1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 typedef struct {
175 struct perf_cpu_context *cpuctx;
176 struct perf_event_context *ctx;
177 } class_perf_ctx_lock_t;
178
class_perf_ctx_lock_destructor(class_perf_ctx_lock_t * _T)179 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
180 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
181
182 static inline class_perf_ctx_lock_t
class_perf_ctx_lock_constructor(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)183 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
184 struct perf_event_context *ctx)
185 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
186
187 #define TASK_TOMBSTONE ((void *)-1L)
188
is_kernel_event(struct perf_event * event)189 static bool is_kernel_event(struct perf_event *event)
190 {
191 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
192 }
193
194 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
195
perf_cpu_task_ctx(void)196 struct perf_event_context *perf_cpu_task_ctx(void)
197 {
198 lockdep_assert_irqs_disabled();
199 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
200 }
201
202 /*
203 * On task ctx scheduling...
204 *
205 * When !ctx->nr_events a task context will not be scheduled. This means
206 * we can disable the scheduler hooks (for performance) without leaving
207 * pending task ctx state.
208 *
209 * This however results in two special cases:
210 *
211 * - removing the last event from a task ctx; this is relatively straight
212 * forward and is done in __perf_remove_from_context.
213 *
214 * - adding the first event to a task ctx; this is tricky because we cannot
215 * rely on ctx->is_active and therefore cannot use event_function_call().
216 * See perf_install_in_context().
217 *
218 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
219 */
220
221 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
222 struct perf_event_context *, void *);
223
224 struct event_function_struct {
225 struct perf_event *event;
226 event_f func;
227 void *data;
228 };
229
event_function(void * info)230 static int event_function(void *info)
231 {
232 struct event_function_struct *efs = info;
233 struct perf_event *event = efs->event;
234 struct perf_event_context *ctx = event->ctx;
235 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
236 struct perf_event_context *task_ctx = cpuctx->task_ctx;
237 int ret = 0;
238
239 lockdep_assert_irqs_disabled();
240
241 perf_ctx_lock(cpuctx, task_ctx);
242 /*
243 * Since we do the IPI call without holding ctx->lock things can have
244 * changed, double check we hit the task we set out to hit.
245 */
246 if (ctx->task) {
247 if (ctx->task != current) {
248 ret = -ESRCH;
249 goto unlock;
250 }
251
252 /*
253 * We only use event_function_call() on established contexts,
254 * and event_function() is only ever called when active (or
255 * rather, we'll have bailed in task_function_call() or the
256 * above ctx->task != current test), therefore we must have
257 * ctx->is_active here.
258 */
259 WARN_ON_ONCE(!ctx->is_active);
260 /*
261 * And since we have ctx->is_active, cpuctx->task_ctx must
262 * match.
263 */
264 WARN_ON_ONCE(task_ctx != ctx);
265 } else {
266 WARN_ON_ONCE(&cpuctx->ctx != ctx);
267 }
268
269 efs->func(event, cpuctx, ctx, efs->data);
270 unlock:
271 perf_ctx_unlock(cpuctx, task_ctx);
272
273 return ret;
274 }
275
event_function_call(struct perf_event * event,event_f func,void * data)276 static void event_function_call(struct perf_event *event, event_f func, void *data)
277 {
278 struct perf_event_context *ctx = event->ctx;
279 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
280 struct perf_cpu_context *cpuctx;
281 struct event_function_struct efs = {
282 .event = event,
283 .func = func,
284 .data = data,
285 };
286
287 if (!event->parent) {
288 /*
289 * If this is a !child event, we must hold ctx::mutex to
290 * stabilize the event->ctx relation. See
291 * perf_event_ctx_lock().
292 */
293 lockdep_assert_held(&ctx->mutex);
294 }
295
296 if (!task) {
297 cpu_function_call(event->cpu, event_function, &efs);
298 return;
299 }
300
301 if (task == TASK_TOMBSTONE)
302 return;
303
304 again:
305 if (!task_function_call(task, event_function, &efs))
306 return;
307
308 local_irq_disable();
309 cpuctx = this_cpu_ptr(&perf_cpu_context);
310 perf_ctx_lock(cpuctx, ctx);
311 /*
312 * Reload the task pointer, it might have been changed by
313 * a concurrent perf_event_context_sched_out().
314 */
315 task = ctx->task;
316 if (task == TASK_TOMBSTONE)
317 goto unlock;
318 if (ctx->is_active) {
319 perf_ctx_unlock(cpuctx, ctx);
320 local_irq_enable();
321 goto again;
322 }
323 func(event, NULL, ctx, data);
324 unlock:
325 perf_ctx_unlock(cpuctx, ctx);
326 local_irq_enable();
327 }
328
329 /*
330 * Similar to event_function_call() + event_function(), but hard assumes IRQs
331 * are already disabled and we're on the right CPU.
332 */
event_function_local(struct perf_event * event,event_f func,void * data)333 static void event_function_local(struct perf_event *event, event_f func, void *data)
334 {
335 struct perf_event_context *ctx = event->ctx;
336 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
337 struct task_struct *task = READ_ONCE(ctx->task);
338 struct perf_event_context *task_ctx = NULL;
339
340 lockdep_assert_irqs_disabled();
341
342 if (task) {
343 if (task == TASK_TOMBSTONE)
344 return;
345
346 task_ctx = ctx;
347 }
348
349 perf_ctx_lock(cpuctx, task_ctx);
350
351 task = ctx->task;
352 if (task == TASK_TOMBSTONE)
353 goto unlock;
354
355 if (task) {
356 /*
357 * We must be either inactive or active and the right task,
358 * otherwise we're screwed, since we cannot IPI to somewhere
359 * else.
360 */
361 if (ctx->is_active) {
362 if (WARN_ON_ONCE(task != current))
363 goto unlock;
364
365 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
366 goto unlock;
367 }
368 } else {
369 WARN_ON_ONCE(&cpuctx->ctx != ctx);
370 }
371
372 func(event, cpuctx, ctx, data);
373 unlock:
374 perf_ctx_unlock(cpuctx, task_ctx);
375 }
376
377 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
378 PERF_FLAG_FD_OUTPUT |\
379 PERF_FLAG_PID_CGROUP |\
380 PERF_FLAG_FD_CLOEXEC)
381
382 /*
383 * branch priv levels that need permission checks
384 */
385 #define PERF_SAMPLE_BRANCH_PERM_PLM \
386 (PERF_SAMPLE_BRANCH_KERNEL |\
387 PERF_SAMPLE_BRANCH_HV)
388
389 enum event_type_t {
390 EVENT_FLEXIBLE = 0x1,
391 EVENT_PINNED = 0x2,
392 EVENT_TIME = 0x4,
393 /* see ctx_resched() for details */
394 EVENT_CPU = 0x8,
395 EVENT_CGROUP = 0x10,
396 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
397 };
398
399 /*
400 * perf_sched_events : >0 events exist
401 */
402
403 static void perf_sched_delayed(struct work_struct *work);
404 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
405 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
406 static DEFINE_MUTEX(perf_sched_mutex);
407 static atomic_t perf_sched_count;
408
409 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
410
411 static atomic_t nr_mmap_events __read_mostly;
412 static atomic_t nr_comm_events __read_mostly;
413 static atomic_t nr_namespaces_events __read_mostly;
414 static atomic_t nr_task_events __read_mostly;
415 static atomic_t nr_freq_events __read_mostly;
416 static atomic_t nr_switch_events __read_mostly;
417 static atomic_t nr_ksymbol_events __read_mostly;
418 static atomic_t nr_bpf_events __read_mostly;
419 static atomic_t nr_cgroup_events __read_mostly;
420 static atomic_t nr_text_poke_events __read_mostly;
421 static atomic_t nr_build_id_events __read_mostly;
422
423 static LIST_HEAD(pmus);
424 static DEFINE_MUTEX(pmus_lock);
425 static struct srcu_struct pmus_srcu;
426 static cpumask_var_t perf_online_mask;
427 static struct kmem_cache *perf_event_cache;
428
429 /*
430 * perf event paranoia level:
431 * -1 - not paranoid at all
432 * 0 - disallow raw tracepoint access for unpriv
433 * 1 - disallow cpu events for unpriv
434 * 2 - disallow kernel profiling for unpriv
435 */
436 int sysctl_perf_event_paranoid __read_mostly = 2;
437
438 /* Minimum for 512 kiB + 1 user control page */
439 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
440
441 /*
442 * max perf event sample rate
443 */
444 #define DEFAULT_MAX_SAMPLE_RATE 100000
445 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
446 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
447
448 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
449
450 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
451 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
452
453 static int perf_sample_allowed_ns __read_mostly =
454 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
455
update_perf_cpu_limits(void)456 static void update_perf_cpu_limits(void)
457 {
458 u64 tmp = perf_sample_period_ns;
459
460 tmp *= sysctl_perf_cpu_time_max_percent;
461 tmp = div_u64(tmp, 100);
462 if (!tmp)
463 tmp = 1;
464
465 WRITE_ONCE(perf_sample_allowed_ns, tmp);
466 }
467
468 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
469
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)470 int perf_proc_update_handler(struct ctl_table *table, int write,
471 void *buffer, size_t *lenp, loff_t *ppos)
472 {
473 int ret;
474 int perf_cpu = sysctl_perf_cpu_time_max_percent;
475 /*
476 * If throttling is disabled don't allow the write:
477 */
478 if (write && (perf_cpu == 100 || perf_cpu == 0))
479 return -EINVAL;
480
481 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
482 if (ret || !write)
483 return ret;
484
485 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
486 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
487 update_perf_cpu_limits();
488
489 return 0;
490 }
491
492 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
493
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)494 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
495 void *buffer, size_t *lenp, loff_t *ppos)
496 {
497 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
498
499 if (ret || !write)
500 return ret;
501
502 if (sysctl_perf_cpu_time_max_percent == 100 ||
503 sysctl_perf_cpu_time_max_percent == 0) {
504 printk(KERN_WARNING
505 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
506 WRITE_ONCE(perf_sample_allowed_ns, 0);
507 } else {
508 update_perf_cpu_limits();
509 }
510
511 return 0;
512 }
513
514 /*
515 * perf samples are done in some very critical code paths (NMIs).
516 * If they take too much CPU time, the system can lock up and not
517 * get any real work done. This will drop the sample rate when
518 * we detect that events are taking too long.
519 */
520 #define NR_ACCUMULATED_SAMPLES 128
521 static DEFINE_PER_CPU(u64, running_sample_length);
522
523 static u64 __report_avg;
524 static u64 __report_allowed;
525
perf_duration_warn(struct irq_work * w)526 static void perf_duration_warn(struct irq_work *w)
527 {
528 printk_ratelimited(KERN_INFO
529 "perf: interrupt took too long (%lld > %lld), lowering "
530 "kernel.perf_event_max_sample_rate to %d\n",
531 __report_avg, __report_allowed,
532 sysctl_perf_event_sample_rate);
533 }
534
535 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
536
perf_sample_event_took(u64 sample_len_ns)537 void perf_sample_event_took(u64 sample_len_ns)
538 {
539 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
540 u64 running_len;
541 u64 avg_len;
542 u32 max;
543
544 if (max_len == 0)
545 return;
546
547 /* Decay the counter by 1 average sample. */
548 running_len = __this_cpu_read(running_sample_length);
549 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
550 running_len += sample_len_ns;
551 __this_cpu_write(running_sample_length, running_len);
552
553 /*
554 * Note: this will be biased artifically low until we have
555 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
556 * from having to maintain a count.
557 */
558 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
559 if (avg_len <= max_len)
560 return;
561
562 __report_avg = avg_len;
563 __report_allowed = max_len;
564
565 /*
566 * Compute a throttle threshold 25% below the current duration.
567 */
568 avg_len += avg_len / 4;
569 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
570 if (avg_len < max)
571 max /= (u32)avg_len;
572 else
573 max = 1;
574
575 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
576 WRITE_ONCE(max_samples_per_tick, max);
577
578 sysctl_perf_event_sample_rate = max * HZ;
579 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
580
581 if (!irq_work_queue(&perf_duration_work)) {
582 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
583 "kernel.perf_event_max_sample_rate to %d\n",
584 __report_avg, __report_allowed,
585 sysctl_perf_event_sample_rate);
586 }
587 }
588
589 static atomic64_t perf_event_id;
590
591 static void update_context_time(struct perf_event_context *ctx);
592 static u64 perf_event_time(struct perf_event *event);
593
perf_event_print_debug(void)594 void __weak perf_event_print_debug(void) { }
595
perf_clock(void)596 static inline u64 perf_clock(void)
597 {
598 return local_clock();
599 }
600
perf_event_clock(struct perf_event * event)601 static inline u64 perf_event_clock(struct perf_event *event)
602 {
603 return event->clock();
604 }
605
606 /*
607 * State based event timekeeping...
608 *
609 * The basic idea is to use event->state to determine which (if any) time
610 * fields to increment with the current delta. This means we only need to
611 * update timestamps when we change state or when they are explicitly requested
612 * (read).
613 *
614 * Event groups make things a little more complicated, but not terribly so. The
615 * rules for a group are that if the group leader is OFF the entire group is
616 * OFF, irrespecive of what the group member states are. This results in
617 * __perf_effective_state().
618 *
619 * A futher ramification is that when a group leader flips between OFF and
620 * !OFF, we need to update all group member times.
621 *
622 *
623 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
624 * need to make sure the relevant context time is updated before we try and
625 * update our timestamps.
626 */
627
628 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)629 __perf_effective_state(struct perf_event *event)
630 {
631 struct perf_event *leader = event->group_leader;
632
633 if (leader->state <= PERF_EVENT_STATE_OFF)
634 return leader->state;
635
636 return event->state;
637 }
638
639 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)640 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
641 {
642 enum perf_event_state state = __perf_effective_state(event);
643 u64 delta = now - event->tstamp;
644
645 *enabled = event->total_time_enabled;
646 if (state >= PERF_EVENT_STATE_INACTIVE)
647 *enabled += delta;
648
649 *running = event->total_time_running;
650 if (state >= PERF_EVENT_STATE_ACTIVE)
651 *running += delta;
652 }
653
perf_event_update_time(struct perf_event * event)654 static void perf_event_update_time(struct perf_event *event)
655 {
656 u64 now = perf_event_time(event);
657
658 __perf_update_times(event, now, &event->total_time_enabled,
659 &event->total_time_running);
660 event->tstamp = now;
661 }
662
perf_event_update_sibling_time(struct perf_event * leader)663 static void perf_event_update_sibling_time(struct perf_event *leader)
664 {
665 struct perf_event *sibling;
666
667 for_each_sibling_event(sibling, leader)
668 perf_event_update_time(sibling);
669 }
670
671 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)672 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
673 {
674 if (event->state == state)
675 return;
676
677 perf_event_update_time(event);
678 /*
679 * If a group leader gets enabled/disabled all its siblings
680 * are affected too.
681 */
682 if ((event->state < 0) ^ (state < 0))
683 perf_event_update_sibling_time(event);
684
685 WRITE_ONCE(event->state, state);
686 }
687
688 /*
689 * UP store-release, load-acquire
690 */
691
692 #define __store_release(ptr, val) \
693 do { \
694 barrier(); \
695 WRITE_ONCE(*(ptr), (val)); \
696 } while (0)
697
698 #define __load_acquire(ptr) \
699 ({ \
700 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
701 barrier(); \
702 ___p; \
703 })
704
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)705 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
706 {
707 struct perf_event_pmu_context *pmu_ctx;
708
709 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
710 if (cgroup && !pmu_ctx->nr_cgroups)
711 continue;
712 perf_pmu_disable(pmu_ctx->pmu);
713 }
714 }
715
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)716 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
717 {
718 struct perf_event_pmu_context *pmu_ctx;
719
720 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
721 if (cgroup && !pmu_ctx->nr_cgroups)
722 continue;
723 perf_pmu_enable(pmu_ctx->pmu);
724 }
725 }
726
727 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
728 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
729
730 #ifdef CONFIG_CGROUP_PERF
731
732 static inline bool
perf_cgroup_match(struct perf_event * event)733 perf_cgroup_match(struct perf_event *event)
734 {
735 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
736
737 /* @event doesn't care about cgroup */
738 if (!event->cgrp)
739 return true;
740
741 /* wants specific cgroup scope but @cpuctx isn't associated with any */
742 if (!cpuctx->cgrp)
743 return false;
744
745 /*
746 * Cgroup scoping is recursive. An event enabled for a cgroup is
747 * also enabled for all its descendant cgroups. If @cpuctx's
748 * cgroup is a descendant of @event's (the test covers identity
749 * case), it's a match.
750 */
751 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
752 event->cgrp->css.cgroup);
753 }
754
perf_detach_cgroup(struct perf_event * event)755 static inline void perf_detach_cgroup(struct perf_event *event)
756 {
757 css_put(&event->cgrp->css);
758 event->cgrp = NULL;
759 }
760
is_cgroup_event(struct perf_event * event)761 static inline int is_cgroup_event(struct perf_event *event)
762 {
763 return event->cgrp != NULL;
764 }
765
perf_cgroup_event_time(struct perf_event * event)766 static inline u64 perf_cgroup_event_time(struct perf_event *event)
767 {
768 struct perf_cgroup_info *t;
769
770 t = per_cpu_ptr(event->cgrp->info, event->cpu);
771 return t->time;
772 }
773
perf_cgroup_event_time_now(struct perf_event * event,u64 now)774 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
775 {
776 struct perf_cgroup_info *t;
777
778 t = per_cpu_ptr(event->cgrp->info, event->cpu);
779 if (!__load_acquire(&t->active))
780 return t->time;
781 now += READ_ONCE(t->timeoffset);
782 return now;
783 }
784
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)785 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
786 {
787 if (adv)
788 info->time += now - info->timestamp;
789 info->timestamp = now;
790 /*
791 * see update_context_time()
792 */
793 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
794 }
795
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)796 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
797 {
798 struct perf_cgroup *cgrp = cpuctx->cgrp;
799 struct cgroup_subsys_state *css;
800 struct perf_cgroup_info *info;
801
802 if (cgrp) {
803 u64 now = perf_clock();
804
805 for (css = &cgrp->css; css; css = css->parent) {
806 cgrp = container_of(css, struct perf_cgroup, css);
807 info = this_cpu_ptr(cgrp->info);
808
809 __update_cgrp_time(info, now, true);
810 if (final)
811 __store_release(&info->active, 0);
812 }
813 }
814 }
815
update_cgrp_time_from_event(struct perf_event * event)816 static inline void update_cgrp_time_from_event(struct perf_event *event)
817 {
818 struct perf_cgroup_info *info;
819
820 /*
821 * ensure we access cgroup data only when needed and
822 * when we know the cgroup is pinned (css_get)
823 */
824 if (!is_cgroup_event(event))
825 return;
826
827 info = this_cpu_ptr(event->cgrp->info);
828 /*
829 * Do not update time when cgroup is not active
830 */
831 if (info->active)
832 __update_cgrp_time(info, perf_clock(), true);
833 }
834
835 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)836 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
837 {
838 struct perf_event_context *ctx = &cpuctx->ctx;
839 struct perf_cgroup *cgrp = cpuctx->cgrp;
840 struct perf_cgroup_info *info;
841 struct cgroup_subsys_state *css;
842
843 /*
844 * ctx->lock held by caller
845 * ensure we do not access cgroup data
846 * unless we have the cgroup pinned (css_get)
847 */
848 if (!cgrp)
849 return;
850
851 WARN_ON_ONCE(!ctx->nr_cgroups);
852
853 for (css = &cgrp->css; css; css = css->parent) {
854 cgrp = container_of(css, struct perf_cgroup, css);
855 info = this_cpu_ptr(cgrp->info);
856 __update_cgrp_time(info, ctx->timestamp, false);
857 __store_release(&info->active, 1);
858 }
859 }
860
861 /*
862 * reschedule events based on the cgroup constraint of task.
863 */
perf_cgroup_switch(struct task_struct * task)864 static void perf_cgroup_switch(struct task_struct *task)
865 {
866 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
867 struct perf_cgroup *cgrp;
868
869 /*
870 * cpuctx->cgrp is set when the first cgroup event enabled,
871 * and is cleared when the last cgroup event disabled.
872 */
873 if (READ_ONCE(cpuctx->cgrp) == NULL)
874 return;
875
876 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
877
878 cgrp = perf_cgroup_from_task(task, NULL);
879 if (READ_ONCE(cpuctx->cgrp) == cgrp)
880 return;
881
882 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
883 /*
884 * Re-check, could've raced vs perf_remove_from_context().
885 */
886 if (READ_ONCE(cpuctx->cgrp) == NULL)
887 return;
888
889 perf_ctx_disable(&cpuctx->ctx, true);
890
891 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
892 /*
893 * must not be done before ctxswout due
894 * to update_cgrp_time_from_cpuctx() in
895 * ctx_sched_out()
896 */
897 cpuctx->cgrp = cgrp;
898 /*
899 * set cgrp before ctxsw in to allow
900 * perf_cgroup_set_timestamp() in ctx_sched_in()
901 * to not have to pass task around
902 */
903 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
904
905 perf_ctx_enable(&cpuctx->ctx, true);
906 }
907
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)908 static int perf_cgroup_ensure_storage(struct perf_event *event,
909 struct cgroup_subsys_state *css)
910 {
911 struct perf_cpu_context *cpuctx;
912 struct perf_event **storage;
913 int cpu, heap_size, ret = 0;
914
915 /*
916 * Allow storage to have sufficent space for an iterator for each
917 * possibly nested cgroup plus an iterator for events with no cgroup.
918 */
919 for (heap_size = 1; css; css = css->parent)
920 heap_size++;
921
922 for_each_possible_cpu(cpu) {
923 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
924 if (heap_size <= cpuctx->heap_size)
925 continue;
926
927 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
928 GFP_KERNEL, cpu_to_node(cpu));
929 if (!storage) {
930 ret = -ENOMEM;
931 break;
932 }
933
934 raw_spin_lock_irq(&cpuctx->ctx.lock);
935 if (cpuctx->heap_size < heap_size) {
936 swap(cpuctx->heap, storage);
937 if (storage == cpuctx->heap_default)
938 storage = NULL;
939 cpuctx->heap_size = heap_size;
940 }
941 raw_spin_unlock_irq(&cpuctx->ctx.lock);
942
943 kfree(storage);
944 }
945
946 return ret;
947 }
948
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)949 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
950 struct perf_event_attr *attr,
951 struct perf_event *group_leader)
952 {
953 struct perf_cgroup *cgrp;
954 struct cgroup_subsys_state *css;
955 struct fd f = fdget(fd);
956 int ret = 0;
957
958 if (!f.file)
959 return -EBADF;
960
961 css = css_tryget_online_from_dir(f.file->f_path.dentry,
962 &perf_event_cgrp_subsys);
963 if (IS_ERR(css)) {
964 ret = PTR_ERR(css);
965 goto out;
966 }
967
968 ret = perf_cgroup_ensure_storage(event, css);
969 if (ret)
970 goto out;
971
972 cgrp = container_of(css, struct perf_cgroup, css);
973 event->cgrp = cgrp;
974
975 /*
976 * all events in a group must monitor
977 * the same cgroup because a task belongs
978 * to only one perf cgroup at a time
979 */
980 if (group_leader && group_leader->cgrp != cgrp) {
981 perf_detach_cgroup(event);
982 ret = -EINVAL;
983 }
984 out:
985 fdput(f);
986 return ret;
987 }
988
989 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)990 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
995 return;
996
997 event->pmu_ctx->nr_cgroups++;
998
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (ctx->nr_cgroups++)
1006 return;
1007
1008 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1009 }
1010
1011 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1012 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1013 {
1014 struct perf_cpu_context *cpuctx;
1015
1016 if (!is_cgroup_event(event))
1017 return;
1018
1019 event->pmu_ctx->nr_cgroups--;
1020
1021 /*
1022 * Because cgroup events are always per-cpu events,
1023 * @ctx == &cpuctx->ctx.
1024 */
1025 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1026
1027 if (--ctx->nr_cgroups)
1028 return;
1029
1030 cpuctx->cgrp = NULL;
1031 }
1032
1033 #else /* !CONFIG_CGROUP_PERF */
1034
1035 static inline bool
perf_cgroup_match(struct perf_event * event)1036 perf_cgroup_match(struct perf_event *event)
1037 {
1038 return true;
1039 }
1040
perf_detach_cgroup(struct perf_event * event)1041 static inline void perf_detach_cgroup(struct perf_event *event)
1042 {}
1043
is_cgroup_event(struct perf_event * event)1044 static inline int is_cgroup_event(struct perf_event *event)
1045 {
1046 return 0;
1047 }
1048
update_cgrp_time_from_event(struct perf_event * event)1049 static inline void update_cgrp_time_from_event(struct perf_event *event)
1050 {
1051 }
1052
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1053 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1054 bool final)
1055 {
1056 }
1057
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1058 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1059 struct perf_event_attr *attr,
1060 struct perf_event *group_leader)
1061 {
1062 return -EINVAL;
1063 }
1064
1065 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1066 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1067 {
1068 }
1069
perf_cgroup_event_time(struct perf_event * event)1070 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1071 {
1072 return 0;
1073 }
1074
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1075 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1076 {
1077 return 0;
1078 }
1079
1080 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1081 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1082 {
1083 }
1084
1085 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1086 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1087 {
1088 }
1089
perf_cgroup_switch(struct task_struct * task)1090 static void perf_cgroup_switch(struct task_struct *task)
1091 {
1092 }
1093 #endif
1094
1095 /*
1096 * set default to be dependent on timer tick just
1097 * like original code
1098 */
1099 #define PERF_CPU_HRTIMER (1000 / HZ)
1100 /*
1101 * function must be called with interrupts disabled
1102 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1103 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1104 {
1105 struct perf_cpu_pmu_context *cpc;
1106 bool rotations;
1107
1108 lockdep_assert_irqs_disabled();
1109
1110 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1111 rotations = perf_rotate_context(cpc);
1112
1113 raw_spin_lock(&cpc->hrtimer_lock);
1114 if (rotations)
1115 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1116 else
1117 cpc->hrtimer_active = 0;
1118 raw_spin_unlock(&cpc->hrtimer_lock);
1119
1120 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1121 }
1122
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1123 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1124 {
1125 struct hrtimer *timer = &cpc->hrtimer;
1126 struct pmu *pmu = cpc->epc.pmu;
1127 u64 interval;
1128
1129 /*
1130 * check default is sane, if not set then force to
1131 * default interval (1/tick)
1132 */
1133 interval = pmu->hrtimer_interval_ms;
1134 if (interval < 1)
1135 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1136
1137 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1138
1139 raw_spin_lock_init(&cpc->hrtimer_lock);
1140 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1141 timer->function = perf_mux_hrtimer_handler;
1142 }
1143
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1144 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1145 {
1146 struct hrtimer *timer = &cpc->hrtimer;
1147 unsigned long flags;
1148
1149 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1150 if (!cpc->hrtimer_active) {
1151 cpc->hrtimer_active = 1;
1152 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1153 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1154 }
1155 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1156
1157 return 0;
1158 }
1159
perf_mux_hrtimer_restart_ipi(void * arg)1160 static int perf_mux_hrtimer_restart_ipi(void *arg)
1161 {
1162 return perf_mux_hrtimer_restart(arg);
1163 }
1164
perf_pmu_disable(struct pmu * pmu)1165 void perf_pmu_disable(struct pmu *pmu)
1166 {
1167 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1168 if (!(*count)++)
1169 pmu->pmu_disable(pmu);
1170 }
1171
perf_pmu_enable(struct pmu * pmu)1172 void perf_pmu_enable(struct pmu *pmu)
1173 {
1174 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1175 if (!--(*count))
1176 pmu->pmu_enable(pmu);
1177 }
1178
perf_assert_pmu_disabled(struct pmu * pmu)1179 static void perf_assert_pmu_disabled(struct pmu *pmu)
1180 {
1181 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1182 }
1183
perf_pmu_read(struct perf_event * event)1184 static inline void perf_pmu_read(struct perf_event *event)
1185 {
1186 if (event->state == PERF_EVENT_STATE_ACTIVE)
1187 event->pmu->read(event);
1188 }
1189
get_ctx(struct perf_event_context * ctx)1190 static void get_ctx(struct perf_event_context *ctx)
1191 {
1192 refcount_inc(&ctx->refcount);
1193 }
1194
alloc_task_ctx_data(struct pmu * pmu)1195 static void *alloc_task_ctx_data(struct pmu *pmu)
1196 {
1197 if (pmu->task_ctx_cache)
1198 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1199
1200 return NULL;
1201 }
1202
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1203 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1204 {
1205 if (pmu->task_ctx_cache && task_ctx_data)
1206 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1207 }
1208
free_ctx(struct rcu_head * head)1209 static void free_ctx(struct rcu_head *head)
1210 {
1211 struct perf_event_context *ctx;
1212
1213 ctx = container_of(head, struct perf_event_context, rcu_head);
1214 kfree(ctx);
1215 }
1216
put_ctx(struct perf_event_context * ctx)1217 static void put_ctx(struct perf_event_context *ctx)
1218 {
1219 if (refcount_dec_and_test(&ctx->refcount)) {
1220 if (ctx->parent_ctx)
1221 put_ctx(ctx->parent_ctx);
1222 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1223 put_task_struct(ctx->task);
1224 call_rcu(&ctx->rcu_head, free_ctx);
1225 }
1226 }
1227
1228 /*
1229 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1230 * perf_pmu_migrate_context() we need some magic.
1231 *
1232 * Those places that change perf_event::ctx will hold both
1233 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1234 *
1235 * Lock ordering is by mutex address. There are two other sites where
1236 * perf_event_context::mutex nests and those are:
1237 *
1238 * - perf_event_exit_task_context() [ child , 0 ]
1239 * perf_event_exit_event()
1240 * put_event() [ parent, 1 ]
1241 *
1242 * - perf_event_init_context() [ parent, 0 ]
1243 * inherit_task_group()
1244 * inherit_group()
1245 * inherit_event()
1246 * perf_event_alloc()
1247 * perf_init_event()
1248 * perf_try_init_event() [ child , 1 ]
1249 *
1250 * While it appears there is an obvious deadlock here -- the parent and child
1251 * nesting levels are inverted between the two. This is in fact safe because
1252 * life-time rules separate them. That is an exiting task cannot fork, and a
1253 * spawning task cannot (yet) exit.
1254 *
1255 * But remember that these are parent<->child context relations, and
1256 * migration does not affect children, therefore these two orderings should not
1257 * interact.
1258 *
1259 * The change in perf_event::ctx does not affect children (as claimed above)
1260 * because the sys_perf_event_open() case will install a new event and break
1261 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1262 * concerned with cpuctx and that doesn't have children.
1263 *
1264 * The places that change perf_event::ctx will issue:
1265 *
1266 * perf_remove_from_context();
1267 * synchronize_rcu();
1268 * perf_install_in_context();
1269 *
1270 * to affect the change. The remove_from_context() + synchronize_rcu() should
1271 * quiesce the event, after which we can install it in the new location. This
1272 * means that only external vectors (perf_fops, prctl) can perturb the event
1273 * while in transit. Therefore all such accessors should also acquire
1274 * perf_event_context::mutex to serialize against this.
1275 *
1276 * However; because event->ctx can change while we're waiting to acquire
1277 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1278 * function.
1279 *
1280 * Lock order:
1281 * exec_update_lock
1282 * task_struct::perf_event_mutex
1283 * perf_event_context::mutex
1284 * perf_event::child_mutex;
1285 * perf_event_context::lock
1286 * mmap_lock
1287 * perf_event::mmap_mutex
1288 * perf_buffer::aux_mutex
1289 * perf_addr_filters_head::lock
1290 *
1291 * cpu_hotplug_lock
1292 * pmus_lock
1293 * cpuctx->mutex / perf_event_context::mutex
1294 */
1295 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1296 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1297 {
1298 struct perf_event_context *ctx;
1299
1300 again:
1301 rcu_read_lock();
1302 ctx = READ_ONCE(event->ctx);
1303 if (!refcount_inc_not_zero(&ctx->refcount)) {
1304 rcu_read_unlock();
1305 goto again;
1306 }
1307 rcu_read_unlock();
1308
1309 mutex_lock_nested(&ctx->mutex, nesting);
1310 if (event->ctx != ctx) {
1311 mutex_unlock(&ctx->mutex);
1312 put_ctx(ctx);
1313 goto again;
1314 }
1315
1316 return ctx;
1317 }
1318
1319 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1320 perf_event_ctx_lock(struct perf_event *event)
1321 {
1322 return perf_event_ctx_lock_nested(event, 0);
1323 }
1324
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1325 static void perf_event_ctx_unlock(struct perf_event *event,
1326 struct perf_event_context *ctx)
1327 {
1328 mutex_unlock(&ctx->mutex);
1329 put_ctx(ctx);
1330 }
1331
1332 /*
1333 * This must be done under the ctx->lock, such as to serialize against
1334 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1335 * calling scheduler related locks and ctx->lock nests inside those.
1336 */
1337 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1338 unclone_ctx(struct perf_event_context *ctx)
1339 {
1340 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1341
1342 lockdep_assert_held(&ctx->lock);
1343
1344 if (parent_ctx)
1345 ctx->parent_ctx = NULL;
1346 ctx->generation++;
1347
1348 return parent_ctx;
1349 }
1350
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1351 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1352 enum pid_type type)
1353 {
1354 u32 nr;
1355 /*
1356 * only top level events have the pid namespace they were created in
1357 */
1358 if (event->parent)
1359 event = event->parent;
1360
1361 nr = __task_pid_nr_ns(p, type, event->ns);
1362 /* avoid -1 if it is idle thread or runs in another ns */
1363 if (!nr && !pid_alive(p))
1364 nr = -1;
1365 return nr;
1366 }
1367
perf_event_pid(struct perf_event * event,struct task_struct * p)1368 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1369 {
1370 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1371 }
1372
perf_event_tid(struct perf_event * event,struct task_struct * p)1373 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1374 {
1375 return perf_event_pid_type(event, p, PIDTYPE_PID);
1376 }
1377
1378 /*
1379 * If we inherit events we want to return the parent event id
1380 * to userspace.
1381 */
primary_event_id(struct perf_event * event)1382 static u64 primary_event_id(struct perf_event *event)
1383 {
1384 u64 id = event->id;
1385
1386 if (event->parent)
1387 id = event->parent->id;
1388
1389 return id;
1390 }
1391
1392 /*
1393 * Get the perf_event_context for a task and lock it.
1394 *
1395 * This has to cope with the fact that until it is locked,
1396 * the context could get moved to another task.
1397 */
1398 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1399 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1400 {
1401 struct perf_event_context *ctx;
1402
1403 retry:
1404 /*
1405 * One of the few rules of preemptible RCU is that one cannot do
1406 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1407 * part of the read side critical section was irqs-enabled -- see
1408 * rcu_read_unlock_special().
1409 *
1410 * Since ctx->lock nests under rq->lock we must ensure the entire read
1411 * side critical section has interrupts disabled.
1412 */
1413 local_irq_save(*flags);
1414 rcu_read_lock();
1415 ctx = rcu_dereference(task->perf_event_ctxp);
1416 if (ctx) {
1417 /*
1418 * If this context is a clone of another, it might
1419 * get swapped for another underneath us by
1420 * perf_event_task_sched_out, though the
1421 * rcu_read_lock() protects us from any context
1422 * getting freed. Lock the context and check if it
1423 * got swapped before we could get the lock, and retry
1424 * if so. If we locked the right context, then it
1425 * can't get swapped on us any more.
1426 */
1427 raw_spin_lock(&ctx->lock);
1428 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1429 raw_spin_unlock(&ctx->lock);
1430 rcu_read_unlock();
1431 local_irq_restore(*flags);
1432 goto retry;
1433 }
1434
1435 if (ctx->task == TASK_TOMBSTONE ||
1436 !refcount_inc_not_zero(&ctx->refcount)) {
1437 raw_spin_unlock(&ctx->lock);
1438 ctx = NULL;
1439 } else {
1440 WARN_ON_ONCE(ctx->task != task);
1441 }
1442 }
1443 rcu_read_unlock();
1444 if (!ctx)
1445 local_irq_restore(*flags);
1446 return ctx;
1447 }
1448
1449 /*
1450 * Get the context for a task and increment its pin_count so it
1451 * can't get swapped to another task. This also increments its
1452 * reference count so that the context can't get freed.
1453 */
1454 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1455 perf_pin_task_context(struct task_struct *task)
1456 {
1457 struct perf_event_context *ctx;
1458 unsigned long flags;
1459
1460 ctx = perf_lock_task_context(task, &flags);
1461 if (ctx) {
1462 ++ctx->pin_count;
1463 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1464 }
1465 return ctx;
1466 }
1467
perf_unpin_context(struct perf_event_context * ctx)1468 static void perf_unpin_context(struct perf_event_context *ctx)
1469 {
1470 unsigned long flags;
1471
1472 raw_spin_lock_irqsave(&ctx->lock, flags);
1473 --ctx->pin_count;
1474 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1475 }
1476
1477 /*
1478 * Update the record of the current time in a context.
1479 */
__update_context_time(struct perf_event_context * ctx,bool adv)1480 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1481 {
1482 u64 now = perf_clock();
1483
1484 lockdep_assert_held(&ctx->lock);
1485
1486 if (adv)
1487 ctx->time += now - ctx->timestamp;
1488 ctx->timestamp = now;
1489
1490 /*
1491 * The above: time' = time + (now - timestamp), can be re-arranged
1492 * into: time` = now + (time - timestamp), which gives a single value
1493 * offset to compute future time without locks on.
1494 *
1495 * See perf_event_time_now(), which can be used from NMI context where
1496 * it's (obviously) not possible to acquire ctx->lock in order to read
1497 * both the above values in a consistent manner.
1498 */
1499 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1500 }
1501
update_context_time(struct perf_event_context * ctx)1502 static void update_context_time(struct perf_event_context *ctx)
1503 {
1504 __update_context_time(ctx, true);
1505 }
1506
perf_event_time(struct perf_event * event)1507 static u64 perf_event_time(struct perf_event *event)
1508 {
1509 struct perf_event_context *ctx = event->ctx;
1510
1511 if (unlikely(!ctx))
1512 return 0;
1513
1514 if (is_cgroup_event(event))
1515 return perf_cgroup_event_time(event);
1516
1517 return ctx->time;
1518 }
1519
perf_event_time_now(struct perf_event * event,u64 now)1520 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1521 {
1522 struct perf_event_context *ctx = event->ctx;
1523
1524 if (unlikely(!ctx))
1525 return 0;
1526
1527 if (is_cgroup_event(event))
1528 return perf_cgroup_event_time_now(event, now);
1529
1530 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1531 return ctx->time;
1532
1533 now += READ_ONCE(ctx->timeoffset);
1534 return now;
1535 }
1536
get_event_type(struct perf_event * event)1537 static enum event_type_t get_event_type(struct perf_event *event)
1538 {
1539 struct perf_event_context *ctx = event->ctx;
1540 enum event_type_t event_type;
1541
1542 lockdep_assert_held(&ctx->lock);
1543
1544 /*
1545 * It's 'group type', really, because if our group leader is
1546 * pinned, so are we.
1547 */
1548 if (event->group_leader != event)
1549 event = event->group_leader;
1550
1551 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1552 if (!ctx->task)
1553 event_type |= EVENT_CPU;
1554
1555 return event_type;
1556 }
1557
1558 /*
1559 * Helper function to initialize event group nodes.
1560 */
init_event_group(struct perf_event * event)1561 static void init_event_group(struct perf_event *event)
1562 {
1563 RB_CLEAR_NODE(&event->group_node);
1564 event->group_index = 0;
1565 }
1566
1567 /*
1568 * Extract pinned or flexible groups from the context
1569 * based on event attrs bits.
1570 */
1571 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1572 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1573 {
1574 if (event->attr.pinned)
1575 return &ctx->pinned_groups;
1576 else
1577 return &ctx->flexible_groups;
1578 }
1579
1580 /*
1581 * Helper function to initializes perf_event_group trees.
1582 */
perf_event_groups_init(struct perf_event_groups * groups)1583 static void perf_event_groups_init(struct perf_event_groups *groups)
1584 {
1585 groups->tree = RB_ROOT;
1586 groups->index = 0;
1587 }
1588
event_cgroup(const struct perf_event * event)1589 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1590 {
1591 struct cgroup *cgroup = NULL;
1592
1593 #ifdef CONFIG_CGROUP_PERF
1594 if (event->cgrp)
1595 cgroup = event->cgrp->css.cgroup;
1596 #endif
1597
1598 return cgroup;
1599 }
1600
1601 /*
1602 * Compare function for event groups;
1603 *
1604 * Implements complex key that first sorts by CPU and then by virtual index
1605 * which provides ordering when rotating groups for the same CPU.
1606 */
1607 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1608 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1609 const struct cgroup *left_cgroup, const u64 left_group_index,
1610 const struct perf_event *right)
1611 {
1612 if (left_cpu < right->cpu)
1613 return -1;
1614 if (left_cpu > right->cpu)
1615 return 1;
1616
1617 if (left_pmu) {
1618 if (left_pmu < right->pmu_ctx->pmu)
1619 return -1;
1620 if (left_pmu > right->pmu_ctx->pmu)
1621 return 1;
1622 }
1623
1624 #ifdef CONFIG_CGROUP_PERF
1625 {
1626 const struct cgroup *right_cgroup = event_cgroup(right);
1627
1628 if (left_cgroup != right_cgroup) {
1629 if (!left_cgroup) {
1630 /*
1631 * Left has no cgroup but right does, no
1632 * cgroups come first.
1633 */
1634 return -1;
1635 }
1636 if (!right_cgroup) {
1637 /*
1638 * Right has no cgroup but left does, no
1639 * cgroups come first.
1640 */
1641 return 1;
1642 }
1643 /* Two dissimilar cgroups, order by id. */
1644 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1645 return -1;
1646
1647 return 1;
1648 }
1649 }
1650 #endif
1651
1652 if (left_group_index < right->group_index)
1653 return -1;
1654 if (left_group_index > right->group_index)
1655 return 1;
1656
1657 return 0;
1658 }
1659
1660 #define __node_2_pe(node) \
1661 rb_entry((node), struct perf_event, group_node)
1662
__group_less(struct rb_node * a,const struct rb_node * b)1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1664 {
1665 struct perf_event *e = __node_2_pe(a);
1666 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1667 e->group_index, __node_2_pe(b)) < 0;
1668 }
1669
1670 struct __group_key {
1671 int cpu;
1672 struct pmu *pmu;
1673 struct cgroup *cgroup;
1674 };
1675
__group_cmp(const void * key,const struct rb_node * node)1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 const struct __group_key *a = key;
1679 const struct perf_event *b = __node_2_pe(node);
1680
1681 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1682 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1683 }
1684
1685 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1686 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1687 {
1688 const struct __group_key *a = key;
1689 const struct perf_event *b = __node_2_pe(node);
1690
1691 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1692 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1693 b->group_index, b);
1694 }
1695
1696 /*
1697 * Insert @event into @groups' tree; using
1698 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1699 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1700 */
1701 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1702 perf_event_groups_insert(struct perf_event_groups *groups,
1703 struct perf_event *event)
1704 {
1705 event->group_index = ++groups->index;
1706
1707 rb_add(&event->group_node, &groups->tree, __group_less);
1708 }
1709
1710 /*
1711 * Helper function to insert event into the pinned or flexible groups.
1712 */
1713 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1714 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1715 {
1716 struct perf_event_groups *groups;
1717
1718 groups = get_event_groups(event, ctx);
1719 perf_event_groups_insert(groups, event);
1720 }
1721
1722 /*
1723 * Delete a group from a tree.
1724 */
1725 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1726 perf_event_groups_delete(struct perf_event_groups *groups,
1727 struct perf_event *event)
1728 {
1729 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1730 RB_EMPTY_ROOT(&groups->tree));
1731
1732 rb_erase(&event->group_node, &groups->tree);
1733 init_event_group(event);
1734 }
1735
1736 /*
1737 * Helper function to delete event from its groups.
1738 */
1739 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1740 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1741 {
1742 struct perf_event_groups *groups;
1743
1744 groups = get_event_groups(event, ctx);
1745 perf_event_groups_delete(groups, event);
1746 }
1747
1748 /*
1749 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1750 */
1751 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1752 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1753 struct pmu *pmu, struct cgroup *cgrp)
1754 {
1755 struct __group_key key = {
1756 .cpu = cpu,
1757 .pmu = pmu,
1758 .cgroup = cgrp,
1759 };
1760 struct rb_node *node;
1761
1762 node = rb_find_first(&key, &groups->tree, __group_cmp);
1763 if (node)
1764 return __node_2_pe(node);
1765
1766 return NULL;
1767 }
1768
1769 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1770 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1771 {
1772 struct __group_key key = {
1773 .cpu = event->cpu,
1774 .pmu = pmu,
1775 .cgroup = event_cgroup(event),
1776 };
1777 struct rb_node *next;
1778
1779 next = rb_next_match(&key, &event->group_node, __group_cmp);
1780 if (next)
1781 return __node_2_pe(next);
1782
1783 return NULL;
1784 }
1785
1786 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1787 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1788 event; event = perf_event_groups_next(event, pmu))
1789
1790 /*
1791 * Iterate through the whole groups tree.
1792 */
1793 #define perf_event_groups_for_each(event, groups) \
1794 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1795 typeof(*event), group_node); event; \
1796 event = rb_entry_safe(rb_next(&event->group_node), \
1797 typeof(*event), group_node))
1798
1799 /*
1800 * Add an event from the lists for its context.
1801 * Must be called with ctx->mutex and ctx->lock held.
1802 */
1803 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1804 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1805 {
1806 lockdep_assert_held(&ctx->lock);
1807
1808 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1809 event->attach_state |= PERF_ATTACH_CONTEXT;
1810
1811 event->tstamp = perf_event_time(event);
1812
1813 /*
1814 * If we're a stand alone event or group leader, we go to the context
1815 * list, group events are kept attached to the group so that
1816 * perf_group_detach can, at all times, locate all siblings.
1817 */
1818 if (event->group_leader == event) {
1819 event->group_caps = event->event_caps;
1820 add_event_to_groups(event, ctx);
1821 }
1822
1823 list_add_rcu(&event->event_entry, &ctx->event_list);
1824 ctx->nr_events++;
1825 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1826 ctx->nr_user++;
1827 if (event->attr.inherit_stat)
1828 ctx->nr_stat++;
1829
1830 if (event->state > PERF_EVENT_STATE_OFF)
1831 perf_cgroup_event_enable(event, ctx);
1832
1833 ctx->generation++;
1834 event->pmu_ctx->nr_events++;
1835 }
1836
1837 /*
1838 * Initialize event state based on the perf_event_attr::disabled.
1839 */
perf_event__state_init(struct perf_event * event)1840 static inline void perf_event__state_init(struct perf_event *event)
1841 {
1842 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1843 PERF_EVENT_STATE_INACTIVE;
1844 }
1845
__perf_event_read_size(u64 read_format,int nr_siblings)1846 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1847 {
1848 int entry = sizeof(u64); /* value */
1849 int size = 0;
1850 int nr = 1;
1851
1852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1853 size += sizeof(u64);
1854
1855 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1856 size += sizeof(u64);
1857
1858 if (read_format & PERF_FORMAT_ID)
1859 entry += sizeof(u64);
1860
1861 if (read_format & PERF_FORMAT_LOST)
1862 entry += sizeof(u64);
1863
1864 if (read_format & PERF_FORMAT_GROUP) {
1865 nr += nr_siblings;
1866 size += sizeof(u64);
1867 }
1868
1869 /*
1870 * Since perf_event_validate_size() limits this to 16k and inhibits
1871 * adding more siblings, this will never overflow.
