1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15
16 struct folio_batch;
17
18 /*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_NOLOCKDEP)
28
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38 /*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51 })
52
53 void page_writeback_init(void);
54
55 /*
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60 */
61 #define COMPOUND_MAPPED 0x800000
62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
63
64 /*
65 * Flags passed to __show_mem() and show_free_areas() to suppress output in
66 * various contexts.
67 */
68 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
69
70 /*
71 * How many individual pages have an elevated _mapcount. Excludes
72 * the folio's entire_mapcount.
73 */
folio_nr_pages_mapped(struct folio * folio)74 static inline int folio_nr_pages_mapped(struct folio *folio)
75 {
76 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
77 }
78
folio_raw_mapping(struct folio * folio)79 static inline void *folio_raw_mapping(struct folio *folio)
80 {
81 unsigned long mapping = (unsigned long)folio->mapping;
82
83 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
84 }
85
86 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
87 int nr_throttled);
acct_reclaim_writeback(struct folio * folio)88 static inline void acct_reclaim_writeback(struct folio *folio)
89 {
90 pg_data_t *pgdat = folio_pgdat(folio);
91 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
92
93 if (nr_throttled)
94 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
95 }
96
wake_throttle_isolated(pg_data_t * pgdat)97 static inline void wake_throttle_isolated(pg_data_t *pgdat)
98 {
99 wait_queue_head_t *wqh;
100
101 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
102 if (waitqueue_active(wqh))
103 wake_up(wqh);
104 }
105
106 vm_fault_t do_swap_page(struct vm_fault *vmf);
107 void folio_rotate_reclaimable(struct folio *folio);
108 bool __folio_end_writeback(struct folio *folio);
109 void deactivate_file_folio(struct folio *folio);
110 void folio_activate(struct folio *folio);
111
112 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
113 struct vm_area_struct *start_vma, unsigned long floor,
114 unsigned long ceiling, bool mm_wr_locked);
115 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
116
117 struct zap_details;
118 void unmap_page_range(struct mmu_gather *tlb,
119 struct vm_area_struct *vma,
120 unsigned long addr, unsigned long end,
121 struct zap_details *details);
122
123 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
124 unsigned int order);
125 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)126 static inline void force_page_cache_readahead(struct address_space *mapping,
127 struct file *file, pgoff_t index, unsigned long nr_to_read)
128 {
129 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
130 force_page_cache_ra(&ractl, nr_to_read);
131 }
132
133 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
134 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
135 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
136 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
137 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
138 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
139 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
140 loff_t end);
141 long invalidate_inode_page(struct page *page);
142 unsigned long mapping_try_invalidate(struct address_space *mapping,
143 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
144
145 /**
146 * folio_evictable - Test whether a folio is evictable.
147 * @folio: The folio to test.
148 *
149 * Test whether @folio is evictable -- i.e., should be placed on
150 * active/inactive lists vs unevictable list.
151 *
152 * Reasons folio might not be evictable:
153 * 1. folio's mapping marked unevictable
154 * 2. One of the pages in the folio is part of an mlocked VMA
155 */
folio_evictable(struct folio * folio)156 static inline bool folio_evictable(struct folio *folio)
157 {
158 bool ret;
159
160 /* Prevent address_space of inode and swap cache from being freed */
161 rcu_read_lock();
162 ret = !mapping_unevictable(folio_mapping(folio)) &&
163 !folio_test_mlocked(folio);
164 rcu_read_unlock();
165 return ret;
166 }
167
168 /*
169 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
170 * a count of one.
171 */
set_page_refcounted(struct page * page)172 static inline void set_page_refcounted(struct page *page)
173 {
174 VM_BUG_ON_PAGE(PageTail(page), page);
175 VM_BUG_ON_PAGE(page_ref_count(page), page);
176 set_page_count(page, 1);
177 }
178
179 /*
180 * Return true if a folio needs ->release_folio() calling upon it.
181 */
folio_needs_release(struct folio * folio)182 static inline bool folio_needs_release(struct folio *folio)
183 {
184 struct address_space *mapping = folio_mapping(folio);
185
186 return folio_has_private(folio) ||
187 (mapping && mapping_release_always(mapping));
188 }
189
190 extern unsigned long highest_memmap_pfn;
191
192 /*
193 * Maximum number of reclaim retries without progress before the OOM
194 * killer is consider the only way forward.
