - Modifies the attributes for the specified port.
2419  * @device: The device to modify.
2420  * @port_num: The number of the port to modify.
2421  * @port_modify_mask: Mask used to specify which attributes of the port
2422  *   to change.
2423  * @port_modify: New attribute values for the port.
2424  *
2425  * ib_modify_port() changes a port's attributes as specified by the
2426  * @port_modify_mask and @port_modify structure.
2427  */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2428 int ib_modify_port(struct ib_device *device,
2429 		   u32 port_num, int port_modify_mask,
2430 		   struct ib_port_modify *port_modify)
2431 {
2432 	int rc;
2433 
2434 	if (!rdma_is_port_valid(device, port_num))
2435 		return -EINVAL;
2436 
2437 	if (device->ops.modify_port)
2438 		rc = device->ops.modify_port(device, port_num,
2439 					     port_modify_mask,
2440 					     port_modify);
2441 	else if (rdma_protocol_roce(device, port_num) &&
2442 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2443 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2444 		rc = 0;
2445 	else
2446 		rc = -EOPNOTSUPP;
2447 	return rc;
2448 }
2449 EXPORT_SYMBOL(ib_modify_port);
2450 
2451 /**
2452  * ib_find_gid - Returns the port number and GID table index where
2453  *   a specified GID value occurs. Its searches only for IB link layer.
2454  * @device: The device to query.
2455  * @gid: The GID value to search for.
2456  * @port_num: The port number of the device where the GID value was found.
2457  * @index: The index into the GID table where the GID was found.  This
2458  *   parameter may be NULL.
2459  */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2460 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2461 		u32 *port_num, u16 *index)
2462 {
2463 	union ib_gid tmp_gid;
2464 	u32 port;
2465 	int ret, i;
2466 
2467 	rdma_for_each_port (device, port) {
2468 		if (!rdma_protocol_ib(device, port))
2469 			continue;
2470 
2471 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2472 		     ++i) {
2473 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2474 			if (ret)
2475 				continue;
2476 
2477 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2478 				*port_num = port;
2479 				if (index)
2480 					*index = i;
2481 				return 0;
2482 			}
2483 		}
2484 	}
2485 
2486 	return -ENOENT;
2487 }
2488 EXPORT_SYMBOL(ib_find_gid);
2489 
2490 /**
2491  * ib_find_pkey - Returns the PKey table index where a specified
2492  *   PKey value occurs.
2493  * @device: The device to query.
2494  * @port_num: The port number of the device to search for the PKey.
2495  * @pkey: The PKey value to search for.
2496  * @index: The index into the PKey table where the PKey was found.
2497  */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2498 int ib_find_pkey(struct ib_device *device,
2499 		 u32 port_num, u16 pkey, u16 *index)
2500 {
2501 	int ret, i;
2502 	u16 tmp_pkey;
2503 	int partial_ix = -1;
2504 
2505 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2506 	     ++i) {
2507 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2508 		if (ret)
2509 			return ret;
2510 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2511 			/* if there is full-member pkey take it.*/
2512 			if (tmp_pkey & 0x8000) {
2513 				*index = i;
2514 				return 0;
2515 			}
2516 			if (partial_ix < 0)
2517 				partial_ix = i;
2518 		}
2519 	}
2520 
2521 	/*no full-member, if exists take the limited*/
2522 	if (partial_ix >= 0) {
2523 		*index = partial_ix;
2524 		return 0;
2525 	}
2526 	return -ENOENT;
2527 }
2528 EXPORT_SYMBOL(ib_find_pkey);
2529 
2530 /**
2531  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2532  * for a received CM request
2533  * @dev:	An RDMA device on which the request has been received.
2534  * @port:	Port number on the RDMA device.
2535  * @pkey:	The Pkey the request came on.
2536  * @gid:	A GID that the net_dev uses to communicate.
2537  * @addr:	Contains the IP address that the request specified as its
2538  *		destination.