1872 */
1873 return size + nr * entry;
1874 }
1875
__perf_event_header_size(struct perf_event * event,u64 sample_type)1876 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1877 {
1878 struct perf_sample_data *data;
1879 u16 size = 0;
1880
1881 if (sample_type & PERF_SAMPLE_IP)
1882 size += sizeof(data->ip);
1883
1884 if (sample_type & PERF_SAMPLE_ADDR)
1885 size += sizeof(data->addr);
1886
1887 if (sample_type & PERF_SAMPLE_PERIOD)
1888 size += sizeof(data->period);
1889
1890 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1891 size += sizeof(data->weight.full);
1892
1893 if (sample_type & PERF_SAMPLE_READ)
1894 size += event->read_size;
1895
1896 if (sample_type & PERF_SAMPLE_DATA_SRC)
1897 size += sizeof(data->data_src.val);
1898
1899 if (sample_type & PERF_SAMPLE_TRANSACTION)
1900 size += sizeof(data->txn);
1901
1902 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1903 size += sizeof(data->phys_addr);
1904
1905 if (sample_type & PERF_SAMPLE_CGROUP)
1906 size += sizeof(data->cgroup);
1907
1908 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1909 size += sizeof(data->data_page_size);
1910
1911 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1912 size += sizeof(data->code_page_size);
1913
1914 event->header_size = size;
1915 }
1916
1917 /*
1918 * Called at perf_event creation and when events are attached/detached from a
1919 * group.
1920 */
perf_event__header_size(struct perf_event * event)1921 static void perf_event__header_size(struct perf_event *event)
1922 {
1923 event->read_size =
1924 __perf_event_read_size(event->attr.read_format,
1925 event->group_leader->nr_siblings);
1926 __perf_event_header_size(event, event->attr.sample_type);
1927 }
1928
perf_event__id_header_size(struct perf_event * event)1929 static void perf_event__id_header_size(struct perf_event *event)
1930 {
1931 struct perf_sample_data *data;
1932 u64 sample_type = event->attr.sample_type;
1933 u16 size = 0;
1934
1935 if (sample_type & PERF_SAMPLE_TID)
1936 size += sizeof(data->tid_entry);
1937
1938 if (sample_type & PERF_SAMPLE_TIME)
1939 size += sizeof(data->time);
1940
1941 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1942 size += sizeof(data->id);
1943
1944 if (sample_type & PERF_SAMPLE_ID)
1945 size += sizeof(data->id);
1946
1947 if (sample_type & PERF_SAMPLE_STREAM_ID)
1948 size += sizeof(data->stream_id);
1949
1950 if (sample_type & PERF_SAMPLE_CPU)
1951 size += sizeof(data->cpu_entry);
1952
1953 event->id_header_size = size;
1954 }
1955
1956 /*
1957 * Check that adding an event to the group does not result in anybody
1958 * overflowing the 64k event limit imposed by the output buffer.
1959 *
1960 * Specifically, check that the read_size for the event does not exceed 16k,
1961 * read_size being the one term that grows with groups size. Since read_size
1962 * depends on per-event read_format, also (re)check the existing events.
1963 *
1964 * This leaves 48k for the constant size fields and things like callchains,
1965 * branch stacks and register sets.
1966 */
perf_event_validate_size(struct perf_event * event)1967 static bool perf_event_validate_size(struct perf_event *event)
1968 {
1969 struct perf_event *sibling, *group_leader = event->group_leader;
1970
1971 if (__perf_event_read_size(event->attr.read_format,
1972 group_leader->nr_siblings + 1) > 16*1024)
1973 return false;
1974
1975 if (__perf_event_read_size(group_leader->attr.read_format,
1976 group_leader->nr_siblings + 1) > 16*1024)
1977 return false;
1978
1979 /*
1980 * When creating a new group leader, group_leader->ctx is initialized
1981 * after the size has been validated, but we cannot safely use
1982 * for_each_sibling_event() until group_leader->ctx is set. A new group
1983 * leader cannot have any siblings yet, so we can safely skip checking
1984 * the non-existent siblings.
1985 */
1986 if (event == group_leader)
1987 return true;
1988
1989 for_each_sibling_event(sibling, group_leader) {
1990 if (__perf_event_read_size(sibling->attr.read_format,
1991 group_leader->nr_siblings + 1) > 16*1024)
1992 return false;
1993 }
1994
1995 return true;
1996 }
1997
perf_group_attach(struct perf_event * event)1998 static void perf_group_attach(struct perf_event *event)
1999 {
2000 struct perf_event *group_leader = event->group_leader, *pos;
2001
2002 lockdep_assert_held(&event->ctx->lock);
2003
2004 /*
2005 * We can have double attach due to group movement (move_group) in
2006 * perf_event_open().
2007 */
2008 if (event->attach_state & PERF_ATTACH_GROUP)
2009 return;
2010
2011 event->attach_state |= PERF_ATTACH_GROUP;
2012
2013 if (group_leader == event)
2014 return;
2015
2016 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2017
2018 group_leader->group_caps &= event->event_caps;
2019
2020 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2021 group_leader->nr_siblings++;
2022 group_leader->group_generation++;
2023
2024 perf_event__header_size(group_leader);
2025
2026 for_each_sibling_event(pos, group_leader)
2027 perf_event__header_size(pos);
2028 }
2029
2030 /*
2031 * Remove an event from the lists for its context.
2032 * Must be called with ctx->mutex and ctx->lock held.
2033 */
2034 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2035 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2036 {
2037 WARN_ON_ONCE(event->ctx != ctx);
2038 lockdep_assert_held(&ctx->lock);
2039
2040 /*
2041 * We can have double detach due to exit/hot-unplug + close.
2042 */
2043 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2044 return;
2045
2046 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2047
2048 ctx->nr_events--;
2049 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2050 ctx->nr_user--;
2051 if (event->attr.inherit_stat)
2052 ctx->nr_stat--;
2053
2054 list_del_rcu(&event->event_entry);
2055
2056 if (event->group_leader == event)
2057 del_event_from_groups(event, ctx);
2058
2059 /*
2060 * If event was in error state, then keep it
2061 * that way, otherwise bogus counts will be
2062 * returned on read(). The only way to get out
2063 * of error state is by explicit re-enabling
2064 * of the event
2065 */
2066 if (event->state > PERF_EVENT_STATE_OFF) {
2067 perf_cgroup_event_disable(event, ctx);
2068 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2069 }
2070
2071 ctx->generation++;
2072 event->pmu_ctx->nr_events--;
2073 }
2074
2075 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2076 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2077 {
2078 if (!has_aux(aux_event))
2079 return 0;
2080
2081 if (!event->pmu->aux_output_match)
2082 return 0;
2083
2084 return event->pmu->aux_output_match(aux_event);
2085 }
2086
2087 static void put_event(struct perf_event *event);
2088 static void __event_disable(struct perf_event *event,
2089 struct perf_event_context *ctx,
2090 enum perf_event_state state);
2091
perf_put_aux_event(struct perf_event * event)2092 static void perf_put_aux_event(struct perf_event *event)
2093 {
2094 struct perf_event_context *ctx = event->ctx;
2095 struct perf_event *iter;
2096
2097 /*
2098 * If event uses aux_event tear down the link
2099 */
2100 if (event->aux_event) {
2101 iter = event->aux_event;
2102 event->aux_event = NULL;
2103 put_event(iter);
2104 return;
2105 }
2106
2107 /*
2108 * If the event is an aux_event, tear down all links to
2109 * it from other events.
2110 */
2111 for_each_sibling_event(iter, event->group_leader) {
2112 if (iter->aux_event != event)
2113 continue;
2114
2115 iter->aux_event = NULL;
2116 put_event(event);
2117
2118 /*
2119 * If it's ACTIVE, schedule it out and put it into ERROR
2120 * state so that we don't try to schedule it again. Note
2121 * that perf_event_enable() will clear the ERROR status.
2122 */
2123 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2124 }
2125 }
2126
perf_need_aux_event(struct perf_event * event)2127 static bool perf_need_aux_event(struct perf_event *event)
2128 {
2129 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2130 }
2131
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2132 static int perf_get_aux_event(struct perf_event *event,
2133 struct perf_event *group_leader)
2134 {
2135 /*
2136 * Our group leader must be an aux event if we want to be
2137 * an aux_output. This way, the aux event will precede its
2138 * aux_output events in the group, and therefore will always
2139 * schedule first.
2140 */
2141 if (!group_leader)
2142 return 0;
2143
2144 /*
2145 * aux_output and aux_sample_size are mutually exclusive.
2146 */
2147 if (event->attr.aux_output && event->attr.aux_sample_size)
2148 return 0;
2149
2150 if (event->attr.aux_output &&
2151 !perf_aux_output_match(event, group_leader))
2152 return 0;
2153
2154 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2155 return 0;
2156
2157 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2158 return 0;
2159
2160 /*
2161 * Link aux_outputs to their aux event; this is undone in
2162 * perf_group_detach() by perf_put_aux_event(). When the
2163 * group in torn down, the aux_output events loose their
2164 * link to the aux_event and can't schedule any more.
2165 */
2166 event->aux_event = group_leader;
2167
2168 return 1;
2169 }
2170
get_event_list(struct perf_event * event)2171 static inline struct list_head *get_event_list(struct perf_event *event)
2172 {
2173 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2174 &event->pmu_ctx->flexible_active;
2175 }
2176
perf_group_detach(struct perf_event * event)2177 static void perf_group_detach(struct perf_event *event)
2178 {
2179 struct perf_event *leader = event->group_leader;
2180 struct perf_event *sibling, *tmp;
2181 struct perf_event_context *ctx = event->ctx;
2182
2183 lockdep_assert_held(&ctx->lock);
2184
2185 /*
2186 * We can have double detach due to exit/hot-unplug + close.
2187 */
2188 if (!(event->attach_state & PERF_ATTACH_GROUP))
2189 return;
2190
2191 event->attach_state &= ~PERF_ATTACH_GROUP;
2192
2193 perf_put_aux_event(event);
2194
2195 /*
2196 * If this is a sibling, remove it from its group.
2197 */
2198 if (leader != event) {
2199 list_del_init(&event->sibling_list);
2200 event->group_leader->nr_siblings--;
2201 event->group_leader->group_generation++;
2202 goto out;
2203 }
2204
2205 /*
2206 * If this was a group event with sibling events then
2207 * upgrade the siblings to singleton events by adding them
2208 * to whatever list we are on.
2209 */
2210 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2211
2212 /*
2213 * Events that have PERF_EV_CAP_SIBLING require being part of
2214 * a group and cannot exist on their own, schedule them out
2215 * and move them into the ERROR state. Also see
2216 * _perf_event_enable(), it will not be able to recover this
2217 * ERROR state.
2218 */
2219 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2220 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2221
2222 sibling->group_leader = sibling;
2223 list_del_init(&sibling->sibling_list);
2224
2225 /* Inherit group flags from the previous leader */
2226 sibling->group_caps = event->group_caps;
2227
2228 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2229 add_event_to_groups(sibling, event->ctx);
2230
2231 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2232 list_add_tail(&sibling->active_list, get_event_list(sibling));
2233 }
2234
2235 WARN_ON_ONCE(sibling->ctx != event->ctx);
2236 }
2237
2238 out:
2239 for_each_sibling_event(tmp, leader)
2240 perf_event__header_size(tmp);
2241
2242 perf_event__header_size(leader);
2243 }
2244
2245 static void sync_child_event(struct perf_event *child_event);
2246
perf_child_detach(struct perf_event * event)2247 static void perf_child_detach(struct perf_event *event)
2248 {
2249 struct perf_event *parent_event = event->parent;
2250
2251 if (!(event->attach_state & PERF_ATTACH_CHILD))
2252 return;
2253
2254 event->attach_state &= ~PERF_ATTACH_CHILD;
2255
2256 if (WARN_ON_ONCE(!parent_event))
2257 return;
2258
2259 lockdep_assert_held(&parent_event->child_mutex);
2260
2261 sync_child_event(event);
2262 list_del_init(&event->child_list);
2263 }
2264
is_orphaned_event(struct perf_event * event)2265 static bool is_orphaned_event(struct perf_event *event)
2266 {
2267 return event->state == PERF_EVENT_STATE_DEAD;
2268 }
2269
2270 static inline int
event_filter_match(struct perf_event * event)2271 event_filter_match(struct perf_event *event)
2272 {
2273 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2274 perf_cgroup_match(event);
2275 }
2276
2277 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2278 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2279 {
2280 struct perf_event_pmu_context *epc = event->pmu_ctx;
2281 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2282 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2283
2284 // XXX cpc serialization, probably per-cpu IRQ disabled
2285
2286 WARN_ON_ONCE(event->ctx != ctx);
2287 lockdep_assert_held(&ctx->lock);
2288
2289 if (event->state != PERF_EVENT_STATE_ACTIVE)
2290 return;
2291
2292 /*
2293 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2294 * we can schedule events _OUT_ individually through things like
2295 * __perf_remove_from_context().
2296 */
2297 list_del_init(&event->active_list);
2298
2299 perf_pmu_disable(event->pmu);
2300
2301 event->pmu->del(event, 0);
2302 event->oncpu = -1;
2303
2304 if (event->pending_disable) {
2305 event->pending_disable = 0;
2306 perf_cgroup_event_disable(event, ctx);
2307 state = PERF_EVENT_STATE_OFF;
2308 }
2309
2310 if (event->pending_sigtrap) {
2311 event->pending_sigtrap = 0;
2312 if (state != PERF_EVENT_STATE_OFF &&
2313 !event->pending_work &&
2314 !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2315 event->pending_work = 1;
2316 } else {
2317 local_dec(&event->ctx->nr_pending);
2318 }
2319 }
2320
2321 perf_event_set_state(event, state);
2322
2323 if (!is_software_event(event))
2324 cpc->active_oncpu--;
2325 if (event->attr.freq && event->attr.sample_freq)
2326 ctx->nr_freq--;
2327 if (event->attr.exclusive || !cpc->active_oncpu)
2328 cpc->exclusive = 0;
2329
2330 perf_pmu_enable(event->pmu);
2331 }
2332
2333 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2334 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2335 {
2336 struct perf_event *event;
2337
2338 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2339 return;
2340
2341 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2342
2343 event_sched_out(group_event, ctx);
2344
2345 /*
2346 * Schedule out siblings (if any):
2347 */
2348 for_each_sibling_event(event, group_event)
2349 event_sched_out(event, ctx);
2350 }
2351
2352 #define DETACH_GROUP 0x01UL
2353 #define DETACH_CHILD 0x02UL
2354 #define DETACH_DEAD 0x04UL
2355 #define DETACH_EXIT 0x08UL
2356
2357 /*
2358 * Cross CPU call to remove a performance event
2359 *
2360 * We disable the event on the hardware level first. After that we
2361 * remove it from the context list.
2362 */
2363 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2364 __perf_remove_from_context(struct perf_event *event,
2365 struct perf_cpu_context *cpuctx,
2366 struct perf_event_context *ctx,
2367 void *info)
2368 {
2369 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2370 enum perf_event_state state = PERF_EVENT_STATE_OFF;
2371 unsigned long flags = (unsigned long)info;
2372
2373 if (ctx->is_active & EVENT_TIME) {
2374 update_context_time(ctx);
2375 update_cgrp_time_from_cpuctx(cpuctx, false);
2376 }
2377
2378 /*
2379 * Ensure event_sched_out() switches to OFF, at the very least
2380 * this avoids raising perf_pending_task() at this time.
2381 */
2382 if (flags & DETACH_EXIT)
2383 state = PERF_EVENT_STATE_EXIT;
2384 if (flags & DETACH_DEAD) {
2385 event->pending_disable = 1;
2386 state = PERF_EVENT_STATE_DEAD;
2387 }
2388 event_sched_out(event, ctx);
2389 perf_event_set_state(event, min(event->state, state));
2390 if (flags & DETACH_GROUP)
2391 perf_group_detach(event);
2392 if (flags & DETACH_CHILD)
2393 perf_child_detach(event);
2394 list_del_event(event, ctx);
2395
2396 if (!pmu_ctx->nr_events) {
2397 pmu_ctx->rotate_necessary = 0;
2398
2399 if (ctx->task && ctx->is_active) {
2400 struct perf_cpu_pmu_context *cpc;
2401
2402 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2403 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2404 cpc->task_epc = NULL;
2405 }
2406 }
2407
2408 if (!ctx->nr_events && ctx->is_active) {
2409 if (ctx == &cpuctx->ctx)
2410 update_cgrp_time_from_cpuctx(cpuctx, true);
2411
2412 ctx->is_active = 0;
2413 if (ctx->task) {
2414 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2415 cpuctx->task_ctx = NULL;
2416 }
2417 }
2418 }
2419
2420 /*
2421 * Remove the event from a task's (or a CPU's) list of events.
2422 *
2423 * If event->ctx is a cloned context, callers must make sure that
2424 * every task struct that event->ctx->task could possibly point to
2425 * remains valid. This is OK when called from perf_release since
2426 * that only calls us on the top-level context, which can't be a clone.
2427 * When called from perf_event_exit_task, it's OK because the
2428 * context has been detached from its task.
2429 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2430 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2431 {
2432 struct perf_event_context *ctx = event->ctx;
2433
2434 lockdep_assert_held(&ctx->mutex);
2435
2436 /*
2437 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2438 * to work in the face of TASK_TOMBSTONE, unlike every other
2439 * event_function_call() user.
2440 */
2441 raw_spin_lock_irq(&ctx->lock);
2442 if (!ctx->is_active) {
2443 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2444 ctx, (void *)flags);
2445 raw_spin_unlock_irq(&ctx->lock);
2446 return;
2447 }
2448 raw_spin_unlock_irq(&ctx->lock);
2449
2450 event_function_call(event, __perf_remove_from_context, (void *)flags);
2451 }
2452
__event_disable(struct perf_event * event,struct perf_event_context * ctx,enum perf_event_state state)2453 static void __event_disable(struct perf_event *event,
2454 struct perf_event_context *ctx,
2455 enum perf_event_state state)
2456 {
2457 event_sched_out(event, ctx);
2458 perf_cgroup_event_disable(event, ctx);
2459 perf_event_set_state(event, state);
2460 }
2461
2462 /*
2463 * Cross CPU call to disable a performance event
2464 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2465 static void __perf_event_disable(struct perf_event *event,
2466 struct perf_cpu_context *cpuctx,
2467 struct perf_event_context *ctx,
2468 void *info)
2469 {
2470 if (event->state < PERF_EVENT_STATE_INACTIVE)
2471 return;
2472
2473 if (ctx->is_active & EVENT_TIME) {
2474 update_context_time(ctx);
2475 update_cgrp_time_from_event(event);
2476 }
2477
2478 perf_pmu_disable(event->pmu_ctx->pmu);
2479
2480 /*
2481 * When disabling a group leader, the whole group becomes ineligible
2482 * to run, so schedule out the full group.
2483 */
2484 if (event == event->group_leader)
2485 group_sched_out(event, ctx);
2486
2487 /*
2488 * But only mark the leader OFF; the siblings will remain
2489 * INACTIVE.
2490 */
2491 __event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2492
2493 perf_pmu_enable(event->pmu_ctx->pmu);
2494 }
2495
2496 /*
2497 * Disable an event.
2498 *
2499 * If event->ctx is a cloned context, callers must make sure that
2500 * every task struct that event->ctx->task could possibly point to
2501 * remains valid. This condition is satisfied when called through
2502 * perf_event_for_each_child or perf_event_for_each because they
2503 * hold the top-level event's child_mutex, so any descendant that
2504 * goes to exit will block in perf_event_exit_event().
2505 *
2506 * When called from perf_pending_irq it's OK because event->ctx
2507 * is the current context on this CPU and preemption is disabled,
2508 * hence we can't get into perf_event_task_sched_out for this context.
2509 */
_perf_event_disable(struct perf_event * event)2510 static void _perf_event_disable(struct perf_event *event)
2511 {
2512 struct perf_event_context *ctx = event->ctx;
2513
2514 raw_spin_lock_irq(&ctx->lock);
2515 if (event->state <= PERF_EVENT_STATE_OFF) {
2516 raw_spin_unlock_irq(&ctx->lock);
2517 return;
2518 }
2519 raw_spin_unlock_irq(&ctx->lock);
2520
2521 event_function_call(event, __perf_event_disable, NULL);
2522 }
2523
perf_event_disable_local(struct perf_event * event)2524 void perf_event_disable_local(struct perf_event *event)
2525 {
2526 event_function_local(event, __perf_event_disable, NULL);
2527 }
2528
2529 /*
2530 * Strictly speaking kernel users cannot create groups and therefore this
2531 * interface does not need the perf_event_ctx_lock() magic.
2532 */
perf_event_disable(struct perf_event * event)2533 void perf_event_disable(struct perf_event *event)
2534 {
2535 struct perf_event_context *ctx;
2536
2537 ctx = perf_event_ctx_lock(event);
2538 _perf_event_disable(event);
2539 perf_event_ctx_unlock(event, ctx);
2540 }
2541 EXPORT_SYMBOL_GPL(perf_event_disable);
2542
perf_event_disable_inatomic(struct perf_event * event)2543 void perf_event_disable_inatomic(struct perf_event *event)
2544 {
2545 event->pending_disable = 1;
2546 irq_work_queue(&event->pending_irq);
2547 }
2548
2549 #define MAX_INTERRUPTS (~0ULL)
2550
2551 static void perf_log_throttle(struct perf_event *event, int enable);
2552 static void perf_log_itrace_start(struct perf_event *event);
2553
2554 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2555 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2556 {
2557 struct perf_event_pmu_context *epc = event->pmu_ctx;
2558 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2559 int ret = 0;
2560
2561 WARN_ON_ONCE(event->ctx != ctx);
2562
2563 lockdep_assert_held(&ctx->lock);
2564
2565 if (event->state <= PERF_EVENT_STATE_OFF)
2566 return 0;
2567
2568 WRITE_ONCE(event->oncpu, smp_processor_id());
2569 /*
2570 * Order event::oncpu write to happen before the ACTIVE state is
2571 * visible. This allows perf_event_{stop,read}() to observe the correct
2572 * ->oncpu if it sees ACTIVE.
2573 */
2574 smp_wmb();
2575 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2576
2577 /*
2578 * Unthrottle events, since we scheduled we might have missed several
2579 * ticks already, also for a heavily scheduling task there is little
2580 * guarantee it'll get a tick in a timely manner.
2581 */
2582 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2583 perf_log_throttle(event, 1);
2584 event->hw.interrupts = 0;
2585 }
2586
2587 perf_pmu_disable(event->pmu);
2588
2589 perf_log_itrace_start(event);
2590
2591 if (event->pmu->add(event, PERF_EF_START)) {
2592 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2593 event->oncpu = -1;
2594 ret = -EAGAIN;
2595 goto out;
2596 }
2597
2598 if (!is_software_event(event))
2599 cpc->active_oncpu++;
2600 if (event->attr.freq && event->attr.sample_freq)
2601 ctx->nr_freq++;
2602
2603 if (event->attr.exclusive)
2604 cpc->exclusive = 1;
2605
2606 out:
2607 perf_pmu_enable(event->pmu);
2608
2609 return ret;
2610 }
2611
2612 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2613 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2614 {
2615 struct perf_event *event, *partial_group = NULL;
2616 struct pmu *pmu = group_event->pmu_ctx->pmu;
2617
2618 if (group_event->state == PERF_EVENT_STATE_OFF)
2619 return 0;
2620
2621 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2622
2623 if (event_sched_in(group_event, ctx))
2624 goto error;
2625
2626 /*
2627 * Schedule in siblings as one group (if any):
2628 */
2629 for_each_sibling_event(event, group_event) {
2630 if (event_sched_in(event, ctx)) {
2631 partial_group = event;
2632 goto group_error;
2633 }
2634 }
2635
2636 if (!pmu->commit_txn(pmu))
2637 return 0;
2638
2639 group_error:
2640 /*
2641 * Groups can be scheduled in as one unit only, so undo any
2642 * partial group before returning:
2643 * The events up to the failed event are scheduled out normally.
2644 */
2645 for_each_sibling_event(event, group_event) {
2646 if (event == partial_group)
2647 break;
2648
2649 event_sched_out(event, ctx);
2650 }
2651 event_sched_out(group_event, ctx);
2652
2653 error:
2654 pmu->cancel_txn(pmu);
2655 return -EAGAIN;
2656 }
2657
2658 /*
2659 * Work out whether we can put this event group on the CPU now.
2660 */
group_can_go_on(struct perf_event * event,int can_add_hw)2661 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2662 {
2663 struct perf_event_pmu_context *epc = event->pmu_ctx;
2664 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2665
2666 /*
2667 * Groups consisting entirely of software events can always go on.
2668 */
2669 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2670 return 1;
2671 /*
2672 * If an exclusive group is already on, no other hardware
2673 * events can go on.
2674 */
2675 if (cpc->exclusive)
2676 return 0;
2677 /*
2678 * If this group is exclusive and there are already
2679 * events on the CPU, it can't go on.
2680 */
2681 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2682 return 0;
2683 /*
2684 * Otherwise, try to add it if all previous groups were able
2685 * to go on.
2686 */
2687 return can_add_hw;
2688 }
2689
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2690 static void add_event_to_ctx(struct perf_event *event,
2691 struct perf_event_context *ctx)
2692 {
2693 list_add_event(event, ctx);
2694 perf_group_attach(event);
2695 }
2696
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2697 static void task_ctx_sched_out(struct perf_event_context *ctx,
2698 enum event_type_t event_type)
2699 {
2700 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2701
2702 if (!cpuctx->task_ctx)
2703 return;
2704
2705 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2706 return;
2707
2708 ctx_sched_out(ctx, event_type);
2709 }
2710
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2711 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2712 struct perf_event_context *ctx)
2713 {
2714 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2715 if (ctx)
2716 ctx_sched_in(ctx, EVENT_PINNED);
2717 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2718 if (ctx)
2719 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2720 }
2721
2722 /*
2723 * We want to maintain the following priority of scheduling:
2724 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2725 * - task pinned (EVENT_PINNED)
2726 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2727 * - task flexible (EVENT_FLEXIBLE).
2728 *
2729 * In order to avoid unscheduling and scheduling back in everything every
2730 * time an event is added, only do it for the groups of equal priority and
2731 * below.
2732 *
2733 * This can be called after a batch operation on task events, in which case
2734 * event_type is a bit mask of the types of events involved. For CPU events,
2735 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2736 */
2737 /*
2738 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2739 * event to the context or enabling existing event in the context. We can
2740 * probably optimize it by rescheduling only affected pmu_ctx.
2741 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2742 static void ctx_resched(struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *task_ctx,
2744 enum event_type_t event_type)
2745 {
2746 bool cpu_event = !!(event_type & EVENT_CPU);
2747
2748 /*
2749 * If pinned groups are involved, flexible groups also need to be
2750 * scheduled out.
2751 */
2752 if (event_type & EVENT_PINNED)
2753 event_type |= EVENT_FLEXIBLE;
2754
2755 event_type &= EVENT_ALL;
2756
2757 perf_ctx_disable(&cpuctx->ctx, false);
2758 if (task_ctx) {
2759 perf_ctx_disable(task_ctx, false);
2760 task_ctx_sched_out(task_ctx, event_type);
2761 }
2762
2763 /*
2764 * Decide which cpu ctx groups to schedule out based on the types
2765 * of events that caused rescheduling:
2766 * - EVENT_CPU: schedule out corresponding groups;
2767 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2768 * - otherwise, do nothing more.
2769 */
2770 if (cpu_event)
2771 ctx_sched_out(&cpuctx->ctx, event_type);
2772 else if (event_type & EVENT_PINNED)
2773 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2774
2775 perf_event_sched_in(cpuctx, task_ctx);
2776
2777 perf_ctx_enable(&cpuctx->ctx, false);
2778 if (task_ctx)
2779 perf_ctx_enable(task_ctx, false);
2780 }
2781
perf_pmu_resched(struct pmu * pmu)2782 void perf_pmu_resched(struct pmu *pmu)
2783 {
2784 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2785 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2786
2787 perf_ctx_lock(cpuctx, task_ctx);
2788 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2789 perf_ctx_unlock(cpuctx, task_ctx);
2790 }
2791
2792 /*
2793 * Cross CPU call to install and enable a performance event
2794 *
2795 * Very similar to remote_function() + event_function() but cannot assume that
2796 * things like ctx->is_active and cpuctx->task_ctx are set.
2797 */
__perf_install_in_context(void * info)2798 static int __perf_install_in_context(void *info)
2799 {
2800 struct perf_event *event = info;
2801 struct perf_event_context *ctx = event->ctx;
2802 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2803 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2804 bool reprogram = true;
2805 int ret = 0;
2806
2807 raw_spin_lock(&cpuctx->ctx.lock);
2808 if (ctx->task) {
2809 raw_spin_lock(&ctx->lock);
2810 task_ctx = ctx;
2811
2812 reprogram = (ctx->task == current);
2813
2814 /*
2815 * If the task is running, it must be running on this CPU,
2816 * otherwise we cannot reprogram things.
2817 *
2818 * If its not running, we don't care, ctx->lock will
2819 * serialize against it becoming runnable.
2820 */
2821 if (task_curr(ctx->task) && !reprogram) {
2822 ret = -ESRCH;
2823 goto unlock;
2824 }
2825
2826 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2827 } else if (task_ctx) {
2828 raw_spin_lock(&task_ctx->lock);
2829 }
2830
2831 #ifdef CONFIG_CGROUP_PERF
2832 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2833 /*
2834 * If the current cgroup doesn't match the event's
2835 * cgroup, we should not try to schedule it.
2836 */
2837 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2838 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2839 event->cgrp->css.cgroup);
2840 }
2841 #endif
2842
2843 if (reprogram) {
2844 ctx_sched_out(ctx, EVENT_TIME);
2845 add_event_to_ctx(event, ctx);
2846 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2847 } else {
2848 add_event_to_ctx(event, ctx);
2849 }
2850
2851 unlock:
2852 perf_ctx_unlock(cpuctx, task_ctx);
2853
2854 return ret;
2855 }
2856
2857 static bool exclusive_event_installable(struct perf_event *event,
2858 struct perf_event_context *ctx);
2859
2860 /*
2861 * Attach a performance event to a context.
2862 *
2863 * Very similar to event_function_call, see comment there.
2864 */
2865 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2866 perf_install_in_context(struct perf_event_context *ctx,
2867 struct perf_event *event,
2868 int cpu)
2869 {
2870 struct task_struct *task = READ_ONCE(ctx->task);
2871
2872 lockdep_assert_held(&ctx->mutex);
2873
2874 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2875
2876 if (event->cpu != -1)
2877 WARN_ON_ONCE(event->cpu != cpu);
2878
2879 /*
2880 * Ensures that if we can observe event->ctx, both the event and ctx
2881 * will be 'complete'. See perf_iterate_sb_cpu().
2882 */
2883 smp_store_release(&event->ctx, ctx);
2884
2885 /*
2886 * perf_event_attr::disabled events will not run and can be initialized
2887 * without IPI. Except when this is the first event for the context, in
2888 * that case we need the magic of the IPI to set ctx->is_active.
2889 *
2890 * The IOC_ENABLE that is sure to follow the creation of a disabled
2891 * event will issue the IPI and reprogram the hardware.
2892 */
2893 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2894 ctx->nr_events && !is_cgroup_event(event)) {
2895 raw_spin_lock_irq(&ctx->lock);
2896 if (ctx->task == TASK_TOMBSTONE) {
2897 raw_spin_unlock_irq(&ctx->lock);
2898 return;
2899 }
2900 add_event_to_ctx(event, ctx);
2901 raw_spin_unlock_irq(&ctx->lock);
2902 return;
2903 }
2904
2905 if (!task) {
2906 cpu_function_call(cpu, __perf_install_in_context, event);
2907 return;
2908 }
2909
2910 /*
2911 * Should not happen, we validate the ctx is still alive before calling.
2912 */
2913 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2914 return;
2915
2916 /*
2917 * Installing events is tricky because we cannot rely on ctx->is_active
2918 * to be set in case this is the nr_events 0 -> 1 transition.
2919 *
2920 * Instead we use task_curr(), which tells us if the task is running.
2921 * However, since we use task_curr() outside of rq::lock, we can race
2922 * against the actual state. This means the result can be wrong.
2923 *
2924 * If we get a false positive, we retry, this is harmless.
2925 *
2926 * If we get a false negative, things are complicated. If we are after
2927 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2928 * value must be correct. If we're before, it doesn't matter since
2929 * perf_event_context_sched_in() will program the counter.
2930 *
2931 * However, this hinges on the remote context switch having observed
2932 * our task->perf_event_ctxp[] store, such that it will in fact take
2933 * ctx::lock in perf_event_context_sched_in().
2934 *
2935 * We do this by task_function_call(), if the IPI fails to hit the task
2936 * we know any future context switch of task must see the
2937 * perf_event_ctpx[] store.
2938 */
2939
2940 /*
2941 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2942 * task_cpu() load, such that if the IPI then does not find the task
2943 * running, a future context switch of that task must observe the
2944 * store.
2945 */
2946 smp_mb();
2947 again:
2948 if (!task_function_call(task, __perf_install_in_context, event))
2949 return;
2950
2951 raw_spin_lock_irq(&ctx->lock);
2952 task = ctx->task;
2953 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2954 /*
2955 * Cannot happen because we already checked above (which also
2956 * cannot happen), and we hold ctx->mutex, which serializes us
2957 * against perf_event_exit_task_context().
2958 */
2959 raw_spin_unlock_irq(&ctx->lock);
2960 return;
2961 }
2962 /*
2963 * If the task is not running, ctx->lock will avoid it becoming so,
2964 * thus we can safely install the event.
2965 */
2966 if (task_curr(task)) {
2967 raw_spin_unlock_irq(&ctx->lock);
2968 goto again;
2969 }
2970 add_event_to_ctx(event, ctx);
2971 raw_spin_unlock_irq(&ctx->lock);
2972 }
2973
2974 /*
2975 * Cross CPU call to enable a performance event
2976 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2977 static void __perf_event_enable(struct perf_event *event,
2978 struct perf_cpu_context *cpuctx,
2979 struct perf_event_context *ctx,
2980 void *info)
2981 {
2982 struct perf_event *leader = event->group_leader;
2983 struct perf_event_context *task_ctx;
2984
2985 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2986 event->state <= PERF_EVENT_STATE_ERROR)
2987 return;
2988
2989 if (ctx->is_active)
2990 ctx_sched_out(ctx, EVENT_TIME);
2991
2992 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2993 perf_cgroup_event_enable(event, ctx);
2994
2995 if (!ctx->is_active)
2996 return;
2997
2998 if (!event_filter_match(event)) {
2999 ctx_sched_in(ctx, EVENT_TIME);
3000 return;
3001 }
3002
3003 /*
3004 * If the event is in a group and isn't the group leader,
3005 * then don't put it on unless the group is on.
3006 */
3007 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3008 ctx_sched_in(ctx, EVENT_TIME);
3009 return;
3010 }
3011
3012 task_ctx = cpuctx->task_ctx;
3013 if (ctx->task)
3014 WARN_ON_ONCE(task_ctx != ctx);
3015
3016 ctx_resched(cpuctx, task_ctx, get_event_type(event));
3017 }
3018
3019 /*
3020 * Enable an event.
3021 *
3022 * If event->ctx is a cloned context, callers must make sure that
3023 * every task struct that event->ctx->task could possibly point to
3024 * remains valid. This condition is satisfied when called through
3025 * perf_event_for_each_child or perf_event_for_each as described
3026 * for perf_event_disable.
3027 */
_perf_event_enable(struct perf_event * event)3028 static void _perf_event_enable(struct perf_event *event)
3029 {
3030 struct perf_event_context *ctx = event->ctx;
3031
3032 raw_spin_lock_irq(&ctx->lock);
3033 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3034 event->state < PERF_EVENT_STATE_ERROR) {
3035 out:
3036 raw_spin_unlock_irq(&ctx->lock);
3037 return;
3038 }
3039
3040 /*
3041 * If the event is in error state, clear that first.
3042 *
3043 * That way, if we see the event in error state below, we know that it
3044 * has gone back into error state, as distinct from the task having
3045 * been scheduled away before the cross-call arrived.
3046 */
3047 if (event->state == PERF_EVENT_STATE_ERROR) {
3048 /*
3049 * Detached SIBLING events cannot leave ERROR state.
3050 */
3051 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3052 event->group_leader == event)
3053 goto out;
3054
3055 event->state = PERF_EVENT_STATE_OFF;
3056 }
3057 raw_spin_unlock_irq(&ctx->lock);
3058
3059 event_function_call(event, __perf_event_enable, NULL);
3060 }
3061
3062 /*
3063 * See perf_event_disable();
3064 */
perf_event_enable(struct perf_event * event)3065 void perf_event_enable(struct perf_event *event)
3066 {
3067 struct perf_event_context *ctx;
3068
3069 ctx = perf_event_ctx_lock(event);
3070 _perf_event_enable(event);
3071 perf_event_ctx_unlock(event, ctx);
3072 }
3073 EXPORT_SYMBOL_GPL(perf_event_enable);
3074
3075 struct stop_event_data {
3076 struct perf_event *event;
3077 unsigned int restart;
3078 };
3079
__perf_event_stop(void * info)3080 static int __perf_event_stop(void *info)
3081 {
3082 struct stop_event_data *sd = info;
3083 struct perf_event *event = sd->event;
3084
3085 /* if it's already INACTIVE, do nothing */
3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3087 return 0;
3088
3089 /* matches smp_wmb() in event_sched_in() */
3090 smp_rmb();
3091
3092 /*
3093 * There is a window with interrupts enabled before we get here,
3094 * so we need to check again lest we try to stop another CPU's event.
3095 */
3096 if (READ_ONCE(event->oncpu) != smp_processor_id())
3097 return -EAGAIN;
3098
3099 event->pmu->stop(event, PERF_EF_UPDATE);
3100
3101 /*
3102 * May race with the actual stop (through perf_pmu_output_stop()),
3103 * but it is only used for events with AUX ring buffer, and such
3104 * events will refuse to restart because of rb::aux_mmap_count==0,
3105 * see comments in perf_aux_output_begin().
3106 *
3107 * Since this is happening on an event-local CPU, no trace is lost
3108 * while restarting.
3109 */
3110 if (sd->restart)
3111 event->pmu->start(event, 0);
3112
3113 return 0;
3114 }
3115
perf_event_stop(struct perf_event * event,int restart)3116 static int perf_event_stop(struct perf_event *event, int restart)
3117 {
3118 struct stop_event_data sd = {
3119 .event = event,
3120 .restart = restart,
3121 };
3122 int ret = 0;
3123
3124 do {
3125 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3126 return 0;
3127
3128 /* matches smp_wmb() in event_sched_in() */
3129 smp_rmb();
3130
3131 /*
3132 * We only want to restart ACTIVE events, so if the event goes
3133 * inactive here (event->oncpu==-1), there's nothing more to do;
3134 * fall through with ret==-ENXIO.
3135 */
3136 ret = cpu_function_call(READ_ONCE(event->oncpu),
3137 __perf_event_stop, &sd);
3138 } while (ret == -EAGAIN);
3139
3140 return ret;
3141 }
3142
3143 /*
3144 * In order to contain the amount of racy and tricky in the address filter
3145 * configuration management, it is a two part process:
3146 *
3147 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3148 * we update the addresses of corresponding vmas in
3149 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3150 * (p2) when an event is scheduled in (pmu::add), it calls
3151 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3152 * if the generation has changed since the previous call.
3153 *
3154 * If (p1) happens while the event is active, we restart it to force (p2).
3155 *
3156 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3157 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3158 * ioctl;
3159 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3160 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3161 * for reading;
3162 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3163 * of exec.
3164 */
perf_event_addr_filters_sync(struct perf_event * event)3165 void perf_event_addr_filters_sync(struct perf_event *event)
3166 {
3167 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3168
3169 if (!has_addr_filter(event))
3170 return;
3171
3172 raw_spin_lock(&ifh->lock);
3173 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3174 event->pmu->addr_filters_sync(event);
3175 event->hw.addr_filters_gen = event->addr_filters_gen;
3176 }
3177 raw_spin_unlock(&ifh->lock);
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3180
_perf_event_refresh(struct perf_event * event,int refresh)3181 static int _perf_event_refresh(struct perf_event *event, int refresh)
3182 {
3183 /*
3184 * not supported on inherited events
3185 */
3186 if (event->attr.inherit || !is_sampling_event(event))
3187 return -EINVAL;
3188
3189 atomic_add(refresh, &event->event_limit);
3190 _perf_event_enable(event);
3191
3192 return 0;
3193 }
3194
3195 /*
3196 * See perf_event_disable()
3197 */
perf_event_refresh(struct perf_event * event,int refresh)3198 int perf_event_refresh(struct perf_event *event, int refresh)
3199 {
3200 struct perf_event_context *ctx;
3201 int ret;
3202
3203 ctx = perf_event_ctx_lock(event);
3204 ret = _perf_event_refresh(event, refresh);
3205 perf_event_ctx_unlock(event, ctx);
3206
3207 return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(perf_event_refresh);
3210
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3211 static int perf_event_modify_breakpoint(struct perf_event *bp,
3212 struct perf_event_attr *attr)
3213 {
3214 int err;
3215
3216 _perf_event_disable(bp);
3217
3218 err = modify_user_hw_breakpoint_check(bp, attr, true);
3219
3220 if (!bp->attr.disabled)
3221 _perf_event_enable(bp);
3222
3223 return err;
3224 }
3225
3226 /*
3227 * Copy event-type-independent attributes that may be modified.
3228 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3229 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3230 const struct perf_event_attr *from)
3231 {
3232 to->sig_data = from->sig_data;
3233 }
3234
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3235 static int perf_event_modify_attr(struct perf_event *event,
3236 struct perf_event_attr *attr)
3237 {
3238 int (*func)(struct perf_event *, struct perf_event_attr *);
3239 struct perf_event *child;
3240 int err;
3241
3242 if (event->attr.type != attr->type)
3243 return -EINVAL;
3244
3245 switch (event->attr.type) {
3246 case PERF_TYPE_BREAKPOINT:
3247 func = perf_event_modify_breakpoint;
3248 break;
3249 default:
3250 /* Place holder for future additions. */
3251 return -EOPNOTSUPP;
3252 }
3253
3254 WARN_ON_ONCE(event->ctx->parent_ctx);
3255
3256 mutex_lock(&event->child_mutex);
3257 /*
3258 * Event-type-independent attributes must be copied before event-type
3259 * modification, which will validate that final attributes match the
3260 * source attributes after all relevant attributes have been copied.
3261 */
3262 perf_event_modify_copy_attr(&event->attr, attr);
3263 err = func(event, attr);
3264 if (err)
3265 goto out;
3266 list_for_each_entry(child, &event->child_list, child_list) {
3267 perf_event_modify_copy_attr(&child->attr, attr);
3268 err = func(child, attr);
3269 if (err)
3270 goto out;
3271 }
3272 out:
3273 mutex_unlock(&event->child_mutex);
3274 return err;
3275 }
3276
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3277 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3278 enum event_type_t event_type)
3279 {
3280 struct perf_event_context *ctx = pmu_ctx->ctx;
3281 struct perf_event *event, *tmp;
3282 struct pmu *pmu = pmu_ctx->pmu;
3283
3284 if (ctx->task && !ctx->is_active) {
3285 struct perf_cpu_pmu_context *cpc;
3286
3287 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3288 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3289 cpc->task_epc = NULL;
3290 }
3291
3292 if (!event_type)
3293 return;
3294
3295 perf_pmu_disable(pmu);
3296 if (event_type & EVENT_PINNED) {
3297 list_for_each_entry_safe(event, tmp,
3298 &pmu_ctx->pinned_active,
3299 active_list)
3300 group_sched_out(event, ctx);
3301 }
3302
3303 if (event_type & EVENT_FLEXIBLE) {
3304 list_for_each_entry_safe(event, tmp,
3305 &pmu_ctx->flexible_active,
3306 active_list)
3307 group_sched_out(event, ctx);
3308 /*
3309 * Since we cleared EVENT_FLEXIBLE, also clear
3310 * rotate_necessary, is will be reset by
3311 * ctx_flexible_sched_in() when needed.
3312 */
3313 pmu_ctx->rotate_necessary = 0;
3314 }
3315 perf_pmu_enable(pmu);
3316 }
3317
3318 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3319 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3320 {
3321 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3322 struct perf_event_pmu_context *pmu_ctx;
3323 int is_active = ctx->is_active;
3324 bool cgroup = event_type & EVENT_CGROUP;
3325
3326 event_type &= ~EVENT_CGROUP;
3327
3328 lockdep_assert_held(&ctx->lock);
3329
3330 if (likely(!ctx->nr_events)) {
3331 /*
3332 * See __perf_remove_from_context().
3333 */
3334 WARN_ON_ONCE(ctx->is_active);
3335 if (ctx->task)
3336 WARN_ON_ONCE(cpuctx->task_ctx);
3337 return;
3338 }
3339
3340 /*
3341 * Always update time if it was set; not only when it changes.
3342 * Otherwise we can 'forget' to update time for any but the last
3343 * context we sched out. For example:
3344 *
3345 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3346 * ctx_sched_out(.event_type = EVENT_PINNED)
3347 *
3348 * would only update time for the pinned events.
3349 */
3350 if (is_active & EVENT_TIME) {
3351 /* update (and stop) ctx time */
3352 update_context_time(ctx);
3353 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3354 /*
3355 * CPU-release for the below ->is_active store,
3356 * see __load_acquire() in perf_event_time_now()
3357 */
3358 barrier();
3359 }
3360
3361 ctx->is_active &= ~event_type;
3362 if (!(ctx->is_active & EVENT_ALL))
3363 ctx->is_active = 0;
3364
3365 if (ctx->task) {
3366 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3367 if (!ctx->is_active)
3368 cpuctx->task_ctx = NULL;
3369 }
3370
3371 is_active ^= ctx->is_active; /* changed bits */
3372
3373 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3374 if (cgroup && !pmu_ctx->nr_cgroups)
3375 continue;
3376 __pmu_ctx_sched_out(pmu_ctx, is_active);
3377 }
3378 }
3379
3380 /*
3381 * Test whether two contexts are equivalent, i.e. whether they have both been
3382 * cloned from the same version of the same context.
3383 *
3384 * Equivalence is measured using a generation number in the context that is
3385 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3386 * and list_del_event().
3387 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3388 static int context_equiv(struct perf_event_context *ctx1,
3389 struct perf_event_context *ctx2)
3390 {
3391 lockdep_assert_held(&ctx1->lock);
3392 lockdep_assert_held(&ctx2->lock);
3393
3394 /* Pinning disables the swap optimization */
3395 if (ctx1->pin_count || ctx2->pin_count)
3396 return 0;
3397
3398 /* If ctx1 is the parent of ctx2 */
3399 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3400 return 1;
3401
3402 /* If ctx2 is the parent of ctx1 */
3403 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3404 return 1;
3405
3406 /*
3407 * If ctx1 and ctx2 have the same parent; we flatten the parent
3408 * hierarchy, see perf_event_init_context().
3409 */
3410 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3411 ctx1->parent_gen == ctx2->parent_gen)
3412 return 1;
3413
3414 /* Unmatched */
3415 return 0;
3416 }
3417
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3418 static void __perf_event_sync_stat(struct perf_event *event,
3419 struct perf_event *next_event)
3420 {
3421 u64 value;
3422
3423 if (!event->attr.inherit_stat)
3424 return;
3425
3426 /*
3427 * Update the event value, we cannot use perf_event_read()
3428 * because we're in the middle of a context switch and have IRQs
3429 * disabled, which upsets smp_call_function_single(), however
3430 * we know the event must be on the current CPU, therefore we
3431 * don't need to use it.