195 */
196 #define MAX_RECLAIM_RETRIES 16
197
198 /*
199 * in mm/vmscan.c:
200 */
201 bool isolate_lru_page(struct page *page);
202 bool folio_isolate_lru(struct folio *folio);
203 void putback_lru_page(struct page *page);
204 void folio_putback_lru(struct folio *folio);
205 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
206
207 /*
208 * in mm/rmap.c:
209 */
210 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
211
212 /*
213 * in mm/page_alloc.c
214 */
215 #define K(x) ((x) << (PAGE_SHIFT-10))
216
217 extern char * const zone_names[MAX_NR_ZONES];
218
219 /* perform sanity checks on struct pages being allocated or freed */
220 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
221
222 extern int min_free_kbytes;
223
224 void setup_per_zone_wmarks(void);
225 void calculate_min_free_kbytes(void);
226 int __meminit init_per_zone_wmark_min(void);
227 void page_alloc_sysctl_init(void);
228
229 /*
230 * Structure for holding the mostly immutable allocation parameters passed
231 * between functions involved in allocations, including the alloc_pages*
232 * family of functions.
233 *
234 * nodemask, migratetype and highest_zoneidx are initialized only once in
235 * __alloc_pages() and then never change.
236 *
237 * zonelist, preferred_zone and highest_zoneidx are set first in
238 * __alloc_pages() for the fast path, and might be later changed
239 * in __alloc_pages_slowpath(). All other functions pass the whole structure
240 * by a const pointer.
241 */
242 struct alloc_context {
243 struct zonelist *zonelist;
244 nodemask_t *nodemask;
245 struct zoneref *preferred_zoneref;
246 int migratetype;
247
248 /*
249 * highest_zoneidx represents highest usable zone index of
250 * the allocation request. Due to the nature of the zone,
251 * memory on lower zone than the highest_zoneidx will be
252 * protected by lowmem_reserve[highest_zoneidx].
253 *
254 * highest_zoneidx is also used by reclaim/compaction to limit
255 * the target zone since higher zone than this index cannot be
256 * usable for this allocation request.
257 */
258 enum zone_type highest_zoneidx;
259 bool spread_dirty_pages;
260 };
261
262 /*
263 * This function returns the order of a free page in the buddy system. In
264 * general, page_zone(page)->lock must be held by the caller to prevent the
265 * page from being allocated in parallel and returning garbage as the order.
266 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
267 * page cannot be allocated or merged in parallel. Alternatively, it must
268 * handle invalid values gracefully, and use buddy_order_unsafe() below.
269 */
buddy_order(struct page * page)270 static inline unsigned int buddy_order(struct page *page)
271 {
272 /* PageBuddy() must be checked by the caller */
273 return page_private(page);
274 }
275
276 /*
277 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
278 * PageBuddy() should be checked first by the caller to minimize race window,
279 * and invalid values must be handled gracefully.
280 *
281 * READ_ONCE is used so that if the caller assigns the result into a local
282 * variable and e.g. tests it for valid range before using, the compiler cannot
283 * decide to remove the variable and inline the page_private(page) multiple
284 * times, potentially observing different values in the tests and the actual
285 * use of the result.
286 */
287 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
288
289 /*
290 * This function checks whether a page is free && is the buddy
291 * we can coalesce a page and its buddy if
292 * (a) the buddy is not in a hole (check before calling!) &&
293 * (b) the buddy is in the buddy system &&
294 * (c) a page and its buddy have the same order &&
295 * (d) a page and its buddy are in the same zone.
296 *
297 * For recording whether a page is in the buddy system, we set PageBuddy.
298 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
299 *
300 * For recording page's order, we use page_private(page).
301 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)302 static inline bool page_is_buddy(struct page *page, struct page *buddy,
303 unsigned int order)
304 {
305 if (!page_is_guard(buddy) && !PageBuddy(buddy))
306 return false;
307
308 if (buddy_order(buddy) != order)
309 return false;
310
311 /*
312 * zone check is done late to avoid uselessly calculating
313 * zone/node ids for pages that could never merge.
314 */
315 if (page_zone_id(page) != page_zone_id(buddy))
316 return false;
317
318 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
319
320 return true;
321 }
322
323 /*
324 * Locate the struct page for both the matching buddy in our
325 * pair (buddy1) and the combined O(n+1) page they form (page).
326 *
327 * 1) Any buddy B1 will have an order O twin B2 which satisfies
328 * the following equation:
329 * B2 = B1 ^ (1 << O)
330 * For example, if the starting buddy (buddy2) is #8 its order
331 * 1 buddy is #10:
332 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
333 *
334 * 2) Any buddy B will have an order O+1 parent P which
335 * satisfies the following equation:
336 * P = B & ~(1 << O)
337 *
338 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
339 */
340 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)341 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
342 {
343 return page_pfn ^ (1 << order);
344 }
345
346 /*
347 * Find the buddy of @page and validate it.