2539  *
2540  */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2541 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2542 					    u32 port,
2543 					    u16 pkey,
2544 					    const union ib_gid *gid,
2545 					    const struct sockaddr *addr)
2546 {
2547 	struct net_device *net_dev = NULL;
2548 	unsigned long index;
2549 	void *client_data;
2550 
2551 	if (!rdma_protocol_ib(dev, port))
2552 		return NULL;
2553 
2554 	/*
2555 	 * Holding the read side guarantees that the client will not become
2556 	 * unregistered while we are calling get_net_dev_by_params()
2557 	 */
2558 	down_read(&dev->client_data_rwsem);
2559 	xan_for_each_marked (&dev->client_data, index, client_data,
2560 			     CLIENT_DATA_REGISTERED) {
2561 		struct ib_client *client = xa_load(&clients, index);
2562 
2563 		if (!client || !client->get_net_dev_by_params)
2564 			continue;
2565 
2566 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2567 							addr, client_data);
2568 		if (net_dev)
2569 			break;
2570 	}
2571 	up_read(&dev->client_data_rwsem);
2572 
2573 	return net_dev;
2574 }
2575 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2576 
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2577 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2578 {
2579 	struct ib_device_ops *dev_ops = &dev->ops;
2580 #define SET_DEVICE_OP(ptr, name)                                               \
2581 	do {                                                                   \
2582 		if (ops->name)                                                 \
2583 			if (!((ptr)->name))				       \
2584 				(ptr)->name = ops->name;                       \
2585 	} while (0)
2586 
2587 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2588 
2589 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2590 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2591 			dev_ops->driver_id != ops->driver_id);
2592 		dev_ops->driver_id = ops->driver_id;
2593 	}
2594 	if (ops->owner) {
2595 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2596 		dev_ops->owner = ops->owner;
2597 	}
2598 	if (ops->uverbs_abi_ver)
2599 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2600 
2601 	dev_ops->uverbs_no_driver_id_binding |=
2602 		ops->uverbs_no_driver_id_binding;
2603 
2604 	SET_DEVICE_OP(dev_ops, add_gid);
2605 	SET_DEVICE_OP(dev_ops, advise_mr);
2606 	SET_DEVICE_OP(dev_ops, alloc_dm);
2607 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2608 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2609 	SET_DEVICE_OP(dev_ops, alloc_mr);
2610 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2611 	SET_DEVICE_OP(dev_ops, alloc_mw);
2612 	SET_DEVICE_OP(dev_ops, alloc_pd);
2613 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2614 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2615 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2616 	SET_DEVICE_OP(dev_ops, attach_mcast);
2617 	SET_DEVICE_OP(dev_ops, check_mr_status);
2618 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2619 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2620 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2621 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2622 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2623 	SET_DEVICE_OP(dev_ops, create_ah);
2624 	SET_DEVICE_OP(dev_ops, create_counters);
2625 	SET_DEVICE_OP(dev_ops, create_cq);
2626 	SET_DEVICE_OP(dev_ops, create_flow);
2627 	SET_DEVICE_OP(dev_ops, create_qp);
2628 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2629 	SET_DEVICE_OP(dev_ops, create_srq);
2630 	SET_DEVICE_OP(dev_ops, create_user_ah);
2631 	SET_DEVICE_OP(dev_ops, create_wq);
2632 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2633 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2634 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2635 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2636 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2637 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2638 	SET_DEVICE_OP(dev_ops, del_gid);
2639 	SET_DEVICE_OP(dev_ops, dereg_mr);
2640 	SET_DEVICE_OP(dev_ops, destroy_ah);
2641 	SET_DEVICE_OP(dev_ops, destroy_counters);
2642 	SET_DEVICE_OP(dev_ops, destroy_cq);
2643 	SET_DEVICE_OP(dev_ops, destroy_flow);