3432 */
3433 perf_pmu_read(event);
3434
3435 perf_event_update_time(event);
3436
3437 /*
3438 * In order to keep per-task stats reliable we need to flip the event
3439 * values when we flip the contexts.
3440 */
3441 value = local64_read(&next_event->count);
3442 value = local64_xchg(&event->count, value);
3443 local64_set(&next_event->count, value);
3444
3445 swap(event->total_time_enabled, next_event->total_time_enabled);
3446 swap(event->total_time_running, next_event->total_time_running);
3447
3448 /*
3449 * Since we swizzled the values, update the user visible data too.
3450 */
3451 perf_event_update_userpage(event);
3452 perf_event_update_userpage(next_event);
3453 }
3454
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3455 static void perf_event_sync_stat(struct perf_event_context *ctx,
3456 struct perf_event_context *next_ctx)
3457 {
3458 struct perf_event *event, *next_event;
3459
3460 if (!ctx->nr_stat)
3461 return;
3462
3463 update_context_time(ctx);
3464
3465 event = list_first_entry(&ctx->event_list,
3466 struct perf_event, event_entry);
3467
3468 next_event = list_first_entry(&next_ctx->event_list,
3469 struct perf_event, event_entry);
3470
3471 while (&event->event_entry != &ctx->event_list &&
3472 &next_event->event_entry != &next_ctx->event_list) {
3473
3474 __perf_event_sync_stat(event, next_event);
3475
3476 event = list_next_entry(event, event_entry);
3477 next_event = list_next_entry(next_event, event_entry);
3478 }
3479 }
3480
3481 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3482 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3483 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3484 !list_entry_is_head(pos1, head1, member) && \
3485 !list_entry_is_head(pos2, head2, member); \
3486 pos1 = list_next_entry(pos1, member), \
3487 pos2 = list_next_entry(pos2, member))
3488
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3489 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3490 struct perf_event_context *next_ctx)
3491 {
3492 struct perf_event_pmu_context *prev_epc, *next_epc;
3493
3494 if (!prev_ctx->nr_task_data)
3495 return;
3496
3497 double_list_for_each_entry(prev_epc, next_epc,
3498 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3499 pmu_ctx_entry) {
3500
3501 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3502 continue;
3503
3504 /*
3505 * PMU specific parts of task perf context can require
3506 * additional synchronization. As an example of such
3507 * synchronization see implementation details of Intel
3508 * LBR call stack data profiling;
3509 */
3510 if (prev_epc->pmu->swap_task_ctx)
3511 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3512 else
3513 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3514 }
3515 }
3516
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3517 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3518 {
3519 struct perf_event_pmu_context *pmu_ctx;
3520 struct perf_cpu_pmu_context *cpc;
3521
3522 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3523 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3524
3525 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3526 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3527 }
3528 }
3529
3530 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3531 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3532 {
3533 struct perf_event_context *ctx = task->perf_event_ctxp;
3534 struct perf_event_context *next_ctx;
3535 struct perf_event_context *parent, *next_parent;
3536 int do_switch = 1;
3537
3538 if (likely(!ctx))
3539 return;
3540
3541 rcu_read_lock();
3542 next_ctx = rcu_dereference(next->perf_event_ctxp);
3543 if (!next_ctx)
3544 goto unlock;
3545
3546 parent = rcu_dereference(ctx->parent_ctx);
3547 next_parent = rcu_dereference(next_ctx->parent_ctx);
3548
3549 /* If neither context have a parent context; they cannot be clones. */
3550 if (!parent && !next_parent)
3551 goto unlock;
3552
3553 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3554 /*
3555 * Looks like the two contexts are clones, so we might be
3556 * able to optimize the context switch. We lock both
3557 * contexts and check that they are clones under the
3558 * lock (including re-checking that neither has been
3559 * uncloned in the meantime). It doesn't matter which
3560 * order we take the locks because no other cpu could
3561 * be trying to lock both of these tasks.
3562 */
3563 raw_spin_lock(&ctx->lock);
3564 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3565 if (context_equiv(ctx, next_ctx)) {
3566
3567 perf_ctx_disable(ctx, false);
3568
3569 /* PMIs are disabled; ctx->nr_pending is stable. */
3570 if (local_read(&ctx->nr_pending) ||
3571 local_read(&next_ctx->nr_pending)) {
3572 /*
3573 * Must not swap out ctx when there's pending
3574 * events that rely on the ctx->task relation.
3575 */
3576 raw_spin_unlock(&next_ctx->lock);
3577 rcu_read_unlock();
3578 goto inside_switch;
3579 }
3580
3581 WRITE_ONCE(ctx->task, next);
3582 WRITE_ONCE(next_ctx->task, task);
3583
3584 perf_ctx_sched_task_cb(ctx, false);
3585 perf_event_swap_task_ctx_data(ctx, next_ctx);
3586
3587 perf_ctx_enable(ctx, false);
3588
3589 /*
3590 * RCU_INIT_POINTER here is safe because we've not
3591 * modified the ctx and the above modification of
3592 * ctx->task and ctx->task_ctx_data are immaterial
3593 * since those values are always verified under
3594 * ctx->lock which we're now holding.
3595 */
3596 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3597 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3598
3599 do_switch = 0;
3600
3601 perf_event_sync_stat(ctx, next_ctx);
3602 }
3603 raw_spin_unlock(&next_ctx->lock);
3604 raw_spin_unlock(&ctx->lock);
3605 }
3606 unlock:
3607 rcu_read_unlock();
3608
3609 if (do_switch) {
3610 raw_spin_lock(&ctx->lock);
3611 perf_ctx_disable(ctx, false);
3612
3613 inside_switch:
3614 perf_ctx_sched_task_cb(ctx, false);
3615 task_ctx_sched_out(ctx, EVENT_ALL);
3616
3617 perf_ctx_enable(ctx, false);
3618 raw_spin_unlock(&ctx->lock);
3619 }
3620 }
3621
3622 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3623 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3624
perf_sched_cb_dec(struct pmu * pmu)3625 void perf_sched_cb_dec(struct pmu *pmu)
3626 {
3627 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3628
3629 this_cpu_dec(perf_sched_cb_usages);
3630 barrier();
3631
3632 if (!--cpc->sched_cb_usage)
3633 list_del(&cpc->sched_cb_entry);
3634 }
3635
3636
perf_sched_cb_inc(struct pmu * pmu)3637 void perf_sched_cb_inc(struct pmu *pmu)
3638 {
3639 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3640
3641 if (!cpc->sched_cb_usage++)
3642 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3643
3644 barrier();
3645 this_cpu_inc(perf_sched_cb_usages);
3646 }
3647
3648 /*
3649 * This function provides the context switch callback to the lower code
3650 * layer. It is invoked ONLY when the context switch callback is enabled.
3651 *
3652 * This callback is relevant even to per-cpu events; for example multi event
3653 * PEBS requires this to provide PID/TID information. This requires we flush
3654 * all queued PEBS records before we context switch to a new task.
3655 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3656 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3657 {
3658 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3659 struct pmu *pmu;
3660
3661 pmu = cpc->epc.pmu;
3662
3663 /* software PMUs will not have sched_task */
3664 if (WARN_ON_ONCE(!pmu->sched_task))
3665 return;
3666
3667 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3668 perf_pmu_disable(pmu);
3669
3670 pmu->sched_task(cpc->task_epc, sched_in);
3671
3672 perf_pmu_enable(pmu);
3673 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3674 }
3675
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3676 static void perf_pmu_sched_task(struct task_struct *prev,
3677 struct task_struct *next,
3678 bool sched_in)
3679 {
3680 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3681 struct perf_cpu_pmu_context *cpc;
3682
3683 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3684 if (prev == next || cpuctx->task_ctx)
3685 return;
3686
3687 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3688 __perf_pmu_sched_task(cpc, sched_in);
3689 }
3690
3691 static void perf_event_switch(struct task_struct *task,
3692 struct task_struct *next_prev, bool sched_in);
3693
3694 /*
3695 * Called from scheduler to remove the events of the current task,
3696 * with interrupts disabled.
3697 *
3698 * We stop each event and update the event value in event->count.
3699 *
3700 * This does not protect us against NMI, but disable()
3701 * sets the disabled bit in the control field of event _before_
3702 * accessing the event control register. If a NMI hits, then it will
3703 * not restart the event.
3704 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3705 void __perf_event_task_sched_out(struct task_struct *task,
3706 struct task_struct *next)
3707 {
3708 if (__this_cpu_read(perf_sched_cb_usages))
3709 perf_pmu_sched_task(task, next, false);
3710
3711 if (atomic_read(&nr_switch_events))
3712 perf_event_switch(task, next, false);
3713
3714 perf_event_context_sched_out(task, next);
3715
3716 /*
3717 * if cgroup events exist on this CPU, then we need
3718 * to check if we have to switch out PMU state.
3719 * cgroup event are system-wide mode only
3720 */
3721 perf_cgroup_switch(next);
3722 }
3723
perf_less_group_idx(const void * l,const void * r)3724 static bool perf_less_group_idx(const void *l, const void *r)
3725 {
3726 const struct perf_event *le = *(const struct perf_event **)l;
3727 const struct perf_event *re = *(const struct perf_event **)r;
3728
3729 return le->group_index < re->group_index;
3730 }
3731
swap_ptr(void * l,void * r)3732 static void swap_ptr(void *l, void *r)
3733 {
3734 void **lp = l, **rp = r;
3735
3736 swap(*lp, *rp);
3737 }
3738
3739 static const struct min_heap_callbacks perf_min_heap = {
3740 .elem_size = sizeof(struct perf_event *),
3741 .less = perf_less_group_idx,
3742 .swp = swap_ptr,
3743 };
3744
__heap_add(struct min_heap * heap,struct perf_event * event)3745 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3746 {
3747 struct perf_event **itrs = heap->data;
3748
3749 if (event) {
3750 itrs[heap->nr] = event;
3751 heap->nr++;
3752 }
3753 }
3754
__link_epc(struct perf_event_pmu_context * pmu_ctx)3755 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3756 {
3757 struct perf_cpu_pmu_context *cpc;
3758
3759 if (!pmu_ctx->ctx->task)
3760 return;
3761
3762 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3763 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3764 cpc->task_epc = pmu_ctx;
3765 }
3766
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3767 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3768 struct perf_event_groups *groups, int cpu,
3769 struct pmu *pmu,
3770 int (*func)(struct perf_event *, void *),
3771 void *data)
3772 {
3773 #ifdef CONFIG_CGROUP_PERF
3774 struct cgroup_subsys_state *css = NULL;
3775 #endif
3776 struct perf_cpu_context *cpuctx = NULL;
3777 /* Space for per CPU and/or any CPU event iterators. */
3778 struct perf_event *itrs[2];
3779 struct min_heap event_heap;
3780 struct perf_event **evt;
3781 int ret;
3782
3783 if (pmu->filter && pmu->filter(pmu, cpu))
3784 return 0;
3785
3786 if (!ctx->task) {
3787 cpuctx = this_cpu_ptr(&perf_cpu_context);
3788 event_heap = (struct min_heap){
3789 .data = cpuctx->heap,
3790 .nr = 0,
3791 .size = cpuctx->heap_size,
3792 };
3793
3794 lockdep_assert_held(&cpuctx->ctx.lock);
3795
3796 #ifdef CONFIG_CGROUP_PERF
3797 if (cpuctx->cgrp)
3798 css = &cpuctx->cgrp->css;
3799 #endif
3800 } else {
3801 event_heap = (struct min_heap){
3802 .data = itrs,
3803 .nr = 0,
3804 .size = ARRAY_SIZE(itrs),
3805 };
3806 /* Events not within a CPU context may be on any CPU. */
3807 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3808 }
3809 evt = event_heap.data;
3810
3811 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3812
3813 #ifdef CONFIG_CGROUP_PERF
3814 for (; css; css = css->parent)
3815 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3816 #endif
3817
3818 if (event_heap.nr) {
3819 __link_epc((*evt)->pmu_ctx);
3820 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3821 }
3822
3823 min_heapify_all(&event_heap, &perf_min_heap);
3824
3825 while (event_heap.nr) {
3826 ret = func(*evt, data);
3827 if (ret)
3828 return ret;
3829
3830 *evt = perf_event_groups_next(*evt, pmu);
3831 if (*evt)
3832 min_heapify(&event_heap, 0, &perf_min_heap);
3833 else
3834 min_heap_pop(&event_heap, &perf_min_heap);
3835 }
3836
3837 return 0;
3838 }
3839
3840 /*
3841 * Because the userpage is strictly per-event (there is no concept of context,
3842 * so there cannot be a context indirection), every userpage must be updated
3843 * when context time starts :-(
3844 *
3845 * IOW, we must not miss EVENT_TIME edges.
3846 */
event_update_userpage(struct perf_event * event)3847 static inline bool event_update_userpage(struct perf_event *event)
3848 {
3849 if (likely(!atomic_read(&event->mmap_count)))
3850 return false;
3851
3852 perf_event_update_time(event);
3853 perf_event_update_userpage(event);
3854
3855 return true;
3856 }
3857
group_update_userpage(struct perf_event * group_event)3858 static inline void group_update_userpage(struct perf_event *group_event)
3859 {
3860 struct perf_event *event;
3861
3862 if (!event_update_userpage(group_event))
3863 return;
3864
3865 for_each_sibling_event(event, group_event)
3866 event_update_userpage(event);
3867 }
3868
merge_sched_in(struct perf_event * event,void * data)3869 static int merge_sched_in(struct perf_event *event, void *data)
3870 {
3871 struct perf_event_context *ctx = event->ctx;
3872 int *can_add_hw = data;
3873
3874 if (event->state <= PERF_EVENT_STATE_OFF)
3875 return 0;
3876
3877 if (!event_filter_match(event))
3878 return 0;
3879
3880 if (group_can_go_on(event, *can_add_hw)) {
3881 if (!group_sched_in(event, ctx))
3882 list_add_tail(&event->active_list, get_event_list(event));
3883 }
3884
3885 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3886 *can_add_hw = 0;
3887 if (event->attr.pinned) {
3888 perf_cgroup_event_disable(event, ctx);
3889 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3890 } else {
3891 struct perf_cpu_pmu_context *cpc;
3892
3893 event->pmu_ctx->rotate_necessary = 1;
3894 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3895 perf_mux_hrtimer_restart(cpc);
3896 group_update_userpage(event);
3897 }
3898 }
3899
3900 return 0;
3901 }
3902
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3903 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3904 struct perf_event_groups *groups,
3905 struct pmu *pmu)
3906 {
3907 int can_add_hw = 1;
3908 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3909 merge_sched_in, &can_add_hw);
3910 }
3911
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3912 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3913 struct perf_event_groups *groups,
3914 bool cgroup)
3915 {
3916 struct perf_event_pmu_context *pmu_ctx;
3917
3918 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3919 if (cgroup && !pmu_ctx->nr_cgroups)
3920 continue;
3921 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3922 }
3923 }
3924
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3925 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3926 struct pmu *pmu)
3927 {
3928 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3929 }
3930
3931 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3932 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3933 {
3934 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3935 int is_active = ctx->is_active;
3936 bool cgroup = event_type & EVENT_CGROUP;
3937
3938 event_type &= ~EVENT_CGROUP;
3939
3940 lockdep_assert_held(&ctx->lock);
3941
3942 if (likely(!ctx->nr_events))
3943 return;
3944
3945 if (!(is_active & EVENT_TIME)) {
3946 /* start ctx time */
3947 __update_context_time(ctx, false);
3948 perf_cgroup_set_timestamp(cpuctx);
3949 /*
3950 * CPU-release for the below ->is_active store,
3951 * see __load_acquire() in perf_event_time_now()
3952 */
3953 barrier();
3954 }
3955
3956 ctx->is_active |= (event_type | EVENT_TIME);
3957 if (ctx->task) {
3958 if (!is_active)
3959 cpuctx->task_ctx = ctx;
3960 else
3961 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3962 }
3963
3964 is_active ^= ctx->is_active; /* changed bits */
3965
3966 /*
3967 * First go through the list and put on any pinned groups
3968 * in order to give them the best chance of going on.
3969 */
3970 if (is_active & EVENT_PINNED)
3971 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3972
3973 /* Then walk through the lower prio flexible groups */
3974 if (is_active & EVENT_FLEXIBLE)
3975 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3976 }
3977
perf_event_context_sched_in(struct task_struct * task)3978 static void perf_event_context_sched_in(struct task_struct *task)
3979 {
3980 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3981 struct perf_event_context *ctx;
3982
3983 rcu_read_lock();
3984 ctx = rcu_dereference(task->perf_event_ctxp);
3985 if (!ctx)
3986 goto rcu_unlock;
3987
3988 if (cpuctx->task_ctx == ctx) {
3989 perf_ctx_lock(cpuctx, ctx);
3990 perf_ctx_disable(ctx, false);
3991
3992 perf_ctx_sched_task_cb(ctx, true);
3993
3994 perf_ctx_enable(ctx, false);
3995 perf_ctx_unlock(cpuctx, ctx);
3996 goto rcu_unlock;
3997 }
3998
3999 perf_ctx_lock(cpuctx, ctx);
4000 /*
4001 * We must check ctx->nr_events while holding ctx->lock, such
4002 * that we serialize against perf_install_in_context().
4003 */
4004 if (!ctx->nr_events)
4005 goto unlock;
4006
4007 perf_ctx_disable(ctx, false);
4008 /*
4009 * We want to keep the following priority order:
4010 * cpu pinned (that don't need to move), task pinned,
4011 * cpu flexible, task flexible.
4012 *
4013 * However, if task's ctx is not carrying any pinned
4014 * events, no need to flip the cpuctx's events around.
4015 */
4016 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4017 perf_ctx_disable(&cpuctx->ctx, false);
4018 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
4019 }
4020
4021 perf_event_sched_in(cpuctx, ctx);
4022
4023 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4024
4025 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4026 perf_ctx_enable(&cpuctx->ctx, false);
4027
4028 perf_ctx_enable(ctx, false);
4029
4030 unlock:
4031 perf_ctx_unlock(cpuctx, ctx);
4032 rcu_unlock:
4033 rcu_read_unlock();
4034 }
4035
4036 /*
4037 * Called from scheduler to add the events of the current task
4038 * with interrupts disabled.
4039 *
4040 * We restore the event value and then enable it.
4041 *
4042 * This does not protect us against NMI, but enable()
4043 * sets the enabled bit in the control field of event _before_
4044 * accessing the event control register. If a NMI hits, then it will
4045 * keep the event running.
4046 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4047 void __perf_event_task_sched_in(struct task_struct *prev,
4048 struct task_struct *task)
4049 {
4050 perf_event_context_sched_in(task);
4051
4052 if (atomic_read(&nr_switch_events))
4053 perf_event_switch(task, prev, true);
4054
4055 if (__this_cpu_read(perf_sched_cb_usages))
4056 perf_pmu_sched_task(prev, task, true);
4057 }
4058
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4059 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4060 {
4061 u64 frequency = event->attr.sample_freq;
4062 u64 sec = NSEC_PER_SEC;
4063 u64 divisor, dividend;
4064
4065 int count_fls, nsec_fls, frequency_fls, sec_fls;
4066
4067 count_fls = fls64(count);
4068 nsec_fls = fls64(nsec);
4069 frequency_fls = fls64(frequency);
4070 sec_fls = 30;
4071
4072 /*
4073 * We got @count in @nsec, with a target of sample_freq HZ
4074 * the target period becomes:
4075 *
4076 * @count * 10^9
4077 * period = -------------------
4078 * @nsec * sample_freq
4079 *
4080 */
4081
4082 /*
4083 * Reduce accuracy by one bit such that @a and @b converge
4084 * to a similar magnitude.
4085 */
4086 #define REDUCE_FLS(a, b) \
4087 do { \
4088 if (a##_fls > b##_fls) { \
4089 a >>= 1; \
4090 a##_fls--; \
4091 } else { \
4092 b >>= 1; \
4093 b##_fls--; \
4094 } \
4095 } while (0)
4096
4097 /*
4098 * Reduce accuracy until either term fits in a u64, then proceed with
4099 * the other, so that finally we can do a u64/u64 division.
4100 */
4101 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4102 REDUCE_FLS(nsec, frequency);
4103 REDUCE_FLS(sec, count);
4104 }
4105
4106 if (count_fls + sec_fls > 64) {
4107 divisor = nsec * frequency;
4108
4109 while (count_fls + sec_fls > 64) {
4110 REDUCE_FLS(count, sec);
4111 divisor >>= 1;
4112 }
4113
4114 dividend = count * sec;
4115 } else {
4116 dividend = count * sec;
4117
4118 while (nsec_fls + frequency_fls > 64) {
4119 REDUCE_FLS(nsec, frequency);
4120 dividend >>= 1;
4121 }
4122
4123 divisor = nsec * frequency;
4124 }
4125
4126 if (!divisor)
4127 return dividend;
4128
4129 return div64_u64(dividend, divisor);
4130 }
4131
4132 static DEFINE_PER_CPU(int, perf_throttled_count);
4133 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4134
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4135 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4136 {
4137 struct hw_perf_event *hwc = &event->hw;
4138 s64 period, sample_period;
4139 s64 delta;
4140
4141 period = perf_calculate_period(event, nsec, count);
4142
4143 delta = (s64)(period - hwc->sample_period);
4144 if (delta >= 0)
4145 delta += 7;
4146 else
4147 delta -= 7;
4148 delta /= 8; /* low pass filter */
4149
4150 sample_period = hwc->sample_period + delta;
4151
4152 if (!sample_period)
4153 sample_period = 1;
4154
4155 hwc->sample_period = sample_period;
4156
4157 if (local64_read(&hwc->period_left) > 8*sample_period) {
4158 if (disable)
4159 event->pmu->stop(event, PERF_EF_UPDATE);
4160
4161 local64_set(&hwc->period_left, 0);
4162
4163 if (disable)
4164 event->pmu->start(event, PERF_EF_RELOAD);
4165 }
4166 }
4167
4168 /*
4169 * combine freq adjustment with unthrottling to avoid two passes over the
4170 * events. At the same time, make sure, having freq events does not change
4171 * the rate of unthrottling as that would introduce bias.
4172 */
4173 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4174 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4175 {
4176 struct perf_event *event;
4177 struct hw_perf_event *hwc;
4178 u64 now, period = TICK_NSEC;
4179 s64 delta;
4180
4181 /*
4182 * only need to iterate over all events iff:
4183 * - context have events in frequency mode (needs freq adjust)
4184 * - there are events to unthrottle on this cpu
4185 */
4186 if (!(ctx->nr_freq || unthrottle))
4187 return;
4188
4189 raw_spin_lock(&ctx->lock);
4190
4191 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4192 if (event->state != PERF_EVENT_STATE_ACTIVE)
4193 continue;
4194
4195 // XXX use visit thingy to avoid the -1,cpu match
4196 if (!event_filter_match(event))
4197 continue;
4198
4199 perf_pmu_disable(event->pmu);
4200
4201 hwc = &event->hw;
4202
4203 if (hwc->interrupts == MAX_INTERRUPTS) {
4204 hwc->interrupts = 0;
4205 perf_log_throttle(event, 1);
4206 event->pmu->start(event, 0);
4207 }
4208
4209 if (!event->attr.freq || !event->attr.sample_freq)
4210 goto next;
4211
4212 /*
4213 * stop the event and update event->count
4214 */
4215 event->pmu->stop(event, PERF_EF_UPDATE);
4216
4217 now = local64_read(&event->count);
4218 delta = now - hwc->freq_count_stamp;
4219 hwc->freq_count_stamp = now;
4220
4221 /*
4222 * restart the event
4223 * reload only if value has changed
4224 * we have stopped the event so tell that
4225 * to perf_adjust_period() to avoid stopping it
4226 * twice.
4227 */
4228 if (delta > 0)
4229 perf_adjust_period(event, period, delta, false);
4230
4231 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4232 next:
4233 perf_pmu_enable(event->pmu);
4234 }
4235
4236 raw_spin_unlock(&ctx->lock);
4237 }
4238
4239 /*
4240 * Move @event to the tail of the @ctx's elegible events.
4241 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4242 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4243 {
4244 /*
4245 * Rotate the first entry last of non-pinned groups. Rotation might be
4246 * disabled by the inheritance code.
4247 */
4248 if (ctx->rotate_disable)
4249 return;
4250
4251 perf_event_groups_delete(&ctx->flexible_groups, event);
4252 perf_event_groups_insert(&ctx->flexible_groups, event);
4253 }
4254
4255 /* pick an event from the flexible_groups to rotate */
4256 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4257 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4258 {
4259 struct perf_event *event;
4260 struct rb_node *node;
4261 struct rb_root *tree;
4262 struct __group_key key = {
4263 .pmu = pmu_ctx->pmu,
4264 };
4265
4266 /* pick the first active flexible event */
4267 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4268 struct perf_event, active_list);
4269 if (event)
4270 goto out;
4271
4272 /* if no active flexible event, pick the first event */
4273 tree = &pmu_ctx->ctx->flexible_groups.tree;
4274
4275 if (!pmu_ctx->ctx->task) {
4276 key.cpu = smp_processor_id();
4277
4278 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4279 if (node)
4280 event = __node_2_pe(node);
4281 goto out;
4282 }
4283
4284 key.cpu = -1;
4285 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4286 if (node) {
4287 event = __node_2_pe(node);
4288 goto out;
4289 }
4290
4291 key.cpu = smp_processor_id();
4292 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4293 if (node)
4294 event = __node_2_pe(node);
4295
4296 out:
4297 /*
4298 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4299 * finds there are unschedulable events, it will set it again.
4300 */
4301 pmu_ctx->rotate_necessary = 0;
4302
4303 return event;
4304 }
4305
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4306 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4307 {
4308 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4309 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4310 struct perf_event *cpu_event = NULL, *task_event = NULL;
4311 int cpu_rotate, task_rotate;
4312 struct pmu *pmu;
4313
4314 /*
4315 * Since we run this from IRQ context, nobody can install new
4316 * events, thus the event count values are stable.
4317 */
4318
4319 cpu_epc = &cpc->epc;
4320 pmu = cpu_epc->pmu;
4321 task_epc = cpc->task_epc;
4322
4323 cpu_rotate = cpu_epc->rotate_necessary;
4324 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4325
4326 if (!(cpu_rotate || task_rotate))
4327 return false;
4328
4329 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4330 perf_pmu_disable(pmu);
4331
4332 if (task_rotate)
4333 task_event = ctx_event_to_rotate(task_epc);
4334 if (cpu_rotate)
4335 cpu_event = ctx_event_to_rotate(cpu_epc);
4336
4337 /*
4338 * As per the order given at ctx_resched() first 'pop' task flexible
4339 * and then, if needed CPU flexible.
4340 */
4341 if (task_event || (task_epc && cpu_event)) {
4342 update_context_time(task_epc->ctx);
4343 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4344 }
4345
4346 if (cpu_event) {
4347 update_context_time(&cpuctx->ctx);
4348 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4349 rotate_ctx(&cpuctx->ctx, cpu_event);
4350 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4351 }
4352
4353 if (task_event)
4354 rotate_ctx(task_epc->ctx, task_event);
4355
4356 if (task_event || (task_epc && cpu_event))
4357 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4358
4359 perf_pmu_enable(pmu);
4360 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4361
4362 return true;
4363 }
4364
perf_event_task_tick(void)4365 void perf_event_task_tick(void)
4366 {
4367 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4368 struct perf_event_context *ctx;
4369 int throttled;
4370
4371 lockdep_assert_irqs_disabled();
4372
4373 __this_cpu_inc(perf_throttled_seq);
4374 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4375 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4376
4377 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4378
4379 rcu_read_lock();
4380 ctx = rcu_dereference(current->perf_event_ctxp);
4381 if (ctx)
4382 perf_adjust_freq_unthr_context(ctx, !!throttled);
4383 rcu_read_unlock();
4384 }
4385
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4386 static int event_enable_on_exec(struct perf_event *event,
4387 struct perf_event_context *ctx)
4388 {
4389 if (!event->attr.enable_on_exec)
4390 return 0;
4391
4392 event->attr.enable_on_exec = 0;
4393 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4394 return 0;
4395
4396 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4397
4398 return 1;
4399 }
4400
4401 /*
4402 * Enable all of a task's events that have been marked enable-on-exec.
4403 * This expects task == current.
4404 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4405 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4406 {
4407 struct perf_event_context *clone_ctx = NULL;
4408 enum event_type_t event_type = 0;
4409 struct perf_cpu_context *cpuctx;
4410 struct perf_event *event;
4411 unsigned long flags;
4412 int enabled = 0;
4413
4414 local_irq_save(flags);
4415 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4416 goto out;
4417
4418 if (!ctx->nr_events)
4419 goto out;
4420
4421 cpuctx = this_cpu_ptr(&perf_cpu_context);
4422 perf_ctx_lock(cpuctx, ctx);
4423 ctx_sched_out(ctx, EVENT_TIME);
4424
4425 list_for_each_entry(event, &ctx->event_list, event_entry) {
4426 enabled |= event_enable_on_exec(event, ctx);
4427 event_type |= get_event_type(event);
4428 }
4429
4430 /*
4431 * Unclone and reschedule this context if we enabled any event.
4432 */
4433 if (enabled) {
4434 clone_ctx = unclone_ctx(ctx);
4435 ctx_resched(cpuctx, ctx, event_type);
4436 } else {
4437 ctx_sched_in(ctx, EVENT_TIME);
4438 }
4439 perf_ctx_unlock(cpuctx, ctx);
4440
4441 out:
4442 local_irq_restore(flags);
4443
4444 if (clone_ctx)
4445 put_ctx(clone_ctx);
4446 }
4447
4448 static void perf_remove_from_owner(struct perf_event *event);
4449 static void perf_event_exit_event(struct perf_event *event,
4450 struct perf_event_context *ctx);
4451
4452 /*
4453 * Removes all events from the current task that have been marked
4454 * remove-on-exec, and feeds their values back to parent events.
4455 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4456 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4457 {
4458 struct perf_event_context *clone_ctx = NULL;
4459 struct perf_event *event, *next;
4460 unsigned long flags;
4461 bool modified = false;
4462
4463 mutex_lock(&ctx->mutex);
4464
4465 if (WARN_ON_ONCE(ctx->task != current))
4466 goto unlock;
4467
4468 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4469 if (!event->attr.remove_on_exec)
4470 continue;
4471
4472 if (!is_kernel_event(event))
4473 perf_remove_from_owner(event);
4474
4475 modified = true;
4476
4477 perf_event_exit_event(event, ctx);
4478 }
4479
4480 raw_spin_lock_irqsave(&ctx->lock, flags);
4481 if (modified)
4482 clone_ctx = unclone_ctx(ctx);
4483 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4484
4485 unlock:
4486 mutex_unlock(&ctx->mutex);
4487
4488 if (clone_ctx)
4489 put_ctx(clone_ctx);
4490 }
4491
4492 struct perf_read_data {
4493 struct perf_event *event;
4494 bool group;
4495 int ret;
4496 };
4497
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4498 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4499 {
4500 u16 local_pkg, event_pkg;
4501
4502 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4503 int local_cpu = smp_processor_id();
4504
4505 event_pkg = topology_physical_package_id(event_cpu);
4506 local_pkg = topology_physical_package_id(local_cpu);
4507
4508 if (event_pkg == local_pkg)
4509 return local_cpu;
4510 }
4511
4512 return event_cpu;
4513 }
4514
4515 /*
4516 * Cross CPU call to read the hardware event
4517 */
__perf_event_read(void * info)4518 static void __perf_event_read(void *info)
4519 {
4520 struct perf_read_data *data = info;
4521 struct perf_event *sub, *event = data->event;
4522 struct perf_event_context *ctx = event->ctx;
4523 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4524 struct pmu *pmu = event->pmu;
4525
4526 /*
4527 * If this is a task context, we need to check whether it is
4528 * the current task context of this cpu. If not it has been
4529 * scheduled out before the smp call arrived. In that case
4530 * event->count would have been updated to a recent sample
4531 * when the event was scheduled out.
4532 */
4533 if (ctx->task && cpuctx->task_ctx != ctx)
4534 return;
4535
4536 raw_spin_lock(&ctx->lock);
4537 if (ctx->is_active & EVENT_TIME) {
4538 update_context_time(ctx);
4539 update_cgrp_time_from_event(event);
4540 }
4541
4542 perf_event_update_time(event);
4543 if (data->group)
4544 perf_event_update_sibling_time(event);
4545
4546 if (event->state != PERF_EVENT_STATE_ACTIVE)
4547 goto unlock;
4548
4549 if (!data->group) {
4550 pmu->read(event);
4551 data->ret = 0;
4552 goto unlock;
4553 }
4554
4555 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4556
4557 pmu->read(event);
4558
4559 for_each_sibling_event(sub, event)
4560 perf_pmu_read(sub);
4561
4562 data->ret = pmu->commit_txn(pmu);
4563
4564 unlock:
4565 raw_spin_unlock(&ctx->lock);
4566 }
4567
perf_event_count(struct perf_event * event)4568 static inline u64 perf_event_count(struct perf_event *event)
4569 {
4570 return local64_read(&event->count) + atomic64_read(&event->child_count);
4571 }
4572
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4573 static void calc_timer_values(struct perf_event *event,
4574 u64 *now,
4575 u64 *enabled,
4576 u64 *running)
4577 {
4578 u64 ctx_time;
4579
4580 *now = perf_clock();
4581 ctx_time = perf_event_time_now(event, *now);
4582 __perf_update_times(event, ctx_time, enabled, running);
4583 }
4584
4585 /*
4586 * NMI-safe method to read a local event, that is an event that
4587 * is:
4588 * - either for the current task, or for this CPU
4589 * - does not have inherit set, for inherited task events
4590 * will not be local and we cannot read them atomically
4591 * - must not have a pmu::count method
4592 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4593 int perf_event_read_local(struct perf_event *event, u64 *value,
4594 u64 *enabled, u64 *running)
4595 {
4596 unsigned long flags;
4597 int ret = 0;
4598
4599 /*
4600 * Disabling interrupts avoids all counter scheduling (context
4601 * switches, timer based rotation and IPIs).
4602 */
4603 local_irq_save(flags);
4604
4605 /*
4606 * It must not be an event with inherit set, we cannot read
4607 * all child counters from atomic context.
4608 */
4609 if (event->attr.inherit) {
4610 ret = -EOPNOTSUPP;
4611 goto out;
4612 }
4613
4614 /* If this is a per-task event, it must be for current */
4615 if ((event->attach_state & PERF_ATTACH_TASK) &&
4616 event->hw.target != current) {
4617 ret = -EINVAL;
4618 goto out;
4619 }
4620
4621 /* If this is a per-CPU event, it must be for this CPU */
4622 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4623 event->cpu != smp_processor_id()) {
4624 ret = -EINVAL;
4625 goto out;
4626 }
4627
4628 /* If this is a pinned event it must be running on this CPU */
4629 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4630 ret = -EBUSY;
4631 goto out;
4632 }
4633
4634 /*
4635 * If the event is currently on this CPU, its either a per-task event,
4636 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4637 * oncpu == -1).
4638 */
4639 if (event->oncpu == smp_processor_id())
4640 event->pmu->read(event);
4641
4642 *value = local64_read(&event->count);
4643 if (enabled || running) {
4644 u64 __enabled, __running, __now;
4645
4646 calc_timer_values(event, &__now, &__enabled, &__running);
4647 if (enabled)
4648 *enabled = __enabled;
4649 if (running)
4650 *running = __running;
4651 }
4652 out:
4653 local_irq_restore(flags);
4654
4655 return ret;
4656 }
4657
perf_event_read(struct perf_event * event,bool group)4658 static int perf_event_read(struct perf_event *event, bool group)
4659 {
4660 enum perf_event_state state = READ_ONCE(event->state);
4661 int event_cpu, ret = 0;
4662
4663 /*
4664 * If event is enabled and currently active on a CPU, update the
4665 * value in the event structure:
4666 */
4667 again:
4668 if (state == PERF_EVENT_STATE_ACTIVE) {
4669 struct perf_read_data data;
4670
4671 /*
4672 * Orders the ->state and ->oncpu loads such that if we see
4673 * ACTIVE we must also see the right ->oncpu.
4674 *
4675 * Matches the smp_wmb() from event_sched_in().
4676 */
4677 smp_rmb();
4678
4679 event_cpu = READ_ONCE(event->oncpu);
4680 if ((unsigned)event_cpu >= nr_cpu_ids)
4681 return 0;
4682
4683 data = (struct perf_read_data){
4684 .event = event,
4685 .group = group,
4686 .ret = 0,
4687 };
4688
4689 preempt_disable();
4690 event_cpu = __perf_event_read_cpu(event, event_cpu);
4691
4692 /*
4693 * Purposely ignore the smp_call_function_single() return
4694 * value.
4695 *
4696 * If event_cpu isn't a valid CPU it means the event got
4697 * scheduled out and that will have updated the event count.
4698 *
4699 * Therefore, either way, we'll have an up-to-date event count
4700 * after this.
4701 */
4702 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4703 preempt_enable();
4704 ret = data.ret;
4705
4706 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4707 struct perf_event_context *ctx = event->ctx;
4708 unsigned long flags;
4709
4710 raw_spin_lock_irqsave(&ctx->lock, flags);
4711 state = event->state;
4712 if (state != PERF_EVENT_STATE_INACTIVE) {
4713 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4714 goto again;
4715 }
4716
4717 /*
4718 * May read while context is not active (e.g., thread is
4719 * blocked), in that case we cannot update context time
4720 */
4721 if (ctx->is_active & EVENT_TIME) {
4722 update_context_time(ctx);
4723 update_cgrp_time_from_event(event);
4724 }
4725
4726 perf_event_update_time(event);
4727 if (group)
4728 perf_event_update_sibling_time(event);
4729 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4730 }
4731
4732 return ret;
4733 }
4734
4735 /*
4736 * Initialize the perf_event context in a task_struct:
4737 */
__perf_event_init_context(struct perf_event_context * ctx)4738 static void __perf_event_init_context(struct perf_event_context *ctx)
4739 {
4740 raw_spin_lock_init(&ctx->lock);
4741 mutex_init(&ctx->mutex);
4742 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4743 perf_event_groups_init(&ctx->pinned_groups);
4744 perf_event_groups_init(&ctx->flexible_groups);
4745 INIT_LIST_HEAD(&ctx->event_list);
4746 refcount_set(&ctx->refcount, 1);
4747 }
4748
4749 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4750 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4751 {
4752 epc->pmu = pmu;
4753 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4754 INIT_LIST_HEAD(&epc->pinned_active);
4755 INIT_LIST_HEAD(&epc->flexible_active);
4756 atomic_set(&epc->refcount, 1);
4757 }
4758
4759 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4760 alloc_perf_context(struct task_struct *task)
4761 {
4762 struct perf_event_context *ctx;
4763
4764 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4765 if (!ctx)
4766 return NULL;
4767
4768 __perf_event_init_context(ctx);
4769 if (task)
4770 ctx->task = get_task_struct(task);
4771
4772 return ctx;
4773 }
4774
4775 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4776 find_lively_task_by_vpid(pid_t vpid)
4777 {
4778 struct task_struct *task;
4779
4780 rcu_read_lock();
4781 if (!vpid)
4782 task = current;
4783 else
4784 task = find_task_by_vpid(vpid);
4785 if (task)
4786 get_task_struct(task);
4787 rcu_read_unlock();
4788
4789 if (!task)
4790 return ERR_PTR(-ESRCH);
4791
4792 return task;
4793 }
4794
4795 /*
4796 * Returns a matching context with refcount and pincount.
4797 */
4798 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4799 find_get_context(struct task_struct *task, struct perf_event *event)
4800 {
4801 struct perf_event_context *ctx, *clone_ctx = NULL;
4802 struct perf_cpu_context *cpuctx;
4803 unsigned long flags;
4804 int err;
4805
4806 if (!task) {
4807 /* Must be root to operate on a CPU event: */
4808 err = perf_allow_cpu(&event->attr);
4809 if (err)
4810 return ERR_PTR(err);
4811
4812 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4813 ctx = &cpuctx->ctx;
4814 get_ctx(ctx);
4815 raw_spin_lock_irqsave(&ctx->lock, flags);
4816 ++ctx->pin_count;
4817 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4818
4819 return ctx;
4820 }
4821
4822 err = -EINVAL;
4823 retry:
4824 ctx = perf_lock_task_context(task, &flags);
4825 if (ctx) {
4826 clone_ctx = unclone_ctx(ctx);
4827 ++ctx->pin_count;
4828
4829 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4830
4831 if (clone_ctx)
4832 put_ctx(clone_ctx);
4833 } else {
4834 ctx = alloc_perf_context(task);
4835 err = -ENOMEM;
4836 if (!ctx)
4837 goto errout;
4838
4839 err = 0;
4840 mutex_lock(&task->perf_event_mutex);
4841 /*
4842 * If it has already passed perf_event_exit_task().
4843 * we must see PF_EXITING, it takes this mutex too.
4844 */
4845 if (task->flags & PF_EXITING)
4846 err = -ESRCH;
4847 else if (task->perf_event_ctxp)
4848 err = -EAGAIN;
4849 else {
4850 get_ctx(ctx);
4851 ++ctx->pin_count;
4852 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4853 }
4854 mutex_unlock(&task->perf_event_mutex);
4855
4856 if (unlikely(err)) {
4857 put_ctx(ctx);
4858
4859 if (err == -EAGAIN)
4860 goto retry;
4861 goto errout;
4862 }
4863 }
4864
4865 return ctx;
4866
4867 errout:
4868 return ERR_PTR(err);
4869 }
4870
4871 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4872 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4873 struct perf_event *event)
4874 {
4875 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4876 void *task_ctx_data = NULL;
4877
4878 if (!ctx->task) {
4879 /*
4880 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4881 * relies on the fact that find_get_pmu_context() cannot fail
4882 * for CPU contexts.
4883 */
4884 struct perf_cpu_pmu_context *cpc;
4885
4886 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4887 epc = &cpc->epc;
4888 raw_spin_lock_irq(&ctx->lock);
4889 if (!epc->ctx) {
4890 atomic_set(&epc->refcount, 1);
4891 epc->embedded = 1;
4892 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4893 epc->ctx = ctx;
4894 } else {
4895 WARN_ON_ONCE(epc->ctx != ctx);
4896 atomic_inc(&epc->refcount);
4897 }
4898 raw_spin_unlock_irq(&ctx->lock);
4899 return epc;
4900 }
4901
4902 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4903 if (!new)
4904 return ERR_PTR(-ENOMEM);
4905
4906 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4907 task_ctx_data = alloc_task_ctx_data(pmu);
4908 if (!task_ctx_data) {
4909 kfree(new);
4910 return ERR_PTR(-ENOMEM);
4911 }
4912 }
4913
4914 __perf_init_event_pmu_context(new, pmu);
4915
4916 /*
4917 * XXX
4918 *
4919 * lockdep_assert_held(&ctx->mutex);
4920 *
4921 * can't because perf_event_init_task() doesn't actually hold the
4922 * child_ctx->mutex.
4923 */
4924
4925 raw_spin_lock_irq(&ctx->lock);
4926 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4927 if (epc->pmu == pmu) {
4928 WARN_ON_ONCE(epc->ctx != ctx);
4929 atomic_inc(&epc->refcount);
4930 goto found_epc;
4931 }
4932 /* Make sure the pmu_ctx_list is sorted by PMU type: */
4933 if (!pos && epc->pmu->type > pmu->type)
4934 pos = epc;
4935 }
4936
4937 epc = new;
4938 new = NULL;
4939
4940 if (!pos)
4941 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4942 else
4943 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
4944
4945 epc->ctx = ctx;
4946
4947 found_epc:
4948 if (task_ctx_data && !epc->task_ctx_data) {
4949 epc->task_ctx_data = task_ctx_data;
4950 task_ctx_data = NULL;
4951 ctx->nr_task_data++;
4952 }
4953 raw_spin_unlock_irq(&ctx->lock);
4954
4955 free_task_ctx_data(pmu, task_ctx_data);
4956 kfree(new);
4957
4958 return epc;
4959 }
4960
get_pmu_ctx(struct perf_event_pmu_context * epc)4961 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4962 {
4963 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4964 }
4965
free_epc_rcu(struct rcu_head * head)4966 static void free_epc_rcu(struct rcu_head *head)
4967 {
4968 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4969
4970 kfree(epc->task_ctx_data);
4971 kfree(epc);
4972 }
4973
put_pmu_ctx(struct perf_event_pmu_context * epc)4974 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4975 {
4976 struct perf_event_context *ctx = epc->ctx;
4977 unsigned long flags;
4978
4979 /*
4980 * XXX
4981 *
4982 * lockdep_assert_held(&ctx->mutex);
4983 *
4984 * can't because of the call-site in _free_event()/put_event()
4985 * which isn't always called under ctx->mutex.
4986 */
4987 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4988 return;
4989
4990 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4991
4992 list_del_init(&epc->pmu_ctx_entry);
4993 epc->ctx = NULL;
4994
4995 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4996 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4997
4998 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4999
5000 if (epc->embedded)
5001 return;
5002
5003 call_rcu(&epc->rcu_head, free_epc_rcu);
5004 }
5005
5006 static void perf_event_free_filter(struct perf_event *event);
5007
free_event_rcu(struct rcu_head * head)5008 static void free_event_rcu(struct rcu_head *head)
5009 {
5010 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5011
5012 if (event->ns)
5013 put_pid_ns(event->ns);
5014 perf_event_free_filter(event);
5015 kmem_cache_free(perf_event_cache, event);
5016 }
5017
5018 static void ring_buffer_attach(struct perf_event *event,
5019 struct perf_buffer *rb);
5020
detach_sb_event(struct perf_event * event)5021 static void detach_sb_event(struct perf_event *event)
5022 {
5023 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5024
5025 raw_spin_lock(&pel->lock);
5026 list_del_rcu(&event->sb_list);
5027 raw_spin_unlock(&pel->lock);
5028 }
5029
is_sb_event(struct perf_event * event)5030 static bool is_sb_event(struct perf_event *event)
5031 {
5032 struct perf_event_attr *attr = &event->attr;
5033
5034 if (event->parent)
5035 return false;
5036
5037 if (event->attach_state & PERF_ATTACH_TASK)
5038 return false;
5039
5040 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5041 attr->comm || attr->comm_exec ||
5042 attr->task || attr->ksymbol ||
5043 attr->context_switch || attr->text_poke ||
5044 attr->bpf_event)
5045 return true;
5046 return false;
5047 }
5048
unaccount_pmu_sb_event(struct perf_event * event)5049 static void unaccount_pmu_sb_event(struct perf_event *event)
5050 {
5051 if (is_sb_event(event))
5052 detach_sb_event(event);
5053 }
5054
5055 #ifdef CONFIG_NO_HZ_FULL
5056 static DEFINE_SPINLOCK(nr_freq_lock);
5057 #endif
5058
unaccount_freq_event_nohz(void)5059 static void unaccount_freq_event_nohz(void)
5060 {
5061 #ifdef CONFIG_NO_HZ_FULL
5062 spin_lock(&nr_freq_lock);
5063 if (atomic_dec_and_test(&nr_freq_events))
5064 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5065 spin_unlock(&nr_freq_lock);
5066 #endif
5067 }
5068
unaccount_freq_event(void)5069 static void unaccount_freq_event(void)
5070 {
5071 if (tick_nohz_full_enabled())
5072 unaccount_freq_event_nohz();
5073 else
5074 atomic_dec(&nr_freq_events);
5075 }
5076
unaccount_event(struct perf_event * event)5077 static void unaccount_event(struct perf_event *event)
5078 {
5079 bool dec = false;
5080
5081 if (event->parent)
5082 return;
5083
5084 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5085 dec = true;
5086 if (event->attr.mmap || event->attr.mmap_data)
5087 atomic_dec(&nr_mmap_events);
5088 if (event->attr.build_id)
5089 atomic_dec(&nr_build_id_events);
5090 if (event->attr.comm)
5091 atomic_dec(&nr_comm_events);
5092 if (event->attr.namespaces)
5093 atomic_dec(&nr_namespaces_events);
5094 if (event->attr.cgroup)
5095 atomic_dec(&nr_cgroup_events);
5096 if (event->attr.task)
5097 atomic_dec(&nr_task_events);
5098 if (event->attr.freq)
5099 unaccount_freq_event();
5100 if (event->attr.context_switch) {
5101 dec = true;
5102 atomic_dec(&nr_switch_events);
5103 }
5104 if (is_cgroup_event(event))
5105 dec = true;
5106 if (has_branch_stack(event))
5107 dec = true;
5108 if (event->attr.ksymbol)
5109 atomic_dec(&nr_ksymbol_events);
5110 if (event->attr.bpf_event)
5111 atomic_dec(&nr_bpf_events);
5112 if (event->attr.text_poke)
5113 atomic_dec(&nr_text_poke_events);
5114
5115 if (dec) {
5116 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5117 schedule_delayed_work(&perf_sched_work, HZ);
5118 }
5119
5120 unaccount_pmu_sb_event(event);
5121 }
5122
perf_sched_delayed(struct work_struct * work)5123 static void perf_sched_delayed(struct work_struct *work)
5124 {
5125 mutex_lock(&perf_sched_mutex);
5126 if (atomic_dec_and_test(&perf_sched_count))
5127 static_branch_disable(&perf_sched_events);
5128 mutex_unlock(&perf_sched_mutex);
5129 }
5130
5131 /*
5132 * The following implement mutual exclusion of events on "exclusive" pmus
5133 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5134 * at a time, so we disallow creating events that might conflict, namely:
5135 *
5136 * 1) cpu-wide events in the presence of per-task events,
5137 * 2) per-task events in the presence of cpu-wide events,
5138 * 3) two matching events on the same perf_event_context.