348 * @page: The input page
349 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
350 * function is used in the performance-critical __free_one_page().
351 * @order: The order of the page
352 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
353 * page_to_pfn().
354 *
355 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
356 * not the same as @page. The validation is necessary before use it.
357 *
358 * Return: the found buddy page or NULL if not found.
359 */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)360 static inline struct page *find_buddy_page_pfn(struct page *page,
361 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
362 {
363 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
364 struct page *buddy;
365
366 buddy = page + (__buddy_pfn - pfn);
367 if (buddy_pfn)
368 *buddy_pfn = __buddy_pfn;
369
370 if (page_is_buddy(page, buddy, order))
371 return buddy;
372 return NULL;
373 }
374
375 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
376 unsigned long end_pfn, struct zone *zone);
377
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)378 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
379 unsigned long end_pfn, struct zone *zone)
380 {
381 if (zone->contiguous)
382 return pfn_to_page(start_pfn);
383
384 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
385 }
386
387 void set_zone_contiguous(struct zone *zone);
388
clear_zone_contiguous(struct zone * zone)389 static inline void clear_zone_contiguous(struct zone *zone)
390 {
391 zone->contiguous = false;
392 }
393
394 extern int __isolate_free_page(struct page *page, unsigned int order);
395 extern void __putback_isolated_page(struct page *page, unsigned int order,
396 int mt);
397 extern void memblock_free_pages(struct page *page, unsigned long pfn,
398 unsigned int order);
399 extern void __free_pages_core(struct page *page, unsigned int order);
400
401 /*
402 * This will have no effect, other than possibly generating a warning, if the
403 * caller passes in a non-large folio.
404 */
folio_set_order(struct folio * folio,unsigned int order)405 static inline void folio_set_order(struct folio *folio, unsigned int order)
406 {
407 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
408 return;
409
410 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
411 #ifdef CONFIG_64BIT
412 folio->_folio_nr_pages = 1U << order;
413 #endif
414 }
415
416 bool __folio_unqueue_deferred_split(struct folio *folio);
folio_unqueue_deferred_split(struct folio * folio)417 static inline bool folio_unqueue_deferred_split(struct folio *folio)
418 {
419 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
420 return false;
421
422 /*
423 * At this point, there is no one trying to add the folio to
424 * deferred_list. If folio is not in deferred_list, it's safe
425 * to check without acquiring the split_queue_lock.
426 */
427 if (data_race(list_empty(&folio->_deferred_list)))
428 return false;
429
430 return __folio_unqueue_deferred_split(folio);
431 }
432
page_rmappable_folio(struct page * page)433 static inline struct folio *page_rmappable_folio(struct page *page)
434 {
435 struct folio *folio = (struct folio *)page;
436
437 folio_prep_large_rmappable(folio);
438 return folio;
439 }
440
prep_compound_head(struct page * page,unsigned int order)441 static inline void prep_compound_head(struct page *page, unsigned int order)
442 {
443 struct folio *folio = (struct folio *)page;
444
445 folio_set_order(folio, order);
446 atomic_set(&folio->_entire_mapcount, -1);
447 atomic_set(&folio->_nr_pages_mapped, 0);
448 atomic_set(&folio->_pincount, 0);
449 if (order > 1)
450 INIT_LIST_HEAD(&folio->_deferred_list);
451 }
452
prep_compound_tail(struct page * head,int tail_idx)453 static inline void prep_compound_tail(struct page *head, int tail_idx)
454 {
455 struct page *p = head + tail_idx;
456
457 p->mapping = TAIL_MAPPING;
458 set_compound_head(p, head);
459 set_page_private(p, 0);
460 }
461
462 extern void prep_compound_page(struct page *page, unsigned int order);
463
464 extern void post_alloc_hook(struct page *page, unsigned int order,
465 gfp_t gfp_flags);
466 extern int user_min_free_kbytes;
467
468 extern void free_unref_page(struct page *page, unsigned int order);
469 extern void free_unref_page_list(struct list_head *list);
470
471 extern void zone_pcp_reset(struct zone *zone);
472 extern void zone_pcp_disable(struct zone *zone);
473 extern void zone_pcp_enable(struct zone *zone);
474 extern void zone_pcp_init(struct zone *zone);
475
476 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
477 phys_addr_t min_addr,
478 int nid, bool exact_nid);
479
480 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
481 unsigned long, enum meminit_context, struct vmem_altmap *, int);
482
483
484 int split_free_page(struct page *free_page,
485 unsigned int order, unsigned long split_pfn_offset);
486
487 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
488
489 /*
490 * in mm/compaction.c
491 */
492 /*
493 * compact_control is used to track pages being migrated and the free pages
494 * they are being migrated to during memory compaction. The free_pfn starts
495 * at the end of a zone and migrate_pfn begins at the start. Movable pages
496 * are moved to the end of a zone during a compaction run and the run
497 * completes when free_pfn <= migrate_pfn
498 */
499 struct compact_control {
500 struct list_head freepages; /* List of free pages to migrate to */
501 struct list_head migratepages; /* List of pages being migrated */
502 unsigned int nr_freepages; /* Number of isolated free pages */
503 unsigned int nr_migratepages; /* Number of pages to migrate */
504 unsigned long free_pfn; /* isolate_freepages search base */
505 /*
506 * Acts as an in/out parameter to page isolation for migration.