2644 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2645 	SET_DEVICE_OP(dev_ops, destroy_qp);
2646 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2647 	SET_DEVICE_OP(dev_ops, destroy_srq);
2648 	SET_DEVICE_OP(dev_ops, destroy_wq);
2649 	SET_DEVICE_OP(dev_ops, device_group);
2650 	SET_DEVICE_OP(dev_ops, detach_mcast);
2651 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2652 	SET_DEVICE_OP(dev_ops, drain_rq);
2653 	SET_DEVICE_OP(dev_ops, drain_sq);
2654 	SET_DEVICE_OP(dev_ops, enable_driver);
2655 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2656 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2657 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2658 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2659 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2660 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2661 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2662 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2663 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2664 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2665 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2666 	SET_DEVICE_OP(dev_ops, get_link_layer);
2667 	SET_DEVICE_OP(dev_ops, get_netdev);
2668 	SET_DEVICE_OP(dev_ops, get_numa_node);
2669 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2670 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2671 	SET_DEVICE_OP(dev_ops, get_vf_config);
2672 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2673 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2674 	SET_DEVICE_OP(dev_ops, iw_accept);
2675 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2676 	SET_DEVICE_OP(dev_ops, iw_connect);
2677 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2678 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2679 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2680 	SET_DEVICE_OP(dev_ops, iw_reject);
2681 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2682 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2683 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2684 	SET_DEVICE_OP(dev_ops, mmap);
2685 	SET_DEVICE_OP(dev_ops, mmap_free);
2686 	SET_DEVICE_OP(dev_ops, modify_ah);
2687 	SET_DEVICE_OP(dev_ops, modify_cq);
2688 	SET_DEVICE_OP(dev_ops, modify_device);
2689 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2690 	SET_DEVICE_OP(dev_ops, modify_port);
2691 	SET_DEVICE_OP(dev_ops, modify_qp);
2692 	SET_DEVICE_OP(dev_ops, modify_srq);
2693 	SET_DEVICE_OP(dev_ops, modify_wq);
2694 	SET_DEVICE_OP(dev_ops, peek_cq);
2695 	SET_DEVICE_OP(dev_ops, poll_cq);
2696 	SET_DEVICE_OP(dev_ops, port_groups);
2697 	SET_DEVICE_OP(dev_ops, post_recv);
2698 	SET_DEVICE_OP(dev_ops, post_send);
2699 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2700 	SET_DEVICE_OP(dev_ops, process_mad);
2701 	SET_DEVICE_OP(dev_ops, query_ah);
2702 	SET_DEVICE_OP(dev_ops, query_device);
2703 	SET_DEVICE_OP(dev_ops, query_gid);
2704 	SET_DEVICE_OP(dev_ops, query_pkey);
2705 	SET_DEVICE_OP(dev_ops, query_port);
2706 	SET_DEVICE_OP(dev_ops, query_qp);
2707 	SET_DEVICE_OP(dev_ops, query_srq);
2708 	SET_DEVICE_OP(dev_ops, query_ucontext);
2709 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2710 	SET_DEVICE_OP(dev_ops, read_counters);
2711 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2712 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2713 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2714 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2715 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2716 	SET_DEVICE_OP(dev_ops, resize_cq);
2717 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2718 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2719 
2720 	SET_OBJ_SIZE(dev_ops, ib_ah);
2721 	SET_OBJ_SIZE(dev_ops, ib_counters);
2722 	SET_OBJ_SIZE(dev_ops, ib_cq);
2723 	SET_OBJ_SIZE(dev_ops, ib_mw);
2724 	SET_OBJ_SIZE(dev_ops, ib_pd);
2725 	SET_OBJ_SIZE(dev_ops, ib_qp);
2726 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2727 	SET_OBJ_SIZE(dev_ops, ib_srq);
2728 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2729 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2730 }
2731 EXPORT_SYMBOL(ib_set_device_ops);
2732 
2733 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2734 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2735 {
2736 	struct scatterlist *s;