5139 *
5140 * The former two cases are handled in the allocation path (perf_event_alloc(),
5141 * _free_event()), the latter -- before the first perf_install_in_context().
5142 */
exclusive_event_init(struct perf_event * event)5143 static int exclusive_event_init(struct perf_event *event)
5144 {
5145 struct pmu *pmu = event->pmu;
5146
5147 if (!is_exclusive_pmu(pmu))
5148 return 0;
5149
5150 /*
5151 * Prevent co-existence of per-task and cpu-wide events on the
5152 * same exclusive pmu.
5153 *
5154 * Negative pmu::exclusive_cnt means there are cpu-wide
5155 * events on this "exclusive" pmu, positive means there are
5156 * per-task events.
5157 *
5158 * Since this is called in perf_event_alloc() path, event::ctx
5159 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5160 * to mean "per-task event", because unlike other attach states it
5161 * never gets cleared.
5162 */
5163 if (event->attach_state & PERF_ATTACH_TASK) {
5164 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5165 return -EBUSY;
5166 } else {
5167 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5168 return -EBUSY;
5169 }
5170
5171 return 0;
5172 }
5173
exclusive_event_destroy(struct perf_event * event)5174 static void exclusive_event_destroy(struct perf_event *event)
5175 {
5176 struct pmu *pmu = event->pmu;
5177
5178 if (!is_exclusive_pmu(pmu))
5179 return;
5180
5181 /* see comment in exclusive_event_init() */
5182 if (event->attach_state & PERF_ATTACH_TASK)
5183 atomic_dec(&pmu->exclusive_cnt);
5184 else
5185 atomic_inc(&pmu->exclusive_cnt);
5186 }
5187
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5188 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5189 {
5190 if ((e1->pmu == e2->pmu) &&
5191 (e1->cpu == e2->cpu ||
5192 e1->cpu == -1 ||
5193 e2->cpu == -1))
5194 return true;
5195 return false;
5196 }
5197
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5198 static bool exclusive_event_installable(struct perf_event *event,
5199 struct perf_event_context *ctx)
5200 {
5201 struct perf_event *iter_event;
5202 struct pmu *pmu = event->pmu;
5203
5204 lockdep_assert_held(&ctx->mutex);
5205
5206 if (!is_exclusive_pmu(pmu))
5207 return true;
5208
5209 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5210 if (exclusive_event_match(iter_event, event))
5211 return false;
5212 }
5213
5214 return true;
5215 }
5216
5217 static void perf_addr_filters_splice(struct perf_event *event,
5218 struct list_head *head);
5219
perf_pending_task_sync(struct perf_event * event)5220 static void perf_pending_task_sync(struct perf_event *event)
5221 {
5222 struct callback_head *head = &event->pending_task;
5223
5224 if (!event->pending_work)
5225 return;
5226 /*
5227 * If the task is queued to the current task's queue, we
5228 * obviously can't wait for it to complete. Simply cancel it.
5229 */
5230 if (task_work_cancel(current, head)) {
5231 event->pending_work = 0;
5232 local_dec(&event->ctx->nr_pending);
5233 return;
5234 }
5235
5236 /*
5237 * All accesses related to the event are within the same
5238 * non-preemptible section in perf_pending_task(). The RCU
5239 * grace period before the event is freed will make sure all
5240 * those accesses are complete by then.
5241 */
5242 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5243 }
5244
_free_event(struct perf_event * event)5245 static void _free_event(struct perf_event *event)
5246 {
5247 irq_work_sync(&event->pending_irq);
5248 perf_pending_task_sync(event);
5249
5250 unaccount_event(event);
5251
5252 security_perf_event_free(event);
5253
5254 if (event->rb) {
5255 /*
5256 * Can happen when we close an event with re-directed output.
5257 *
5258 * Since we have a 0 refcount, perf_mmap_close() will skip
5259 * over us; possibly making our ring_buffer_put() the last.
5260 */
5261 mutex_lock(&event->mmap_mutex);
5262 ring_buffer_attach(event, NULL);
5263 mutex_unlock(&event->mmap_mutex);
5264 }
5265
5266 if (is_cgroup_event(event))
5267 perf_detach_cgroup(event);
5268
5269 if (!event->parent) {
5270 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5271 put_callchain_buffers();
5272 }
5273
5274 perf_event_free_bpf_prog(event);
5275 perf_addr_filters_splice(event, NULL);
5276 kfree(event->addr_filter_ranges);
5277
5278 if (event->destroy)
5279 event->destroy(event);
5280
5281 /*
5282 * Must be after ->destroy(), due to uprobe_perf_close() using
5283 * hw.target.
5284 */
5285 if (event->hw.target)
5286 put_task_struct(event->hw.target);
5287
5288 if (event->pmu_ctx)
5289 put_pmu_ctx(event->pmu_ctx);
5290
5291 /*
5292 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5293 * all task references must be cleaned up.
5294 */
5295 if (event->ctx)
5296 put_ctx(event->ctx);
5297
5298 exclusive_event_destroy(event);
5299 module_put(event->pmu->module);
5300
5301 call_rcu(&event->rcu_head, free_event_rcu);
5302 }
5303
5304 /*
5305 * Used to free events which have a known refcount of 1, such as in error paths
5306 * where the event isn't exposed yet and inherited events.
5307 */
free_event(struct perf_event * event)5308 static void free_event(struct perf_event *event)
5309 {
5310 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5311 "unexpected event refcount: %ld; ptr=%p\n",
5312 atomic_long_read(&event->refcount), event)) {
5313 /* leak to avoid use-after-free */
5314 return;
5315 }
5316
5317 _free_event(event);
5318 }
5319
5320 /*
5321 * Remove user event from the owner task.
5322 */
perf_remove_from_owner(struct perf_event * event)5323 static void perf_remove_from_owner(struct perf_event *event)
5324 {
5325 struct task_struct *owner;
5326
5327 rcu_read_lock();
5328 /*
5329 * Matches the smp_store_release() in perf_event_exit_task(). If we
5330 * observe !owner it means the list deletion is complete and we can
5331 * indeed free this event, otherwise we need to serialize on
5332 * owner->perf_event_mutex.
5333 */
5334 owner = READ_ONCE(event->owner);
5335 if (owner) {
5336 /*
5337 * Since delayed_put_task_struct() also drops the last
5338 * task reference we can safely take a new reference
5339 * while holding the rcu_read_lock().
5340 */
5341 get_task_struct(owner);
5342 }
5343 rcu_read_unlock();
5344
5345 if (owner) {
5346 /*
5347 * If we're here through perf_event_exit_task() we're already
5348 * holding ctx->mutex which would be an inversion wrt. the
5349 * normal lock order.
5350 *
5351 * However we can safely take this lock because its the child
5352 * ctx->mutex.
5353 */
5354 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5355
5356 /*
5357 * We have to re-check the event->owner field, if it is cleared
5358 * we raced with perf_event_exit_task(), acquiring the mutex
5359 * ensured they're done, and we can proceed with freeing the
5360 * event.
5361 */
5362 if (event->owner) {
5363 list_del_init(&event->owner_entry);
5364 smp_store_release(&event->owner, NULL);
5365 }
5366 mutex_unlock(&owner->perf_event_mutex);
5367 put_task_struct(owner);
5368 }
5369 }
5370
put_event(struct perf_event * event)5371 static void put_event(struct perf_event *event)
5372 {
5373 if (!atomic_long_dec_and_test(&event->refcount))
5374 return;
5375
5376 _free_event(event);
5377 }
5378
5379 /*
5380 * Kill an event dead; while event:refcount will preserve the event
5381 * object, it will not preserve its functionality. Once the last 'user'
5382 * gives up the object, we'll destroy the thing.
5383 */
perf_event_release_kernel(struct perf_event * event)5384 int perf_event_release_kernel(struct perf_event *event)
5385 {
5386 struct perf_event_context *ctx = event->ctx;
5387 struct perf_event *child, *tmp;
5388 LIST_HEAD(free_list);
5389
5390 /*
5391 * If we got here through err_alloc: free_event(event); we will not
5392 * have attached to a context yet.
5393 */
5394 if (!ctx) {
5395 WARN_ON_ONCE(event->attach_state &
5396 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5397 goto no_ctx;
5398 }
5399
5400 if (!is_kernel_event(event))
5401 perf_remove_from_owner(event);
5402
5403 ctx = perf_event_ctx_lock(event);
5404 WARN_ON_ONCE(ctx->parent_ctx);
5405
5406 /*
5407 * Mark this event as STATE_DEAD, there is no external reference to it
5408 * anymore.
5409 *
5410 * Anybody acquiring event->child_mutex after the below loop _must_
5411 * also see this, most importantly inherit_event() which will avoid
5412 * placing more children on the list.
5413 *
5414 * Thus this guarantees that we will in fact observe and kill _ALL_
5415 * child events.
5416 */
5417 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5418
5419 perf_event_ctx_unlock(event, ctx);
5420
5421 again:
5422 mutex_lock(&event->child_mutex);
5423 list_for_each_entry(child, &event->child_list, child_list) {
5424 void *var = NULL;
5425
5426 /*
5427 * Cannot change, child events are not migrated, see the
5428 * comment with perf_event_ctx_lock_nested().
5429 */
5430 ctx = READ_ONCE(child->ctx);
5431 /*
5432 * Since child_mutex nests inside ctx::mutex, we must jump
5433 * through hoops. We start by grabbing a reference on the ctx.
5434 *
5435 * Since the event cannot get freed while we hold the
5436 * child_mutex, the context must also exist and have a !0
5437 * reference count.
5438 */
5439 get_ctx(ctx);
5440
5441 /*
5442 * Now that we have a ctx ref, we can drop child_mutex, and
5443 * acquire ctx::mutex without fear of it going away. Then we
5444 * can re-acquire child_mutex.
5445 */
5446 mutex_unlock(&event->child_mutex);
5447 mutex_lock(&ctx->mutex);
5448 mutex_lock(&event->child_mutex);
5449
5450 /*
5451 * Now that we hold ctx::mutex and child_mutex, revalidate our
5452 * state, if child is still the first entry, it didn't get freed
5453 * and we can continue doing so.
5454 */
5455 tmp = list_first_entry_or_null(&event->child_list,
5456 struct perf_event, child_list);
5457 if (tmp == child) {
5458 perf_remove_from_context(child, DETACH_GROUP);
5459 list_move(&child->child_list, &free_list);
5460 /*
5461 * This matches the refcount bump in inherit_event();
5462 * this can't be the last reference.
5463 */
5464 put_event(event);
5465 } else {
5466 var = &ctx->refcount;
5467 }
5468
5469 mutex_unlock(&event->child_mutex);
5470 mutex_unlock(&ctx->mutex);
5471 put_ctx(ctx);
5472
5473 if (var) {
5474 /*
5475 * If perf_event_free_task() has deleted all events from the
5476 * ctx while the child_mutex got released above, make sure to
5477 * notify about the preceding put_ctx().
5478 */
5479 smp_mb(); /* pairs with wait_var_event() */
5480 wake_up_var(var);
5481 }
5482 goto again;
5483 }
5484 mutex_unlock(&event->child_mutex);
5485
5486 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5487 void *var = &child->ctx->refcount;
5488
5489 list_del(&child->child_list);
5490 free_event(child);
5491
5492 /*
5493 * Wake any perf_event_free_task() waiting for this event to be
5494 * freed.
5495 */
5496 smp_mb(); /* pairs with wait_var_event() */
5497 wake_up_var(var);
5498 }
5499
5500 no_ctx:
5501 put_event(event); /* Must be the 'last' reference */
5502 return 0;
5503 }
5504 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5505
5506 /*
5507 * Called when the last reference to the file is gone.
5508 */
perf_release(struct inode * inode,struct file * file)5509 static int perf_release(struct inode *inode, struct file *file)
5510 {
5511 perf_event_release_kernel(file->private_data);
5512 return 0;
5513 }
5514
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5515 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5516 {
5517 struct perf_event *child;
5518 u64 total = 0;
5519
5520 *enabled = 0;
5521 *running = 0;
5522
5523 mutex_lock(&event->child_mutex);
5524
5525 (void)perf_event_read(event, false);
5526 total += perf_event_count(event);
5527
5528 *enabled += event->total_time_enabled +
5529 atomic64_read(&event->child_total_time_enabled);
5530 *running += event->total_time_running +
5531 atomic64_read(&event->child_total_time_running);
5532
5533 list_for_each_entry(child, &event->child_list, child_list) {
5534 (void)perf_event_read(child, false);
5535 total += perf_event_count(child);
5536 *enabled += child->total_time_enabled;
5537 *running += child->total_time_running;
5538 }
5539 mutex_unlock(&event->child_mutex);
5540
5541 return total;
5542 }
5543
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5544 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5545 {
5546 struct perf_event_context *ctx;
5547 u64 count;
5548
5549 ctx = perf_event_ctx_lock(event);
5550 count = __perf_event_read_value(event, enabled, running);
5551 perf_event_ctx_unlock(event, ctx);
5552
5553 return count;
5554 }
5555 EXPORT_SYMBOL_GPL(perf_event_read_value);
5556
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5557 static int __perf_read_group_add(struct perf_event *leader,
5558 u64 read_format, u64 *values)
5559 {
5560 struct perf_event_context *ctx = leader->ctx;
5561 struct perf_event *sub, *parent;
5562 unsigned long flags;
5563 int n = 1; /* skip @nr */
5564 int ret;
5565
5566 ret = perf_event_read(leader, true);
5567 if (ret)
5568 return ret;
5569
5570 raw_spin_lock_irqsave(&ctx->lock, flags);
5571 /*
5572 * Verify the grouping between the parent and child (inherited)
5573 * events is still in tact.
5574 *
5575 * Specifically:
5576 * - leader->ctx->lock pins leader->sibling_list
5577 * - parent->child_mutex pins parent->child_list
5578 * - parent->ctx->mutex pins parent->sibling_list
5579 *
5580 * Because parent->ctx != leader->ctx (and child_list nests inside
5581 * ctx->mutex), group destruction is not atomic between children, also
5582 * see perf_event_release_kernel(). Additionally, parent can grow the
5583 * group.
5584 *
5585 * Therefore it is possible to have parent and child groups in a
5586 * different configuration and summing over such a beast makes no sense
5587 * what so ever.
5588 *
5589 * Reject this.
5590 */
5591 parent = leader->parent;
5592 if (parent &&
5593 (parent->group_generation != leader->group_generation ||
5594 parent->nr_siblings != leader->nr_siblings)) {
5595 ret = -ECHILD;
5596 goto unlock;
5597 }
5598
5599 /*
5600 * Since we co-schedule groups, {enabled,running} times of siblings
5601 * will be identical to those of the leader, so we only publish one
5602 * set.
5603 */
5604 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5605 values[n++] += leader->total_time_enabled +
5606 atomic64_read(&leader->child_total_time_enabled);
5607 }
5608
5609 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5610 values[n++] += leader->total_time_running +
5611 atomic64_read(&leader->child_total_time_running);
5612 }
5613
5614 /*
5615 * Write {count,id} tuples for every sibling.
5616 */
5617 values[n++] += perf_event_count(leader);
5618 if (read_format & PERF_FORMAT_ID)
5619 values[n++] = primary_event_id(leader);
5620 if (read_format & PERF_FORMAT_LOST)
5621 values[n++] = atomic64_read(&leader->lost_samples);
5622
5623 for_each_sibling_event(sub, leader) {
5624 values[n++] += perf_event_count(sub);
5625 if (read_format & PERF_FORMAT_ID)
5626 values[n++] = primary_event_id(sub);
5627 if (read_format & PERF_FORMAT_LOST)
5628 values[n++] = atomic64_read(&sub->lost_samples);
5629 }
5630
5631 unlock:
5632 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5633 return ret;
5634 }
5635
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5636 static int perf_read_group(struct perf_event *event,
5637 u64 read_format, char __user *buf)
5638 {
5639 struct perf_event *leader = event->group_leader, *child;
5640 struct perf_event_context *ctx = leader->ctx;
5641 int ret;
5642 u64 *values;
5643
5644 lockdep_assert_held(&ctx->mutex);
5645
5646 values = kzalloc(event->read_size, GFP_KERNEL);
5647 if (!values)
5648 return -ENOMEM;
5649
5650 values[0] = 1 + leader->nr_siblings;
5651
5652 mutex_lock(&leader->child_mutex);
5653
5654 ret = __perf_read_group_add(leader, read_format, values);
5655 if (ret)
5656 goto unlock;
5657
5658 list_for_each_entry(child, &leader->child_list, child_list) {
5659 ret = __perf_read_group_add(child, read_format, values);
5660 if (ret)
5661 goto unlock;
5662 }
5663
5664 mutex_unlock(&leader->child_mutex);
5665
5666 ret = event->read_size;
5667 if (copy_to_user(buf, values, event->read_size))
5668 ret = -EFAULT;
5669 goto out;
5670
5671 unlock:
5672 mutex_unlock(&leader->child_mutex);
5673 out:
5674 kfree(values);
5675 return ret;
5676 }
5677
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5678 static int perf_read_one(struct perf_event *event,
5679 u64 read_format, char __user *buf)
5680 {
5681 u64 enabled, running;
5682 u64 values[5];
5683 int n = 0;
5684
5685 values[n++] = __perf_event_read_value(event, &enabled, &running);
5686 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5687 values[n++] = enabled;
5688 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5689 values[n++] = running;
5690 if (read_format & PERF_FORMAT_ID)
5691 values[n++] = primary_event_id(event);
5692 if (read_format & PERF_FORMAT_LOST)
5693 values[n++] = atomic64_read(&event->lost_samples);
5694
5695 if (copy_to_user(buf, values, n * sizeof(u64)))
5696 return -EFAULT;
5697
5698 return n * sizeof(u64);
5699 }
5700
is_event_hup(struct perf_event * event)5701 static bool is_event_hup(struct perf_event *event)
5702 {
5703 bool no_children;
5704
5705 if (event->state > PERF_EVENT_STATE_EXIT)
5706 return false;
5707
5708 mutex_lock(&event->child_mutex);
5709 no_children = list_empty(&event->child_list);
5710 mutex_unlock(&event->child_mutex);
5711 return no_children;
5712 }
5713
5714 /*
5715 * Read the performance event - simple non blocking version for now
5716 */
5717 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5718 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5719 {
5720 u64 read_format = event->attr.read_format;
5721 int ret;
5722
5723 /*
5724 * Return end-of-file for a read on an event that is in
5725 * error state (i.e. because it was pinned but it couldn't be
5726 * scheduled on to the CPU at some point).
5727 */
5728 if (event->state == PERF_EVENT_STATE_ERROR)
5729 return 0;
5730
5731 if (count < event->read_size)
5732 return -ENOSPC;
5733
5734 WARN_ON_ONCE(event->ctx->parent_ctx);
5735 if (read_format & PERF_FORMAT_GROUP)
5736 ret = perf_read_group(event, read_format, buf);
5737 else
5738 ret = perf_read_one(event, read_format, buf);
5739
5740 return ret;
5741 }
5742
5743 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5744 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5745 {
5746 struct perf_event *event = file->private_data;
5747 struct perf_event_context *ctx;
5748 int ret;
5749
5750 ret = security_perf_event_read(event);
5751 if (ret)
5752 return ret;
5753
5754 ctx = perf_event_ctx_lock(event);
5755 ret = __perf_read(event, buf, count);
5756 perf_event_ctx_unlock(event, ctx);
5757
5758 return ret;
5759 }
5760
perf_poll(struct file * file,poll_table * wait)5761 static __poll_t perf_poll(struct file *file, poll_table *wait)
5762 {
5763 struct perf_event *event = file->private_data;
5764 struct perf_buffer *rb;
5765 __poll_t events = EPOLLHUP;
5766
5767 poll_wait(file, &event->waitq, wait);
5768
5769 if (is_event_hup(event))
5770 return events;
5771
5772 /*
5773 * Pin the event->rb by taking event->mmap_mutex; otherwise
5774 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5775 */
5776 mutex_lock(&event->mmap_mutex);
5777 rb = event->rb;
5778 if (rb)
5779 events = atomic_xchg(&rb->poll, 0);
5780 mutex_unlock(&event->mmap_mutex);
5781 return events;
5782 }
5783
_perf_event_reset(struct perf_event * event)5784 static void _perf_event_reset(struct perf_event *event)
5785 {
5786 (void)perf_event_read(event, false);
5787 local64_set(&event->count, 0);
5788 perf_event_update_userpage(event);
5789 }
5790
5791 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5792 u64 perf_event_pause(struct perf_event *event, bool reset)
5793 {
5794 struct perf_event_context *ctx;
5795 u64 count;
5796
5797 ctx = perf_event_ctx_lock(event);
5798 WARN_ON_ONCE(event->attr.inherit);
5799 _perf_event_disable(event);
5800 count = local64_read(&event->count);
5801 if (reset)
5802 local64_set(&event->count, 0);
5803 perf_event_ctx_unlock(event, ctx);
5804
5805 return count;
5806 }
5807 EXPORT_SYMBOL_GPL(perf_event_pause);
5808
5809 /*
5810 * Holding the top-level event's child_mutex means that any
5811 * descendant process that has inherited this event will block
5812 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5813 * task existence requirements of perf_event_enable/disable.
5814 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5815 static void perf_event_for_each_child(struct perf_event *event,
5816 void (*func)(struct perf_event *))
5817 {
5818 struct perf_event *child;
5819
5820 WARN_ON_ONCE(event->ctx->parent_ctx);
5821
5822 mutex_lock(&event->child_mutex);
5823 func(event);
5824 list_for_each_entry(child, &event->child_list, child_list)
5825 func(child);
5826 mutex_unlock(&event->child_mutex);
5827 }
5828
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5829 static void perf_event_for_each(struct perf_event *event,
5830 void (*func)(struct perf_event *))
5831 {
5832 struct perf_event_context *ctx = event->ctx;
5833 struct perf_event *sibling;
5834
5835 lockdep_assert_held(&ctx->mutex);
5836
5837 event = event->group_leader;
5838
5839 perf_event_for_each_child(event, func);
5840 for_each_sibling_event(sibling, event)
5841 perf_event_for_each_child(sibling, func);
5842 }
5843
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5844 static void __perf_event_period(struct perf_event *event,
5845 struct perf_cpu_context *cpuctx,
5846 struct perf_event_context *ctx,
5847 void *info)
5848 {
5849 u64 value = *((u64 *)info);
5850 bool active;
5851
5852 if (event->attr.freq) {
5853 event->attr.sample_freq = value;
5854 } else {
5855 event->attr.sample_period = value;
5856 event->hw.sample_period = value;
5857 }
5858
5859 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5860 if (active) {
5861 perf_pmu_disable(event->pmu);
5862 /*
5863 * We could be throttled; unthrottle now to avoid the tick
5864 * trying to unthrottle while we already re-started the event.
5865 */
5866 if (event->hw.interrupts == MAX_INTERRUPTS) {
5867 event->hw.interrupts = 0;
5868 perf_log_throttle(event, 1);
5869 }
5870 event->pmu->stop(event, PERF_EF_UPDATE);
5871 }
5872
5873 local64_set(&event->hw.period_left, 0);
5874
5875 if (active) {
5876 event->pmu->start(event, PERF_EF_RELOAD);
5877 perf_pmu_enable(event->pmu);
5878 }
5879 }
5880
perf_event_check_period(struct perf_event * event,u64 value)5881 static int perf_event_check_period(struct perf_event *event, u64 value)
5882 {
5883 return event->pmu->check_period(event, value);
5884 }
5885
_perf_event_period(struct perf_event * event,u64 value)5886 static int _perf_event_period(struct perf_event *event, u64 value)
5887 {
5888 if (!is_sampling_event(event))
5889 return -EINVAL;
5890
5891 if (!value)
5892 return -EINVAL;
5893
5894 if (event->attr.freq) {
5895 if (value > sysctl_perf_event_sample_rate)
5896 return -EINVAL;
5897 } else {
5898 if (perf_event_check_period(event, value))
5899 return -EINVAL;
5900 if (value & (1ULL << 63))
5901 return -EINVAL;
5902 }
5903
5904 event_function_call(event, __perf_event_period, &value);
5905
5906 return 0;
5907 }
5908
perf_event_period(struct perf_event * event,u64 value)5909 int perf_event_period(struct perf_event *event, u64 value)
5910 {
5911 struct perf_event_context *ctx;
5912 int ret;
5913
5914 ctx = perf_event_ctx_lock(event);
5915 ret = _perf_event_period(event, value);
5916 perf_event_ctx_unlock(event, ctx);
5917
5918 return ret;
5919 }
5920 EXPORT_SYMBOL_GPL(perf_event_period);
5921
5922 static const struct file_operations perf_fops;
5923
perf_fget_light(int fd,struct fd * p)5924 static inline int perf_fget_light(int fd, struct fd *p)
5925 {
5926 struct fd f = fdget(fd);
5927 if (!f.file)
5928 return -EBADF;
5929
5930 if (f.file->f_op != &perf_fops) {
5931 fdput(f);
5932 return -EBADF;
5933 }
5934 *p = f;
5935 return 0;
5936 }
5937
5938 static int perf_event_set_output(struct perf_event *event,
5939 struct perf_event *output_event);
5940 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5941 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5942 struct perf_event_attr *attr);
5943 static int __perf_event_set_bpf_prog(struct perf_event *event,
5944 struct bpf_prog *prog,
5945 u64 bpf_cookie);
5946
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5947 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5948 {
5949 void (*func)(struct perf_event *);
5950 u32 flags = arg;
5951
5952 switch (cmd) {
5953 case PERF_EVENT_IOC_ENABLE:
5954 func = _perf_event_enable;
5955 break;
5956 case PERF_EVENT_IOC_DISABLE:
5957 func = _perf_event_disable;
5958 break;
5959 case PERF_EVENT_IOC_RESET:
5960 func = _perf_event_reset;
5961 break;
5962
5963 case PERF_EVENT_IOC_REFRESH:
5964 return _perf_event_refresh(event, arg);
5965
5966 case PERF_EVENT_IOC_PERIOD:
5967 {
5968 u64 value;
5969
5970 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5971 return -EFAULT;
5972
5973 return _perf_event_period(event, value);
5974 }
5975 case PERF_EVENT_IOC_ID:
5976 {
5977 u64 id = primary_event_id(event);
5978
5979 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5980 return -EFAULT;
5981 return 0;
5982 }
5983
5984 case PERF_EVENT_IOC_SET_OUTPUT:
5985 {
5986 int ret;
5987 if (arg != -1) {
5988 struct perf_event *output_event;
5989 struct fd output;
5990 ret = perf_fget_light(arg, &output);
5991 if (ret)
5992 return ret;
5993 output_event = output.file->private_data;
5994 ret = perf_event_set_output(event, output_event);
5995 fdput(output);
5996 } else {
5997 ret = perf_event_set_output(event, NULL);
5998 }
5999 return ret;
6000 }
6001
6002 case PERF_EVENT_IOC_SET_FILTER:
6003 return perf_event_set_filter(event, (void __user *)arg);
6004
6005 case PERF_EVENT_IOC_SET_BPF:
6006 {
6007 struct bpf_prog *prog;
6008 int err;
6009
6010 prog = bpf_prog_get(arg);
6011 if (IS_ERR(prog))
6012 return PTR_ERR(prog);
6013
6014 err = __perf_event_set_bpf_prog(event, prog, 0);
6015 if (err) {
6016 bpf_prog_put(prog);
6017 return err;
6018 }
6019
6020 return 0;
6021 }
6022
6023 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6024 struct perf_buffer *rb;
6025
6026 rcu_read_lock();
6027 rb = rcu_dereference(event->rb);
6028 if (!rb || !rb->nr_pages) {
6029 rcu_read_unlock();
6030 return -EINVAL;
6031 }
6032 rb_toggle_paused(rb, !!arg);
6033 rcu_read_unlock();
6034 return 0;
6035 }
6036
6037 case PERF_EVENT_IOC_QUERY_BPF:
6038 return perf_event_query_prog_array(event, (void __user *)arg);
6039
6040 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6041 struct perf_event_attr new_attr;
6042 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6043 &new_attr);
6044
6045 if (err)
6046 return err;
6047
6048 return perf_event_modify_attr(event, &new_attr);
6049 }
6050 default:
6051 return -ENOTTY;
6052 }
6053
6054 if (flags & PERF_IOC_FLAG_GROUP)
6055 perf_event_for_each(event, func);
6056 else
6057 perf_event_for_each_child(event, func);
6058
6059 return 0;
6060 }
6061
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6062 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6063 {
6064 struct perf_event *event = file->private_data;
6065 struct perf_event_context *ctx;
6066 long ret;
6067
6068 /* Treat ioctl like writes as it is likely a mutating operation. */
6069 ret = security_perf_event_write(event);
6070 if (ret)
6071 return ret;
6072
6073 ctx = perf_event_ctx_lock(event);
6074 ret = _perf_ioctl(event, cmd, arg);
6075 perf_event_ctx_unlock(event, ctx);
6076
6077 return ret;
6078 }
6079
6080 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6081 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6082 unsigned long arg)
6083 {
6084 switch (_IOC_NR(cmd)) {
6085 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6086 case _IOC_NR(PERF_EVENT_IOC_ID):
6087 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6088 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6089 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6090 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6091 cmd &= ~IOCSIZE_MASK;
6092 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6093 }
6094 break;
6095 }
6096 return perf_ioctl(file, cmd, arg);
6097 }
6098 #else
6099 # define perf_compat_ioctl NULL
6100 #endif
6101
perf_event_task_enable(void)6102 int perf_event_task_enable(void)
6103 {
6104 struct perf_event_context *ctx;
6105 struct perf_event *event;
6106
6107 mutex_lock(¤t->perf_event_mutex);
6108 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6109 ctx = perf_event_ctx_lock(event);
6110 perf_event_for_each_child(event, _perf_event_enable);
6111 perf_event_ctx_unlock(event, ctx);
6112 }
6113 mutex_unlock(¤t->perf_event_mutex);
6114
6115 return 0;
6116 }
6117
perf_event_task_disable(void)6118 int perf_event_task_disable(void)
6119 {
6120 struct perf_event_context *ctx;
6121 struct perf_event *event;
6122
6123 mutex_lock(¤t->perf_event_mutex);
6124 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6125 ctx = perf_event_ctx_lock(event);
6126 perf_event_for_each_child(event, _perf_event_disable);
6127 perf_event_ctx_unlock(event, ctx);
6128 }
6129 mutex_unlock(¤t->perf_event_mutex);
6130
6131 return 0;
6132 }
6133
perf_event_index(struct perf_event * event)6134 static int perf_event_index(struct perf_event *event)
6135 {
6136 if (event->hw.state & PERF_HES_STOPPED)
6137 return 0;
6138
6139 if (event->state != PERF_EVENT_STATE_ACTIVE)
6140 return 0;
6141
6142 return event->pmu->event_idx(event);
6143 }
6144
perf_event_init_userpage(struct perf_event * event)6145 static void perf_event_init_userpage(struct perf_event *event)
6146 {
6147 struct perf_event_mmap_page *userpg;
6148 struct perf_buffer *rb;
6149
6150 rcu_read_lock();
6151 rb = rcu_dereference(event->rb);
6152 if (!rb)
6153 goto unlock;
6154
6155 userpg = rb->user_page;
6156
6157 /* Allow new userspace to detect that bit 0 is deprecated */
6158 userpg->cap_bit0_is_deprecated = 1;
6159 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6160 userpg->data_offset = PAGE_SIZE;
6161 userpg->data_size = perf_data_size(rb);
6162
6163 unlock:
6164 rcu_read_unlock();
6165 }
6166
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6167 void __weak arch_perf_update_userpage(
6168 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6169 {
6170 }
6171
6172 /*
6173 * Callers need to ensure there can be no nesting of this function, otherwise
6174 * the seqlock logic goes bad. We can not serialize this because the arch
6175 * code calls this from NMI context.
6176 */
perf_event_update_userpage(struct perf_event * event)6177 void perf_event_update_userpage(struct perf_event *event)
6178 {
6179 struct perf_event_mmap_page *userpg;
6180 struct perf_buffer *rb;
6181 u64 enabled, running, now;
6182
6183 rcu_read_lock();
6184 rb = rcu_dereference(event->rb);
6185 if (!rb)
6186 goto unlock;
6187
6188 /*
6189 * compute total_time_enabled, total_time_running
6190 * based on snapshot values taken when the event
6191 * was last scheduled in.
6192 *
6193 * we cannot simply called update_context_time()
6194 * because of locking issue as we can be called in
6195 * NMI context
6196 */
6197 calc_timer_values(event, &now, &enabled, &running);
6198
6199 userpg = rb->user_page;
6200 /*
6201 * Disable preemption to guarantee consistent time stamps are stored to
6202 * the user page.
6203 */
6204 preempt_disable();
6205 ++userpg->lock;
6206 barrier();
6207 userpg->index = perf_event_index(event);
6208 userpg->offset = perf_event_count(event);
6209 if (userpg->index)
6210 userpg->offset -= local64_read(&event->hw.prev_count);
6211
6212 userpg->time_enabled = enabled +
6213 atomic64_read(&event->child_total_time_enabled);
6214
6215 userpg->time_running = running +
6216 atomic64_read(&event->child_total_time_running);
6217
6218 arch_perf_update_userpage(event, userpg, now);
6219
6220 barrier();
6221 ++userpg->lock;
6222 preempt_enable();
6223 unlock:
6224 rcu_read_unlock();
6225 }
6226 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6227
perf_mmap_fault(struct vm_fault * vmf)6228 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6229 {
6230 struct perf_event *event = vmf->vma->vm_file->private_data;
6231 struct perf_buffer *rb;
6232 vm_fault_t ret = VM_FAULT_SIGBUS;
6233
6234 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6235 if (vmf->pgoff == 0)
6236 ret = 0;
6237 return ret;
6238 }
6239
6240 rcu_read_lock();
6241 rb = rcu_dereference(event->rb);
6242 if (!rb)
6243 goto unlock;
6244
6245 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6246 goto unlock;
6247
6248 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6249 if (!vmf->page)
6250 goto unlock;
6251
6252 get_page(vmf->page);
6253 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6254 vmf->page->index = vmf->pgoff;
6255
6256 ret = 0;
6257 unlock:
6258 rcu_read_unlock();
6259
6260 return ret;
6261 }
6262
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6263 static void ring_buffer_attach(struct perf_event *event,
6264 struct perf_buffer *rb)
6265 {
6266 struct perf_buffer *old_rb = NULL;
6267 unsigned long flags;
6268
6269 WARN_ON_ONCE(event->parent);
6270
6271 if (event->rb) {
6272 /*
6273 * Should be impossible, we set this when removing
6274 * event->rb_entry and wait/clear when adding event->rb_entry.
6275 */
6276 WARN_ON_ONCE(event->rcu_pending);
6277
6278 old_rb = event->rb;
6279 spin_lock_irqsave(&old_rb->event_lock, flags);
6280 list_del_rcu(&event->rb_entry);
6281 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6282
6283 event->rcu_batches = get_state_synchronize_rcu();
6284 event->rcu_pending = 1;
6285 }
6286
6287 if (rb) {
6288 if (event->rcu_pending) {
6289 cond_synchronize_rcu(event->rcu_batches);
6290 event->rcu_pending = 0;
6291 }
6292
6293 spin_lock_irqsave(&rb->event_lock, flags);
6294 list_add_rcu(&event->rb_entry, &rb->event_list);
6295 spin_unlock_irqrestore(&rb->event_lock, flags);
6296 }
6297
6298 /*
6299 * Avoid racing with perf_mmap_close(AUX): stop the event
6300 * before swizzling the event::rb pointer; if it's getting
6301 * unmapped, its aux_mmap_count will be 0 and it won't
6302 * restart. See the comment in __perf_pmu_output_stop().
6303 *
6304 * Data will inevitably be lost when set_output is done in
6305 * mid-air, but then again, whoever does it like this is
6306 * not in for the data anyway.
6307 */
6308 if (has_aux(event))
6309 perf_event_stop(event, 0);
6310
6311 rcu_assign_pointer(event->rb, rb);
6312
6313 if (old_rb) {
6314 ring_buffer_put(old_rb);
6315 /*
6316 * Since we detached before setting the new rb, so that we
6317 * could attach the new rb, we could have missed a wakeup.
6318 * Provide it now.
6319 */
6320 wake_up_all(&event->waitq);
6321 }
6322 }
6323
ring_buffer_wakeup(struct perf_event * event)6324 static void ring_buffer_wakeup(struct perf_event *event)
6325 {
6326 struct perf_buffer *rb;
6327
6328 if (event->parent)
6329 event = event->parent;
6330
6331 rcu_read_lock();
6332 rb = rcu_dereference(event->rb);
6333 if (rb) {
6334 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6335 wake_up_all(&event->waitq);
6336 }
6337 rcu_read_unlock();
6338 }
6339
ring_buffer_get(struct perf_event * event)6340 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6341 {
6342 struct perf_buffer *rb;
6343
6344 if (event->parent)
6345 event = event->parent;
6346
6347 rcu_read_lock();
6348 rb = rcu_dereference(event->rb);
6349 if (rb) {
6350 if (!refcount_inc_not_zero(&rb->refcount))
6351 rb = NULL;
6352 }
6353 rcu_read_unlock();
6354
6355 return rb;
6356 }
6357
ring_buffer_put(struct perf_buffer * rb)6358 void ring_buffer_put(struct perf_buffer *rb)
6359 {
6360 if (!refcount_dec_and_test(&rb->refcount))
6361 return;
6362
6363 WARN_ON_ONCE(!list_empty(&rb->event_list));
6364
6365 call_rcu(&rb->rcu_head, rb_free_rcu);
6366 }
6367
perf_mmap_open(struct vm_area_struct * vma)6368 static void perf_mmap_open(struct vm_area_struct *vma)
6369 {
6370 struct perf_event *event = vma->vm_file->private_data;
6371
6372 atomic_inc(&event->mmap_count);
6373 atomic_inc(&event->rb->mmap_count);
6374
6375 if (vma->vm_pgoff)
6376 atomic_inc(&event->rb->aux_mmap_count);
6377
6378 if (event->pmu->event_mapped)
6379 event->pmu->event_mapped(event, vma->vm_mm);
6380 }
6381
6382 static void perf_pmu_output_stop(struct perf_event *event);
6383
6384 /*
6385 * A buffer can be mmap()ed multiple times; either directly through the same
6386 * event, or through other events by use of perf_event_set_output().
6387 *
6388 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6389 * the buffer here, where we still have a VM context. This means we need
6390 * to detach all events redirecting to us.
6391 */
perf_mmap_close(struct vm_area_struct * vma)6392 static void perf_mmap_close(struct vm_area_struct *vma)
6393 {
6394 struct perf_event *event = vma->vm_file->private_data;
6395 struct perf_buffer *rb = ring_buffer_get(event);
6396 struct user_struct *mmap_user = rb->mmap_user;
6397 int mmap_locked = rb->mmap_locked;
6398 unsigned long size = perf_data_size(rb);
6399 bool detach_rest = false;
6400
6401 if (event->pmu->event_unmapped)
6402 event->pmu->event_unmapped(event, vma->vm_mm);
6403
6404 /*
6405 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6406 * to avoid complications.
6407 */
6408 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6409 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6410 /*
6411 * Stop all AUX events that are writing to this buffer,
6412 * so that we can free its AUX pages and corresponding PMU
6413 * data. Note that after rb::aux_mmap_count dropped to zero,
6414 * they won't start any more (see perf_aux_output_begin()).
6415 */
6416 perf_pmu_output_stop(event);
6417
6418 /* now it's safe to free the pages */
6419 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6420 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6421
6422 /* this has to be the last one */
6423 rb_free_aux(rb);
6424 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6425
6426 mutex_unlock(&rb->aux_mutex);
6427 }
6428
6429 if (atomic_dec_and_test(&rb->mmap_count))
6430 detach_rest = true;
6431
6432 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6433 goto out_put;
6434
6435 ring_buffer_attach(event, NULL);
6436 mutex_unlock(&event->mmap_mutex);
6437
6438 /* If there's still other mmap()s of this buffer, we're done. */
6439 if (!detach_rest)
6440 goto out_put;
6441
6442 /*
6443 * No other mmap()s, detach from all other events that might redirect
6444 * into the now unreachable buffer. Somewhat complicated by the
6445 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6446 */
6447 again:
6448 rcu_read_lock();
6449 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6450 if (!atomic_long_inc_not_zero(&event->refcount)) {
6451 /*
6452 * This event is en-route to free_event() which will
6453 * detach it and remove it from the list.
6454 */
6455 continue;
6456 }
6457 rcu_read_unlock();
6458
6459 mutex_lock(&event->mmap_mutex);
6460 /*
6461 * Check we didn't race with perf_event_set_output() which can
6462 * swizzle the rb from under us while we were waiting to
6463 * acquire mmap_mutex.
6464 *
6465 * If we find a different rb; ignore this event, a next
6466 * iteration will no longer find it on the list. We have to
6467 * still restart the iteration to make sure we're not now
6468 * iterating the wrong list.
6469 */
6470 if (event->rb == rb)
6471 ring_buffer_attach(event, NULL);
6472
6473 mutex_unlock(&event->mmap_mutex);
6474 put_event(event);
6475
6476 /*
6477 * Restart the iteration; either we're on the wrong list or
6478 * destroyed its integrity by doing a deletion.
6479 */
6480 goto again;
6481 }
6482 rcu_read_unlock();
6483
6484 /*
6485 * It could be there's still a few 0-ref events on the list; they'll
6486 * get cleaned up by free_event() -- they'll also still have their
6487 * ref on the rb and will free it whenever they are done with it.
6488 *
6489 * Aside from that, this buffer is 'fully' detached and unmapped,
6490 * undo the VM accounting.
6491 */
6492
6493 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6494 &mmap_user->locked_vm);
6495 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6496 free_uid(mmap_user);
6497
6498 out_put:
6499 ring_buffer_put(rb); /* could be last */
6500 }
6501
6502 static const struct vm_operations_struct perf_mmap_vmops = {
6503 .open = perf_mmap_open,
6504 .close = perf_mmap_close, /* non mergeable */
6505 .fault = perf_mmap_fault,
6506 .page_mkwrite = perf_mmap_fault,
6507 };
6508
perf_mmap(struct file * file,struct vm_area_struct * vma)6509 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6510 {
6511 struct perf_event *event = file->private_data;
6512 unsigned long user_locked, user_lock_limit;
6513 struct user_struct *user = current_user();
6514 struct mutex *aux_mutex = NULL;
6515 struct perf_buffer *rb = NULL;
6516 unsigned long locked, lock_limit;
6517 unsigned long vma_size;
6518 unsigned long nr_pages;
6519 long user_extra = 0, extra = 0;
6520 int ret = 0, flags = 0;
6521
6522 /*
6523 * Don't allow mmap() of inherited per-task counters. This would
6524 * create a performance issue due to all children writing to the
6525 * same rb.
6526 */
6527 if (event->cpu == -1 && event->attr.inherit)
6528 return -EINVAL;
6529
6530 if (!(vma->vm_flags & VM_SHARED))
6531 return -EINVAL;
6532
6533 ret = security_perf_event_read(event);
6534 if (ret)
6535 return ret;
6536
6537 vma_size = vma->vm_end - vma->vm_start;
6538
6539 if (vma->vm_pgoff == 0) {
6540 nr_pages = (vma_size / PAGE_SIZE) - 1;
6541 } else {
6542 /*
6543 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6544 * mapped, all subsequent mappings should have the same size
6545 * and offset. Must be above the normal perf buffer.
6546 */
6547 u64 aux_offset, aux_size;
6548
6549 if (!event->rb)
6550 return -EINVAL;
6551
6552 nr_pages = vma_size / PAGE_SIZE;
6553 if (nr_pages > INT_MAX)
6554 return -ENOMEM;
6555
6556 mutex_lock(&event->mmap_mutex);
6557 ret = -EINVAL;
6558
6559 rb = event->rb;
6560 if (!rb)
6561 goto aux_unlock;
6562
6563 aux_mutex = &rb->aux_mutex;
6564 mutex_lock(aux_mutex);
6565
6566 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6567 aux_size = READ_ONCE(rb->user_page->aux_size);
6568
6569 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6570 goto aux_unlock;
6571
6572 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6573 goto aux_unlock;
6574
6575 /* already mapped with a different offset */
6576 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6577 goto aux_unlock;
6578
6579 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6580 goto aux_unlock;
6581
6582 /* already mapped with a different size */
6583 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6584 goto aux_unlock;
6585
6586 if (!is_power_of_2(nr_pages))
6587 goto aux_unlock;
6588
6589 if (!atomic_inc_not_zero(&rb->mmap_count))
6590 goto aux_unlock;
6591
6592 if (rb_has_aux(rb)) {
6593 atomic_inc(&rb->aux_mmap_count);
6594 ret = 0;
6595 goto unlock;
6596 }
6597
6598 atomic_set(&rb->aux_mmap_count, 1);
6599 user_extra = nr_pages;
6600
6601 goto accounting;
6602 }
6603
6604 /*
6605 * If we have rb pages ensure they're a power-of-two number, so we
6606 * can do bitmasks instead of modulo.
6607 */
6608 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6609 return -EINVAL;
6610
6611 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6612 return -EINVAL;
6613
6614 WARN_ON_ONCE(event->ctx->parent_ctx);
6615 again:
6616 mutex_lock(&event->mmap_mutex);
6617 if (event->rb) {
6618 if (data_page_nr(event->rb) != nr_pages) {
6619 ret = -EINVAL;
6620 goto unlock;
6621 }
6622
6623 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6624 /*
6625 * Raced against perf_mmap_close(); remove the
6626 * event and try again.