507 * isolate_migratepages uses it as a search base.
508 * isolate_migratepages_block will update the value to the next pfn
509 * after the last isolated one.
510 */
511 unsigned long migrate_pfn;
512 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
513 struct zone *zone;
514 unsigned long total_migrate_scanned;
515 unsigned long total_free_scanned;
516 unsigned short fast_search_fail;/* failures to use free list searches */
517 short search_order; /* order to start a fast search at */
518 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
519 int order; /* order a direct compactor needs */
520 int migratetype; /* migratetype of direct compactor */
521 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
522 const int highest_zoneidx; /* zone index of a direct compactor */
523 enum migrate_mode mode; /* Async or sync migration mode */
524 bool ignore_skip_hint; /* Scan blocks even if marked skip */
525 bool no_set_skip_hint; /* Don't mark blocks for skipping */
526 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
527 bool direct_compaction; /* False from kcompactd or /proc/... */
528 bool proactive_compaction; /* kcompactd proactive compaction */
529 bool whole_zone; /* Whole zone should/has been scanned */
530 bool contended; /* Signal lock contention */
531 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
532 * when there are potentially transient
533 * isolation or migration failures to
534 * ensure forward progress.
535 */
536 bool alloc_contig; /* alloc_contig_range allocation */
537 };
538
539 /*
540 * Used in direct compaction when a page should be taken from the freelists
541 * immediately when one is created during the free path.
542 */
543 struct capture_control {
544 struct compact_control *cc;
545 struct page *page;
546 };
547
548 unsigned long
549 isolate_freepages_range(struct compact_control *cc,
550 unsigned long start_pfn, unsigned long end_pfn);
551 int
552 isolate_migratepages_range(struct compact_control *cc,
553 unsigned long low_pfn, unsigned long end_pfn);
554
555 int __alloc_contig_migrate_range(struct compact_control *cc,
556 unsigned long start, unsigned long end);
557
558 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
559 void init_cma_reserved_pageblock(struct page *page);
560
561 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
562
563 int find_suitable_fallback(struct free_area *area, unsigned int order,
564 int migratetype, bool only_stealable, bool *can_steal);
565
free_area_empty(struct free_area * area,int migratetype)566 static inline bool free_area_empty(struct free_area *area, int migratetype)
567 {
568 return list_empty(&area->free_list[migratetype]);
569 }
570
571 /*
572 * These three helpers classifies VMAs for virtual memory accounting.
573 */
574
575 /*
576 * Executable code area - executable, not writable, not stack
577 */
is_exec_mapping(vm_flags_t flags)578 static inline bool is_exec_mapping(vm_flags_t flags)
579 {
580 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
581 }
582
583 /*
584 * Stack area (including shadow stacks)
585 *
586 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
587 * do_mmap() forbids all other combinations.
588 */
is_stack_mapping(vm_flags_t flags)589 static inline bool is_stack_mapping(vm_flags_t flags)
590 {
591 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
592 }
593
594 /*
595 * Data area - private, writable, not stack
596 */
is_data_mapping(vm_flags_t flags)597 static inline bool is_data_mapping(vm_flags_t flags)
598 {
599 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
600 }
601
602 /* mm/util.c */
603 struct anon_vma *folio_anon_vma(struct folio *folio);
604
605 #ifdef CONFIG_MMU
606 void unmap_mapping_folio(struct folio *folio);
607 extern long populate_vma_page_range(struct vm_area_struct *vma,
608 unsigned long start, unsigned long end, int *locked);
609 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
610 unsigned long end, bool write, int *locked);
611 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
612 unsigned long bytes);
613 /*
614 * mlock_vma_folio() and munlock_vma_folio():
615 * should be called with vma's mmap_lock held for read or write,
616 * under page table lock for the pte/pmd being added or removed.