2737 	int i;
2738 
2739 	for_each_sg(sg, s, nents, i) {
2740 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2741 		sg_dma_len(s) = s->length;
2742 	}
2743 	return nents;
2744 }
2745 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2746 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2747 
2748 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2749 	[RDMA_NL_LS_OP_RESOLVE] = {
2750 		.doit = ib_nl_handle_resolve_resp,
2751 		.flags = RDMA_NL_ADMIN_PERM,
2752 	},
2753 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2754 		.doit = ib_nl_handle_set_timeout,
2755 		.flags = RDMA_NL_ADMIN_PERM,
2756 	},
2757 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2758 		.doit = ib_nl_handle_ip_res_resp,
2759 		.flags = RDMA_NL_ADMIN_PERM,
2760 	},
2761 };
2762 
ib_core_init(void)2763 static int __init ib_core_init(void)
2764 {
2765 	int ret = -ENOMEM;
2766 
2767 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2768 	if (!ib_wq)
2769 		return -ENOMEM;
2770 
2771 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2772 				      WQ_UNBOUND_MAX_ACTIVE);
2773 	if (!ib_unreg_wq)
2774 		goto err;
2775 
2776 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2777 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2778 	if (!ib_comp_wq)
2779 		goto err_unbound;
2780 
2781 	ib_comp_unbound_wq =
2782 		alloc_workqueue("ib-comp-unb-wq",
2783 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2784 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2785 	if (!ib_comp_unbound_wq)
2786 		goto err_comp;
2787 
2788 	ret = class_register(&ib_class);
2789 	if (ret) {
2790 		pr_warn("Couldn't create InfiniBand device class\n");
2791 		goto err_comp_unbound;
2792 	}
2793 
2794 	rdma_nl_init();
2795 
2796 	ret = addr_init();
2797 	if (ret) {
2798 		pr_warn("Couldn't init IB address resolution\n");
2799 		goto err_ibnl;
2800 	}
2801 
2802 	ret = ib_mad_init();
2803 	if (ret) {
2804 		pr_warn("Couldn't init IB MAD\n");
2805 		goto err_addr;
2806 	}
2807 
2808 	ret = ib_sa_init();
2809 	if (ret) {
2810 		pr_warn("Couldn't init SA\n");
2811 		goto err_mad;
2812 	}
2813 
2814 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2815 	if (ret) {
2816 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2817 		goto err_sa;
2818 	}
2819 
2820 	ret = register_pernet_device(&rdma_dev_net_ops);
2821 	if (ret) {
2822 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2823 		goto err_compat;
2824 	}
2825 
2826 	nldev_init();
2827 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2828 	ret = roce_gid_mgmt_init();
2829 	if (ret) {
2830 		pr_warn("Couldn't init RoCE GID management\n");
2831 		goto err_parent;
2832 	}
2833 
2834 	return 0;
2835 
2836 err_parent:
2837 	rdma_nl_unregister(RDMA_NL_LS);
2838 	nldev_exit();
2839 	unregister_pernet_device(&rdma_dev_net_ops);
2840 err_compat:
2841 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2842 err_sa:
2843 	ib_sa_cleanup();
2844 err_mad:
2845 	ib_mad_cleanup();
2846 err_addr:
2847 	addr_cleanup();
2848 err_ibnl:
2849 	class_unregister(&ib_class);
2850 err_comp_unbound:
2851 	destroy_workqueue(ib_comp_unbound_wq);
2852 err_comp:
2853 	destroy_workqueue(ib_comp_wq);
2854 err_unbound:
2855 	destroy_workqueue(ib_unreg_wq);
2856 err:
2857 	destroy_workqueue(ib_wq);
2858 	return ret;
2859 }
2860 
ib_core_cleanup(void)2861 static void __exit ib_core_cleanup(void)
2862 {
2863 	roce_gid_mgmt_cleanup();
2864 	rdma_nl_unregister(RDMA_NL_LS);
2865 	nldev_exit();
2866 	unregister_pernet_device(&rdma_dev_net_ops);
2867 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2868 	ib_sa_cleanup();
2869 	ib_mad_cleanup();
2870 	addr_cleanup();
2871 	rdma_nl_exit();
2872 	class_unregister(&ib_class);
2873 	destroy_workqueue(ib_comp_unbound_wq);
2874 	destroy_workqueue(ib_comp_wq);
2875 	/* Make sure that any pending umem accounting work is done. */
2876 	destroy_workqueue(ib_wq);
2877 	destroy_workqueue(ib_unreg_wq);
2878 	WARN_ON(!xa_empty(&clients));
2879 	WARN_ON(!xa_empty(&devices));
2880 }
2881 
2882 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2883 
2884 /* ib core relies on netdev stack to first register net_ns_type_operations
2885  * ns kobject type before ib_core initialization.
2886  */
2887 fs_initcall(ib_core_init);
2888 module_exit(ib_core_cleanup);
2889