6627 */
6628 ring_buffer_attach(event, NULL);
6629 mutex_unlock(&event->mmap_mutex);
6630 goto again;
6631 }
6632
6633 goto unlock;
6634 }
6635
6636 user_extra = nr_pages + 1;
6637
6638 accounting:
6639 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6640
6641 /*
6642 * Increase the limit linearly with more CPUs:
6643 */
6644 user_lock_limit *= num_online_cpus();
6645
6646 user_locked = atomic_long_read(&user->locked_vm);
6647
6648 /*
6649 * sysctl_perf_event_mlock may have changed, so that
6650 * user->locked_vm > user_lock_limit
6651 */
6652 if (user_locked > user_lock_limit)
6653 user_locked = user_lock_limit;
6654 user_locked += user_extra;
6655
6656 if (user_locked > user_lock_limit) {
6657 /*
6658 * charge locked_vm until it hits user_lock_limit;
6659 * charge the rest from pinned_vm
6660 */
6661 extra = user_locked - user_lock_limit;
6662 user_extra -= extra;
6663 }
6664
6665 lock_limit = rlimit(RLIMIT_MEMLOCK);
6666 lock_limit >>= PAGE_SHIFT;
6667 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6668
6669 if ((locked > lock_limit) && perf_is_paranoid() &&
6670 !capable(CAP_IPC_LOCK)) {
6671 ret = -EPERM;
6672 goto unlock;
6673 }
6674
6675 WARN_ON(!rb && event->rb);
6676
6677 if (vma->vm_flags & VM_WRITE)
6678 flags |= RING_BUFFER_WRITABLE;
6679
6680 if (!rb) {
6681 rb = rb_alloc(nr_pages,
6682 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6683 event->cpu, flags);
6684
6685 if (!rb) {
6686 ret = -ENOMEM;
6687 goto unlock;
6688 }
6689
6690 atomic_set(&rb->mmap_count, 1);
6691 rb->mmap_user = get_current_user();
6692 rb->mmap_locked = extra;
6693
6694 ring_buffer_attach(event, rb);
6695
6696 perf_event_update_time(event);
6697 perf_event_init_userpage(event);
6698 perf_event_update_userpage(event);
6699 } else {
6700 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6701 event->attr.aux_watermark, flags);
6702 if (!ret)
6703 rb->aux_mmap_locked = extra;
6704 }
6705
6706 unlock:
6707 if (!ret) {
6708 atomic_long_add(user_extra, &user->locked_vm);
6709 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6710
6711 atomic_inc(&event->mmap_count);
6712 } else if (rb) {
6713 atomic_dec(&rb->mmap_count);
6714 }
6715 aux_unlock:
6716 if (aux_mutex)
6717 mutex_unlock(aux_mutex);
6718 mutex_unlock(&event->mmap_mutex);
6719
6720 /*
6721 * Since pinned accounting is per vm we cannot allow fork() to copy our
6722 * vma.
6723 */
6724 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6725 vma->vm_ops = &perf_mmap_vmops;
6726
6727 if (event->pmu->event_mapped)
6728 event->pmu->event_mapped(event, vma->vm_mm);
6729
6730 return ret;
6731 }
6732
perf_fasync(int fd,struct file * filp,int on)6733 static int perf_fasync(int fd, struct file *filp, int on)
6734 {
6735 struct inode *inode = file_inode(filp);
6736 struct perf_event *event = filp->private_data;
6737 int retval;
6738
6739 inode_lock(inode);
6740 retval = fasync_helper(fd, filp, on, &event->fasync);
6741 inode_unlock(inode);
6742
6743 if (retval < 0)
6744 return retval;
6745
6746 return 0;
6747 }
6748
6749 static const struct file_operations perf_fops = {
6750 .llseek = no_llseek,
6751 .release = perf_release,
6752 .read = perf_read,
6753 .poll = perf_poll,
6754 .unlocked_ioctl = perf_ioctl,
6755 .compat_ioctl = perf_compat_ioctl,
6756 .mmap = perf_mmap,
6757 .fasync = perf_fasync,
6758 };
6759
6760 /*
6761 * Perf event wakeup
6762 *
6763 * If there's data, ensure we set the poll() state and publish everything
6764 * to user-space before waking everybody up.
6765 */
6766
perf_event_fasync(struct perf_event * event)6767 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6768 {
6769 /* only the parent has fasync state */
6770 if (event->parent)
6771 event = event->parent;
6772 return &event->fasync;
6773 }
6774
perf_event_wakeup(struct perf_event * event)6775 void perf_event_wakeup(struct perf_event *event)
6776 {
6777 ring_buffer_wakeup(event);
6778
6779 if (event->pending_kill) {
6780 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6781 event->pending_kill = 0;
6782 }
6783 }
6784
perf_sigtrap(struct perf_event * event)6785 static void perf_sigtrap(struct perf_event *event)
6786 {
6787 /*
6788 * We'd expect this to only occur if the irq_work is delayed and either
6789 * ctx->task or current has changed in the meantime. This can be the
6790 * case on architectures that do not implement arch_irq_work_raise().
6791 */
6792 if (WARN_ON_ONCE(event->ctx->task != current))
6793 return;
6794
6795 /*
6796 * Both perf_pending_task() and perf_pending_irq() can race with the
6797 * task exiting.
6798 */
6799 if (current->flags & PF_EXITING)
6800 return;
6801
6802 send_sig_perf((void __user *)event->pending_addr,
6803 event->orig_type, event->attr.sig_data);
6804 }
6805
6806 /*
6807 * Deliver the pending work in-event-context or follow the context.
6808 */
__perf_pending_irq(struct perf_event * event)6809 static void __perf_pending_irq(struct perf_event *event)
6810 {
6811 int cpu = READ_ONCE(event->oncpu);
6812
6813 /*
6814 * If the event isn't running; we done. event_sched_out() will have
6815 * taken care of things.
6816 */
6817 if (cpu < 0)
6818 return;
6819
6820 /*
6821 * Yay, we hit home and are in the context of the event.
6822 */
6823 if (cpu == smp_processor_id()) {
6824 if (event->pending_sigtrap) {
6825 event->pending_sigtrap = 0;
6826 perf_sigtrap(event);
6827 local_dec(&event->ctx->nr_pending);
6828 }
6829 if (event->pending_disable) {
6830 event->pending_disable = 0;
6831 perf_event_disable_local(event);
6832 }
6833 return;
6834 }
6835
6836 /*
6837 * CPU-A CPU-B
6838 *
6839 * perf_event_disable_inatomic()
6840 * @pending_disable = CPU-A;
6841 * irq_work_queue();
6842 *
6843 * sched-out
6844 * @pending_disable = -1;
6845 *
6846 * sched-in
6847 * perf_event_disable_inatomic()
6848 * @pending_disable = CPU-B;
6849 * irq_work_queue(); // FAILS
6850 *
6851 * irq_work_run()
6852 * perf_pending_irq()
6853 *
6854 * But the event runs on CPU-B and wants disabling there.
6855 */
6856 irq_work_queue_on(&event->pending_irq, cpu);
6857 }
6858
perf_pending_irq(struct irq_work * entry)6859 static void perf_pending_irq(struct irq_work *entry)
6860 {
6861 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6862 int rctx;
6863
6864 /*
6865 * If we 'fail' here, that's OK, it means recursion is already disabled
6866 * and we won't recurse 'further'.
6867 */
6868 rctx = perf_swevent_get_recursion_context();
6869
6870 /*
6871 * The wakeup isn't bound to the context of the event -- it can happen
6872 * irrespective of where the event is.
6873 */
6874 if (event->pending_wakeup) {
6875 event->pending_wakeup = 0;
6876 perf_event_wakeup(event);
6877 }
6878
6879 __perf_pending_irq(event);
6880
6881 if (rctx >= 0)
6882 perf_swevent_put_recursion_context(rctx);
6883 }
6884
perf_pending_task(struct callback_head * head)6885 static void perf_pending_task(struct callback_head *head)
6886 {
6887 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6888 int rctx;
6889
6890 /*
6891 * All accesses to the event must belong to the same implicit RCU read-side
6892 * critical section as the ->pending_work reset. See comment in
6893 * perf_pending_task_sync().
6894 */
6895 preempt_disable_notrace();
6896 /*
6897 * If we 'fail' here, that's OK, it means recursion is already disabled
6898 * and we won't recurse 'further'.
6899 */
6900 rctx = perf_swevent_get_recursion_context();
6901
6902 if (event->pending_work) {
6903 event->pending_work = 0;
6904 perf_sigtrap(event);
6905 local_dec(&event->ctx->nr_pending);
6906 rcuwait_wake_up(&event->pending_work_wait);
6907 }
6908
6909 if (rctx >= 0)
6910 perf_swevent_put_recursion_context(rctx);
6911 preempt_enable_notrace();
6912 }
6913
6914 #ifdef CONFIG_GUEST_PERF_EVENTS
6915 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6916
6917 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6918 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6919 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6920
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6921 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6922 {
6923 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6924 return;
6925
6926 rcu_assign_pointer(perf_guest_cbs, cbs);
6927 static_call_update(__perf_guest_state, cbs->state);
6928 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6929
6930 /* Implementing ->handle_intel_pt_intr is optional. */
6931 if (cbs->handle_intel_pt_intr)
6932 static_call_update(__perf_guest_handle_intel_pt_intr,
6933 cbs->handle_intel_pt_intr);
6934 }
6935 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6936
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6937 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6938 {
6939 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6940 return;
6941
6942 rcu_assign_pointer(perf_guest_cbs, NULL);
6943 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6944 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6945 static_call_update(__perf_guest_handle_intel_pt_intr,
6946 (void *)&__static_call_return0);
6947 synchronize_rcu();
6948 }
6949 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6950 #endif
6951
6952 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6953 perf_output_sample_regs(struct perf_output_handle *handle,
6954 struct pt_regs *regs, u64 mask)
6955 {
6956 int bit;
6957 DECLARE_BITMAP(_mask, 64);
6958
6959 bitmap_from_u64(_mask, mask);
6960 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6961 u64 val;
6962
6963 val = perf_reg_value(regs, bit);
6964 perf_output_put(handle, val);
6965 }
6966 }
6967
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6968 static void perf_sample_regs_user(struct perf_regs *regs_user,
6969 struct pt_regs *regs)
6970 {
6971 if (user_mode(regs)) {
6972 regs_user->abi = perf_reg_abi(current);
6973 regs_user->regs = regs;
6974 } else if (!(current->flags & PF_KTHREAD)) {
6975 perf_get_regs_user(regs_user, regs);
6976 } else {
6977 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6978 regs_user->regs = NULL;
6979 }
6980 }
6981
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6982 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6983 struct pt_regs *regs)
6984 {
6985 regs_intr->regs = regs;
6986 regs_intr->abi = perf_reg_abi(current);
6987 }
6988
6989
6990 /*
6991 * Get remaining task size from user stack pointer.
6992 *
6993 * It'd be better to take stack vma map and limit this more
6994 * precisely, but there's no way to get it safely under interrupt,
6995 * so using TASK_SIZE as limit.
6996 */
perf_ustack_task_size(struct pt_regs * regs)6997 static u64 perf_ustack_task_size(struct pt_regs *regs)
6998 {
6999 unsigned long addr = perf_user_stack_pointer(regs);
7000
7001 if (!addr || addr >= TASK_SIZE)
7002 return 0;
7003
7004 return TASK_SIZE - addr;
7005 }
7006
7007 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7008 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7009 struct pt_regs *regs)
7010 {
7011 u64 task_size;
7012
7013 /* No regs, no stack pointer, no dump. */
7014 if (!regs)
7015 return 0;
7016
7017 /* No mm, no stack, no dump. */
7018 if (!current->mm)
7019 return 0;
7020
7021 /*
7022 * Check if we fit in with the requested stack size into the:
7023 * - TASK_SIZE
7024 * If we don't, we limit the size to the TASK_SIZE.
7025 *
7026 * - remaining sample size
7027 * If we don't, we customize the stack size to
7028 * fit in to the remaining sample size.
7029 */
7030
7031 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7032 stack_size = min(stack_size, (u16) task_size);
7033
7034 /* Current header size plus static size and dynamic size. */
7035 header_size += 2 * sizeof(u64);
7036
7037 /* Do we fit in with the current stack dump size? */
7038 if ((u16) (header_size + stack_size) < header_size) {
7039 /*
7040 * If we overflow the maximum size for the sample,
7041 * we customize the stack dump size to fit in.
7042 */
7043 stack_size = USHRT_MAX - header_size - sizeof(u64);
7044 stack_size = round_up(stack_size, sizeof(u64));
7045 }
7046
7047 return stack_size;
7048 }
7049
7050 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7051 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7052 struct pt_regs *regs)
7053 {
7054 /* Case of a kernel thread, nothing to dump */
7055 if (!regs) {
7056 u64 size = 0;
7057 perf_output_put(handle, size);
7058 } else {
7059 unsigned long sp;
7060 unsigned int rem;
7061 u64 dyn_size;
7062
7063 /*
7064 * We dump:
7065 * static size
7066 * - the size requested by user or the best one we can fit
7067 * in to the sample max size
7068 * data
7069 * - user stack dump data
7070 * dynamic size
7071 * - the actual dumped size
7072 */
7073
7074 /* Static size. */
7075 perf_output_put(handle, dump_size);
7076
7077 /* Data. */
7078 sp = perf_user_stack_pointer(regs);
7079 rem = __output_copy_user(handle, (void *) sp, dump_size);
7080 dyn_size = dump_size - rem;
7081
7082 perf_output_skip(handle, rem);
7083
7084 /* Dynamic size. */
7085 perf_output_put(handle, dyn_size);
7086 }
7087 }
7088
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7089 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7090 struct perf_sample_data *data,
7091 size_t size)
7092 {
7093 struct perf_event *sampler = event->aux_event;
7094 struct perf_buffer *rb;
7095
7096 data->aux_size = 0;
7097
7098 if (!sampler)
7099 goto out;
7100
7101 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7102 goto out;
7103
7104 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7105 goto out;
7106
7107 rb = ring_buffer_get(sampler);
7108 if (!rb)
7109 goto out;
7110
7111 /*
7112 * If this is an NMI hit inside sampling code, don't take
7113 * the sample. See also perf_aux_sample_output().
7114 */
7115 if (READ_ONCE(rb->aux_in_sampling)) {
7116 data->aux_size = 0;
7117 } else {
7118 size = min_t(size_t, size, perf_aux_size(rb));
7119 data->aux_size = ALIGN(size, sizeof(u64));
7120 }
7121 ring_buffer_put(rb);
7122
7123 out:
7124 return data->aux_size;
7125 }
7126
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7127 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7128 struct perf_event *event,
7129 struct perf_output_handle *handle,
7130 unsigned long size)
7131 {
7132 unsigned long flags;
7133 long ret;
7134
7135 /*
7136 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7137 * paths. If we start calling them in NMI context, they may race with
7138 * the IRQ ones, that is, for example, re-starting an event that's just
7139 * been stopped, which is why we're using a separate callback that
7140 * doesn't change the event state.
7141 *
7142 * IRQs need to be disabled to prevent IPIs from racing with us.
7143 */
7144 local_irq_save(flags);
7145 /*
7146 * Guard against NMI hits inside the critical section;
7147 * see also perf_prepare_sample_aux().
7148 */
7149 WRITE_ONCE(rb->aux_in_sampling, 1);
7150 barrier();
7151
7152 ret = event->pmu->snapshot_aux(event, handle, size);
7153
7154 barrier();
7155 WRITE_ONCE(rb->aux_in_sampling, 0);
7156 local_irq_restore(flags);
7157
7158 return ret;
7159 }
7160
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7161 static void perf_aux_sample_output(struct perf_event *event,
7162 struct perf_output_handle *handle,
7163 struct perf_sample_data *data)
7164 {
7165 struct perf_event *sampler = event->aux_event;
7166 struct perf_buffer *rb;
7167 unsigned long pad;
7168 long size;
7169
7170 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7171 return;
7172
7173 rb = ring_buffer_get(sampler);
7174 if (!rb)
7175 return;
7176
7177 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7178
7179 /*
7180 * An error here means that perf_output_copy() failed (returned a
7181 * non-zero surplus that it didn't copy), which in its current
7182 * enlightened implementation is not possible. If that changes, we'd
7183 * like to know.
7184 */
7185 if (WARN_ON_ONCE(size < 0))
7186 goto out_put;
7187
7188 /*
7189 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7190 * perf_prepare_sample_aux(), so should not be more than that.
7191 */
7192 pad = data->aux_size - size;
7193 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7194 pad = 8;
7195
7196 if (pad) {
7197 u64 zero = 0;
7198 perf_output_copy(handle, &zero, pad);
7199 }
7200
7201 out_put:
7202 ring_buffer_put(rb);
7203 }
7204
7205 /*
7206 * A set of common sample data types saved even for non-sample records
7207 * when event->attr.sample_id_all is set.
7208 */
7209 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7210 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7211 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7212
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7213 static void __perf_event_header__init_id(struct perf_sample_data *data,
7214 struct perf_event *event,
7215 u64 sample_type)
7216 {
7217 data->type = event->attr.sample_type;
7218 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7219
7220 if (sample_type & PERF_SAMPLE_TID) {
7221 /* namespace issues */
7222 data->tid_entry.pid = perf_event_pid(event, current);
7223 data->tid_entry.tid = perf_event_tid(event, current);
7224 }
7225
7226 if (sample_type & PERF_SAMPLE_TIME)
7227 data->time = perf_event_clock(event);
7228
7229 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7230 data->id = primary_event_id(event);
7231
7232 if (sample_type & PERF_SAMPLE_STREAM_ID)
7233 data->stream_id = event->id;
7234
7235 if (sample_type & PERF_SAMPLE_CPU) {
7236 data->cpu_entry.cpu = raw_smp_processor_id();
7237 data->cpu_entry.reserved = 0;
7238 }
7239 }
7240
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7241 void perf_event_header__init_id(struct perf_event_header *header,
7242 struct perf_sample_data *data,
7243 struct perf_event *event)
7244 {
7245 if (event->attr.sample_id_all) {
7246 header->size += event->id_header_size;
7247 __perf_event_header__init_id(data, event, event->attr.sample_type);
7248 }
7249 }
7250
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7251 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7252 struct perf_sample_data *data)
7253 {
7254 u64 sample_type = data->type;
7255
7256 if (sample_type & PERF_SAMPLE_TID)
7257 perf_output_put(handle, data->tid_entry);
7258
7259 if (sample_type & PERF_SAMPLE_TIME)
7260 perf_output_put(handle, data->time);
7261
7262 if (sample_type & PERF_SAMPLE_ID)
7263 perf_output_put(handle, data->id);
7264
7265 if (sample_type & PERF_SAMPLE_STREAM_ID)
7266 perf_output_put(handle, data->stream_id);
7267
7268 if (sample_type & PERF_SAMPLE_CPU)
7269 perf_output_put(handle, data->cpu_entry);
7270
7271 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7272 perf_output_put(handle, data->id);
7273 }
7274
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7275 void perf_event__output_id_sample(struct perf_event *event,
7276 struct perf_output_handle *handle,
7277 struct perf_sample_data *sample)
7278 {
7279 if (event->attr.sample_id_all)
7280 __perf_event__output_id_sample(handle, sample);
7281 }
7282
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7283 static void perf_output_read_one(struct perf_output_handle *handle,
7284 struct perf_event *event,
7285 u64 enabled, u64 running)
7286 {
7287 u64 read_format = event->attr.read_format;
7288 u64 values[5];
7289 int n = 0;
7290
7291 values[n++] = perf_event_count(event);
7292 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7293 values[n++] = enabled +
7294 atomic64_read(&event->child_total_time_enabled);
7295 }
7296 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7297 values[n++] = running +
7298 atomic64_read(&event->child_total_time_running);
7299 }
7300 if (read_format & PERF_FORMAT_ID)
7301 values[n++] = primary_event_id(event);
7302 if (read_format & PERF_FORMAT_LOST)
7303 values[n++] = atomic64_read(&event->lost_samples);
7304
7305 __output_copy(handle, values, n * sizeof(u64));
7306 }
7307
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7308 static void perf_output_read_group(struct perf_output_handle *handle,
7309 struct perf_event *event,
7310 u64 enabled, u64 running)
7311 {
7312 struct perf_event *leader = event->group_leader, *sub;
7313 u64 read_format = event->attr.read_format;
7314 unsigned long flags;
7315 u64 values[6];
7316 int n = 0;
7317
7318 /*
7319 * Disabling interrupts avoids all counter scheduling
7320 * (context switches, timer based rotation and IPIs).
7321 */
7322 local_irq_save(flags);
7323
7324 values[n++] = 1 + leader->nr_siblings;
7325
7326 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7327 values[n++] = enabled;
7328
7329 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7330 values[n++] = running;
7331
7332 if ((leader != event) && !handle->skip_read)
7333 perf_pmu_read(leader);
7334
7335 values[n++] = perf_event_count(leader);
7336 if (read_format & PERF_FORMAT_ID)
7337 values[n++] = primary_event_id(leader);
7338 if (read_format & PERF_FORMAT_LOST)
7339 values[n++] = atomic64_read(&leader->lost_samples);
7340
7341 __output_copy(handle, values, n * sizeof(u64));
7342
7343 for_each_sibling_event(sub, leader) {
7344 n = 0;
7345
7346 if ((sub != event) && !handle->skip_read)
7347 perf_pmu_read(sub);
7348
7349 values[n++] = perf_event_count(sub);
7350 if (read_format & PERF_FORMAT_ID)
7351 values[n++] = primary_event_id(sub);
7352 if (read_format & PERF_FORMAT_LOST)
7353 values[n++] = atomic64_read(&sub->lost_samples);
7354
7355 __output_copy(handle, values, n * sizeof(u64));
7356 }
7357
7358 local_irq_restore(flags);
7359 }
7360
7361 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7362 PERF_FORMAT_TOTAL_TIME_RUNNING)
7363
7364 /*
7365 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7366 *
7367 * The problem is that its both hard and excessively expensive to iterate the
7368 * child list, not to mention that its impossible to IPI the children running
7369 * on another CPU, from interrupt/NMI context.
7370 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7371 static void perf_output_read(struct perf_output_handle *handle,
7372 struct perf_event *event)
7373 {
7374 u64 enabled = 0, running = 0, now;
7375 u64 read_format = event->attr.read_format;
7376
7377 /*
7378 * compute total_time_enabled, total_time_running
7379 * based on snapshot values taken when the event
7380 * was last scheduled in.
7381 *
7382 * we cannot simply called update_context_time()
7383 * because of locking issue as we are called in
7384 * NMI context
7385 */
7386 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7387 calc_timer_values(event, &now, &enabled, &running);
7388
7389 if (event->attr.read_format & PERF_FORMAT_GROUP)
7390 perf_output_read_group(handle, event, enabled, running);
7391 else
7392 perf_output_read_one(handle, event, enabled, running);
7393 }
7394
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7395 void perf_output_sample(struct perf_output_handle *handle,
7396 struct perf_event_header *header,
7397 struct perf_sample_data *data,
7398 struct perf_event *event)
7399 {
7400 u64 sample_type = data->type;
7401
7402 if (data->sample_flags & PERF_SAMPLE_READ)
7403 handle->skip_read = 1;
7404
7405 perf_output_put(handle, *header);
7406
7407 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7408 perf_output_put(handle, data->id);
7409
7410 if (sample_type & PERF_SAMPLE_IP)
7411 perf_output_put(handle, data->ip);
7412
7413 if (sample_type & PERF_SAMPLE_TID)
7414 perf_output_put(handle, data->tid_entry);
7415
7416 if (sample_type & PERF_SAMPLE_TIME)
7417 perf_output_put(handle, data->time);
7418
7419 if (sample_type & PERF_SAMPLE_ADDR)
7420 perf_output_put(handle, data->addr);
7421
7422 if (sample_type & PERF_SAMPLE_ID)
7423 perf_output_put(handle, data->id);
7424
7425 if (sample_type & PERF_SAMPLE_STREAM_ID)
7426 perf_output_put(handle, data->stream_id);
7427
7428 if (sample_type & PERF_SAMPLE_CPU)
7429 perf_output_put(handle, data->cpu_entry);
7430
7431 if (sample_type & PERF_SAMPLE_PERIOD)
7432 perf_output_put(handle, data->period);
7433
7434 if (sample_type & PERF_SAMPLE_READ)
7435 perf_output_read(handle, event);
7436
7437 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7438 int size = 1;
7439
7440 size += data->callchain->nr;
7441 size *= sizeof(u64);
7442 __output_copy(handle, data->callchain, size);
7443 }
7444
7445 if (sample_type & PERF_SAMPLE_RAW) {
7446 struct perf_raw_record *raw = data->raw;
7447
7448 if (raw) {
7449 struct perf_raw_frag *frag = &raw->frag;
7450
7451 perf_output_put(handle, raw->size);
7452 do {
7453 if (frag->copy) {
7454 __output_custom(handle, frag->copy,
7455 frag->data, frag->size);
7456 } else {
7457 __output_copy(handle, frag->data,
7458 frag->size);
7459 }
7460 if (perf_raw_frag_last(frag))
7461 break;
7462 frag = frag->next;
7463 } while (1);
7464 if (frag->pad)
7465 __output_skip(handle, NULL, frag->pad);
7466 } else {
7467 struct {
7468 u32 size;
7469 u32 data;
7470 } raw = {
7471 .size = sizeof(u32),
7472 .data = 0,
7473 };
7474 perf_output_put(handle, raw);
7475 }
7476 }
7477
7478 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7479 if (data->br_stack) {
7480 size_t size;
7481
7482 size = data->br_stack->nr
7483 * sizeof(struct perf_branch_entry);
7484
7485 perf_output_put(handle, data->br_stack->nr);
7486 if (branch_sample_hw_index(event))
7487 perf_output_put(handle, data->br_stack->hw_idx);
7488 perf_output_copy(handle, data->br_stack->entries, size);
7489 } else {
7490 /*
7491 * we always store at least the value of nr
7492 */
7493 u64 nr = 0;
7494 perf_output_put(handle, nr);
7495 }
7496 }
7497
7498 if (sample_type & PERF_SAMPLE_REGS_USER) {
7499 u64 abi = data->regs_user.abi;
7500
7501 /*
7502 * If there are no regs to dump, notice it through
7503 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7504 */
7505 perf_output_put(handle, abi);
7506
7507 if (abi) {
7508 u64 mask = event->attr.sample_regs_user;
7509 perf_output_sample_regs(handle,
7510 data->regs_user.regs,
7511 mask);
7512 }
7513 }
7514
7515 if (sample_type & PERF_SAMPLE_STACK_USER) {
7516 perf_output_sample_ustack(handle,
7517 data->stack_user_size,
7518 data->regs_user.regs);
7519 }
7520
7521 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7522 perf_output_put(handle, data->weight.full);
7523
7524 if (sample_type & PERF_SAMPLE_DATA_SRC)
7525 perf_output_put(handle, data->data_src.val);
7526
7527 if (sample_type & PERF_SAMPLE_TRANSACTION)
7528 perf_output_put(handle, data->txn);
7529
7530 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7531 u64 abi = data->regs_intr.abi;
7532 /*
7533 * If there are no regs to dump, notice it through
7534 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7535 */
7536 perf_output_put(handle, abi);
7537
7538 if (abi) {
7539 u64 mask = event->attr.sample_regs_intr;
7540
7541 perf_output_sample_regs(handle,
7542 data->regs_intr.regs,
7543 mask);
7544 }
7545 }
7546
7547 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7548 perf_output_put(handle, data->phys_addr);
7549
7550 if (sample_type & PERF_SAMPLE_CGROUP)
7551 perf_output_put(handle, data->cgroup);
7552
7553 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7554 perf_output_put(handle, data->data_page_size);
7555
7556 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7557 perf_output_put(handle, data->code_page_size);
7558
7559 if (sample_type & PERF_SAMPLE_AUX) {
7560 perf_output_put(handle, data->aux_size);
7561
7562 if (data->aux_size)
7563 perf_aux_sample_output(event, handle, data);
7564 }
7565
7566 if (!event->attr.watermark) {
7567 int wakeup_events = event->attr.wakeup_events;
7568
7569 if (wakeup_events) {
7570 struct perf_buffer *rb = handle->rb;
7571 int events = local_inc_return(&rb->events);
7572
7573 if (events >= wakeup_events) {
7574 local_sub(wakeup_events, &rb->events);
7575 local_inc(&rb->wakeup);
7576 }
7577 }
7578 }
7579 }
7580
perf_virt_to_phys(u64 virt)7581 static u64 perf_virt_to_phys(u64 virt)
7582 {
7583 u64 phys_addr = 0;
7584
7585 if (!virt)
7586 return 0;
7587
7588 if (virt >= TASK_SIZE) {
7589 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7590 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7591 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7592 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7593 } else {
7594 /*
7595 * Walking the pages tables for user address.
7596 * Interrupts are disabled, so it prevents any tear down
7597 * of the page tables.
7598 * Try IRQ-safe get_user_page_fast_only first.
7599 * If failed, leave phys_addr as 0.
7600 */
7601 if (current->mm != NULL) {
7602 struct page *p;
7603
7604 pagefault_disable();
7605 if (get_user_page_fast_only(virt, 0, &p)) {
7606 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7607 put_page(p);
7608 }
7609 pagefault_enable();
7610 }
7611 }
7612
7613 return phys_addr;
7614 }
7615
7616 /*
7617 * Return the pagetable size of a given virtual address.
7618 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7619 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7620 {
7621 u64 size = 0;
7622
7623 #ifdef CONFIG_HAVE_FAST_GUP
7624 pgd_t *pgdp, pgd;
7625 p4d_t *p4dp, p4d;
7626 pud_t *pudp, pud;
7627 pmd_t *pmdp, pmd;
7628 pte_t *ptep, pte;
7629
7630 pgdp = pgd_offset(mm, addr);
7631 pgd = READ_ONCE(*pgdp);
7632 if (pgd_none(pgd))
7633 return 0;
7634
7635 if (pgd_leaf(pgd))
7636 return pgd_leaf_size(pgd);
7637
7638 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7639 p4d = READ_ONCE(*p4dp);
7640 if (!p4d_present(p4d))
7641 return 0;
7642
7643 if (p4d_leaf(p4d))
7644 return p4d_leaf_size(p4d);
7645
7646 pudp = pud_offset_lockless(p4dp, p4d, addr);
7647 pud = READ_ONCE(*pudp);
7648 if (!pud_present(pud))
7649 return 0;
7650
7651 if (pud_leaf(pud))
7652 return pud_leaf_size(pud);
7653
7654 pmdp = pmd_offset_lockless(pudp, pud, addr);
7655 again:
7656 pmd = pmdp_get_lockless(pmdp);
7657 if (!pmd_present(pmd))
7658 return 0;
7659
7660 if (pmd_leaf(pmd))
7661 return pmd_leaf_size(pmd);
7662
7663 ptep = pte_offset_map(&pmd, addr);
7664 if (!ptep)
7665 goto again;
7666
7667 pte = ptep_get_lockless(ptep);
7668 if (pte_present(pte))
7669 size = pte_leaf_size(pte);
7670 pte_unmap(ptep);
7671 #endif /* CONFIG_HAVE_FAST_GUP */
7672
7673 return size;
7674 }
7675
perf_get_page_size(unsigned long addr)7676 static u64 perf_get_page_size(unsigned long addr)
7677 {
7678 struct mm_struct *mm;
7679 unsigned long flags;
7680 u64 size;
7681
7682 if (!addr)
7683 return 0;
7684
7685 /*
7686 * Software page-table walkers must disable IRQs,
7687 * which prevents any tear down of the page tables.
7688 */
7689 local_irq_save(flags);
7690
7691 mm = current->mm;
7692 if (!mm) {
7693 /*
7694 * For kernel threads and the like, use init_mm so that
7695 * we can find kernel memory.
7696 */
7697 mm = &init_mm;
7698 }
7699
7700 size = perf_get_pgtable_size(mm, addr);
7701
7702 local_irq_restore(flags);
7703
7704 return size;
7705 }
7706
7707 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7708
7709 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7710 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7711 {
7712 bool kernel = !event->attr.exclude_callchain_kernel;
7713 bool user = !event->attr.exclude_callchain_user;
7714 /* Disallow cross-task user callchains. */
7715 bool crosstask = event->ctx->task && event->ctx->task != current;
7716 const u32 max_stack = event->attr.sample_max_stack;
7717 struct perf_callchain_entry *callchain;
7718
7719 if (!current->mm)
7720 user = false;
7721
7722 if (!kernel && !user)
7723 return &__empty_callchain;
7724
7725 callchain = get_perf_callchain(regs, 0, kernel, user,
7726 max_stack, crosstask, true);
7727 return callchain ?: &__empty_callchain;
7728 }
7729
__cond_set(u64 flags,u64 s,u64 d)7730 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7731 {
7732 return d * !!(flags & s);
7733 }
7734
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7735 void perf_prepare_sample(struct perf_sample_data *data,
7736 struct perf_event *event,
7737 struct pt_regs *regs)
7738 {
7739 u64 sample_type = event->attr.sample_type;
7740 u64 filtered_sample_type;
7741
7742 /*
7743 * Add the sample flags that are dependent to others. And clear the
7744 * sample flags that have already been done by the PMU driver.
7745 */
7746 filtered_sample_type = sample_type;
7747 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7748 PERF_SAMPLE_IP);
7749 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7750 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7751 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7752 PERF_SAMPLE_REGS_USER);
7753 filtered_sample_type &= ~data->sample_flags;
7754
7755 if (filtered_sample_type == 0) {
7756 /* Make sure it has the correct data->type for output */
7757 data->type = event->attr.sample_type;
7758 return;
7759 }
7760
7761 __perf_event_header__init_id(data, event, filtered_sample_type);
7762
7763 if (filtered_sample_type & PERF_SAMPLE_IP) {
7764 data->ip = perf_instruction_pointer(regs);
7765 data->sample_flags |= PERF_SAMPLE_IP;
7766 }
7767
7768 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7769 perf_sample_save_callchain(data, event, regs);
7770
7771 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7772 data->raw = NULL;
7773 data->dyn_size += sizeof(u64);
7774 data->sample_flags |= PERF_SAMPLE_RAW;
7775 }
7776
7777 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7778 data->br_stack = NULL;
7779 data->dyn_size += sizeof(u64);
7780 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7781 }
7782
7783 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7784 perf_sample_regs_user(&data->regs_user, regs);
7785
7786 /*
7787 * It cannot use the filtered_sample_type here as REGS_USER can be set
7788 * by STACK_USER (using __cond_set() above) and we don't want to update
7789 * the dyn_size if it's not requested by users.
7790 */
7791 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7792 /* regs dump ABI info */
7793 int size = sizeof(u64);
7794
7795 if (data->regs_user.regs) {
7796 u64 mask = event->attr.sample_regs_user;
7797 size += hweight64(mask) * sizeof(u64);
7798 }
7799
7800 data->dyn_size += size;
7801 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7802 }
7803
7804 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7805 /*
7806 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7807 * processed as the last one or have additional check added
7808 * in case new sample type is added, because we could eat
7809 * up the rest of the sample size.
7810 */
7811 u16 stack_size = event->attr.sample_stack_user;
7812 u16 header_size = perf_sample_data_size(data, event);
7813 u16 size = sizeof(u64);
7814
7815 stack_size = perf_sample_ustack_size(stack_size, header_size,
7816 data->regs_user.regs);
7817
7818 /*
7819 * If there is something to dump, add space for the dump
7820 * itself and for the field that tells the dynamic size,
7821 * which is how many have been actually dumped.
7822 */
7823 if (stack_size)
7824 size += sizeof(u64) + stack_size;
7825
7826 data->stack_user_size = stack_size;
7827 data->dyn_size += size;
7828 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7829 }
7830
7831 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7832 data->weight.full = 0;
7833 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7834 }
7835
7836 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7837 data->data_src.val = PERF_MEM_NA;
7838 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7839 }
7840
7841 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7842 data->txn = 0;
7843 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7844 }
7845
7846 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7847 data->addr = 0;
7848 data->sample_flags |= PERF_SAMPLE_ADDR;
7849 }
7850
7851 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7852 /* regs dump ABI info */
7853 int size = sizeof(u64);
7854
7855 perf_sample_regs_intr(&data->regs_intr, regs);
7856
7857 if (data->regs_intr.regs) {
7858 u64 mask = event->attr.sample_regs_intr;
7859
7860 size += hweight64(mask) * sizeof(u64);
7861 }
7862
7863 data->dyn_size += size;
7864 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7865 }
7866
7867 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7868 data->phys_addr = perf_virt_to_phys(data->addr);
7869 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7870 }
7871
7872 #ifdef CONFIG_CGROUP_PERF
7873 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7874 struct cgroup *cgrp;
7875
7876 /* protected by RCU */
7877 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7878 data->cgroup = cgroup_id(cgrp);
7879 data->sample_flags |= PERF_SAMPLE_CGROUP;
7880 }
7881 #endif
7882
7883 /*
7884 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7885 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7886 * but the value will not dump to the userspace.
7887 */
7888 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7889 data->data_page_size = perf_get_page_size(data->addr);
7890 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7891 }
7892
7893 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7894 data->code_page_size = perf_get_page_size(data->ip);
7895 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7896 }
7897
7898 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7899 u64 size;
7900 u16 header_size = perf_sample_data_size(data, event);
7901
7902 header_size += sizeof(u64); /* size */
7903
7904 /*
7905 * Given the 16bit nature of header::size, an AUX sample can
7906 * easily overflow it, what with all the preceding sample bits.
7907 * Make sure this doesn't happen by using up to U16_MAX bytes
7908 * per sample in total (rounded down to 8 byte boundary).
7909 */
7910 size = min_t(size_t, U16_MAX - header_size,
7911 event->attr.aux_sample_size);
7912 size = rounddown(size, 8);
7913 size = perf_prepare_sample_aux(event, data, size);
7914
7915 WARN_ON_ONCE(size + header_size > U16_MAX);
7916 data->dyn_size += size + sizeof(u64); /* size above */
7917 data->sample_flags |= PERF_SAMPLE_AUX;
7918 }
7919 }
7920
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7921 void perf_prepare_header(struct perf_event_header *header,
7922 struct perf_sample_data *data,
7923 struct perf_event *event,
7924 struct pt_regs *regs)
7925 {
7926 header->type = PERF_RECORD_SAMPLE;
7927 header->size = perf_sample_data_size(data, event);
7928 header->misc = perf_misc_flags(regs);
7929
7930 /*
7931 * If you're adding more sample types here, you likely need to do
7932 * something about the overflowing header::size, like repurpose the
7933 * lowest 3 bits of size, which should be always zero at the moment.
7934 * This raises a more important question, do we really need 512k sized
7935 * samples and why, so good argumentation is in order for whatever you
7936 * do here next.
7937 */
7938 WARN_ON_ONCE(header->size & 7);
7939 }
7940
7941 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7942 __perf_event_output(struct perf_event *event,
7943 struct perf_sample_data *data,
7944 struct pt_regs *regs,
7945 int (*output_begin)(struct perf_output_handle *,
7946 struct perf_sample_data *,
7947 struct perf_event *,
7948 unsigned int))
7949 {
7950 struct perf_output_handle handle;
7951 struct perf_event_header header;
7952 int err;
7953
7954 /* protect the callchain buffers */
7955 rcu_read_lock();
7956
7957 perf_prepare_sample(data, event, regs);
7958 perf_prepare_header(&header, data, event, regs);
7959
7960 err = output_begin(&handle, data, event, header.size);
7961 if (err)
7962 goto exit;
7963
7964 perf_output_sample(&handle, &header, data, event);
7965
7966 perf_output_end(&handle);
7967
7968 exit:
7969 rcu_read_unlock();
7970 return err;
7971 }
7972
7973 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7974 perf_event_output_forward(struct perf_event *event,
7975 struct perf_sample_data *data,
7976 struct pt_regs *regs)
7977 {
7978 __perf_event_output(event, data, regs, perf_output_begin_forward);
7979 }
7980
7981 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7982 perf_event_output_backward(struct perf_event *event,
7983 struct perf_sample_data *data,
7984 struct pt_regs *regs)
7985 {
7986 __perf_event_output(event, data, regs, perf_output_begin_backward);
7987 }
7988
7989 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7990 perf_event_output(struct perf_event *event,
7991 struct perf_sample_data *data,
7992 struct pt_regs *regs)
7993 {
7994 return __perf_event_output(event, data, regs, perf_output_begin);
7995 }
7996
7997 /*
7998 * read event_id
7999 */
8000
8001 struct perf_read_event {
8002 struct perf_event_header header;
8003
8004 u32 pid;
8005 u32 tid;
8006 };
8007
8008 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8009 perf_event_read_event(struct perf_event *event,
8010 struct task_struct *task)
8011 {
8012 struct perf_output_handle handle;
8013 struct perf_sample_data sample;
8014 struct perf_read_event read_event = {
8015 .header = {
8016 .type = PERF_RECORD_READ,
8017 .misc = 0,
8018 .size = sizeof(read_event) + event->read_size,
8019 },
8020 .pid = perf_event_pid(event, task),
8021 .tid = perf_event_tid(event, task),
8022 };
8023 int ret;
8024
8025 perf_event_header__init_id(&read_event.header, &sample, event);
8026 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8027 if (ret)
8028 return;
8029
8030 perf_output_put(&handle, read_event);
8031 perf_output_read(&handle, event);
8032 perf_event__output_id_sample(event, &handle, &sample);
8033
8034 perf_output_end(&handle);
8035 }
8036
8037 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8038
8039 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8040 perf_iterate_ctx(struct perf_event_context *ctx,
8041 perf_iterate_f output,
8042 void *data, bool all)
8043 {
8044 struct perf_event *event;
8045
8046 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8047 if (!all) {
8048 if (event->state < PERF_EVENT_STATE_INACTIVE)
8049 continue;
8050 if (!event_filter_match(event))
8051 continue;
8052 }
8053
8054 output(event, data);
8055 }
8056 }
8057
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8058 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8059 {
8060 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8061 struct perf_event *event;
8062
8063 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8064 /*
8065 * Skip events that are not fully formed yet; ensure that
8066 * if we observe event->ctx, both event and ctx will be
8067 * complete enough. See perf_install_in_context().
8068 */
8069 if (!smp_load_acquire(&event->ctx))
8070 continue;
8071
8072 if (event->state < PERF_EVENT_STATE_INACTIVE)
8073 continue;
8074 if (!event_filter_match(event))
8075 continue;
8076 output(event, data);
8077 }
8078 }
8079
8080 /*
8081 * Iterate all events that need to receive side-band events.
8082 *
8083 * For new callers; ensure that account_pmu_sb_event() includes
8084 * your event, otherwise it might not get delivered.
8085 */
8086 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8087 perf_iterate_sb(perf_iterate_f output, void *data,
8088 struct perf_event_context *task_ctx)
8089 {
8090 struct perf_event_context *ctx;
8091
8092 rcu_read_lock();
8093 preempt_disable();
8094
8095 /*
8096 * If we have task_ctx != NULL we only notify the task context itself.
8097 * The task_ctx is set only for EXIT events before releasing task
8098 * context.
8099 */
8100 if (task_ctx) {
8101 perf_iterate_ctx(task_ctx, output, data, false);
8102 goto done;
8103 }
8104
8105 perf_iterate_sb_cpu(output, data);
8106
8107 ctx = rcu_dereference(current->perf_event_ctxp);
8108 if (ctx)
8109 perf_iterate_ctx(ctx, output, data, false);
8110 done:
8111 preempt_enable();
8112 rcu_read_unlock();
8113 }
8114
8115 /*
8116 * Clear all file-based filters at exec, they'll have to be
8117 * re-instated when/if these objects are mmapped again.
8118 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8119 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8120 {
8121 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8122 struct perf_addr_filter *filter;
8123 unsigned int restart = 0, count = 0;
8124 unsigned long flags;
8125
8126 if (!has_addr_filter(event))
8127 return;
8128
8129 raw_spin_lock_irqsave(&ifh->lock, flags);
8130 list_for_each_entry(filter, &ifh->list, entry) {
8131 if (filter->path.dentry) {
8132 event->addr_filter_ranges[count].start = 0;
8133 event->addr_filter_ranges[count].size = 0;
8134 restart++;
8135 }
8136
8137 count++;
8138 }
8139
8140 if (restart)
8141 event->addr_filters_gen++;
8142 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8143
8144 if (restart)
8145 perf_event_stop(event, 1);
8146 }
8147
perf_event_exec(void)8148 void perf_event_exec(void)
8149 {
8150 struct perf_event_context *ctx;
8151
8152 ctx = perf_pin_task_context(current);
8153 if (!ctx)
8154 return;
8155
8156 perf_event_enable_on_exec(ctx);
8157 perf_event_remove_on_exec(ctx);
8158 scoped_guard(rcu)
8159 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8160
8161 perf_unpin_context(ctx);
8162 put_ctx(ctx);
8163 }
8164
8165 struct remote_output {
8166 struct perf_buffer *rb;
8167 int err;
8168 };
8169
__perf_event_output_stop(struct perf_event * event,void * data)8170 static void __perf_event_output_stop(struct perf_event *event, void *data)
8171 {
8172 struct perf_event *parent = event->parent;
8173 struct remote_output *ro = data;
8174 struct perf_buffer *rb = ro->rb;
8175 struct stop_event_data sd = {
8176 .event = event,
8177 };
8178
8179 if (!has_aux(event))
8180 return;
8181
8182 if (!parent)
8183 parent = event;
8184
8185 /*
8186 * In case of inheritance, it will be the parent that links to the
8187 * ring-buffer, but it will be the child that's actually using it.
8188 *
8189 * We are using event::rb to determine if the event should be stopped,
8190 * however this may race with ring_buffer_attach() (through set_output),
8191 * which will make us skip the event that actually needs to be stopped.
8192 * So ring_buffer_attach() has to stop an aux event before re-assigning
8193 * its rb pointer.
8194 */
8195 if (rcu_dereference(parent->rb) == rb)
8196 ro->err = __perf_event_stop(&sd);
8197 }
8198
__perf_pmu_output_stop(void * info)8199 static int __perf_pmu_output_stop(void *info)
8200 {
8201 struct perf_event *event = info;
8202 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8203 struct remote_output ro = {
8204 .rb = event->rb,
8205 };
8206
8207 rcu_read_lock();
8208 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8209 if (cpuctx->task_ctx)
8210 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8211 &ro, false);
8212 rcu_read_unlock();
8213
8214 return ro.err;
8215 }
8216
perf_pmu_output_stop(struct perf_event * event)8217 static void perf_pmu_output_stop(struct perf_event *event)
8218 {
8219 struct perf_event *iter;
8220 int err, cpu;
8221
8222 restart:
8223 rcu_read_lock();
8224 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8225 /*
8226 * For per-CPU events, we need to make sure that neither they
8227 * nor their children are running; for cpu==-1 events it's
8228 * sufficient to stop the event itself if it's active, since
8229 * it can't have children.