617 *
618 * mlock is usually called at the end of page_add_*_rmap(), munlock at
619 * the end of page_remove_rmap(); but new anon folios are managed by
620 * folio_add_lru_vma() calling mlock_new_folio().
621 *
622 * @compound is used to include pmd mappings of THPs, but filter out
623 * pte mappings of THPs, which cannot be consistently counted: a pte
624 * mapping of the THP head cannot be distinguished by the page alone.
625 */
626 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)627 static inline void mlock_vma_folio(struct folio *folio,
628 struct vm_area_struct *vma, bool compound)
629 {
630 /*
631 * The VM_SPECIAL check here serves two purposes.
632 * 1) VM_IO check prevents migration from double-counting during mlock.
633 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
634 * is never left set on a VM_SPECIAL vma, there is an interval while
635 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
636 * still be set while VM_SPECIAL bits are added: so ignore it then.
637 */
638 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
639 (compound || !folio_test_large(folio)))
640 mlock_folio(folio);
641 }
642
643 void munlock_folio(struct folio *folio);
munlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)644 static inline void munlock_vma_folio(struct folio *folio,
645 struct vm_area_struct *vma, bool compound)
646 {
647 if (unlikely(vma->vm_flags & VM_LOCKED) &&
648 (compound || !folio_test_large(folio)))
649 munlock_folio(folio);
650 }
651
652 void mlock_new_folio(struct folio *folio);
653 bool need_mlock_drain(int cpu);
654 void mlock_drain_local(void);
655 void mlock_drain_remote(int cpu);
656
657 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
658
659 /*
660 * Return the start of user virtual address at the specific offset within
661 * a vma.
662 */
663 static inline unsigned long
vma_pgoff_address(pgoff_t pgoff,unsigned long nr_pages,struct vm_area_struct * vma)664 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
665 struct vm_area_struct *vma)
666 {
667 unsigned long address;
668
669 if (pgoff >= vma->vm_pgoff) {
670 address = vma->vm_start +
671 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
672 /* Check for address beyond vma (or wrapped through 0?) */
673 if (address < vma->vm_start || address >= vma->vm_end)
674 address = -EFAULT;
675 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
676 /* Test above avoids possibility of wrap to 0 on 32-bit */
677 address = vma->vm_start;
678 } else {
679 address = -EFAULT;
680 }
681 return address;
682 }
683
684 /*
685 * Return the start of user virtual address of a page within a vma.
686 * Returns -EFAULT if all of the page is outside the range of vma.
687 * If page is a compound head, the entire compound page is considered.
688 */
689 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)690 vma_address(struct page *page, struct vm_area_struct *vma)
691 {
692 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
693 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
694 }
695
696 /*
697 * Then at what user virtual address will none of the range be found in vma?
698 * Assumes that vma_address() already returned a good starting address.
699 */
vma_address_end(struct page_vma_mapped_walk * pvmw)700 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
701 {
702 struct vm_area_struct *vma = pvmw->vma;
703 pgoff_t pgoff;
704 unsigned long address;
705
706 /* Common case, plus ->pgoff is invalid for KSM */
707 if (pvmw->nr_pages == 1)
708 return pvmw->address + PAGE_SIZE;
709
710 pgoff = pvmw->pgoff + pvmw->nr_pages;
711 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
712 /* Check for address beyond vma (or wrapped through 0?) */
713 if (address < vma->vm_start || address > vma->vm_end)
714 address = vma->vm_end;
715 return address;
716 }
717
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)718 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
719 struct file *fpin)
720 {
721 int flags = vmf->flags;
722
723 if (fpin)
724 return fpin;
725
726 /*
727 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
728 * anything, so we only pin the file and drop the mmap_lock if only
729 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
730 */
731 if (fault_flag_allow_retry_first(flags) &&
732 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
733 fpin = get_file(vmf->vma->vm_file);
734 release_fault_lock(vmf);
735 }
736 return fpin;
737 }
738 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)739 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_new_folio(struct folio * folio)740 static inline void mlock_new_folio(struct folio *folio) { }
need_mlock_drain(int cpu)741 static inline bool need_mlock_drain(int cpu) { return false; }
mlock_drain_local(void)742 static inline void mlock_drain_local(void) { }
mlock_drain_remote(int cpu)743 static inline void mlock_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)744 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
745 {
746 }
747 #endif /* !CONFIG_MMU */
748
749 /* Memory initialisation debug and verification */
750 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
751 DECLARE_STATIC_KEY_TRUE(deferred_pages);
752
753 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
754 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
755
756 enum mminit_level {
757 MMINIT_WARNING,
758 MMINIT_VERIFY,
759 MMINIT_TRACE
760 };
761
762 #ifdef CONFIG_DEBUG_MEMORY_INIT
763
764 extern int mminit_loglevel;
765
766 #define mminit_dprintk(level, prefix, fmt, arg...) \
767 do { \
768 if (level < mminit_loglevel) { \
769 if (level <= MMINIT_WARNING) \
770 pr_warn("mminit::" prefix " " fmt, ##arg); \
771 else \
772 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
773 } \
774 } while (0)
775
776 extern void mminit_verify_pageflags_layout(void);
777 extern void mminit_verify_zonelist(void);
778 #else
779
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)780 static inline void mminit_dprintk(enum mminit_level level,
781 const char *prefix, const char *fmt, ...)
782 {
783 }
784
mminit_verify_pageflags_layout(void)785 static inline void mminit_verify_pageflags_layout(void)
786 {
787 }
788
mminit_verify_zonelist(void)789 static inline void mminit_verify_zonelist(void)
790 {
791 }
792 #endif /* CONFIG_DEBUG_MEMORY_INIT */
793
794 #define NODE_RECLAIM_NOSCAN -2
795 #define NODE_RECLAIM_FULL -1
796 #define NODE_RECLAIM_SOME 0
797 #define NODE_RECLAIM_SUCCESS 1
798
799 #ifdef CONFIG_NUMA
800 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
801 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
802 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)803 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
804 unsigned int order)
805 {
806 return NODE_RECLAIM_NOSCAN;
807 }
find_next_best_node(int node,nodemask_t * used_node_mask)808 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
809 {
810 return NUMA_NO_NODE;
811 }
812 #endif
813
814 /*
815 * mm/memory-failure.c
816 */
817 extern int hwpoison_filter(struct page *p);
818
819 extern u32 hwpoison_filter_dev_major;
820 extern u32 hwpoison_filter_dev_minor;
821 extern u64 hwpoison_filter_flags_mask;
822 extern u64 hwpoison_filter_flags_value;
823 extern u64 hwpoison_filter_memcg;
824 extern u32 hwpoison_filter_enable;
825
826 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
827 unsigned long, unsigned long,
828 unsigned long, unsigned long);
829
830 extern void set_pageblock_order(void);
831 unsigned long reclaim_pages(struct list_head *folio_list);
832 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
833 struct list_head *folio_list);
834 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
835 #define ALLOC_WMARK_MIN WMARK_MIN
836 #define ALLOC_WMARK_LOW WMARK_LOW
837 #define ALLOC_WMARK_HIGH WMARK_HIGH
838 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
839
840 /* Mask to get the watermark bits */
841 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
842
843 /*
844 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
845 * cannot assume a reduced access to memory reserves is sufficient for
846 * !MMU
847 */
848 #ifdef CONFIG_MMU
849 #define ALLOC_OOM 0x08
850 #else
851 #define ALLOC_OOM ALLOC_NO_WATERMARKS
852 #endif
853
854 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
855 * to 25% of the min watermark or
856 * 62.5% if __GFP_HIGH is set.
857 */
858 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
859 * of the min watermark.