8230 */
8231 cpu = iter->cpu;
8232 if (cpu == -1)
8233 cpu = READ_ONCE(iter->oncpu);
8234
8235 if (cpu == -1)
8236 continue;
8237
8238 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8239 if (err == -EAGAIN) {
8240 rcu_read_unlock();
8241 goto restart;
8242 }
8243 }
8244 rcu_read_unlock();
8245 }
8246
8247 /*
8248 * task tracking -- fork/exit
8249 *
8250 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8251 */
8252
8253 struct perf_task_event {
8254 struct task_struct *task;
8255 struct perf_event_context *task_ctx;
8256
8257 struct {
8258 struct perf_event_header header;
8259
8260 u32 pid;
8261 u32 ppid;
8262 u32 tid;
8263 u32 ptid;
8264 u64 time;
8265 } event_id;
8266 };
8267
perf_event_task_match(struct perf_event * event)8268 static int perf_event_task_match(struct perf_event *event)
8269 {
8270 return event->attr.comm || event->attr.mmap ||
8271 event->attr.mmap2 || event->attr.mmap_data ||
8272 event->attr.task;
8273 }
8274
perf_event_task_output(struct perf_event * event,void * data)8275 static void perf_event_task_output(struct perf_event *event,
8276 void *data)
8277 {
8278 struct perf_task_event *task_event = data;
8279 struct perf_output_handle handle;
8280 struct perf_sample_data sample;
8281 struct task_struct *task = task_event->task;
8282 int ret, size = task_event->event_id.header.size;
8283
8284 if (!perf_event_task_match(event))
8285 return;
8286
8287 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8288
8289 ret = perf_output_begin(&handle, &sample, event,
8290 task_event->event_id.header.size);
8291 if (ret)
8292 goto out;
8293
8294 task_event->event_id.pid = perf_event_pid(event, task);
8295 task_event->event_id.tid = perf_event_tid(event, task);
8296
8297 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8298 task_event->event_id.ppid = perf_event_pid(event,
8299 task->real_parent);
8300 task_event->event_id.ptid = perf_event_pid(event,
8301 task->real_parent);
8302 } else { /* PERF_RECORD_FORK */
8303 task_event->event_id.ppid = perf_event_pid(event, current);
8304 task_event->event_id.ptid = perf_event_tid(event, current);
8305 }
8306
8307 task_event->event_id.time = perf_event_clock(event);
8308
8309 perf_output_put(&handle, task_event->event_id);
8310
8311 perf_event__output_id_sample(event, &handle, &sample);
8312
8313 perf_output_end(&handle);
8314 out:
8315 task_event->event_id.header.size = size;
8316 }
8317
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8318 static void perf_event_task(struct task_struct *task,
8319 struct perf_event_context *task_ctx,
8320 int new)
8321 {
8322 struct perf_task_event task_event;
8323
8324 if (!atomic_read(&nr_comm_events) &&
8325 !atomic_read(&nr_mmap_events) &&
8326 !atomic_read(&nr_task_events))
8327 return;
8328
8329 task_event = (struct perf_task_event){
8330 .task = task,
8331 .task_ctx = task_ctx,
8332 .event_id = {
8333 .header = {
8334 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8335 .misc = 0,
8336 .size = sizeof(task_event.event_id),
8337 },
8338 /* .pid */
8339 /* .ppid */
8340 /* .tid */
8341 /* .ptid */
8342 /* .time */
8343 },
8344 };
8345
8346 perf_iterate_sb(perf_event_task_output,
8347 &task_event,
8348 task_ctx);
8349 }
8350
perf_event_fork(struct task_struct * task)8351 void perf_event_fork(struct task_struct *task)
8352 {
8353 perf_event_task(task, NULL, 1);
8354 perf_event_namespaces(task);
8355 }
8356
8357 /*
8358 * comm tracking
8359 */
8360
8361 struct perf_comm_event {
8362 struct task_struct *task;
8363 char *comm;
8364 int comm_size;
8365
8366 struct {
8367 struct perf_event_header header;
8368
8369 u32 pid;
8370 u32 tid;
8371 } event_id;
8372 };
8373
perf_event_comm_match(struct perf_event * event)8374 static int perf_event_comm_match(struct perf_event *event)
8375 {
8376 return event->attr.comm;
8377 }
8378
perf_event_comm_output(struct perf_event * event,void * data)8379 static void perf_event_comm_output(struct perf_event *event,
8380 void *data)
8381 {
8382 struct perf_comm_event *comm_event = data;
8383 struct perf_output_handle handle;
8384 struct perf_sample_data sample;
8385 int size = comm_event->event_id.header.size;
8386 int ret;
8387
8388 if (!perf_event_comm_match(event))
8389 return;
8390
8391 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8392 ret = perf_output_begin(&handle, &sample, event,
8393 comm_event->event_id.header.size);
8394
8395 if (ret)
8396 goto out;
8397
8398 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8399 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8400
8401 perf_output_put(&handle, comm_event->event_id);
8402 __output_copy(&handle, comm_event->comm,
8403 comm_event->comm_size);
8404
8405 perf_event__output_id_sample(event, &handle, &sample);
8406
8407 perf_output_end(&handle);
8408 out:
8409 comm_event->event_id.header.size = size;
8410 }
8411
perf_event_comm_event(struct perf_comm_event * comm_event)8412 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8413 {
8414 char comm[TASK_COMM_LEN];
8415 unsigned int size;
8416
8417 memset(comm, 0, sizeof(comm));
8418 strscpy(comm, comm_event->task->comm, sizeof(comm));
8419 size = ALIGN(strlen(comm)+1, sizeof(u64));
8420
8421 comm_event->comm = comm;
8422 comm_event->comm_size = size;
8423
8424 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8425
8426 perf_iterate_sb(perf_event_comm_output,
8427 comm_event,
8428 NULL);
8429 }
8430
perf_event_comm(struct task_struct * task,bool exec)8431 void perf_event_comm(struct task_struct *task, bool exec)
8432 {
8433 struct perf_comm_event comm_event;
8434
8435 if (!atomic_read(&nr_comm_events))
8436 return;
8437
8438 comm_event = (struct perf_comm_event){
8439 .task = task,
8440 /* .comm */
8441 /* .comm_size */
8442 .event_id = {
8443 .header = {
8444 .type = PERF_RECORD_COMM,
8445 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8446 /* .size */
8447 },
8448 /* .pid */
8449 /* .tid */
8450 },
8451 };
8452
8453 perf_event_comm_event(&comm_event);
8454 }
8455
8456 /*
8457 * namespaces tracking
8458 */
8459
8460 struct perf_namespaces_event {
8461 struct task_struct *task;
8462
8463 struct {
8464 struct perf_event_header header;
8465
8466 u32 pid;
8467 u32 tid;
8468 u64 nr_namespaces;
8469 struct perf_ns_link_info link_info[NR_NAMESPACES];
8470 } event_id;
8471 };
8472
perf_event_namespaces_match(struct perf_event * event)8473 static int perf_event_namespaces_match(struct perf_event *event)
8474 {
8475 return event->attr.namespaces;
8476 }
8477
perf_event_namespaces_output(struct perf_event * event,void * data)8478 static void perf_event_namespaces_output(struct perf_event *event,
8479 void *data)
8480 {
8481 struct perf_namespaces_event *namespaces_event = data;
8482 struct perf_output_handle handle;
8483 struct perf_sample_data sample;
8484 u16 header_size = namespaces_event->event_id.header.size;
8485 int ret;
8486
8487 if (!perf_event_namespaces_match(event))
8488 return;
8489
8490 perf_event_header__init_id(&namespaces_event->event_id.header,
8491 &sample, event);
8492 ret = perf_output_begin(&handle, &sample, event,
8493 namespaces_event->event_id.header.size);
8494 if (ret)
8495 goto out;
8496
8497 namespaces_event->event_id.pid = perf_event_pid(event,
8498 namespaces_event->task);
8499 namespaces_event->event_id.tid = perf_event_tid(event,
8500 namespaces_event->task);
8501
8502 perf_output_put(&handle, namespaces_event->event_id);
8503
8504 perf_event__output_id_sample(event, &handle, &sample);
8505
8506 perf_output_end(&handle);
8507 out:
8508 namespaces_event->event_id.header.size = header_size;
8509 }
8510
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8511 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8512 struct task_struct *task,
8513 const struct proc_ns_operations *ns_ops)
8514 {
8515 struct path ns_path;
8516 struct inode *ns_inode;
8517 int error;
8518
8519 error = ns_get_path(&ns_path, task, ns_ops);
8520 if (!error) {
8521 ns_inode = ns_path.dentry->d_inode;
8522 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8523 ns_link_info->ino = ns_inode->i_ino;
8524 path_put(&ns_path);
8525 }
8526 }
8527
perf_event_namespaces(struct task_struct * task)8528 void perf_event_namespaces(struct task_struct *task)
8529 {
8530 struct perf_namespaces_event namespaces_event;
8531 struct perf_ns_link_info *ns_link_info;
8532
8533 if (!atomic_read(&nr_namespaces_events))
8534 return;
8535
8536 namespaces_event = (struct perf_namespaces_event){
8537 .task = task,
8538 .event_id = {
8539 .header = {
8540 .type = PERF_RECORD_NAMESPACES,
8541 .misc = 0,
8542 .size = sizeof(namespaces_event.event_id),
8543 },
8544 /* .pid */
8545 /* .tid */
8546 .nr_namespaces = NR_NAMESPACES,
8547 /* .link_info[NR_NAMESPACES] */
8548 },
8549 };
8550
8551 ns_link_info = namespaces_event.event_id.link_info;
8552
8553 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8554 task, &mntns_operations);
8555
8556 #ifdef CONFIG_USER_NS
8557 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8558 task, &userns_operations);
8559 #endif
8560 #ifdef CONFIG_NET_NS
8561 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8562 task, &netns_operations);
8563 #endif
8564 #ifdef CONFIG_UTS_NS
8565 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8566 task, &utsns_operations);
8567 #endif
8568 #ifdef CONFIG_IPC_NS
8569 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8570 task, &ipcns_operations);
8571 #endif
8572 #ifdef CONFIG_PID_NS
8573 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8574 task, &pidns_operations);
8575 #endif
8576 #ifdef CONFIG_CGROUPS
8577 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8578 task, &cgroupns_operations);
8579 #endif
8580
8581 perf_iterate_sb(perf_event_namespaces_output,
8582 &namespaces_event,
8583 NULL);
8584 }
8585
8586 /*
8587 * cgroup tracking
8588 */
8589 #ifdef CONFIG_CGROUP_PERF
8590
8591 struct perf_cgroup_event {
8592 char *path;
8593 int path_size;
8594 struct {
8595 struct perf_event_header header;
8596 u64 id;
8597 char path[];
8598 } event_id;
8599 };
8600
perf_event_cgroup_match(struct perf_event * event)8601 static int perf_event_cgroup_match(struct perf_event *event)
8602 {
8603 return event->attr.cgroup;
8604 }
8605
perf_event_cgroup_output(struct perf_event * event,void * data)8606 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8607 {
8608 struct perf_cgroup_event *cgroup_event = data;
8609 struct perf_output_handle handle;
8610 struct perf_sample_data sample;
8611 u16 header_size = cgroup_event->event_id.header.size;
8612 int ret;
8613
8614 if (!perf_event_cgroup_match(event))
8615 return;
8616
8617 perf_event_header__init_id(&cgroup_event->event_id.header,
8618 &sample, event);
8619 ret = perf_output_begin(&handle, &sample, event,
8620 cgroup_event->event_id.header.size);
8621 if (ret)
8622 goto out;
8623
8624 perf_output_put(&handle, cgroup_event->event_id);
8625 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8626
8627 perf_event__output_id_sample(event, &handle, &sample);
8628
8629 perf_output_end(&handle);
8630 out:
8631 cgroup_event->event_id.header.size = header_size;
8632 }
8633
perf_event_cgroup(struct cgroup * cgrp)8634 static void perf_event_cgroup(struct cgroup *cgrp)
8635 {
8636 struct perf_cgroup_event cgroup_event;
8637 char path_enomem[16] = "//enomem";
8638 char *pathname;
8639 size_t size;
8640
8641 if (!atomic_read(&nr_cgroup_events))
8642 return;
8643
8644 cgroup_event = (struct perf_cgroup_event){
8645 .event_id = {
8646 .header = {
8647 .type = PERF_RECORD_CGROUP,
8648 .misc = 0,
8649 .size = sizeof(cgroup_event.event_id),
8650 },
8651 .id = cgroup_id(cgrp),
8652 },
8653 };
8654
8655 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8656 if (pathname == NULL) {
8657 cgroup_event.path = path_enomem;
8658 } else {
8659 /* just to be sure to have enough space for alignment */
8660 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8661 cgroup_event.path = pathname;
8662 }
8663
8664 /*
8665 * Since our buffer works in 8 byte units we need to align our string
8666 * size to a multiple of 8. However, we must guarantee the tail end is
8667 * zero'd out to avoid leaking random bits to userspace.
8668 */
8669 size = strlen(cgroup_event.path) + 1;
8670 while (!IS_ALIGNED(size, sizeof(u64)))
8671 cgroup_event.path[size++] = '\0';
8672
8673 cgroup_event.event_id.header.size += size;
8674 cgroup_event.path_size = size;
8675
8676 perf_iterate_sb(perf_event_cgroup_output,
8677 &cgroup_event,
8678 NULL);
8679
8680 kfree(pathname);
8681 }
8682
8683 #endif
8684
8685 /*
8686 * mmap tracking
8687 */
8688
8689 struct perf_mmap_event {
8690 struct vm_area_struct *vma;
8691
8692 const char *file_name;
8693 int file_size;
8694 int maj, min;
8695 u64 ino;
8696 u64 ino_generation;
8697 u32 prot, flags;
8698 u8 build_id[BUILD_ID_SIZE_MAX];
8699 u32 build_id_size;
8700
8701 struct {
8702 struct perf_event_header header;
8703
8704 u32 pid;
8705 u32 tid;
8706 u64 start;
8707 u64 len;
8708 u64 pgoff;
8709 } event_id;
8710 };
8711
perf_event_mmap_match(struct perf_event * event,void * data)8712 static int perf_event_mmap_match(struct perf_event *event,
8713 void *data)
8714 {
8715 struct perf_mmap_event *mmap_event = data;
8716 struct vm_area_struct *vma = mmap_event->vma;
8717 int executable = vma->vm_flags & VM_EXEC;
8718
8719 return (!executable && event->attr.mmap_data) ||
8720 (executable && (event->attr.mmap || event->attr.mmap2));
8721 }
8722
perf_event_mmap_output(struct perf_event * event,void * data)8723 static void perf_event_mmap_output(struct perf_event *event,
8724 void *data)
8725 {
8726 struct perf_mmap_event *mmap_event = data;
8727 struct perf_output_handle handle;
8728 struct perf_sample_data sample;
8729 int size = mmap_event->event_id.header.size;
8730 u32 type = mmap_event->event_id.header.type;
8731 bool use_build_id;
8732 int ret;
8733
8734 if (!perf_event_mmap_match(event, data))
8735 return;
8736
8737 if (event->attr.mmap2) {
8738 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8739 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8740 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8741 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8742 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8743 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8744 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8745 }
8746
8747 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8748 ret = perf_output_begin(&handle, &sample, event,
8749 mmap_event->event_id.header.size);
8750 if (ret)
8751 goto out;
8752
8753 mmap_event->event_id.pid = perf_event_pid(event, current);
8754 mmap_event->event_id.tid = perf_event_tid(event, current);
8755
8756 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8757
8758 if (event->attr.mmap2 && use_build_id)
8759 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8760
8761 perf_output_put(&handle, mmap_event->event_id);
8762
8763 if (event->attr.mmap2) {
8764 if (use_build_id) {
8765 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8766
8767 __output_copy(&handle, size, 4);
8768 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8769 } else {
8770 perf_output_put(&handle, mmap_event->maj);
8771 perf_output_put(&handle, mmap_event->min);
8772 perf_output_put(&handle, mmap_event->ino);
8773 perf_output_put(&handle, mmap_event->ino_generation);
8774 }
8775 perf_output_put(&handle, mmap_event->prot);
8776 perf_output_put(&handle, mmap_event->flags);
8777 }
8778
8779 __output_copy(&handle, mmap_event->file_name,
8780 mmap_event->file_size);
8781
8782 perf_event__output_id_sample(event, &handle, &sample);
8783
8784 perf_output_end(&handle);
8785 out:
8786 mmap_event->event_id.header.size = size;
8787 mmap_event->event_id.header.type = type;
8788 }
8789
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8790 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8791 {
8792 struct vm_area_struct *vma = mmap_event->vma;
8793 struct file *file = vma->vm_file;
8794 int maj = 0, min = 0;
8795 u64 ino = 0, gen = 0;
8796 u32 prot = 0, flags = 0;
8797 unsigned int size;
8798 char tmp[16];
8799 char *buf = NULL;
8800 char *name = NULL;
8801
8802 if (vma->vm_flags & VM_READ)
8803 prot |= PROT_READ;
8804 if (vma->vm_flags & VM_WRITE)
8805 prot |= PROT_WRITE;
8806 if (vma->vm_flags & VM_EXEC)
8807 prot |= PROT_EXEC;
8808
8809 if (vma->vm_flags & VM_MAYSHARE)
8810 flags = MAP_SHARED;
8811 else
8812 flags = MAP_PRIVATE;
8813
8814 if (vma->vm_flags & VM_LOCKED)
8815 flags |= MAP_LOCKED;
8816 if (is_vm_hugetlb_page(vma))
8817 flags |= MAP_HUGETLB;
8818
8819 if (file) {
8820 struct inode *inode;
8821 dev_t dev;
8822
8823 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8824 if (!buf) {
8825 name = "//enomem";
8826 goto cpy_name;
8827 }
8828 /*
8829 * d_path() works from the end of the rb backwards, so we
8830 * need to add enough zero bytes after the string to handle
8831 * the 64bit alignment we do later.
8832 */
8833 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8834 if (IS_ERR(name)) {
8835 name = "//toolong";
8836 goto cpy_name;
8837 }
8838 inode = file_inode(vma->vm_file);
8839 dev = inode->i_sb->s_dev;
8840 ino = inode->i_ino;
8841 gen = inode->i_generation;
8842 maj = MAJOR(dev);
8843 min = MINOR(dev);
8844
8845 goto got_name;
8846 } else {
8847 if (vma->vm_ops && vma->vm_ops->name)
8848 name = (char *) vma->vm_ops->name(vma);
8849 if (!name)
8850 name = (char *)arch_vma_name(vma);
8851 if (!name) {
8852 if (vma_is_initial_heap(vma))
8853 name = "[heap]";
8854 else if (vma_is_initial_stack(vma))
8855 name = "[stack]";
8856 else
8857 name = "//anon";
8858 }
8859 }
8860
8861 cpy_name:
8862 strscpy(tmp, name, sizeof(tmp));
8863 name = tmp;
8864 got_name:
8865 /*
8866 * Since our buffer works in 8 byte units we need to align our string
8867 * size to a multiple of 8. However, we must guarantee the tail end is
8868 * zero'd out to avoid leaking random bits to userspace.
8869 */
8870 size = strlen(name)+1;
8871 while (!IS_ALIGNED(size, sizeof(u64)))
8872 name[size++] = '\0';
8873
8874 mmap_event->file_name = name;
8875 mmap_event->file_size = size;
8876 mmap_event->maj = maj;
8877 mmap_event->min = min;
8878 mmap_event->ino = ino;
8879 mmap_event->ino_generation = gen;
8880 mmap_event->prot = prot;
8881 mmap_event->flags = flags;
8882
8883 if (!(vma->vm_flags & VM_EXEC))
8884 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8885
8886 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8887
8888 if (atomic_read(&nr_build_id_events))
8889 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8890
8891 perf_iterate_sb(perf_event_mmap_output,
8892 mmap_event,
8893 NULL);
8894
8895 kfree(buf);
8896 }
8897
8898 /*
8899 * Check whether inode and address range match filter criteria.
8900 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8901 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8902 struct file *file, unsigned long offset,
8903 unsigned long size)
8904 {
8905 /* d_inode(NULL) won't be equal to any mapped user-space file */
8906 if (!filter->path.dentry)
8907 return false;
8908
8909 if (d_inode(filter->path.dentry) != file_inode(file))
8910 return false;
8911
8912 if (filter->offset > offset + size)
8913 return false;
8914
8915 if (filter->offset + filter->size < offset)
8916 return false;
8917
8918 return true;
8919 }
8920
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8921 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8922 struct vm_area_struct *vma,
8923 struct perf_addr_filter_range *fr)
8924 {
8925 unsigned long vma_size = vma->vm_end - vma->vm_start;
8926 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8927 struct file *file = vma->vm_file;
8928
8929 if (!perf_addr_filter_match(filter, file, off, vma_size))
8930 return false;
8931
8932 if (filter->offset < off) {
8933 fr->start = vma->vm_start;
8934 fr->size = min(vma_size, filter->size - (off - filter->offset));
8935 } else {
8936 fr->start = vma->vm_start + filter->offset - off;
8937 fr->size = min(vma->vm_end - fr->start, filter->size);
8938 }
8939
8940 return true;
8941 }
8942
__perf_addr_filters_adjust(struct perf_event * event,void * data)8943 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8944 {
8945 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8946 struct vm_area_struct *vma = data;
8947 struct perf_addr_filter *filter;
8948 unsigned int restart = 0, count = 0;
8949 unsigned long flags;
8950
8951 if (!has_addr_filter(event))
8952 return;
8953
8954 if (!vma->vm_file)
8955 return;
8956
8957 raw_spin_lock_irqsave(&ifh->lock, flags);
8958 list_for_each_entry(filter, &ifh->list, entry) {
8959 if (perf_addr_filter_vma_adjust(filter, vma,
8960 &event->addr_filter_ranges[count]))
8961 restart++;
8962
8963 count++;
8964 }
8965
8966 if (restart)
8967 event->addr_filters_gen++;
8968 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8969
8970 if (restart)
8971 perf_event_stop(event, 1);
8972 }
8973
8974 /*
8975 * Adjust all task's events' filters to the new vma
8976 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8977 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8978 {
8979 struct perf_event_context *ctx;
8980
8981 /*
8982 * Data tracing isn't supported yet and as such there is no need
8983 * to keep track of anything that isn't related to executable code:
8984 */
8985 if (!(vma->vm_flags & VM_EXEC))
8986 return;
8987
8988 rcu_read_lock();
8989 ctx = rcu_dereference(current->perf_event_ctxp);
8990 if (ctx)
8991 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8992 rcu_read_unlock();
8993 }
8994
perf_event_mmap(struct vm_area_struct * vma)8995 void perf_event_mmap(struct vm_area_struct *vma)
8996 {
8997 struct perf_mmap_event mmap_event;
8998
8999 if (!atomic_read(&nr_mmap_events))
9000 return;
9001
9002 mmap_event = (struct perf_mmap_event){
9003 .vma = vma,
9004 /* .file_name */
9005 /* .file_size */
9006 .event_id = {
9007 .header = {
9008 .type = PERF_RECORD_MMAP,
9009 .misc = PERF_RECORD_MISC_USER,
9010 /* .size */
9011 },
9012 /* .pid */
9013 /* .tid */
9014 .start = vma->vm_start,
9015 .len = vma->vm_end - vma->vm_start,
9016 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
9017 },
9018 /* .maj (attr_mmap2 only) */
9019 /* .min (attr_mmap2 only) */
9020 /* .ino (attr_mmap2 only) */
9021 /* .ino_generation (attr_mmap2 only) */
9022 /* .prot (attr_mmap2 only) */
9023 /* .flags (attr_mmap2 only) */
9024 };
9025
9026 perf_addr_filters_adjust(vma);
9027 perf_event_mmap_event(&mmap_event);
9028 }
9029
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9030 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9031 unsigned long size, u64 flags)
9032 {
9033 struct perf_output_handle handle;
9034 struct perf_sample_data sample;
9035 struct perf_aux_event {
9036 struct perf_event_header header;
9037 u64 offset;
9038 u64 size;
9039 u64 flags;
9040 } rec = {
9041 .header = {
9042 .type = PERF_RECORD_AUX,
9043 .misc = 0,
9044 .size = sizeof(rec),
9045 },
9046 .offset = head,
9047 .size = size,
9048 .flags = flags,
9049 };
9050 int ret;
9051
9052 perf_event_header__init_id(&rec.header, &sample, event);
9053 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9054
9055 if (ret)
9056 return;
9057
9058 perf_output_put(&handle, rec);
9059 perf_event__output_id_sample(event, &handle, &sample);
9060
9061 perf_output_end(&handle);
9062 }
9063
9064 /*
9065 * Lost/dropped samples logging
9066 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9067 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9068 {
9069 struct perf_output_handle handle;
9070 struct perf_sample_data sample;
9071 int ret;
9072
9073 struct {
9074 struct perf_event_header header;
9075 u64 lost;
9076 } lost_samples_event = {
9077 .header = {
9078 .type = PERF_RECORD_LOST_SAMPLES,
9079 .misc = 0,
9080 .size = sizeof(lost_samples_event),
9081 },
9082 .lost = lost,
9083 };
9084
9085 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9086
9087 ret = perf_output_begin(&handle, &sample, event,
9088 lost_samples_event.header.size);
9089 if (ret)
9090 return;
9091
9092 perf_output_put(&handle, lost_samples_event);
9093 perf_event__output_id_sample(event, &handle, &sample);
9094 perf_output_end(&handle);
9095 }
9096
9097 /*
9098 * context_switch tracking
9099 */
9100
9101 struct perf_switch_event {
9102 struct task_struct *task;
9103 struct task_struct *next_prev;
9104
9105 struct {
9106 struct perf_event_header header;
9107 u32 next_prev_pid;
9108 u32 next_prev_tid;
9109 } event_id;
9110 };
9111
perf_event_switch_match(struct perf_event * event)9112 static int perf_event_switch_match(struct perf_event *event)
9113 {
9114 return event->attr.context_switch;
9115 }
9116
perf_event_switch_output(struct perf_event * event,void * data)9117 static void perf_event_switch_output(struct perf_event *event, void *data)
9118 {
9119 struct perf_switch_event *se = data;
9120 struct perf_output_handle handle;
9121 struct perf_sample_data sample;
9122 int ret;
9123
9124 if (!perf_event_switch_match(event))
9125 return;
9126
9127 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9128 if (event->ctx->task) {
9129 se->event_id.header.type = PERF_RECORD_SWITCH;
9130 se->event_id.header.size = sizeof(se->event_id.header);
9131 } else {
9132 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9133 se->event_id.header.size = sizeof(se->event_id);
9134 se->event_id.next_prev_pid =
9135 perf_event_pid(event, se->next_prev);
9136 se->event_id.next_prev_tid =
9137 perf_event_tid(event, se->next_prev);
9138 }
9139
9140 perf_event_header__init_id(&se->event_id.header, &sample, event);
9141
9142 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9143 if (ret)
9144 return;
9145
9146 if (event->ctx->task)
9147 perf_output_put(&handle, se->event_id.header);
9148 else
9149 perf_output_put(&handle, se->event_id);
9150
9151 perf_event__output_id_sample(event, &handle, &sample);
9152
9153 perf_output_end(&handle);
9154 }
9155
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9156 static void perf_event_switch(struct task_struct *task,
9157 struct task_struct *next_prev, bool sched_in)
9158 {
9159 struct perf_switch_event switch_event;
9160
9161 /* N.B. caller checks nr_switch_events != 0 */
9162
9163 switch_event = (struct perf_switch_event){
9164 .task = task,
9165 .next_prev = next_prev,
9166 .event_id = {
9167 .header = {
9168 /* .type */
9169 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9170 /* .size */
9171 },
9172 /* .next_prev_pid */
9173 /* .next_prev_tid */
9174 },
9175 };
9176
9177 if (!sched_in && task->on_rq) {
9178 switch_event.event_id.header.misc |=
9179 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9180 }
9181
9182 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9183 }
9184
9185 /*
9186 * IRQ throttle logging
9187 */
9188
perf_log_throttle(struct perf_event * event,int enable)9189 static void perf_log_throttle(struct perf_event *event, int enable)
9190 {
9191 struct perf_output_handle handle;
9192 struct perf_sample_data sample;
9193 int ret;
9194
9195 struct {
9196 struct perf_event_header header;
9197 u64 time;
9198 u64 id;
9199 u64 stream_id;
9200 } throttle_event = {
9201 .header = {
9202 .type = PERF_RECORD_THROTTLE,
9203 .misc = 0,
9204 .size = sizeof(throttle_event),
9205 },
9206 .time = perf_event_clock(event),
9207 .id = primary_event_id(event),
9208 .stream_id = event->id,
9209 };
9210
9211 if (enable)
9212 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9213
9214 perf_event_header__init_id(&throttle_event.header, &sample, event);
9215
9216 ret = perf_output_begin(&handle, &sample, event,
9217 throttle_event.header.size);
9218 if (ret)
9219 return;
9220
9221 perf_output_put(&handle, throttle_event);
9222 perf_event__output_id_sample(event, &handle, &sample);
9223 perf_output_end(&handle);
9224 }
9225
9226 /*
9227 * ksymbol register/unregister tracking
9228 */
9229
9230 struct perf_ksymbol_event {
9231 const char *name;
9232 int name_len;
9233 struct {
9234 struct perf_event_header header;
9235 u64 addr;
9236 u32 len;
9237 u16 ksym_type;
9238 u16 flags;
9239 } event_id;
9240 };
9241
perf_event_ksymbol_match(struct perf_event * event)9242 static int perf_event_ksymbol_match(struct perf_event *event)
9243 {
9244 return event->attr.ksymbol;
9245 }
9246
perf_event_ksymbol_output(struct perf_event * event,void * data)9247 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9248 {
9249 struct perf_ksymbol_event *ksymbol_event = data;
9250 struct perf_output_handle handle;
9251 struct perf_sample_data sample;
9252 int ret;
9253
9254 if (!perf_event_ksymbol_match(event))
9255 return;
9256
9257 perf_event_header__init_id(&ksymbol_event->event_id.header,
9258 &sample, event);
9259 ret = perf_output_begin(&handle, &sample, event,
9260 ksymbol_event->event_id.header.size);
9261 if (ret)
9262 return;
9263
9264 perf_output_put(&handle, ksymbol_event->event_id);
9265 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9266 perf_event__output_id_sample(event, &handle, &sample);
9267
9268 perf_output_end(&handle);
9269 }
9270
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9271 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9272 const char *sym)
9273 {
9274 struct perf_ksymbol_event ksymbol_event;
9275 char name[KSYM_NAME_LEN];
9276 u16 flags = 0;
9277 int name_len;
9278
9279 if (!atomic_read(&nr_ksymbol_events))
9280 return;
9281
9282 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9283 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9284 goto err;
9285
9286 strscpy(name, sym, KSYM_NAME_LEN);
9287 name_len = strlen(name) + 1;
9288 while (!IS_ALIGNED(name_len, sizeof(u64)))
9289 name[name_len++] = '\0';
9290 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9291
9292 if (unregister)
9293 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9294
9295 ksymbol_event = (struct perf_ksymbol_event){
9296 .name = name,
9297 .name_len = name_len,
9298 .event_id = {
9299 .header = {
9300 .type = PERF_RECORD_KSYMBOL,
9301 .size = sizeof(ksymbol_event.event_id) +
9302 name_len,
9303 },
9304 .addr = addr,
9305 .len = len,
9306 .ksym_type = ksym_type,
9307 .flags = flags,
9308 },
9309 };
9310
9311 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9312 return;
9313 err:
9314 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9315 }
9316
9317 /*
9318 * bpf program load/unload tracking
9319 */
9320
9321 struct perf_bpf_event {
9322 struct bpf_prog *prog;
9323 struct {
9324 struct perf_event_header header;
9325 u16 type;
9326 u16 flags;
9327 u32 id;
9328 u8 tag[BPF_TAG_SIZE];
9329 } event_id;
9330 };
9331
perf_event_bpf_match(struct perf_event * event)9332 static int perf_event_bpf_match(struct perf_event *event)
9333 {
9334 return event->attr.bpf_event;
9335 }
9336
perf_event_bpf_output(struct perf_event * event,void * data)9337 static void perf_event_bpf_output(struct perf_event *event, void *data)
9338 {
9339 struct perf_bpf_event *bpf_event = data;
9340 struct perf_output_handle handle;
9341 struct perf_sample_data sample;
9342 int ret;
9343
9344 if (!perf_event_bpf_match(event))
9345 return;
9346
9347 perf_event_header__init_id(&bpf_event->event_id.header,
9348 &sample, event);
9349 ret = perf_output_begin(&handle, &sample, event,
9350 bpf_event->event_id.header.size);
9351 if (ret)
9352 return;
9353
9354 perf_output_put(&handle, bpf_event->event_id);
9355 perf_event__output_id_sample(event, &handle, &sample);
9356
9357 perf_output_end(&handle);
9358 }
9359
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9360 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9361 enum perf_bpf_event_type type)
9362 {
9363 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9364 int i;
9365
9366 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9367 (u64)(unsigned long)prog->bpf_func,
9368 prog->jited_len, unregister,
9369 prog->aux->ksym.name);
9370
9371 for (i = 1; i < prog->aux->func_cnt; i++) {
9372 struct bpf_prog *subprog = prog->aux->func[i];
9373
9374 perf_event_ksymbol(
9375 PERF_RECORD_KSYMBOL_TYPE_BPF,
9376 (u64)(unsigned long)subprog->bpf_func,
9377 subprog->jited_len, unregister,
9378 subprog->aux->ksym.name);
9379 }
9380 }
9381
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9382 void perf_event_bpf_event(struct bpf_prog *prog,
9383 enum perf_bpf_event_type type,
9384 u16 flags)
9385 {
9386 struct perf_bpf_event bpf_event;
9387
9388 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9389 type >= PERF_BPF_EVENT_MAX)
9390 return;
9391
9392 switch (type) {
9393 case PERF_BPF_EVENT_PROG_LOAD:
9394 case PERF_BPF_EVENT_PROG_UNLOAD:
9395 if (atomic_read(&nr_ksymbol_events))
9396 perf_event_bpf_emit_ksymbols(prog, type);
9397 break;
9398 default:
9399 break;
9400 }
9401
9402 if (!atomic_read(&nr_bpf_events))
9403 return;
9404
9405 bpf_event = (struct perf_bpf_event){
9406 .prog = prog,
9407 .event_id = {
9408 .header = {
9409 .type = PERF_RECORD_BPF_EVENT,
9410 .size = sizeof(bpf_event.event_id),
9411 },
9412 .type = type,
9413 .flags = flags,
9414 .id = prog->aux->id,
9415 },
9416 };
9417
9418 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9419
9420 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9421 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9422 }
9423
9424 struct perf_text_poke_event {
9425 const void *old_bytes;
9426 const void *new_bytes;
9427 size_t pad;
9428 u16 old_len;
9429 u16 new_len;
9430
9431 struct {
9432 struct perf_event_header header;
9433
9434 u64 addr;
9435 } event_id;
9436 };
9437
perf_event_text_poke_match(struct perf_event * event)9438 static int perf_event_text_poke_match(struct perf_event *event)
9439 {
9440 return event->attr.text_poke;
9441 }
9442
perf_event_text_poke_output(struct perf_event * event,void * data)9443 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9444 {
9445 struct perf_text_poke_event *text_poke_event = data;
9446 struct perf_output_handle handle;
9447 struct perf_sample_data sample;
9448 u64 padding = 0;
9449 int ret;
9450
9451 if (!perf_event_text_poke_match(event))
9452 return;
9453
9454 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9455
9456 ret = perf_output_begin(&handle, &sample, event,
9457 text_poke_event->event_id.header.size);
9458 if (ret)
9459 return;
9460
9461 perf_output_put(&handle, text_poke_event->event_id);
9462 perf_output_put(&handle, text_poke_event->old_len);
9463 perf_output_put(&handle, text_poke_event->new_len);
9464
9465 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9466 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9467
9468 if (text_poke_event->pad)
9469 __output_copy(&handle, &padding, text_poke_event->pad);
9470
9471 perf_event__output_id_sample(event, &handle, &sample);
9472
9473 perf_output_end(&handle);
9474 }
9475
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9476 void perf_event_text_poke(const void *addr, const void *old_bytes,
9477 size_t old_len, const void *new_bytes, size_t new_len)
9478 {
9479 struct perf_text_poke_event text_poke_event;
9480 size_t tot, pad;
9481
9482 if (!atomic_read(&nr_text_poke_events))
9483 return;
9484
9485 tot = sizeof(text_poke_event.old_len) + old_len;
9486 tot += sizeof(text_poke_event.new_len) + new_len;
9487 pad = ALIGN(tot, sizeof(u64)) - tot;
9488
9489 text_poke_event = (struct perf_text_poke_event){
9490 .old_bytes = old_bytes,
9491 .new_bytes = new_bytes,
9492 .pad = pad,
9493 .old_len = old_len,
9494 .new_len = new_len,
9495 .event_id = {
9496 .header = {
9497 .type = PERF_RECORD_TEXT_POKE,
9498 .misc = PERF_RECORD_MISC_KERNEL,
9499 .size = sizeof(text_poke_event.event_id) + tot + pad,
9500 },
9501 .addr = (unsigned long)addr,
9502 },
9503 };
9504
9505 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9506 }
9507
perf_event_itrace_started(struct perf_event * event)9508 void perf_event_itrace_started(struct perf_event *event)
9509 {
9510 event->attach_state |= PERF_ATTACH_ITRACE;
9511 }
9512
perf_log_itrace_start(struct perf_event * event)9513 static void perf_log_itrace_start(struct perf_event *event)
9514 {
9515 struct perf_output_handle handle;
9516 struct perf_sample_data sample;
9517 struct perf_aux_event {
9518 struct perf_event_header header;
9519 u32 pid;
9520 u32 tid;
9521 } rec;
9522 int ret;
9523
9524 if (event->parent)
9525 event = event->parent;
9526
9527 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9528 event->attach_state & PERF_ATTACH_ITRACE)
9529 return;
9530
9531 rec.header.type = PERF_RECORD_ITRACE_START;
9532 rec.header.misc = 0;
9533 rec.header.size = sizeof(rec);
9534 rec.pid = perf_event_pid(event, current);
9535 rec.tid = perf_event_tid(event, current);
9536
9537 perf_event_header__init_id(&rec.header, &sample, event);
9538 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9539
9540 if (ret)
9541 return;
9542
9543 perf_output_put(&handle, rec);
9544 perf_event__output_id_sample(event, &handle, &sample);
9545
9546 perf_output_end(&handle);
9547 }
9548
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9549 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9550 {
9551 struct perf_output_handle handle;
9552 struct perf_sample_data sample;
9553 struct perf_aux_event {
9554 struct perf_event_header header;
9555 u64 hw_id;
9556 } rec;
9557 int ret;
9558
9559 if (event->parent)
9560 event = event->parent;
9561
9562 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9563 rec.header.misc = 0;
9564 rec.header.size = sizeof(rec);
9565 rec.hw_id = hw_id;
9566
9567 perf_event_header__init_id(&rec.header, &sample, event);
9568 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9569
9570 if (ret)
9571 return;
9572
9573 perf_output_put(&handle, rec);
9574 perf_event__output_id_sample(event, &handle, &sample);
9575
9576 perf_output_end(&handle);
9577 }
9578 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9579
9580 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9581 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9582 {
9583 struct hw_perf_event *hwc = &event->hw;
9584 int ret = 0;
9585 u64 seq;
9586
9587 seq = __this_cpu_read(perf_throttled_seq);
9588 if (seq != hwc->interrupts_seq) {
9589 hwc->interrupts_seq = seq;
9590 hwc->interrupts = 1;
9591 } else {
9592 hwc->interrupts++;
9593 }
9594
9595 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
9596 __this_cpu_inc(perf_throttled_count);
9597 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9598 hwc->interrupts = MAX_INTERRUPTS;
9599 perf_log_throttle(event, 0);
9600 ret = 1;
9601 }
9602
9603 if (event->attr.freq) {
9604 u64 now = perf_clock();
9605 s64 delta = now - hwc->freq_time_stamp;
9606
9607 hwc->freq_time_stamp = now;
9608
9609 if (delta > 0 && delta < 2*TICK_NSEC)
9610 perf_adjust_period(event, delta, hwc->last_period, true);
9611 }
9612
9613 return ret;
9614 }
9615
perf_event_account_interrupt(struct perf_event * event)9616 int perf_event_account_interrupt(struct perf_event *event)
9617 {
9618 return __perf_event_account_interrupt(event, 1);
9619 }
9620
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9621 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9622 {
9623 /*
9624 * Due to interrupt latency (AKA "skid"), we may enter the
9625 * kernel before taking an overflow, even if the PMU is only
9626 * counting user events.
9627 */
9628 if (event->attr.exclude_kernel && !user_mode(regs))
9629 return false;
9630
9631 return true;
9632 }
9633
9634 /*
9635 * Generic event overflow handling, sampling.
9636 */
9637
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9638 static int __perf_event_overflow(struct perf_event *event,
9639 int throttle, struct perf_sample_data *data,
9640 struct pt_regs *regs)
9641 {
9642 int events = atomic_read(&event->event_limit);
9643 int ret = 0;
9644
9645 /*
9646 * Non-sampling counters might still use the PMI to fold short
9647 * hardware counters, ignore those.
9648 */
9649 if (unlikely(!is_sampling_event(event)))
9650 return 0;
9651
9652 ret = __perf_event_account_interrupt(event, throttle);
9653
9654 /*
9655 * XXX event_limit might not quite work as expected on inherited
9656 * events
9657 */
9658
9659 event->pending_kill = POLL_IN;
9660 if (events && atomic_dec_and_test(&event->event_limit)) {
9661 ret = 1;
9662 event->pending_kill = POLL_HUP;
9663 perf_event_disable_inatomic(event);
9664 }
9665
9666 if (event->attr.sigtrap) {
9667 /*
9668 * The desired behaviour of sigtrap vs invalid samples is a bit
9669 * tricky; on the one hand, one should not loose the SIGTRAP if
9670 * it is the first event, on the other hand, we should also not
9671 * trigger the WARN or override the data address.
9672 */
9673 bool valid_sample = sample_is_allowed(event, regs);
9674 unsigned int pending_id = 1;
9675
9676 if (regs)
9677 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9678 if (!event->pending_sigtrap) {
9679 event->pending_sigtrap = pending_id;
9680 local_inc(&event->ctx->nr_pending);
9681 } else if (event->attr.exclude_kernel && valid_sample) {
9682 /*
9683 * Should not be able to return to user space without
9684 * consuming pending_sigtrap; with exceptions:
9685 *
9686 * 1. Where !exclude_kernel, events can overflow again
9687 * in the kernel without returning to user space.
9688 *
9689 * 2. Events that can overflow again before the IRQ-
9690 * work without user space progress (e.g. hrtimer).
9691 * To approximate progress (with false negatives),
9692 * check 32-bit hash of the current IP.
9693 */
9694 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9695 }
9696
9697 event->pending_addr = 0;
9698 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9699 event->pending_addr = data->addr;
9700 irq_work_queue(&event->pending_irq);
9701 }
9702
9703 READ_ONCE(event->overflow_handler)(event, data, regs);
9704
9705 if (*perf_event_fasync(event) && event->pending_kill) {
9706 event->pending_wakeup = 1;
9707 irq_work_queue(&event->pending_irq);
9708 }
9709
9710 return ret;
9711 }
9712
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9713 int perf_event_overflow(struct perf_event *event,
9714 struct perf_sample_data *data,
9715 struct pt_regs *regs)
9716 {
9717 return __perf_event_overflow(event, 1, data, regs);
9718 }
9719
9720 /*
9721 * Generic software event infrastructure
9722 */
9723
9724 struct swevent_htable {
9725 struct swevent_hlist *swevent_hlist;
9726 struct mutex hlist_mutex;
9727 int hlist_refcount;
9728
9729 /* Recursion avoidance in each contexts */
9730 int recursion[PERF_NR_CONTEXTS];
9731 };
9732
9733 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9734
9735 /*
9736 * We directly increment event->count and keep a second value in
9737 * event->hw.period_left to count intervals. This period event
9738 * is kept in the range [-sample_period, 0] so that we can use the
9739 * sign as trigger.
9740 */
9741
perf_swevent_set_period(struct perf_event * event)9742 u64 perf_swevent_set_period(struct perf_event *event)
9743 {
9744 struct hw_perf_event *hwc = &event->hw;
9745 u64 period = hwc->last_period;
9746 u64 nr, offset;
9747 s64 old, val;
9748
9749 hwc->last_period = hwc->sample_period;
9750
9751 old = local64_read(&hwc->period_left);
9752 do {
9753 val = old;
9754 if (val < 0)
9755 return 0;
9756
9757 nr = div64_u64(period + val, period);
9758 offset = nr * period;
9759 val -= offset;
9760 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9761
9762 return nr;
9763 }
9764
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9765 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9766 struct perf_sample_data *data,
9767 struct pt_regs *regs)
9768 {
9769 struct hw_perf_event *hwc = &event->hw;
9770 int throttle = 0;
9771
9772 if (!overflow)
9773 overflow = perf_swevent_set_period(event);
9774
9775 if (hwc->interrupts == MAX_INTERRUPTS)
9776 return;
9777
9778 for (; overflow; overflow--) {
9779 if (__perf_event_overflow(event, throttle,
9780 data, regs)) {
9781 /*
9782 * We inhibit the overflow from happening when
9783 * hwc->interrupts == MAX_INTERRUPTS.
9784 */
9785 break;
9786 }
9787 throttle = 1;
9788 }
9789 }
9790
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9791 static void perf_swevent_event(struct perf_event *event, u64 nr,
9792 struct perf_sample_data *data,
9793 struct pt_regs *regs)
9794 {
9795 struct hw_perf_event *hwc = &event->hw;
9796
9797 local64_add(nr, &event->count);
9798
9799 if (!regs)
9800 return;
9801
9802 if (!is_sampling_event(event))
9803 return;
9804
9805 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9806 data->period = nr;
9807 return perf_swevent_overflow(event, 1, data, regs);
9808 } else
9809 data->period = event->hw.last_period;
9810
9811 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9812 return perf_swevent_overflow(event, 1, data, regs);
9813
9814 if (local64_add_negative(nr, &hwc->period_left))
9815 return;
9816
9817 perf_swevent_overflow(event, 0, data, regs);
9818 }
9819
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9820 static int perf_exclude_event(struct perf_event *event,
9821 struct pt_regs *regs)
9822 {
9823 if (event->hw.state & PERF_HES_STOPPED)
9824 return 1;
9825
9826 if (regs) {
9827 if (event->attr.exclude_user && user_mode(regs))
9828 return 1;
9829
9830 if (event->attr.exclude_kernel && !user_mode(regs))
9831 return 1;
9832 }
9833
9834 return 0;
9835 }
9836
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9837 static int perf_swevent_match(struct perf_event *event,
9838 enum perf_type_id type,
9839 u32 event_id,
9840 struct perf_sample_data *data,
9841 struct pt_regs *regs)
9842 {
9843 if (event->attr.type != type)
9844 return 0;
9845
9846 if (event->attr.config != event_id)
9847 return 0;
9848
9849 if (perf_exclude_event(event, regs))
9850 return 0;
9851
9852 return 1;
9853 }
9854
swevent_hash(u64 type,u32 event_id)9855 static inline u64 swevent_hash(u64 type, u32 event_id)
9856 {
9857 u64 val = event_id | (type << 32);
9858
9859 return hash_64(val, SWEVENT_HLIST_BITS);
9860 }
9861
9862 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9863 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9864 {
9865 u64 hash = swevent_hash(type, event_id);
9866
9867 return &hlist->heads[hash];
9868 }
9869
9870 /* For the read side: events when they trigger */
9871 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9872 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9873 {
9874 struct swevent_hlist *hlist;
9875
9876 hlist = rcu_dereference(swhash->swevent_hlist);
9877 if (!hlist)
9878 return NULL;
9879
9880 return __find_swevent_head(hlist, type, event_id);
9881 }
9882
9883 /* For the event head insertion and removal in the hlist */
9884 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9885 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9886 {
9887 struct swevent_hlist *hlist;
9888 u32 event_id = event->attr.config;
9889 u64 type = event->attr.type;
9890
9891 /*
9892 * Event scheduling is always serialized against hlist allocation
9893 * and release. Which makes the protected version suitable here.
9894 * The context lock guarantees that.