860 */
861 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
862 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
863 #ifdef CONFIG_ZONE_DMA32
864 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
865 #else
866 #define ALLOC_NOFRAGMENT 0x0
867 #endif
868 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
869 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
870
871 /* Flags that allow allocations below the min watermark. */
872 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
873
874 enum ttu_flags;
875 struct tlbflush_unmap_batch;
876
877
878 /*
879 * only for MM internal work items which do not depend on
880 * any allocations or locks which might depend on allocations
881 */
882 extern struct workqueue_struct *mm_percpu_wq;
883
884 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
885 void try_to_unmap_flush(void);
886 void try_to_unmap_flush_dirty(void);
887 void flush_tlb_batched_pending(struct mm_struct *mm);
888 #else
try_to_unmap_flush(void)889 static inline void try_to_unmap_flush(void)
890 {
891 }
try_to_unmap_flush_dirty(void)892 static inline void try_to_unmap_flush_dirty(void)
893 {
894 }
flush_tlb_batched_pending(struct mm_struct * mm)895 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
896 {
897 }
898 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
899
900 extern const struct trace_print_flags pageflag_names[];
901 extern const struct trace_print_flags pagetype_names[];
902 extern const struct trace_print_flags vmaflag_names[];
903 extern const struct trace_print_flags gfpflag_names[];
904
is_migrate_highatomic(enum migratetype migratetype)905 static inline bool is_migrate_highatomic(enum migratetype migratetype)
906 {
907 return migratetype == MIGRATE_HIGHATOMIC;
908 }
909
is_migrate_highatomic_page(struct page * page)910 static inline bool is_migrate_highatomic_page(struct page *page)
911 {
912 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
913 }
914
915 void setup_zone_pageset(struct zone *zone);
916
917 struct migration_target_control {
918 int nid; /* preferred node id */
919 nodemask_t *nmask;
920 gfp_t gfp_mask;
921 };
922
923 /*
924 * mm/filemap.c
925 */
926 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
927 struct folio *folio, loff_t fpos, size_t size);
928
929 /*
930 * mm/vmalloc.c
931 */
932 #ifdef CONFIG_MMU
933 void __init vmalloc_init(void);
934 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
935 pgprot_t prot, struct page **pages, unsigned int page_shift);
936 #else
vmalloc_init(void)937 static inline void vmalloc_init(void)
938 {
939 }
940
941 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)942 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
943 pgprot_t prot, struct page **pages, unsigned int page_shift)
944 {
945 return -EINVAL;
946 }
947 #endif
948
949 int __must_check __vmap_pages_range_noflush(unsigned long addr,
950 unsigned long end, pgprot_t prot,
951 struct page **pages, unsigned int page_shift);
952
953 void vunmap_range_noflush(unsigned long start, unsigned long end);
954
955 void __vunmap_range_noflush(unsigned long start, unsigned long end);
956
957 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
958 unsigned long addr, int page_nid, int *flags);
959
960 void free_zone_device_page(struct page *page);
961 int migrate_device_coherent_page(struct page *page);
962
963 /*
964 * mm/gup.c
965 */
966 int __must_check try_grab_folio(struct folio *folio, int refs,
967 unsigned int flags);
968
969 /*
970 * mm/huge_memory.c
971 */
972 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
973 unsigned long addr, pmd_t *pmd,
974 unsigned int flags);
975
976 enum {
977 /* mark page accessed */
978 FOLL_TOUCH = 1 << 16,
979 /* a retry, previous pass started an IO */
980 FOLL_TRIED = 1 << 17,
981 /* we are working on non-current tsk/mm */
982 FOLL_REMOTE = 1 << 18,
983 /* pages must be released via unpin_user_page */
984 FOLL_PIN = 1 << 19,
985 /* gup_fast: prevent fall-back to slow gup */
986 FOLL_FAST_ONLY = 1 << 20,
987 /* allow unlocking the mmap lock */
988 FOLL_UNLOCKABLE = 1 << 21,
989 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
990 FOLL_MADV_POPULATE = 1 << 22,
991 };
992
993 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
994 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
995 FOLL_MADV_POPULATE)
996
997 /*
998 * Indicates for which pages that are write-protected in the page table,
999 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1000 * GUP pin will remain consistent with the pages mapped into the page tables
1001 * of the MM.
1002 *
1003 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1004 * PageAnonExclusive() has to protect against concurrent GUP:
1005 * * Ordinary GUP: Using the PT lock
1006 * * GUP-fast and fork(): mm->write_protect_seq
1007 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1008 * page_try_share_anon_rmap()
1009 *
1010 * Must be called with the (sub)page that's actually referenced via the
1011 * page table entry, which might not necessarily be the head page for a
1012 * PTE-mapped THP.
1013 *
1014 * If the vma is NULL, we're coming from the GUP-fast path and might have
1015 * to fallback to the slow path just to lookup the vma.
1016 */
gup_must_unshare(struct vm_area_struct * vma,unsigned int flags,struct page * page)1017 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1018 unsigned int flags, struct page *page)
1019 {
1020 /*
1021 * FOLL_WRITE is implicitly handled correctly as the page table entry
1022 * has to be writable -- and if it references (part of) an anonymous
1023 * folio, that part is required to be marked exclusive.
1024 */
1025 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1026 return false;
1027 /*
1028 * Note: PageAnon(page) is stable until the page is actually getting
1029 * freed.
1030 */
1031 if (!PageAnon(page)) {
1032 /*
1033 * We only care about R/O long-term pining: R/O short-term
1034 * pinning does not have the semantics to observe successive
1035 * changes through the process page tables.
1036 */
1037 if (!(flags & FOLL_LONGTERM))
1038 return false;
1039
1040 /* We really need the vma ... */
1041 if (!vma)
1042 return true;
1043
1044 /*
1045 * ... because we only care about writable private ("COW")
1046 * mappings where we have to break COW early.