9895 */
9896 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9897 lockdep_is_held(&event->ctx->lock));
9898 if (!hlist)
9899 return NULL;
9900
9901 return __find_swevent_head(hlist, type, event_id);
9902 }
9903
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9904 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9905 u64 nr,
9906 struct perf_sample_data *data,
9907 struct pt_regs *regs)
9908 {
9909 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9910 struct perf_event *event;
9911 struct hlist_head *head;
9912
9913 rcu_read_lock();
9914 head = find_swevent_head_rcu(swhash, type, event_id);
9915 if (!head)
9916 goto end;
9917
9918 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9919 if (perf_swevent_match(event, type, event_id, data, regs))
9920 perf_swevent_event(event, nr, data, regs);
9921 }
9922 end:
9923 rcu_read_unlock();
9924 }
9925
9926 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9927
perf_swevent_get_recursion_context(void)9928 int perf_swevent_get_recursion_context(void)
9929 {
9930 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9931
9932 return get_recursion_context(swhash->recursion);
9933 }
9934 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9935
perf_swevent_put_recursion_context(int rctx)9936 void perf_swevent_put_recursion_context(int rctx)
9937 {
9938 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9939
9940 put_recursion_context(swhash->recursion, rctx);
9941 }
9942
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9943 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9944 {
9945 struct perf_sample_data data;
9946
9947 if (WARN_ON_ONCE(!regs))
9948 return;
9949
9950 perf_sample_data_init(&data, addr, 0);
9951 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9952 }
9953
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9954 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9955 {
9956 int rctx;
9957
9958 preempt_disable_notrace();
9959 rctx = perf_swevent_get_recursion_context();
9960 if (unlikely(rctx < 0))
9961 goto fail;
9962
9963 ___perf_sw_event(event_id, nr, regs, addr);
9964
9965 perf_swevent_put_recursion_context(rctx);
9966 fail:
9967 preempt_enable_notrace();
9968 }
9969
perf_swevent_read(struct perf_event * event)9970 static void perf_swevent_read(struct perf_event *event)
9971 {
9972 }
9973
perf_swevent_add(struct perf_event * event,int flags)9974 static int perf_swevent_add(struct perf_event *event, int flags)
9975 {
9976 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9977 struct hw_perf_event *hwc = &event->hw;
9978 struct hlist_head *head;
9979
9980 if (is_sampling_event(event)) {
9981 hwc->last_period = hwc->sample_period;
9982 perf_swevent_set_period(event);
9983 }
9984
9985 hwc->state = !(flags & PERF_EF_START);
9986
9987 head = find_swevent_head(swhash, event);
9988 if (WARN_ON_ONCE(!head))
9989 return -EINVAL;
9990
9991 hlist_add_head_rcu(&event->hlist_entry, head);
9992 perf_event_update_userpage(event);
9993
9994 return 0;
9995 }
9996
perf_swevent_del(struct perf_event * event,int flags)9997 static void perf_swevent_del(struct perf_event *event, int flags)
9998 {
9999 hlist_del_rcu(&event->hlist_entry);
10000 }
10001
perf_swevent_start(struct perf_event * event,int flags)10002 static void perf_swevent_start(struct perf_event *event, int flags)
10003 {
10004 event->hw.state = 0;
10005 }
10006
perf_swevent_stop(struct perf_event * event,int flags)10007 static void perf_swevent_stop(struct perf_event *event, int flags)
10008 {
10009 event->hw.state = PERF_HES_STOPPED;
10010 }
10011
10012 /* Deref the hlist from the update side */
10013 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10014 swevent_hlist_deref(struct swevent_htable *swhash)
10015 {
10016 return rcu_dereference_protected(swhash->swevent_hlist,
10017 lockdep_is_held(&swhash->hlist_mutex));
10018 }
10019
swevent_hlist_release(struct swevent_htable * swhash)10020 static void swevent_hlist_release(struct swevent_htable *swhash)
10021 {
10022 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10023
10024 if (!hlist)
10025 return;
10026
10027 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10028 kfree_rcu(hlist, rcu_head);
10029 }
10030
swevent_hlist_put_cpu(int cpu)10031 static void swevent_hlist_put_cpu(int cpu)
10032 {
10033 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10034
10035 mutex_lock(&swhash->hlist_mutex);
10036
10037 if (!--swhash->hlist_refcount)
10038 swevent_hlist_release(swhash);
10039
10040 mutex_unlock(&swhash->hlist_mutex);
10041 }
10042
swevent_hlist_put(void)10043 static void swevent_hlist_put(void)
10044 {
10045 int cpu;
10046
10047 for_each_possible_cpu(cpu)
10048 swevent_hlist_put_cpu(cpu);
10049 }
10050
swevent_hlist_get_cpu(int cpu)10051 static int swevent_hlist_get_cpu(int cpu)
10052 {
10053 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10054 int err = 0;
10055
10056 mutex_lock(&swhash->hlist_mutex);
10057 if (!swevent_hlist_deref(swhash) &&
10058 cpumask_test_cpu(cpu, perf_online_mask)) {
10059 struct swevent_hlist *hlist;
10060
10061 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10062 if (!hlist) {
10063 err = -ENOMEM;
10064 goto exit;
10065 }
10066 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10067 }
10068 swhash->hlist_refcount++;
10069 exit:
10070 mutex_unlock(&swhash->hlist_mutex);
10071
10072 return err;
10073 }
10074
swevent_hlist_get(void)10075 static int swevent_hlist_get(void)
10076 {
10077 int err, cpu, failed_cpu;
10078
10079 mutex_lock(&pmus_lock);
10080 for_each_possible_cpu(cpu) {
10081 err = swevent_hlist_get_cpu(cpu);
10082 if (err) {
10083 failed_cpu = cpu;
10084 goto fail;
10085 }
10086 }
10087 mutex_unlock(&pmus_lock);
10088 return 0;
10089 fail:
10090 for_each_possible_cpu(cpu) {
10091 if (cpu == failed_cpu)
10092 break;
10093 swevent_hlist_put_cpu(cpu);
10094 }
10095 mutex_unlock(&pmus_lock);
10096 return err;
10097 }
10098
10099 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10100
sw_perf_event_destroy(struct perf_event * event)10101 static void sw_perf_event_destroy(struct perf_event *event)
10102 {
10103 u64 event_id = event->attr.config;
10104
10105 WARN_ON(event->parent);
10106
10107 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10108 swevent_hlist_put();
10109 }
10110
10111 static struct pmu perf_cpu_clock; /* fwd declaration */
10112 static struct pmu perf_task_clock;
10113
perf_swevent_init(struct perf_event * event)10114 static int perf_swevent_init(struct perf_event *event)
10115 {
10116 u64 event_id = event->attr.config;
10117
10118 if (event->attr.type != PERF_TYPE_SOFTWARE)
10119 return -ENOENT;
10120
10121 /*
10122 * no branch sampling for software events
10123 */
10124 if (has_branch_stack(event))
10125 return -EOPNOTSUPP;
10126
10127 switch (event_id) {
10128 case PERF_COUNT_SW_CPU_CLOCK:
10129 event->attr.type = perf_cpu_clock.type;
10130 return -ENOENT;
10131 case PERF_COUNT_SW_TASK_CLOCK:
10132 event->attr.type = perf_task_clock.type;
10133 return -ENOENT;
10134
10135 default:
10136 break;
10137 }
10138
10139 if (event_id >= PERF_COUNT_SW_MAX)
10140 return -ENOENT;
10141
10142 if (!event->parent) {
10143 int err;
10144
10145 err = swevent_hlist_get();
10146 if (err)
10147 return err;
10148
10149 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10150 event->destroy = sw_perf_event_destroy;
10151 }
10152
10153 return 0;
10154 }
10155
10156 static struct pmu perf_swevent = {
10157 .task_ctx_nr = perf_sw_context,
10158
10159 .capabilities = PERF_PMU_CAP_NO_NMI,
10160
10161 .event_init = perf_swevent_init,
10162 .add = perf_swevent_add,
10163 .del = perf_swevent_del,
10164 .start = perf_swevent_start,
10165 .stop = perf_swevent_stop,
10166 .read = perf_swevent_read,
10167 };
10168
10169 #ifdef CONFIG_EVENT_TRACING
10170
tp_perf_event_destroy(struct perf_event * event)10171 static void tp_perf_event_destroy(struct perf_event *event)
10172 {
10173 perf_trace_destroy(event);
10174 }
10175
perf_tp_event_init(struct perf_event * event)10176 static int perf_tp_event_init(struct perf_event *event)
10177 {
10178 int err;
10179
10180 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10181 return -ENOENT;
10182
10183 /*
10184 * no branch sampling for tracepoint events
10185 */
10186 if (has_branch_stack(event))
10187 return -EOPNOTSUPP;
10188
10189 err = perf_trace_init(event);
10190 if (err)
10191 return err;
10192
10193 event->destroy = tp_perf_event_destroy;
10194
10195 return 0;
10196 }
10197
10198 static struct pmu perf_tracepoint = {
10199 .task_ctx_nr = perf_sw_context,
10200
10201 .event_init = perf_tp_event_init,
10202 .add = perf_trace_add,
10203 .del = perf_trace_del,
10204 .start = perf_swevent_start,
10205 .stop = perf_swevent_stop,
10206 .read = perf_swevent_read,
10207 };
10208
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10209 static int perf_tp_filter_match(struct perf_event *event,
10210 struct perf_raw_record *raw)
10211 {
10212 void *record = raw->frag.data;
10213
10214 /* only top level events have filters set */
10215 if (event->parent)
10216 event = event->parent;
10217
10218 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10219 return 1;
10220 return 0;
10221 }
10222
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10223 static int perf_tp_event_match(struct perf_event *event,
10224 struct perf_raw_record *raw,
10225 struct pt_regs *regs)
10226 {
10227 if (event->hw.state & PERF_HES_STOPPED)
10228 return 0;
10229 /*
10230 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10231 */
10232 if (event->attr.exclude_kernel && !user_mode(regs))
10233 return 0;
10234
10235 if (!perf_tp_filter_match(event, raw))
10236 return 0;
10237
10238 return 1;
10239 }
10240
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10241 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10242 struct trace_event_call *call, u64 count,
10243 struct pt_regs *regs, struct hlist_head *head,
10244 struct task_struct *task)
10245 {
10246 if (bpf_prog_array_valid(call)) {
10247 *(struct pt_regs **)raw_data = regs;
10248 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10249 perf_swevent_put_recursion_context(rctx);
10250 return;
10251 }
10252 }
10253 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10254 rctx, task);
10255 }
10256 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10257
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10258 static void __perf_tp_event_target_task(u64 count, void *record,
10259 struct pt_regs *regs,
10260 struct perf_sample_data *data,
10261 struct perf_raw_record *raw,
10262 struct perf_event *event)
10263 {
10264 struct trace_entry *entry = record;
10265
10266 if (event->attr.config != entry->type)
10267 return;
10268 /* Cannot deliver synchronous signal to other task. */
10269 if (event->attr.sigtrap)
10270 return;
10271 if (perf_tp_event_match(event, raw, regs)) {
10272 perf_sample_data_init(data, 0, 0);
10273 perf_sample_save_raw_data(data, event, raw);
10274 perf_swevent_event(event, count, data, regs);
10275 }
10276 }
10277
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10278 static void perf_tp_event_target_task(u64 count, void *record,
10279 struct pt_regs *regs,
10280 struct perf_sample_data *data,
10281 struct perf_raw_record *raw,
10282 struct perf_event_context *ctx)
10283 {
10284 unsigned int cpu = smp_processor_id();
10285 struct pmu *pmu = &perf_tracepoint;
10286 struct perf_event *event, *sibling;
10287
10288 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10289 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10290 for_each_sibling_event(sibling, event)
10291 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10292 }
10293
10294 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10295 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10296 for_each_sibling_event(sibling, event)
10297 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10298 }
10299 }
10300
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10301 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10302 struct pt_regs *regs, struct hlist_head *head, int rctx,
10303 struct task_struct *task)
10304 {
10305 struct perf_sample_data data;
10306 struct perf_event *event;
10307
10308 struct perf_raw_record raw = {
10309 .frag = {
10310 .size = entry_size,
10311 .data = record,
10312 },
10313 };
10314
10315 perf_trace_buf_update(record, event_type);
10316
10317 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10318 if (perf_tp_event_match(event, &raw, regs)) {
10319 /*
10320 * Here use the same on-stack perf_sample_data,
10321 * some members in data are event-specific and
10322 * need to be re-computed for different sweveents.
10323 * Re-initialize data->sample_flags safely to avoid
10324 * the problem that next event skips preparing data
10325 * because data->sample_flags is set.
10326 */
10327 perf_sample_data_init(&data, 0, 0);
10328 perf_sample_save_raw_data(&data, event, &raw);
10329 perf_swevent_event(event, count, &data, regs);
10330 }
10331 }
10332
10333 /*
10334 * If we got specified a target task, also iterate its context and
10335 * deliver this event there too.
10336 */
10337 if (task && task != current) {
10338 struct perf_event_context *ctx;
10339
10340 rcu_read_lock();
10341 ctx = rcu_dereference(task->perf_event_ctxp);
10342 if (!ctx)
10343 goto unlock;
10344
10345 raw_spin_lock(&ctx->lock);
10346 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10347 raw_spin_unlock(&ctx->lock);
10348 unlock:
10349 rcu_read_unlock();
10350 }
10351
10352 perf_swevent_put_recursion_context(rctx);
10353 }
10354 EXPORT_SYMBOL_GPL(perf_tp_event);
10355
10356 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10357 /*
10358 * Flags in config, used by dynamic PMU kprobe and uprobe
10359 * The flags should match following PMU_FORMAT_ATTR().
10360 *
10361 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10362 * if not set, create kprobe/uprobe
10363 *
10364 * The following values specify a reference counter (or semaphore in the
10365 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10366 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10367 *
10368 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10369 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10370 */
10371 enum perf_probe_config {
10372 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10373 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10374 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10375 };
10376
10377 PMU_FORMAT_ATTR(retprobe, "config:0");
10378 #endif
10379
10380 #ifdef CONFIG_KPROBE_EVENTS
10381 static struct attribute *kprobe_attrs[] = {
10382 &format_attr_retprobe.attr,
10383 NULL,
10384 };
10385
10386 static struct attribute_group kprobe_format_group = {
10387 .name = "format",
10388 .attrs = kprobe_attrs,
10389 };
10390
10391 static const struct attribute_group *kprobe_attr_groups[] = {
10392 &kprobe_format_group,
10393 NULL,
10394 };
10395
10396 static int perf_kprobe_event_init(struct perf_event *event);
10397 static struct pmu perf_kprobe = {
10398 .task_ctx_nr = perf_sw_context,
10399 .event_init = perf_kprobe_event_init,
10400 .add = perf_trace_add,
10401 .del = perf_trace_del,
10402 .start = perf_swevent_start,
10403 .stop = perf_swevent_stop,
10404 .read = perf_swevent_read,
10405 .attr_groups = kprobe_attr_groups,
10406 };
10407
perf_kprobe_event_init(struct perf_event * event)10408 static int perf_kprobe_event_init(struct perf_event *event)
10409 {
10410 int err;
10411 bool is_retprobe;
10412
10413 if (event->attr.type != perf_kprobe.type)
10414 return -ENOENT;
10415
10416 if (!perfmon_capable())
10417 return -EACCES;
10418
10419 /*
10420 * no branch sampling for probe events
10421 */
10422 if (has_branch_stack(event))
10423 return -EOPNOTSUPP;
10424
10425 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10426 err = perf_kprobe_init(event, is_retprobe);
10427 if (err)
10428 return err;
10429
10430 event->destroy = perf_kprobe_destroy;
10431
10432 return 0;
10433 }
10434 #endif /* CONFIG_KPROBE_EVENTS */
10435
10436 #ifdef CONFIG_UPROBE_EVENTS
10437 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10438
10439 static struct attribute *uprobe_attrs[] = {
10440 &format_attr_retprobe.attr,
10441 &format_attr_ref_ctr_offset.attr,
10442 NULL,
10443 };
10444
10445 static struct attribute_group uprobe_format_group = {
10446 .name = "format",
10447 .attrs = uprobe_attrs,
10448 };
10449
10450 static const struct attribute_group *uprobe_attr_groups[] = {
10451 &uprobe_format_group,
10452 NULL,
10453 };
10454
10455 static int perf_uprobe_event_init(struct perf_event *event);
10456 static struct pmu perf_uprobe = {
10457 .task_ctx_nr = perf_sw_context,
10458 .event_init = perf_uprobe_event_init,
10459 .add = perf_trace_add,
10460 .del = perf_trace_del,
10461 .start = perf_swevent_start,
10462 .stop = perf_swevent_stop,
10463 .read = perf_swevent_read,
10464 .attr_groups = uprobe_attr_groups,
10465 };
10466
perf_uprobe_event_init(struct perf_event * event)10467 static int perf_uprobe_event_init(struct perf_event *event)
10468 {
10469 int err;
10470 unsigned long ref_ctr_offset;
10471 bool is_retprobe;
10472
10473 if (event->attr.type != perf_uprobe.type)
10474 return -ENOENT;
10475
10476 if (!perfmon_capable())
10477 return -EACCES;
10478
10479 /*
10480 * no branch sampling for probe events
10481 */
10482 if (has_branch_stack(event))
10483 return -EOPNOTSUPP;
10484
10485 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10486 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10487 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10488 if (err)
10489 return err;
10490
10491 event->destroy = perf_uprobe_destroy;
10492
10493 return 0;
10494 }
10495 #endif /* CONFIG_UPROBE_EVENTS */
10496
perf_tp_register(void)10497 static inline void perf_tp_register(void)
10498 {
10499 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10500 #ifdef CONFIG_KPROBE_EVENTS
10501 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10502 #endif
10503 #ifdef CONFIG_UPROBE_EVENTS
10504 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10505 #endif
10506 }
10507
perf_event_free_filter(struct perf_event * event)10508 static void perf_event_free_filter(struct perf_event *event)
10509 {
10510 ftrace_profile_free_filter(event);
10511 }
10512
10513 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10514 static void bpf_overflow_handler(struct perf_event *event,
10515 struct perf_sample_data *data,
10516 struct pt_regs *regs)
10517 {
10518 struct bpf_perf_event_data_kern ctx = {
10519 .data = data,
10520 .event = event,
10521 };
10522 struct bpf_prog *prog;
10523 int ret = 0;
10524
10525 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10526 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10527 goto out;
10528 rcu_read_lock();
10529 prog = READ_ONCE(event->prog);
10530 if (prog) {
10531 perf_prepare_sample(data, event, regs);
10532 ret = bpf_prog_run(prog, &ctx);
10533 }
10534 rcu_read_unlock();
10535 out:
10536 __this_cpu_dec(bpf_prog_active);
10537 if (!ret)
10538 return;
10539
10540 event->orig_overflow_handler(event, data, regs);
10541 }
10542
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10543 static int perf_event_set_bpf_handler(struct perf_event *event,
10544 struct bpf_prog *prog,
10545 u64 bpf_cookie)
10546 {
10547 if (event->overflow_handler_context)
10548 /* hw breakpoint or kernel counter */
10549 return -EINVAL;
10550
10551 if (event->prog)
10552 return -EEXIST;
10553
10554 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10555 return -EINVAL;
10556
10557 if (event->attr.precise_ip &&
10558 prog->call_get_stack &&
10559 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10560 event->attr.exclude_callchain_kernel ||
10561 event->attr.exclude_callchain_user)) {
10562 /*
10563 * On perf_event with precise_ip, calling bpf_get_stack()
10564 * may trigger unwinder warnings and occasional crashes.
10565 * bpf_get_[stack|stackid] works around this issue by using
10566 * callchain attached to perf_sample_data. If the
10567 * perf_event does not full (kernel and user) callchain
10568 * attached to perf_sample_data, do not allow attaching BPF
10569 * program that calls bpf_get_[stack|stackid].
10570 */
10571 return -EPROTO;
10572 }
10573
10574 event->prog = prog;
10575 event->bpf_cookie = bpf_cookie;
10576 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10577 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10578 return 0;
10579 }
10580
perf_event_free_bpf_handler(struct perf_event * event)10581 static void perf_event_free_bpf_handler(struct perf_event *event)
10582 {
10583 struct bpf_prog *prog = event->prog;
10584
10585 if (!prog)
10586 return;
10587
10588 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10589 event->prog = NULL;
10590 bpf_prog_put(prog);
10591 }
10592 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10593 static int perf_event_set_bpf_handler(struct perf_event *event,
10594 struct bpf_prog *prog,
10595 u64 bpf_cookie)
10596 {
10597 return -EOPNOTSUPP;
10598 }
perf_event_free_bpf_handler(struct perf_event * event)10599 static void perf_event_free_bpf_handler(struct perf_event *event)
10600 {
10601 }
10602 #endif
10603
10604 /*
10605 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10606 * with perf_event_open()
10607 */
perf_event_is_tracing(struct perf_event * event)10608 static inline bool perf_event_is_tracing(struct perf_event *event)
10609 {
10610 if (event->pmu == &perf_tracepoint)
10611 return true;
10612 #ifdef CONFIG_KPROBE_EVENTS
10613 if (event->pmu == &perf_kprobe)
10614 return true;
10615 #endif
10616 #ifdef CONFIG_UPROBE_EVENTS
10617 if (event->pmu == &perf_uprobe)
10618 return true;
10619 #endif
10620 return false;
10621 }
10622
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10623 static int __perf_event_set_bpf_prog(struct perf_event *event,
10624 struct bpf_prog *prog,
10625 u64 bpf_cookie)
10626 {
10627 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10628
10629 if (!perf_event_is_tracing(event))
10630 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10631
10632 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10633 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10634 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10635 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10636 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10637 /* bpf programs can only be attached to u/kprobe or tracepoint */
10638 return -EINVAL;
10639
10640 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10641 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10642 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10643 return -EINVAL;
10644
10645 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10646 /* only uprobe programs are allowed to be sleepable */
10647 return -EINVAL;
10648
10649 /* Kprobe override only works for kprobes, not uprobes. */
10650 if (prog->kprobe_override && !is_kprobe)
10651 return -EINVAL;
10652
10653 if (is_tracepoint || is_syscall_tp) {
10654 int off = trace_event_get_offsets(event->tp_event);
10655
10656 if (prog->aux->max_ctx_offset > off)
10657 return -EACCES;
10658 }
10659
10660 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10661 }
10662
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10663 int perf_event_set_bpf_prog(struct perf_event *event,
10664 struct bpf_prog *prog,
10665 u64 bpf_cookie)
10666 {
10667 struct perf_event_context *ctx;
10668 int ret;
10669
10670 ctx = perf_event_ctx_lock(event);
10671 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
10672 perf_event_ctx_unlock(event, ctx);
10673
10674 return ret;
10675 }
10676
perf_event_free_bpf_prog(struct perf_event * event)10677 void perf_event_free_bpf_prog(struct perf_event *event)
10678 {
10679 if (!perf_event_is_tracing(event)) {
10680 perf_event_free_bpf_handler(event);
10681 return;
10682 }
10683 perf_event_detach_bpf_prog(event);
10684 }
10685
10686 #else
10687
perf_tp_register(void)10688 static inline void perf_tp_register(void)
10689 {
10690 }
10691
perf_event_free_filter(struct perf_event * event)10692 static void perf_event_free_filter(struct perf_event *event)
10693 {
10694 }
10695
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10696 static int __perf_event_set_bpf_prog(struct perf_event *event,
10697 struct bpf_prog *prog,
10698 u64 bpf_cookie)
10699 {
10700 return -ENOENT;
10701 }
10702
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10703 int perf_event_set_bpf_prog(struct perf_event *event,
10704 struct bpf_prog *prog,
10705 u64 bpf_cookie)
10706 {
10707 return -ENOENT;
10708 }
10709
perf_event_free_bpf_prog(struct perf_event * event)10710 void perf_event_free_bpf_prog(struct perf_event *event)
10711 {
10712 }
10713 #endif /* CONFIG_EVENT_TRACING */
10714
10715 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10716 void perf_bp_event(struct perf_event *bp, void *data)
10717 {
10718 struct perf_sample_data sample;
10719 struct pt_regs *regs = data;
10720
10721 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10722
10723 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10724 perf_swevent_event(bp, 1, &sample, regs);
10725 }
10726 #endif
10727
10728 /*
10729 * Allocate a new address filter
10730 */
10731 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10732 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10733 {
10734 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10735 struct perf_addr_filter *filter;
10736
10737 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10738 if (!filter)
10739 return NULL;
10740
10741 INIT_LIST_HEAD(&filter->entry);
10742 list_add_tail(&filter->entry, filters);
10743
10744 return filter;
10745 }
10746
free_filters_list(struct list_head * filters)10747 static void free_filters_list(struct list_head *filters)
10748 {
10749 struct perf_addr_filter *filter, *iter;
10750
10751 list_for_each_entry_safe(filter, iter, filters, entry) {
10752 path_put(&filter->path);
10753 list_del(&filter->entry);
10754 kfree(filter);
10755 }
10756 }
10757
10758 /*
10759 * Free existing address filters and optionally install new ones
10760 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10761 static void perf_addr_filters_splice(struct perf_event *event,
10762 struct list_head *head)
10763 {
10764 unsigned long flags;
10765 LIST_HEAD(list);
10766
10767 if (!has_addr_filter(event))
10768 return;
10769
10770 /* don't bother with children, they don't have their own filters */
10771 if (event->parent)
10772 return;
10773
10774 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10775
10776 list_splice_init(&event->addr_filters.list, &list);
10777 if (head)
10778 list_splice(head, &event->addr_filters.list);
10779
10780 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10781
10782 free_filters_list(&list);
10783 }
10784
10785 /*
10786 * Scan through mm's vmas and see if one of them matches the
10787 * @filter; if so, adjust filter's address range.
10788 * Called with mm::mmap_lock down for reading.
10789 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10790 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10791 struct mm_struct *mm,
10792 struct perf_addr_filter_range *fr)
10793 {
10794 struct vm_area_struct *vma;
10795 VMA_ITERATOR(vmi, mm, 0);
10796
10797 for_each_vma(vmi, vma) {
10798 if (!vma->vm_file)
10799 continue;
10800
10801 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10802 return;
10803 }
10804 }
10805
10806 /*
10807 * Update event's address range filters based on the
10808 * task's existing mappings, if any.
10809 */
perf_event_addr_filters_apply(struct perf_event * event)10810 static void perf_event_addr_filters_apply(struct perf_event *event)
10811 {
10812 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10813 struct task_struct *task = READ_ONCE(event->ctx->task);
10814 struct perf_addr_filter *filter;
10815 struct mm_struct *mm = NULL;
10816 unsigned int count = 0;
10817 unsigned long flags;
10818
10819 /*
10820 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10821 * will stop on the parent's child_mutex that our caller is also holding
10822 */
10823 if (task == TASK_TOMBSTONE)
10824 return;
10825
10826 if (ifh->nr_file_filters) {
10827 mm = get_task_mm(task);
10828 if (!mm)
10829 goto restart;
10830
10831 mmap_read_lock(mm);
10832 }
10833
10834 raw_spin_lock_irqsave(&ifh->lock, flags);
10835 list_for_each_entry(filter, &ifh->list, entry) {
10836 if (filter->path.dentry) {
10837 /*
10838 * Adjust base offset if the filter is associated to a
10839 * binary that needs to be mapped:
10840 */
10841 event->addr_filter_ranges[count].start = 0;
10842 event->addr_filter_ranges[count].size = 0;
10843
10844 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10845 } else {
10846 event->addr_filter_ranges[count].start = filter->offset;
10847 event->addr_filter_ranges[count].size = filter->size;
10848 }
10849
10850 count++;
10851 }
10852
10853 event->addr_filters_gen++;
10854 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10855
10856 if (ifh->nr_file_filters) {
10857 mmap_read_unlock(mm);
10858
10859 mmput(mm);
10860 }
10861
10862 restart:
10863 perf_event_stop(event, 1);
10864 }
10865
10866 /*
10867 * Address range filtering: limiting the data to certain
10868 * instruction address ranges. Filters are ioctl()ed to us from
10869 * userspace as ascii strings.
10870 *
10871 * Filter string format:
10872 *
10873 * ACTION RANGE_SPEC
10874 * where ACTION is one of the
10875 * * "filter": limit the trace to this region
10876 * * "start": start tracing from this address
10877 * * "stop": stop tracing at this address/region;
10878 * RANGE_SPEC is
10879 * * for kernel addresses: <start address>[/<size>]
10880 * * for object files: <start address>[/<size>]@</path/to/object/file>
10881 *
10882 * if <size> is not specified or is zero, the range is treated as a single
10883 * address; not valid for ACTION=="filter".
10884 */
10885 enum {
10886 IF_ACT_NONE = -1,
10887 IF_ACT_FILTER,
10888 IF_ACT_START,
10889 IF_ACT_STOP,
10890 IF_SRC_FILE,
10891 IF_SRC_KERNEL,
10892 IF_SRC_FILEADDR,
10893 IF_SRC_KERNELADDR,
10894 };
10895
10896 enum {
10897 IF_STATE_ACTION = 0,
10898 IF_STATE_SOURCE,
10899 IF_STATE_END,
10900 };
10901
10902 static const match_table_t if_tokens = {
10903 { IF_ACT_FILTER, "filter" },
10904 { IF_ACT_START, "start" },
10905 { IF_ACT_STOP, "stop" },
10906 { IF_SRC_FILE, "%u/%u@%s" },
10907 { IF_SRC_KERNEL, "%u/%u" },
10908 { IF_SRC_FILEADDR, "%u@%s" },
10909 { IF_SRC_KERNELADDR, "%u" },
10910 { IF_ACT_NONE, NULL },
10911 };
10912
10913 /*
10914 * Address filter string parser
10915 */
10916 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10917 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10918 struct list_head *filters)
10919 {
10920 struct perf_addr_filter *filter = NULL;
10921 char *start, *orig, *filename = NULL;
10922 substring_t args[MAX_OPT_ARGS];
10923 int state = IF_STATE_ACTION, token;
10924 unsigned int kernel = 0;
10925 int ret = -EINVAL;
10926
10927 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10928 if (!fstr)
10929 return -ENOMEM;
10930
10931 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10932 static const enum perf_addr_filter_action_t actions[] = {
10933 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10934 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10935 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10936 };
10937 ret = -EINVAL;
10938
10939 if (!*start)
10940 continue;
10941
10942 /* filter definition begins */
10943 if (state == IF_STATE_ACTION) {
10944 filter = perf_addr_filter_new(event, filters);
10945 if (!filter)
10946 goto fail;
10947 }
10948
10949 token = match_token(start, if_tokens, args);
10950 switch (token) {
10951 case IF_ACT_FILTER:
10952 case IF_ACT_START:
10953 case IF_ACT_STOP:
10954 if (state != IF_STATE_ACTION)
10955 goto fail;
10956
10957 filter->action = actions[token];
10958 state = IF_STATE_SOURCE;
10959 break;
10960
10961 case IF_SRC_KERNELADDR:
10962 case IF_SRC_KERNEL:
10963 kernel = 1;
10964 fallthrough;
10965
10966 case IF_SRC_FILEADDR:
10967 case IF_SRC_FILE:
10968 if (state != IF_STATE_SOURCE)
10969 goto fail;
10970
10971 *args[0].to = 0;
10972 ret = kstrtoul(args[0].from, 0, &filter->offset);
10973 if (ret)
10974 goto fail;
10975
10976 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10977 *args[1].to = 0;
10978 ret = kstrtoul(args[1].from, 0, &filter->size);
10979 if (ret)
10980 goto fail;
10981 }
10982
10983 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10984 int fpos = token == IF_SRC_FILE ? 2 : 1;
10985
10986 kfree(filename);
10987 filename = match_strdup(&args[fpos]);
10988 if (!filename) {
10989 ret = -ENOMEM;
10990 goto fail;
10991 }
10992 }
10993
10994 state = IF_STATE_END;
10995 break;
10996
10997 default:
10998 goto fail;
10999 }
11000
11001 /*
11002 * Filter definition is fully parsed, validate and install it.
11003 * Make sure that it doesn't contradict itself or the event's
11004 * attribute.
11005 */
11006 if (state == IF_STATE_END) {
11007 ret = -EINVAL;
11008
11009 /*
11010 * ACTION "filter" must have a non-zero length region
11011 * specified.
11012 */
11013 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11014 !filter->size)
11015 goto fail;
11016
11017 if (!kernel) {
11018 if (!filename)
11019 goto fail;
11020
11021 /*
11022 * For now, we only support file-based filters
11023 * in per-task events; doing so for CPU-wide
11024 * events requires additional context switching
11025 * trickery, since same object code will be
11026 * mapped at different virtual addresses in
11027 * different processes.
11028 */
11029 ret = -EOPNOTSUPP;
11030 if (!event->ctx->task)
11031 goto fail;
11032
11033 /* look up the path and grab its inode */
11034 ret = kern_path(filename, LOOKUP_FOLLOW,
11035 &filter->path);
11036 if (ret)
11037 goto fail;
11038
11039 ret = -EINVAL;
11040 if (!filter->path.dentry ||
11041 !S_ISREG(d_inode(filter->path.dentry)
11042 ->i_mode))
11043 goto fail;
11044
11045 event->addr_filters.nr_file_filters++;
11046 }
11047
11048 /* ready to consume more filters */
11049 kfree(filename);
11050 filename = NULL;
11051 state = IF_STATE_ACTION;
11052 filter = NULL;
11053 kernel = 0;
11054 }
11055 }
11056
11057 if (state != IF_STATE_ACTION)
11058 goto fail;
11059
11060 kfree(filename);
11061 kfree(orig);
11062
11063 return 0;
11064
11065 fail:
11066 kfree(filename);
11067 free_filters_list(filters);
11068 kfree(orig);
11069
11070 return ret;
11071 }
11072
11073 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11074 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11075 {
11076 LIST_HEAD(filters);
11077 int ret;
11078
11079 /*
11080 * Since this is called in perf_ioctl() path, we're already holding
11081 * ctx::mutex.
11082 */
11083 lockdep_assert_held(&event->ctx->mutex);
11084
11085 if (WARN_ON_ONCE(event->parent))
11086 return -EINVAL;
11087
11088 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11089 if (ret)
11090 goto fail_clear_files;
11091
11092 ret = event->pmu->addr_filters_validate(&filters);
11093 if (ret)
11094 goto fail_free_filters;
11095
11096 /* remove existing filters, if any */
11097 perf_addr_filters_splice(event, &filters);
11098
11099 /* install new filters */
11100 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11101
11102 return ret;
11103
11104 fail_free_filters:
11105 free_filters_list(&filters);
11106
11107 fail_clear_files:
11108 event->addr_filters.nr_file_filters = 0;
11109
11110 return ret;
11111 }
11112
perf_event_set_filter(struct perf_event * event,void __user * arg)11113 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11114 {
11115 int ret = -EINVAL;
11116 char *filter_str;
11117
11118 filter_str = strndup_user(arg, PAGE_SIZE);
11119 if (IS_ERR(filter_str))
11120 return PTR_ERR(filter_str);
11121
11122 #ifdef CONFIG_EVENT_TRACING
11123 if (perf_event_is_tracing(event)) {
11124 struct perf_event_context *ctx = event->ctx;
11125
11126 /*
11127 * Beware, here be dragons!!
11128 *
11129 * the tracepoint muck will deadlock against ctx->mutex, but
11130 * the tracepoint stuff does not actually need it. So
11131 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11132 * already have a reference on ctx.
11133 *
11134 * This can result in event getting moved to a different ctx,
11135 * but that does not affect the tracepoint state.
11136 */
11137 mutex_unlock(&ctx->mutex);
11138 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11139 mutex_lock(&ctx->mutex);
11140 } else
11141 #endif
11142 if (has_addr_filter(event))
11143 ret = perf_event_set_addr_filter(event, filter_str);
11144
11145 kfree(filter_str);
11146 return ret;
11147 }
11148
11149 /*
11150 * hrtimer based swevent callback
11151 */
11152
perf_swevent_hrtimer(struct hrtimer * hrtimer)11153 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11154 {
11155 enum hrtimer_restart ret = HRTIMER_RESTART;
11156 struct perf_sample_data data;
11157 struct pt_regs *regs;
11158 struct perf_event *event;
11159 u64 period;
11160
11161 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11162
11163 if (event->state != PERF_EVENT_STATE_ACTIVE)
11164 return HRTIMER_NORESTART;
11165
11166 event->pmu->read(event);
11167
11168 perf_sample_data_init(&data, 0, event->hw.last_period);
11169 regs = get_irq_regs();
11170
11171 if (regs && !perf_exclude_event(event, regs)) {
11172 if (!(event->attr.exclude_idle && is_idle_task(current)))
11173 if (__perf_event_overflow(event, 1, &data, regs))
11174 ret = HRTIMER_NORESTART;
11175 }
11176
11177 period = max_t(u64, 10000, event->hw.sample_period);
11178 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11179
11180 return ret;
11181 }
11182
perf_swevent_start_hrtimer(struct perf_event * event)11183 static void perf_swevent_start_hrtimer(struct perf_event *event)
11184 {
11185 struct hw_perf_event *hwc = &event->hw;
11186 s64 period;
11187
11188 if (!is_sampling_event(event))
11189 return;
11190
11191 period = local64_read(&hwc->period_left);
11192 if (period) {
11193 if (period < 0)
11194 period = 10000;
11195
11196 local64_set(&hwc->period_left, 0);
11197 } else {
11198 period = max_t(u64, 10000, hwc->sample_period);
11199 }
11200 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11201 HRTIMER_MODE_REL_PINNED_HARD);
11202 }
11203
perf_swevent_cancel_hrtimer(struct perf_event * event)11204 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11205 {
11206 struct hw_perf_event *hwc = &event->hw;
11207
11208 if (is_sampling_event(event)) {
11209 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11210 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11211
11212 hrtimer_cancel(&hwc->hrtimer);
11213 }
11214 }
11215
perf_swevent_init_hrtimer(struct perf_event * event)11216 static void perf_swevent_init_hrtimer(struct perf_event *event)
11217 {
11218 struct hw_perf_event *hwc = &event->hw;
11219
11220 if (!is_sampling_event(event))
11221 return;
11222
11223 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11224 hwc->hrtimer.function = perf_swevent_hrtimer;
11225
11226 /*
11227 * Since hrtimers have a fixed rate, we can do a static freq->period
11228 * mapping and avoid the whole period adjust feedback stuff.
11229 */
11230 if (event->attr.freq) {
11231 long freq = event->attr.sample_freq;
11232
11233 event->attr.sample_period = NSEC_PER_SEC / freq;
11234 hwc->sample_period = event->attr.sample_period;
11235 local64_set(&hwc->period_left, hwc->sample_period);
11236 hwc->last_period = hwc->sample_period;
11237 event->attr.freq = 0;
11238 }
11239 }
11240
11241 /*
11242 * Software event: cpu wall time clock
11243 */
11244
cpu_clock_event_update(struct perf_event * event)11245 static void cpu_clock_event_update(struct perf_event *event)
11246 {
11247 s64 prev;
11248 u64 now;
11249
11250 now = local_clock();
11251 prev = local64_xchg(&event->hw.prev_count, now);
11252 local64_add(now - prev, &event->count);
11253 }
11254
cpu_clock_event_start(struct perf_event * event,int flags)11255 static void cpu_clock_event_start(struct perf_event *event, int flags)
11256 {
11257 local64_set(&event->hw.prev_count, local_clock());
11258 perf_swevent_start_hrtimer(event);
11259 }
11260
cpu_clock_event_stop(struct perf_event * event,int flags)11261 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11262 {
11263 perf_swevent_cancel_hrtimer(event);
11264 cpu_clock_event_update(event);
11265 }
11266
cpu_clock_event_add(struct perf_event * event,int flags)11267 static int cpu_clock_event_add(struct perf_event *event, int flags)
11268 {
11269 if (flags & PERF_EF_START)
11270 cpu_clock_event_start(event, flags);
11271 perf_event_update_userpage(event);
11272
11273 return 0;
11274 }
11275
cpu_clock_event_del(struct perf_event * event,int flags)11276 static void cpu_clock_event_del(struct perf_event *event, int flags)
11277 {
11278 cpu_clock_event_stop(event, flags);
11279 }
11280
cpu_clock_event_read(struct perf_event * event)11281 static void cpu_clock_event_read(struct perf_event *event)
11282 {
11283 cpu_clock_event_update(event);
11284 }
11285
cpu_clock_event_init(struct perf_event * event)11286 static int cpu_clock_event_init(struct perf_event *event)
11287 {
11288 if (event->attr.type != perf_cpu_clock.type)
11289 return -ENOENT;
11290
11291 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11292 return -ENOENT;
11293
11294 /*
11295 * no branch sampling for software events
11296 */
11297 if (has_branch_stack(event))
11298 return -EOPNOTSUPP;
11299
11300 perf_swevent_init_hrtimer(event);
11301
11302 return 0;
11303 }
11304
11305 static struct pmu perf_cpu_clock = {
11306 .task_ctx_nr = perf_sw_context,
11307
11308 .capabilities = PERF_PMU_CAP_NO_NMI,
11309 .dev = PMU_NULL_DEV,
11310
11311 .event_init = cpu_clock_event_init,
11312 .add = cpu_clock_event_add,
11313 .del = cpu_clock_event_del,
11314 .start = cpu_clock_event_start,
11315 .stop = cpu_clock_event_stop,
11316 .read = cpu_clock_event_read,
11317 };
11318
11319 /*
11320 * Software event: task time clock
11321 */
11322
task_clock_event_update(struct perf_event * event,u64 now)11323 static void task_clock_event_update(struct perf_event *event, u64 now)
11324 {
11325 u64 prev;
11326 s64 delta;
11327
11328 prev = local64_xchg(&event->hw.prev_count, now);
11329 delta = now - prev;
11330 local64_add(delta, &event->count);
11331 }
11332
task_clock_event_start(struct perf_event * event,int flags)11333 static void task_clock_event_start(struct perf_event *event, int flags)
11334 {
11335 local64_set(&event->hw.prev_count, event->ctx->time);
11336 perf_swevent_start_hrtimer(event);
11337 }
11338
task_clock_event_stop(struct perf_event * event,int flags)11339 static void task_clock_event_stop(struct perf_event *event, int flags)
11340 {
11341 perf_swevent_cancel_hrtimer(event);
11342 task_clock_event_update(event, event->ctx->time);
11343 }
11344
task_clock_event_add(struct perf_event * event,int flags)11345 static int task_clock_event_add(struct perf_event *event, int flags)
11346 {
11347 if (flags & PERF_EF_START)
11348 task_clock_event_start(event, flags);
11349 perf_event_update_userpage(event);
11350
11351 return 0;
11352 }
11353
task_clock_event_del(struct perf_event * event,int flags)11354 static void task_clock_event_del(struct perf_event *event, int flags)
11355 {
11356 task_clock_event_stop(event, PERF_EF_UPDATE);
11357 }
11358
task_clock_event_read(struct perf_event * event)11359 static void task_clock_event_read(struct perf_event *event)
11360 {
11361 u64 now = perf_clock();
11362 u64 delta = now - event->ctx->timestamp;
11363 u64 time = event->ctx->time + delta;
11364
11365 task_clock_event_update(event, time);
11366 }
11367
task_clock_event_init(struct perf_event * event)11368 static int task_clock_event_init(struct perf_event *event)
11369 {
11370 if (event->attr.type != perf_task_clock.type)
11371 return -ENOENT;
11372
11373 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11374 return -ENOENT;
11375
11376 /*
11377 * no branch sampling for software events
11378 */
11379 if (has_branch_stack(event))
11380 return -EOPNOTSUPP;
11381
11382 perf_swevent_init_hrtimer(event);
11383
11384 return 0;
11385 }
11386
11387 static struct pmu perf_task_clock = {
11388 .task_ctx_nr = perf_sw_context,
11389
11390 .capabilities = PERF_PMU_CAP_NO_NMI,
11391 .dev = PMU_NULL_DEV,
11392
11393 .event_init = task_clock_event_init,
11394 .add = task_clock_event_add,
11395 .del = task_clock_event_del,
11396 .start = task_clock_event_start,
11397 .stop = task_clock_event_stop,
11398 .read = task_clock_event_read,
11399 };
11400
perf_pmu_nop_void(struct pmu * pmu)11401 static void perf_pmu_nop_void(struct pmu *pmu)
11402 {
11403 }
11404
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11405 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11406 {
11407 }
11408
perf_pmu_nop_int(struct pmu * pmu)11409 static int perf_pmu_nop_int(struct pmu *pmu)
11410 {
11411 return 0;
11412 }
11413
perf_event_nop_int(struct perf_event * event,u64 value)11414 static int perf_event_nop_int(struct perf_event *event, u64 value)
11415 {
11416 return 0;
11417 }
11418
11419 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11420
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11421 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11422 {
11423 __this_cpu_write(nop_txn_flags, flags);
11424
11425 if (flags & ~PERF_PMU_TXN_ADD)
11426 return;
11427
11428 perf_pmu_disable(pmu);
11429 }
11430
perf_pmu_commit_txn(struct pmu * pmu)11431 static int perf_pmu_commit_txn(struct pmu *pmu)
11432 {
11433 unsigned int flags = __this_cpu_read(nop_txn_flags);
11434
11435 __this_cpu_write(nop_txn_flags, 0);
11436
11437 if (flags & ~PERF_PMU_TXN_ADD)
11438 return 0;
11439
11440 perf_pmu_enable(pmu);
11441 return 0;
11442 }
11443
perf_pmu_cancel_txn(struct pmu * pmu)11444 static void perf_pmu_cancel_txn(struct pmu *pmu)
11445 {
11446 unsigned int flags = __this_cpu_read(nop_txn_flags);
11447
11448 __this_cpu_write(nop_txn_flags, 0);
11449
11450 if (flags & ~PERF_PMU_TXN_ADD)
11451 return;
11452
11453 perf_pmu_enable(pmu);
11454 }
11455
perf_event_idx_default(struct perf_event * event)11456 static int perf_event_idx_default(struct perf_event *event)
11457 {
11458 return 0;
11459 }
11460
free_pmu_context(struct pmu * pmu)11461 static void free_pmu_context(struct pmu *pmu)
11462 {
11463 free_percpu(pmu->cpu_pmu_context);
11464 }
11465
11466 /*
11467 * Let userspace know that this PMU supports address range filtering:
11468 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11469 static ssize_t nr_addr_filters_show(struct device *dev,
11470 struct device_attribute *attr,
11471 char *page)
11472 {
11473 struct pmu *pmu = dev_get_drvdata(dev);
11474
11475 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11476 }
11477 DEVICE_ATTR_RO(nr_addr_filters);
11478
11479 static struct idr pmu_idr;
11480
11481 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11482 type_show(struct device *dev, struct device_attribute *attr, char *page)
11483 {
11484 struct pmu *pmu = dev_get_drvdata(dev);
11485
11486 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11487 }
11488 static DEVICE_ATTR_RO(type);
11489
11490 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11491 perf_event_mux_interval_ms_show(struct device *dev,
11492 struct device_attribute *attr,
11493 char *page)
11494 {
11495 struct pmu *pmu = dev_get_drvdata(dev);
11496
11497 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11498 }
11499
11500 static DEFINE_MUTEX(mux_interval_mutex);
11501
11502 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11503 perf_event_mux_interval_ms_store(struct device *dev,
11504 struct device_attribute *attr,
11505 const char *buf, size_t count)
11506 {
11507 struct pmu *pmu = dev_get_drvdata(dev);
11508 int timer, cpu, ret;
11509
11510 ret = kstrtoint(buf, 0, &timer);
11511 if (ret)
11512 return ret;
11513
11514 if (timer < 1)
11515 return -EINVAL;
11516
11517 /* same value, noting to do */
11518 if (timer == pmu->hrtimer_interval_ms)
11519 return count;
11520
11521 mutex_lock(&mux_interval_mutex);
11522 pmu->hrtimer_interval_ms = timer;
11523
11524 /* update all cpuctx for this PMU */
11525 cpus_read_lock();
11526 for_each_online_cpu(cpu) {
11527 struct perf_cpu_pmu_context *cpc;
11528 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11529 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11530
11531 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11532 }
11533 cpus_read_unlock();
11534 mutex_unlock(&mux_interval_mutex);
11535
11536 return count;
11537 }
11538 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11539
11540 static struct attribute *pmu_dev_attrs[] = {
11541 &dev_attr_type.attr,
11542 &dev_attr_perf_event_mux_interval_ms.attr,
11543 &dev_attr_nr_addr_filters.attr,
11544 NULL,
11545 };
11546
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11547 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11548 {
11549 struct device *dev = kobj_to_dev(kobj);
11550 struct pmu *pmu = dev_get_drvdata(dev);
11551
11552 if (n == 2 && !pmu->nr_addr_filters)
11553 return 0;
11554
11555 return a->mode;
11556 }
11557
11558 static struct attribute_group pmu_dev_attr_group = {
11559 .is_visible = pmu_dev_is_visible,
11560 .attrs = pmu_dev_attrs,
11561 };
11562
11563 static const struct attribute_group *pmu_dev_groups[] = {
11564 &pmu_dev_attr_group,
11565 NULL,
11566 };
11567
11568 static int pmu_bus_running;
11569 static struct bus_type pmu_bus = {
11570 .name = "event_source",
11571 .dev_groups = pmu_dev_groups,
11572 };
11573
pmu_dev_release(struct device * dev)11574 static void pmu_dev_release(struct device *dev)
11575 {
11576 kfree(dev);
11577 }
11578
pmu_dev_alloc(struct pmu * pmu)11579 static int pmu_dev_alloc(struct pmu *pmu)
11580 {
11581 int ret = -ENOMEM;
11582
11583 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11584 if (!pmu->dev)
11585 goto out;
11586
11587 pmu->dev->groups = pmu->attr_groups;
11588 device_initialize(pmu->dev);
11589
11590 dev_set_drvdata(pmu->dev, pmu);
11591 pmu->dev->bus = &pmu_bus;
11592 pmu->dev->parent = pmu->parent;
11593 pmu->dev->release = pmu_dev_release;
11594
11595 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11596 if (ret)
11597 goto free_dev;
11598
11599 ret = device_add(pmu->dev);
11600 if (ret)
11601 goto free_dev;
11602
11603 if (pmu->attr_update) {
11604 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11605 if (ret)
11606 goto del_dev;
11607 }
11608
11609 out:
11610 return ret;
11611
11612 del_dev:
11613 device_del(pmu->dev);
11614
11615 free_dev:
11616 put_device(pmu->dev);
11617 goto out;
11618 }
11619
11620 static struct lock_class_key cpuctx_mutex;
11621 static struct lock_class_key cpuctx_lock;
11622
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11623 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11624 {
11625 void *tmp, *val = idr_find(idr, id);
11626
11627 if (val != old)
11628 return false;
11629
11630 tmp = idr_replace(idr, new, id);
11631 if (IS_ERR(tmp))
11632 return false;
11633
11634 WARN_ON_ONCE(tmp != val);
11635 return true;
11636 }
11637
perf_pmu_register(struct pmu * pmu,const char * name,int type)11638 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11639 {
11640 int cpu, ret, max = PERF_TYPE_MAX;
11641
11642 mutex_lock(&pmus_lock);
11643 ret = -ENOMEM;
11644 pmu->pmu_disable_count = alloc_percpu(int);
11645 if (!pmu->pmu_disable_count)
11646 goto unlock;
11647
11648 pmu->type = -1;
11649 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11650 ret = -EINVAL;
11651 goto free_pdc;
11652 }
11653
11654 pmu->name = name;
11655
11656 if (type >= 0)
11657 max = type;
11658
11659 ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11660 if (ret < 0)
11661 goto free_pdc;
11662
11663 WARN_ON(type >= 0 && ret != type);
11664
11665 type = ret;
11666 pmu->type = type;
11667 atomic_set(&pmu->exclusive_cnt, 0);
11668
11669 if (pmu_bus_running && !pmu->dev) {
11670 ret = pmu_dev_alloc(pmu);
11671 if (ret)
11672 goto free_idr;
11673 }
11674
11675 ret = -ENOMEM;
11676 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11677 if (!pmu->cpu_pmu_context)
11678 goto free_dev;
11679
11680 for_each_possible_cpu(cpu) {
11681 struct perf_cpu_pmu_context *cpc;
11682
11683 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11684 __perf_init_event_pmu_context(&cpc->epc, pmu);
11685 __perf_mux_hrtimer_init(cpc, cpu);
11686 }
11687
11688 if (!pmu->start_txn) {
11689 if (pmu->pmu_enable) {
11690 /*
11691 * If we have pmu_enable/pmu_disable calls, install
11692 * transaction stubs that use that to try and batch
11693 * hardware accesses.