1047 */
1048 return is_cow_mapping(vma->vm_flags);
1049 }
1050
1051 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
1052 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1053 smp_rmb();
1054
1055 /*
1056 * During GUP-fast we might not get called on the head page for a
1057 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1058 * not work with the abstracted hugetlb PTEs that always point at the
1059 * head page. For hugetlb, PageAnonExclusive only applies on the head
1060 * page (as it cannot be partially COW-shared), so lookup the head page.
1061 */
1062 if (unlikely(!PageHead(page) && PageHuge(page)))
1063 page = compound_head(page);
1064
1065 /*
1066 * Note that PageKsm() pages cannot be exclusive, and consequently,
1067 * cannot get pinned.
1068 */
1069 return !PageAnonExclusive(page);
1070 }
1071
1072 extern bool mirrored_kernelcore;
1073 extern bool memblock_has_mirror(void);
1074
vma_soft_dirty_enabled(struct vm_area_struct * vma)1075 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1076 {
1077 /*
1078 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1079 * enablements, because when without soft-dirty being compiled in,
1080 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1081 * will be constantly true.
1082 */
1083 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1084 return false;
1085
1086 /*
1087 * Soft-dirty is kind of special: its tracking is enabled when the
1088 * vma flags not set.
1089 */
1090 return !(vma->vm_flags & VM_SOFTDIRTY);
1091 }
1092
vma_iter_config(struct vma_iterator * vmi,unsigned long index,unsigned long last)1093 static inline void vma_iter_config(struct vma_iterator *vmi,
1094 unsigned long index, unsigned long last)
1095 {
1096 MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1097 (vmi->mas.index > index || vmi->mas.last < index));
1098 __mas_set_range(&vmi->mas, index, last - 1);
1099 }
1100
1101 /*
1102 * VMA Iterator functions shared between nommu and mmap
1103 */
vma_iter_prealloc(struct vma_iterator * vmi,struct vm_area_struct * vma)1104 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1105 struct vm_area_struct *vma)
1106 {
1107 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1108 }
1109
vma_iter_clear(struct vma_iterator * vmi)1110 static inline void vma_iter_clear(struct vma_iterator *vmi)
1111 {
1112 mas_store_prealloc(&vmi->mas, NULL);
1113 }
1114
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1115 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1116 unsigned long start, unsigned long end, gfp_t gfp)
1117 {
1118 __mas_set_range(&vmi->mas, start, end - 1);
1119 mas_store_gfp(&vmi->mas, NULL, gfp);
1120 if (unlikely(mas_is_err(&vmi->mas)))
1121 return -ENOMEM;
1122
1123 return 0;
1124 }
1125
vma_iter_load(struct vma_iterator * vmi)1126 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1127 {
1128 return mas_walk(&vmi->mas);
1129 }
1130
1131 /* Store a VMA with preallocated memory */
vma_iter_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1132 static inline void vma_iter_store(struct vma_iterator *vmi,
1133 struct vm_area_struct *vma)
1134 {
1135
1136 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1137 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1138 vmi->mas.index > vma->vm_start)) {
1139 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1140 vmi->mas.index, vma->vm_start, vma->vm_start,
1141 vma->vm_end, vmi->mas.index, vmi->mas.last);
1142 }
1143 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1144 vmi->mas.last < vma->vm_start)) {
1145 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1146 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1147 vmi->mas.index, vmi->mas.last);
1148 }
1149 #endif
1150
1151 if (vmi->mas.node != MAS_START &&
1152 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1153 vma_iter_invalidate(vmi);
1154
1155 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1156 mas_store_prealloc(&vmi->mas, vma);
1157 }
1158
vma_iter_store_gfp(struct vma_iterator * vmi,struct vm_area_struct * vma,gfp_t gfp)1159 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1160 struct vm_area_struct *vma, gfp_t gfp)
1161 {
1162 if (vmi->mas.node != MAS_START &&
1163 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1164 vma_iter_invalidate(vmi);
1165
1166 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1167 mas_store_gfp(&vmi->mas, vma, gfp);
1168 if (unlikely(mas_is_err(&vmi->mas)))
1169 return -ENOMEM;
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * VMA lock generalization
1176 */
1177 struct vma_prepare {
1178 struct vm_area_struct *vma;
1179 struct vm_area_struct *adj_next;
1180 struct file *file;
1181 struct address_space *mapping;
1182 struct anon_vma *anon_vma;
1183 struct vm_area_struct *insert;
1184 struct vm_area_struct *remove;
1185 struct vm_area_struct *remove2;
1186 };
1187 #endif /* __MM_INTERNAL_H */
1188