11694 */
11695 pmu->start_txn = perf_pmu_start_txn;
11696 pmu->commit_txn = perf_pmu_commit_txn;
11697 pmu->cancel_txn = perf_pmu_cancel_txn;
11698 } else {
11699 pmu->start_txn = perf_pmu_nop_txn;
11700 pmu->commit_txn = perf_pmu_nop_int;
11701 pmu->cancel_txn = perf_pmu_nop_void;
11702 }
11703 }
11704
11705 if (!pmu->pmu_enable) {
11706 pmu->pmu_enable = perf_pmu_nop_void;
11707 pmu->pmu_disable = perf_pmu_nop_void;
11708 }
11709
11710 if (!pmu->check_period)
11711 pmu->check_period = perf_event_nop_int;
11712
11713 if (!pmu->event_idx)
11714 pmu->event_idx = perf_event_idx_default;
11715
11716 /*
11717 * Now that the PMU is complete, make it visible to perf_try_init_event().
11718 */
11719 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11720 goto free_context;
11721 list_add_rcu(&pmu->entry, &pmus);
11722
11723 ret = 0;
11724 unlock:
11725 mutex_unlock(&pmus_lock);
11726
11727 return ret;
11728
11729 free_context:
11730 free_percpu(pmu->cpu_pmu_context);
11731
11732 free_dev:
11733 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11734 device_del(pmu->dev);
11735 put_device(pmu->dev);
11736 }
11737
11738 free_idr:
11739 idr_remove(&pmu_idr, pmu->type);
11740
11741 free_pdc:
11742 free_percpu(pmu->pmu_disable_count);
11743 goto unlock;
11744 }
11745 EXPORT_SYMBOL_GPL(perf_pmu_register);
11746
perf_pmu_unregister(struct pmu * pmu)11747 void perf_pmu_unregister(struct pmu *pmu)
11748 {
11749 mutex_lock(&pmus_lock);
11750 list_del_rcu(&pmu->entry);
11751 idr_remove(&pmu_idr, pmu->type);
11752 mutex_unlock(&pmus_lock);
11753
11754 /*
11755 * We dereference the pmu list under both SRCU and regular RCU, so
11756 * synchronize against both of those.
11757 */
11758 synchronize_srcu(&pmus_srcu);
11759 synchronize_rcu();
11760
11761 free_percpu(pmu->pmu_disable_count);
11762 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11763 if (pmu->nr_addr_filters)
11764 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11765 device_del(pmu->dev);
11766 put_device(pmu->dev);
11767 }
11768 free_pmu_context(pmu);
11769 }
11770 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11771
has_extended_regs(struct perf_event * event)11772 static inline bool has_extended_regs(struct perf_event *event)
11773 {
11774 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11775 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11776 }
11777
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11778 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11779 {
11780 struct perf_event_context *ctx = NULL;
11781 int ret;
11782
11783 if (!try_module_get(pmu->module))
11784 return -ENODEV;
11785
11786 /*
11787 * A number of pmu->event_init() methods iterate the sibling_list to,
11788 * for example, validate if the group fits on the PMU. Therefore,
11789 * if this is a sibling event, acquire the ctx->mutex to protect
11790 * the sibling_list.
11791 */
11792 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11793 /*
11794 * This ctx->mutex can nest when we're called through
11795 * inheritance. See the perf_event_ctx_lock_nested() comment.
11796 */
11797 ctx = perf_event_ctx_lock_nested(event->group_leader,
11798 SINGLE_DEPTH_NESTING);
11799 BUG_ON(!ctx);
11800 }
11801
11802 event->pmu = pmu;
11803 ret = pmu->event_init(event);
11804
11805 if (ctx)
11806 perf_event_ctx_unlock(event->group_leader, ctx);
11807
11808 if (!ret) {
11809 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11810 has_extended_regs(event))
11811 ret = -EOPNOTSUPP;
11812
11813 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11814 event_has_any_exclude_flag(event))
11815 ret = -EINVAL;
11816
11817 if (ret && event->destroy)
11818 event->destroy(event);
11819 }
11820
11821 if (ret)
11822 module_put(pmu->module);
11823
11824 return ret;
11825 }
11826
perf_init_event(struct perf_event * event)11827 static struct pmu *perf_init_event(struct perf_event *event)
11828 {
11829 bool extended_type = false;
11830 int idx, type, ret;
11831 struct pmu *pmu;
11832
11833 idx = srcu_read_lock(&pmus_srcu);
11834
11835 /*
11836 * Save original type before calling pmu->event_init() since certain
11837 * pmus overwrites event->attr.type to forward event to another pmu.
11838 */
11839 event->orig_type = event->attr.type;
11840
11841 /* Try parent's PMU first: */
11842 if (event->parent && event->parent->pmu) {
11843 pmu = event->parent->pmu;
11844 ret = perf_try_init_event(pmu, event);
11845 if (!ret)
11846 goto unlock;
11847 }
11848
11849 /*
11850 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11851 * are often aliases for PERF_TYPE_RAW.
11852 */
11853 type = event->attr.type;
11854 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11855 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11856 if (!type) {
11857 type = PERF_TYPE_RAW;
11858 } else {
11859 extended_type = true;
11860 event->attr.config &= PERF_HW_EVENT_MASK;
11861 }
11862 }
11863
11864 again:
11865 rcu_read_lock();
11866 pmu = idr_find(&pmu_idr, type);
11867 rcu_read_unlock();
11868 if (pmu) {
11869 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11870 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11871 goto fail;
11872
11873 ret = perf_try_init_event(pmu, event);
11874 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11875 type = event->attr.type;
11876 goto again;
11877 }
11878
11879 if (ret)
11880 pmu = ERR_PTR(ret);
11881
11882 goto unlock;
11883 }
11884
11885 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11886 ret = perf_try_init_event(pmu, event);
11887 if (!ret)
11888 goto unlock;
11889
11890 if (ret != -ENOENT) {
11891 pmu = ERR_PTR(ret);
11892 goto unlock;
11893 }
11894 }
11895 fail:
11896 pmu = ERR_PTR(-ENOENT);
11897 unlock:
11898 srcu_read_unlock(&pmus_srcu, idx);
11899
11900 return pmu;
11901 }
11902
attach_sb_event(struct perf_event * event)11903 static void attach_sb_event(struct perf_event *event)
11904 {
11905 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11906
11907 raw_spin_lock(&pel->lock);
11908 list_add_rcu(&event->sb_list, &pel->list);
11909 raw_spin_unlock(&pel->lock);
11910 }
11911
11912 /*
11913 * We keep a list of all !task (and therefore per-cpu) events
11914 * that need to receive side-band records.
11915 *
11916 * This avoids having to scan all the various PMU per-cpu contexts
11917 * looking for them.
11918 */
account_pmu_sb_event(struct perf_event * event)11919 static void account_pmu_sb_event(struct perf_event *event)
11920 {
11921 if (is_sb_event(event))
11922 attach_sb_event(event);
11923 }
11924
11925 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11926 static void account_freq_event_nohz(void)
11927 {
11928 #ifdef CONFIG_NO_HZ_FULL
11929 /* Lock so we don't race with concurrent unaccount */
11930 spin_lock(&nr_freq_lock);
11931 if (atomic_inc_return(&nr_freq_events) == 1)
11932 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11933 spin_unlock(&nr_freq_lock);
11934 #endif
11935 }
11936
account_freq_event(void)11937 static void account_freq_event(void)
11938 {
11939 if (tick_nohz_full_enabled())
11940 account_freq_event_nohz();
11941 else
11942 atomic_inc(&nr_freq_events);
11943 }
11944
11945
account_event(struct perf_event * event)11946 static void account_event(struct perf_event *event)
11947 {
11948 bool inc = false;
11949
11950 if (event->parent)
11951 return;
11952
11953 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11954 inc = true;
11955 if (event->attr.mmap || event->attr.mmap_data)
11956 atomic_inc(&nr_mmap_events);
11957 if (event->attr.build_id)
11958 atomic_inc(&nr_build_id_events);
11959 if (event->attr.comm)
11960 atomic_inc(&nr_comm_events);
11961 if (event->attr.namespaces)
11962 atomic_inc(&nr_namespaces_events);
11963 if (event->attr.cgroup)
11964 atomic_inc(&nr_cgroup_events);
11965 if (event->attr.task)
11966 atomic_inc(&nr_task_events);
11967 if (event->attr.freq)
11968 account_freq_event();
11969 if (event->attr.context_switch) {
11970 atomic_inc(&nr_switch_events);
11971 inc = true;
11972 }
11973 if (has_branch_stack(event))
11974 inc = true;
11975 if (is_cgroup_event(event))
11976 inc = true;
11977 if (event->attr.ksymbol)
11978 atomic_inc(&nr_ksymbol_events);
11979 if (event->attr.bpf_event)
11980 atomic_inc(&nr_bpf_events);
11981 if (event->attr.text_poke)
11982 atomic_inc(&nr_text_poke_events);
11983
11984 if (inc) {
11985 /*
11986 * We need the mutex here because static_branch_enable()
11987 * must complete *before* the perf_sched_count increment
11988 * becomes visible.
11989 */
11990 if (atomic_inc_not_zero(&perf_sched_count))
11991 goto enabled;
11992
11993 mutex_lock(&perf_sched_mutex);
11994 if (!atomic_read(&perf_sched_count)) {
11995 static_branch_enable(&perf_sched_events);
11996 /*
11997 * Guarantee that all CPUs observe they key change and
11998 * call the perf scheduling hooks before proceeding to
11999 * install events that need them.
12000 */
12001 synchronize_rcu();
12002 }
12003 /*
12004 * Now that we have waited for the sync_sched(), allow further
12005 * increments to by-pass the mutex.
12006 */
12007 atomic_inc(&perf_sched_count);
12008 mutex_unlock(&perf_sched_mutex);
12009 }
12010 enabled:
12011
12012 account_pmu_sb_event(event);
12013 }
12014
12015 /*
12016 * Allocate and initialize an event structure
12017 */
12018 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12019 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12020 struct task_struct *task,
12021 struct perf_event *group_leader,
12022 struct perf_event *parent_event,
12023 perf_overflow_handler_t overflow_handler,
12024 void *context, int cgroup_fd)
12025 {
12026 struct pmu *pmu;
12027 struct perf_event *event;
12028 struct hw_perf_event *hwc;
12029 long err = -EINVAL;
12030 int node;
12031
12032 if ((unsigned)cpu >= nr_cpu_ids) {
12033 if (!task || cpu != -1)
12034 return ERR_PTR(-EINVAL);
12035 }
12036 if (attr->sigtrap && !task) {
12037 /* Requires a task: avoid signalling random tasks. */
12038 return ERR_PTR(-EINVAL);
12039 }
12040
12041 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12042 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12043 node);
12044 if (!event)
12045 return ERR_PTR(-ENOMEM);
12046
12047 /*
12048 * Single events are their own group leaders, with an
12049 * empty sibling list:
12050 */
12051 if (!group_leader)
12052 group_leader = event;
12053
12054 mutex_init(&event->child_mutex);
12055 INIT_LIST_HEAD(&event->child_list);
12056
12057 INIT_LIST_HEAD(&event->event_entry);
12058 INIT_LIST_HEAD(&event->sibling_list);
12059 INIT_LIST_HEAD(&event->active_list);
12060 init_event_group(event);
12061 INIT_LIST_HEAD(&event->rb_entry);
12062 INIT_LIST_HEAD(&event->active_entry);
12063 INIT_LIST_HEAD(&event->addr_filters.list);
12064 INIT_HLIST_NODE(&event->hlist_entry);
12065
12066
12067 init_waitqueue_head(&event->waitq);
12068 init_irq_work(&event->pending_irq, perf_pending_irq);
12069 init_task_work(&event->pending_task, perf_pending_task);
12070 rcuwait_init(&event->pending_work_wait);
12071
12072 mutex_init(&event->mmap_mutex);
12073 raw_spin_lock_init(&event->addr_filters.lock);
12074
12075 atomic_long_set(&event->refcount, 1);
12076 event->cpu = cpu;
12077 event->attr = *attr;
12078 event->group_leader = group_leader;
12079 event->pmu = NULL;
12080 event->oncpu = -1;
12081
12082 event->parent = parent_event;
12083
12084 event->ns = get_pid_ns(task_active_pid_ns(current));
12085 event->id = atomic64_inc_return(&perf_event_id);
12086
12087 event->state = PERF_EVENT_STATE_INACTIVE;
12088
12089 if (parent_event)
12090 event->event_caps = parent_event->event_caps;
12091
12092 if (task) {
12093 event->attach_state = PERF_ATTACH_TASK;
12094 /*
12095 * XXX pmu::event_init needs to know what task to account to
12096 * and we cannot use the ctx information because we need the
12097 * pmu before we get a ctx.
12098 */
12099 event->hw.target = get_task_struct(task);
12100 }
12101
12102 event->clock = &local_clock;
12103 if (parent_event)
12104 event->clock = parent_event->clock;
12105
12106 if (!overflow_handler && parent_event) {
12107 overflow_handler = parent_event->overflow_handler;
12108 context = parent_event->overflow_handler_context;
12109 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12110 if (overflow_handler == bpf_overflow_handler) {
12111 struct bpf_prog *prog = parent_event->prog;
12112
12113 bpf_prog_inc(prog);
12114 event->prog = prog;
12115 event->orig_overflow_handler =
12116 parent_event->orig_overflow_handler;
12117 }
12118 #endif
12119 }
12120
12121 if (overflow_handler) {
12122 event->overflow_handler = overflow_handler;
12123 event->overflow_handler_context = context;
12124 } else if (is_write_backward(event)){
12125 event->overflow_handler = perf_event_output_backward;
12126 event->overflow_handler_context = NULL;
12127 } else {
12128 event->overflow_handler = perf_event_output_forward;
12129 event->overflow_handler_context = NULL;
12130 }
12131
12132 perf_event__state_init(event);
12133
12134 pmu = NULL;
12135
12136 hwc = &event->hw;
12137 hwc->sample_period = attr->sample_period;
12138 if (attr->freq && attr->sample_freq)
12139 hwc->sample_period = 1;
12140 hwc->last_period = hwc->sample_period;
12141
12142 local64_set(&hwc->period_left, hwc->sample_period);
12143
12144 /*
12145 * We currently do not support PERF_SAMPLE_READ on inherited events.
12146 * See perf_output_read().
12147 */
12148 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12149 goto err_ns;
12150
12151 if (!has_branch_stack(event))
12152 event->attr.branch_sample_type = 0;
12153
12154 pmu = perf_init_event(event);
12155 if (IS_ERR(pmu)) {
12156 err = PTR_ERR(pmu);
12157 goto err_ns;
12158 }
12159
12160 /*
12161 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12162 * events (they don't make sense as the cgroup will be different
12163 * on other CPUs in the uncore mask).
12164 */
12165 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12166 err = -EINVAL;
12167 goto err_pmu;
12168 }
12169
12170 if (event->attr.aux_output &&
12171 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12172 err = -EOPNOTSUPP;
12173 goto err_pmu;
12174 }
12175
12176 if (cgroup_fd != -1) {
12177 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12178 if (err)
12179 goto err_pmu;
12180 }
12181
12182 err = exclusive_event_init(event);
12183 if (err)
12184 goto err_pmu;
12185
12186 if (has_addr_filter(event)) {
12187 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12188 sizeof(struct perf_addr_filter_range),
12189 GFP_KERNEL);
12190 if (!event->addr_filter_ranges) {
12191 err = -ENOMEM;
12192 goto err_per_task;
12193 }
12194
12195 /*
12196 * Clone the parent's vma offsets: they are valid until exec()
12197 * even if the mm is not shared with the parent.
12198 */
12199 if (event->parent) {
12200 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12201
12202 raw_spin_lock_irq(&ifh->lock);
12203 memcpy(event->addr_filter_ranges,
12204 event->parent->addr_filter_ranges,
12205 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12206 raw_spin_unlock_irq(&ifh->lock);
12207 }
12208
12209 /* force hw sync on the address filters */
12210 event->addr_filters_gen = 1;
12211 }
12212
12213 if (!event->parent) {
12214 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12215 err = get_callchain_buffers(attr->sample_max_stack);
12216 if (err)
12217 goto err_addr_filters;
12218 }
12219 }
12220
12221 err = security_perf_event_alloc(event);
12222 if (err)
12223 goto err_callchain_buffer;
12224
12225 /* symmetric to unaccount_event() in _free_event() */
12226 account_event(event);
12227
12228 return event;
12229
12230 err_callchain_buffer:
12231 if (!event->parent) {
12232 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12233 put_callchain_buffers();
12234 }
12235 err_addr_filters:
12236 kfree(event->addr_filter_ranges);
12237
12238 err_per_task:
12239 exclusive_event_destroy(event);
12240
12241 err_pmu:
12242 if (is_cgroup_event(event))
12243 perf_detach_cgroup(event);
12244 if (event->destroy)
12245 event->destroy(event);
12246 module_put(pmu->module);
12247 err_ns:
12248 if (event->hw.target)
12249 put_task_struct(event->hw.target);
12250 call_rcu(&event->rcu_head, free_event_rcu);
12251
12252 return ERR_PTR(err);
12253 }
12254
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12255 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12256 struct perf_event_attr *attr)
12257 {
12258 u32 size;
12259 int ret;
12260
12261 /* Zero the full structure, so that a short copy will be nice. */
12262 memset(attr, 0, sizeof(*attr));
12263
12264 ret = get_user(size, &uattr->size);
12265 if (ret)
12266 return ret;
12267
12268 /* ABI compatibility quirk: */
12269 if (!size)
12270 size = PERF_ATTR_SIZE_VER0;
12271 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12272 goto err_size;
12273
12274 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12275 if (ret) {
12276 if (ret == -E2BIG)
12277 goto err_size;
12278 return ret;
12279 }
12280
12281 attr->size = size;
12282
12283 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12284 return -EINVAL;
12285
12286 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12287 return -EINVAL;
12288
12289 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12290 return -EINVAL;
12291
12292 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12293 u64 mask = attr->branch_sample_type;
12294
12295 /* only using defined bits */
12296 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12297 return -EINVAL;
12298
12299 /* at least one branch bit must be set */
12300 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12301 return -EINVAL;
12302
12303 /* propagate priv level, when not set for branch */
12304 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12305
12306 /* exclude_kernel checked on syscall entry */
12307 if (!attr->exclude_kernel)
12308 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12309
12310 if (!attr->exclude_user)
12311 mask |= PERF_SAMPLE_BRANCH_USER;
12312
12313 if (!attr->exclude_hv)
12314 mask |= PERF_SAMPLE_BRANCH_HV;
12315 /*
12316 * adjust user setting (for HW filter setup)
12317 */
12318 attr->branch_sample_type = mask;
12319 }
12320 /* privileged levels capture (kernel, hv): check permissions */
12321 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12322 ret = perf_allow_kernel(attr);
12323 if (ret)
12324 return ret;
12325 }
12326 }
12327
12328 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12329 ret = perf_reg_validate(attr->sample_regs_user);
12330 if (ret)
12331 return ret;
12332 }
12333
12334 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12335 if (!arch_perf_have_user_stack_dump())
12336 return -ENOSYS;
12337
12338 /*
12339 * We have __u32 type for the size, but so far
12340 * we can only use __u16 as maximum due to the
12341 * __u16 sample size limit.
12342 */
12343 if (attr->sample_stack_user >= USHRT_MAX)
12344 return -EINVAL;
12345 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12346 return -EINVAL;
12347 }
12348
12349 if (!attr->sample_max_stack)
12350 attr->sample_max_stack = sysctl_perf_event_max_stack;
12351
12352 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12353 ret = perf_reg_validate(attr->sample_regs_intr);
12354
12355 #ifndef CONFIG_CGROUP_PERF
12356 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12357 return -EINVAL;
12358 #endif
12359 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12360 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12361 return -EINVAL;
12362
12363 if (!attr->inherit && attr->inherit_thread)
12364 return -EINVAL;
12365
12366 if (attr->remove_on_exec && attr->enable_on_exec)
12367 return -EINVAL;
12368
12369 if (attr->sigtrap && !attr->remove_on_exec)
12370 return -EINVAL;
12371
12372 out:
12373 return ret;
12374
12375 err_size:
12376 put_user(sizeof(*attr), &uattr->size);
12377 ret = -E2BIG;
12378 goto out;
12379 }
12380
mutex_lock_double(struct mutex * a,struct mutex * b)12381 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12382 {
12383 if (b < a)
12384 swap(a, b);
12385
12386 mutex_lock(a);
12387 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12388 }
12389
12390 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12391 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12392 {
12393 struct perf_buffer *rb = NULL;
12394 int ret = -EINVAL;
12395
12396 if (!output_event) {
12397 mutex_lock(&event->mmap_mutex);
12398 goto set;
12399 }
12400
12401 /* don't allow circular references */
12402 if (event == output_event)
12403 goto out;
12404
12405 /*
12406 * Don't allow cross-cpu buffers
12407 */
12408 if (output_event->cpu != event->cpu)
12409 goto out;
12410
12411 /*
12412 * If its not a per-cpu rb, it must be the same task.
12413 */
12414 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12415 goto out;
12416
12417 /*
12418 * Mixing clocks in the same buffer is trouble you don't need.
12419 */
12420 if (output_event->clock != event->clock)
12421 goto out;
12422
12423 /*
12424 * Either writing ring buffer from beginning or from end.
12425 * Mixing is not allowed.
12426 */
12427 if (is_write_backward(output_event) != is_write_backward(event))
12428 goto out;
12429
12430 /*
12431 * If both events generate aux data, they must be on the same PMU
12432 */
12433 if (has_aux(event) && has_aux(output_event) &&
12434 event->pmu != output_event->pmu)
12435 goto out;
12436
12437 /*
12438 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12439 * output_event is already on rb->event_list, and the list iteration
12440 * restarts after every removal, it is guaranteed this new event is
12441 * observed *OR* if output_event is already removed, it's guaranteed we
12442 * observe !rb->mmap_count.
12443 */
12444 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12445 set:
12446 /* Can't redirect output if we've got an active mmap() */
12447 if (atomic_read(&event->mmap_count))
12448 goto unlock;
12449
12450 if (output_event) {
12451 /* get the rb we want to redirect to */
12452 rb = ring_buffer_get(output_event);
12453 if (!rb)
12454 goto unlock;
12455
12456 /* did we race against perf_mmap_close() */
12457 if (!atomic_read(&rb->mmap_count)) {
12458 ring_buffer_put(rb);
12459 goto unlock;
12460 }
12461 }
12462
12463 ring_buffer_attach(event, rb);
12464
12465 ret = 0;
12466 unlock:
12467 mutex_unlock(&event->mmap_mutex);
12468 if (output_event)
12469 mutex_unlock(&output_event->mmap_mutex);
12470
12471 out:
12472 return ret;
12473 }
12474
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12475 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12476 {
12477 bool nmi_safe = false;
12478
12479 switch (clk_id) {
12480 case CLOCK_MONOTONIC:
12481 event->clock = &ktime_get_mono_fast_ns;
12482 nmi_safe = true;
12483 break;
12484
12485 case CLOCK_MONOTONIC_RAW:
12486 event->clock = &ktime_get_raw_fast_ns;
12487 nmi_safe = true;
12488 break;
12489
12490 case CLOCK_REALTIME:
12491 event->clock = &ktime_get_real_ns;
12492 break;
12493
12494 case CLOCK_BOOTTIME:
12495 event->clock = &ktime_get_boottime_ns;
12496 break;
12497
12498 case CLOCK_TAI:
12499 event->clock = &ktime_get_clocktai_ns;
12500 break;
12501
12502 default:
12503 return -EINVAL;
12504 }
12505
12506 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12507 return -EINVAL;
12508
12509 return 0;
12510 }
12511
12512 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12513 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12514 {
12515 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12516 bool is_capable = perfmon_capable();
12517
12518 if (attr->sigtrap) {
12519 /*
12520 * perf_event_attr::sigtrap sends signals to the other task.
12521 * Require the current task to also have CAP_KILL.
12522 */
12523 rcu_read_lock();
12524 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12525 rcu_read_unlock();
12526
12527 /*
12528 * If the required capabilities aren't available, checks for
12529 * ptrace permissions: upgrade to ATTACH, since sending signals
12530 * can effectively change the target task.
12531 */
12532 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12533 }
12534
12535 /*
12536 * Preserve ptrace permission check for backwards compatibility. The
12537 * ptrace check also includes checks that the current task and other
12538 * task have matching uids, and is therefore not done here explicitly.
12539 */
12540 return is_capable || ptrace_may_access(task, ptrace_mode);
12541 }
12542
12543 /**
12544 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12545 *
12546 * @attr_uptr: event_id type attributes for monitoring/sampling
12547 * @pid: target pid
12548 * @cpu: target cpu
12549 * @group_fd: group leader event fd
12550 * @flags: perf event open flags
12551 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12552 SYSCALL_DEFINE5(perf_event_open,
12553 struct perf_event_attr __user *, attr_uptr,
12554 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12555 {
12556 struct perf_event *group_leader = NULL, *output_event = NULL;
12557 struct perf_event_pmu_context *pmu_ctx;
12558 struct perf_event *event, *sibling;
12559 struct perf_event_attr attr;
12560 struct perf_event_context *ctx;
12561 struct file *event_file = NULL;
12562 struct fd group = {NULL, 0};
12563 struct task_struct *task = NULL;
12564 struct pmu *pmu;
12565 int event_fd;
12566 int move_group = 0;
12567 int err;
12568 int f_flags = O_RDWR;
12569 int cgroup_fd = -1;
12570
12571 /* for future expandability... */
12572 if (flags & ~PERF_FLAG_ALL)
12573 return -EINVAL;
12574
12575 err = perf_copy_attr(attr_uptr, &attr);
12576 if (err)
12577 return err;
12578
12579 /* Do we allow access to perf_event_open(2) ? */
12580 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12581 if (err)
12582 return err;
12583
12584 if (!attr.exclude_kernel) {
12585 err = perf_allow_kernel(&attr);
12586 if (err)
12587 return err;
12588 }
12589
12590 if (attr.namespaces) {
12591 if (!perfmon_capable())
12592 return -EACCES;
12593 }
12594
12595 if (attr.freq) {
12596 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12597 return -EINVAL;
12598 } else {
12599 if (attr.sample_period & (1ULL << 63))
12600 return -EINVAL;
12601 }
12602
12603 /* Only privileged users can get physical addresses */
12604 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12605 err = perf_allow_kernel(&attr);
12606 if (err)
12607 return err;
12608 }
12609
12610 /* REGS_INTR can leak data, lockdown must prevent this */
12611 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12612 err = security_locked_down(LOCKDOWN_PERF);
12613 if (err)
12614 return err;
12615 }
12616
12617 /*
12618 * In cgroup mode, the pid argument is used to pass the fd
12619 * opened to the cgroup directory in cgroupfs. The cpu argument
12620 * designates the cpu on which to monitor threads from that
12621 * cgroup.
12622 */
12623 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12624 return -EINVAL;
12625
12626 if (flags & PERF_FLAG_FD_CLOEXEC)
12627 f_flags |= O_CLOEXEC;
12628
12629 event_fd = get_unused_fd_flags(f_flags);
12630 if (event_fd < 0)
12631 return event_fd;
12632
12633 if (group_fd != -1) {
12634 err = perf_fget_light(group_fd, &group);
12635 if (err)
12636 goto err_fd;
12637 group_leader = group.file->private_data;
12638 if (flags & PERF_FLAG_FD_OUTPUT)
12639 output_event = group_leader;
12640 if (flags & PERF_FLAG_FD_NO_GROUP)
12641 group_leader = NULL;
12642 }
12643
12644 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12645 task = find_lively_task_by_vpid(pid);
12646 if (IS_ERR(task)) {
12647 err = PTR_ERR(task);
12648 goto err_group_fd;
12649 }
12650 }
12651
12652 if (task && group_leader &&
12653 group_leader->attr.inherit != attr.inherit) {
12654 err = -EINVAL;
12655 goto err_task;
12656 }
12657
12658 if (flags & PERF_FLAG_PID_CGROUP)
12659 cgroup_fd = pid;
12660
12661 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12662 NULL, NULL, cgroup_fd);
12663 if (IS_ERR(event)) {
12664 err = PTR_ERR(event);
12665 goto err_task;
12666 }
12667
12668 if (is_sampling_event(event)) {
12669 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12670 err = -EOPNOTSUPP;
12671 goto err_alloc;
12672 }
12673 }
12674
12675 /*
12676 * Special case software events and allow them to be part of
12677 * any hardware group.
12678 */
12679 pmu = event->pmu;
12680
12681 if (attr.use_clockid) {
12682 err = perf_event_set_clock(event, attr.clockid);
12683 if (err)
12684 goto err_alloc;
12685 }
12686
12687 if (pmu->task_ctx_nr == perf_sw_context)
12688 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12689
12690 if (task) {
12691 err = down_read_interruptible(&task->signal->exec_update_lock);
12692 if (err)
12693 goto err_alloc;
12694
12695 /*
12696 * We must hold exec_update_lock across this and any potential
12697 * perf_install_in_context() call for this new event to
12698 * serialize against exec() altering our credentials (and the
12699 * perf_event_exit_task() that could imply).
12700 */
12701 err = -EACCES;
12702 if (!perf_check_permission(&attr, task))
12703 goto err_cred;
12704 }
12705
12706 /*
12707 * Get the target context (task or percpu):
12708 */
12709 ctx = find_get_context(task, event);
12710 if (IS_ERR(ctx)) {
12711 err = PTR_ERR(ctx);
12712 goto err_cred;
12713 }
12714
12715 mutex_lock(&ctx->mutex);
12716
12717 if (ctx->task == TASK_TOMBSTONE) {
12718 err = -ESRCH;
12719 goto err_locked;
12720 }
12721
12722 if (!task) {
12723 /*
12724 * Check if the @cpu we're creating an event for is online.
12725 *
12726 * We use the perf_cpu_context::ctx::mutex to serialize against
12727 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12728 */
12729 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12730
12731 if (!cpuctx->online) {
12732 err = -ENODEV;
12733 goto err_locked;
12734 }
12735 }
12736
12737 if (group_leader) {
12738 err = -EINVAL;
12739
12740 /*
12741 * Do not allow a recursive hierarchy (this new sibling
12742 * becoming part of another group-sibling):
12743 */
12744 if (group_leader->group_leader != group_leader)
12745 goto err_locked;
12746
12747 /* All events in a group should have the same clock */
12748 if (group_leader->clock != event->clock)
12749 goto err_locked;
12750
12751 /*
12752 * Make sure we're both events for the same CPU;
12753 * grouping events for different CPUs is broken; since
12754 * you can never concurrently schedule them anyhow.
12755 */
12756 if (group_leader->cpu != event->cpu)
12757 goto err_locked;
12758
12759 /*
12760 * Make sure we're both on the same context; either task or cpu.
12761 */
12762 if (group_leader->ctx != ctx)
12763 goto err_locked;
12764
12765 /*
12766 * Only a group leader can be exclusive or pinned
12767 */
12768 if (attr.exclusive || attr.pinned)
12769 goto err_locked;
12770
12771 if (is_software_event(event) &&
12772 !in_software_context(group_leader)) {
12773 /*
12774 * If the event is a sw event, but the group_leader
12775 * is on hw context.
12776 *
12777 * Allow the addition of software events to hw
12778 * groups, this is safe because software events
12779 * never fail to schedule.
12780 *
12781 * Note the comment that goes with struct
12782 * perf_event_pmu_context.
12783 */
12784 pmu = group_leader->pmu_ctx->pmu;
12785 } else if (!is_software_event(event)) {
12786 if (is_software_event(group_leader) &&
12787 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12788 /*
12789 * In case the group is a pure software group, and we
12790 * try to add a hardware event, move the whole group to
12791 * the hardware context.
12792 */
12793 move_group = 1;
12794 }
12795
12796 /* Don't allow group of multiple hw events from different pmus */
12797 if (!in_software_context(group_leader) &&
12798 group_leader->pmu_ctx->pmu != pmu)
12799 goto err_locked;
12800 }
12801 }
12802
12803 /*
12804 * Now that we're certain of the pmu; find the pmu_ctx.
12805 */
12806 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12807 if (IS_ERR(pmu_ctx)) {
12808 err = PTR_ERR(pmu_ctx);
12809 goto err_locked;
12810 }
12811 event->pmu_ctx = pmu_ctx;
12812
12813 if (output_event) {
12814 err = perf_event_set_output(event, output_event);
12815 if (err)
12816 goto err_context;
12817 }
12818
12819 if (!perf_event_validate_size(event)) {
12820 err = -E2BIG;
12821 goto err_context;
12822 }
12823
12824 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12825 err = -EINVAL;
12826 goto err_context;
12827 }
12828
12829 /*
12830 * Must be under the same ctx::mutex as perf_install_in_context(),
12831 * because we need to serialize with concurrent event creation.
12832 */
12833 if (!exclusive_event_installable(event, ctx)) {
12834 err = -EBUSY;
12835 goto err_context;
12836 }
12837
12838 WARN_ON_ONCE(ctx->parent_ctx);
12839
12840 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12841 if (IS_ERR(event_file)) {
12842 err = PTR_ERR(event_file);
12843 event_file = NULL;
12844 goto err_context;
12845 }
12846
12847 /*
12848 * This is the point on no return; we cannot fail hereafter. This is
12849 * where we start modifying current state.
12850 */
12851
12852 if (move_group) {
12853 perf_remove_from_context(group_leader, 0);
12854 put_pmu_ctx(group_leader->pmu_ctx);
12855
12856 for_each_sibling_event(sibling, group_leader) {
12857 perf_remove_from_context(sibling, 0);
12858 put_pmu_ctx(sibling->pmu_ctx);
12859 }
12860
12861 /*
12862 * Install the group siblings before the group leader.
12863 *
12864 * Because a group leader will try and install the entire group
12865 * (through the sibling list, which is still in-tact), we can
12866 * end up with siblings installed in the wrong context.
12867 *
12868 * By installing siblings first we NO-OP because they're not
12869 * reachable through the group lists.
12870 */
12871 for_each_sibling_event(sibling, group_leader) {
12872 sibling->pmu_ctx = pmu_ctx;
12873 get_pmu_ctx(pmu_ctx);
12874 perf_event__state_init(sibling);
12875 perf_install_in_context(ctx, sibling, sibling->cpu);
12876 }
12877
12878 /*
12879 * Removing from the context ends up with disabled
12880 * event. What we want here is event in the initial
12881 * startup state, ready to be add into new context.
12882 */
12883 group_leader->pmu_ctx = pmu_ctx;
12884 get_pmu_ctx(pmu_ctx);
12885 perf_event__state_init(group_leader);
12886 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12887 }
12888
12889 /*
12890 * Precalculate sample_data sizes; do while holding ctx::mutex such
12891 * that we're serialized against further additions and before
12892 * perf_install_in_context() which is the point the event is active and
12893 * can use these values.
12894 */
12895 perf_event__header_size(event);
12896 perf_event__id_header_size(event);
12897
12898 event->owner = current;
12899
12900 perf_install_in_context(ctx, event, event->cpu);
12901 perf_unpin_context(ctx);
12902
12903 mutex_unlock(&ctx->mutex);
12904
12905 if (task) {
12906 up_read(&task->signal->exec_update_lock);
12907 put_task_struct(task);
12908 }
12909
12910 mutex_lock(¤t->perf_event_mutex);
12911 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12912 mutex_unlock(¤t->perf_event_mutex);
12913
12914 /*
12915 * Drop the reference on the group_event after placing the
12916 * new event on the sibling_list. This ensures destruction
12917 * of the group leader will find the pointer to itself in
12918 * perf_group_detach().
12919 */
12920 fdput(group);
12921 fd_install(event_fd, event_file);
12922 return event_fd;
12923
12924 err_context:
12925 put_pmu_ctx(event->pmu_ctx);
12926 event->pmu_ctx = NULL; /* _free_event() */
12927 err_locked:
12928 mutex_unlock(&ctx->mutex);
12929 perf_unpin_context(ctx);
12930 put_ctx(ctx);
12931 err_cred:
12932 if (task)
12933 up_read(&task->signal->exec_update_lock);
12934 err_alloc:
12935 free_event(event);
12936 err_task:
12937 if (task)
12938 put_task_struct(task);
12939 err_group_fd:
12940 fdput(group);
12941 err_fd:
12942 put_unused_fd(event_fd);
12943 return err;
12944 }
12945
12946 /**
12947 * perf_event_create_kernel_counter
12948 *
12949 * @attr: attributes of the counter to create
12950 * @cpu: cpu in which the counter is bound
12951 * @task: task to profile (NULL for percpu)
12952 * @overflow_handler: callback to trigger when we hit the event
12953 * @context: context data could be used in overflow_handler callback
12954 */
12955 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12956 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12957 struct task_struct *task,
12958 perf_overflow_handler_t overflow_handler,
12959 void *context)
12960 {
12961 struct perf_event_pmu_context *pmu_ctx;
12962 struct perf_event_context *ctx;
12963 struct perf_event *event;
12964 struct pmu *pmu;
12965 int err;
12966
12967 /*
12968 * Grouping is not supported for kernel events, neither is 'AUX',
12969 * make sure the caller's intentions are adjusted.
12970 */
12971 if (attr->aux_output)
12972 return ERR_PTR(-EINVAL);
12973
12974 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12975 overflow_handler, context, -1);
12976 if (IS_ERR(event)) {
12977 err = PTR_ERR(event);
12978 goto err;
12979 }
12980
12981 /* Mark owner so we could distinguish it from user events. */
12982 event->owner = TASK_TOMBSTONE;
12983 pmu = event->pmu;
12984
12985 if (pmu->task_ctx_nr == perf_sw_context)
12986 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12987
12988 /*
12989 * Get the target context (task or percpu):
12990 */
12991 ctx = find_get_context(task, event);
12992 if (IS_ERR(ctx)) {
12993 err = PTR_ERR(ctx);
12994 goto err_alloc;
12995 }
12996
12997 WARN_ON_ONCE(ctx->parent_ctx);
12998 mutex_lock(&ctx->mutex);
12999 if (ctx->task == TASK_TOMBSTONE) {
13000 err = -ESRCH;
13001 goto err_unlock;
13002 }
13003
13004 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13005 if (IS_ERR(pmu_ctx)) {
13006 err = PTR_ERR(pmu_ctx);
13007 goto err_unlock;
13008 }
13009 event->pmu_ctx = pmu_ctx;
13010
13011 if (!task) {
13012 /*
13013 * Check if the @cpu we're creating an event for is online.
13014 *
13015 * We use the perf_cpu_context::ctx::mutex to serialize against
13016 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13017 */
13018 struct perf_cpu_context *cpuctx =
13019 container_of(ctx, struct perf_cpu_context, ctx);
13020 if (!cpuctx->online) {
13021 err = -ENODEV;
13022 goto err_pmu_ctx;
13023 }
13024 }
13025
13026 if (!exclusive_event_installable(event, ctx)) {
13027 err = -EBUSY;
13028 goto err_pmu_ctx;
13029 }
13030
13031 perf_install_in_context(ctx, event, event->cpu);
13032 perf_unpin_context(ctx);
13033 mutex_unlock(&ctx->mutex);
13034
13035 return event;
13036
13037 err_pmu_ctx:
13038 put_pmu_ctx(pmu_ctx);
13039 event->pmu_ctx = NULL; /* _free_event() */
13040 err_unlock:
13041 mutex_unlock(&ctx->mutex);
13042 perf_unpin_context(ctx);
13043 put_ctx(ctx);
13044 err_alloc:
13045 free_event(event);
13046 err:
13047 return ERR_PTR(err);
13048 }
13049 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13050
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13051 static void __perf_pmu_remove(struct perf_event_context *ctx,
13052 int cpu, struct pmu *pmu,
13053 struct perf_event_groups *groups,
13054 struct list_head *events)
13055 {
13056 struct perf_event *event, *sibling;
13057
13058 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13059 perf_remove_from_context(event, 0);
13060 put_pmu_ctx(event->pmu_ctx);
13061 list_add(&event->migrate_entry, events);
13062
13063 for_each_sibling_event(sibling, event) {
13064 perf_remove_from_context(sibling, 0);
13065 put_pmu_ctx(sibling->pmu_ctx);
13066 list_add(&sibling->migrate_entry, events);
13067 }
13068 }
13069 }
13070
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13071 static void __perf_pmu_install_event(struct pmu *pmu,
13072 struct perf_event_context *ctx,
13073 int cpu, struct perf_event *event)
13074 {
13075 struct perf_event_pmu_context *epc;
13076 struct perf_event_context *old_ctx = event->ctx;
13077
13078 get_ctx(ctx); /* normally find_get_context() */
13079
13080 event->cpu = cpu;
13081 epc = find_get_pmu_context(pmu, ctx, event);
13082 event->pmu_ctx = epc;
13083
13084 if (event->state >= PERF_EVENT_STATE_OFF)
13085 event->state = PERF_EVENT_STATE_INACTIVE;
13086 perf_install_in_context(ctx, event, cpu);
13087
13088 /*
13089 * Now that event->ctx is updated and visible, put the old ctx.
13090 */
13091 put_ctx(old_ctx);
13092 }
13093
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13094 static void __perf_pmu_install(struct perf_event_context *ctx,
13095 int cpu, struct pmu *pmu, struct list_head *events)
13096 {
13097 struct perf_event *event, *tmp;
13098
13099 /*
13100 * Re-instate events in 2 passes.
13101 *
13102 * Skip over group leaders and only install siblings on this first
13103 * pass, siblings will not get enabled without a leader, however a
13104 * leader will enable its siblings, even if those are still on the old
13105 * context.
13106 */
13107 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13108 if (event->group_leader == event)
13109 continue;
13110
13111 list_del(&event->migrate_entry);
13112 __perf_pmu_install_event(pmu, ctx, cpu, event);
13113 }
13114
13115 /*
13116 * Once all the siblings are setup properly, install the group leaders
13117 * to make it go.
13118 */
13119 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13120 list_del(&event->migrate_entry);
13121 __perf_pmu_install_event(pmu, ctx, cpu, event);
13122 }
13123 }
13124
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13125 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13126 {
13127 struct perf_event_context *src_ctx, *dst_ctx;
13128 LIST_HEAD(events);
13129
13130 /*
13131 * Since per-cpu context is persistent, no need to grab an extra
13132 * reference.
13133 */
13134 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13135 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13136
13137 /*
13138 * See perf_event_ctx_lock() for comments on the details
13139 * of swizzling perf_event::ctx.
13140 */
13141 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13142
13143 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13144 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13145
13146 if (!list_empty(&events)) {
13147 /*
13148 * Wait for the events to quiesce before re-instating them.
13149 */
13150 synchronize_rcu();
13151
13152 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13153 }
13154
13155 mutex_unlock(&dst_ctx->mutex);
13156 mutex_unlock(&src_ctx->mutex);
13157 }
13158 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13159
sync_child_event(struct perf_event * child_event)13160 static void sync_child_event(struct perf_event *child_event)
13161 {
13162 struct perf_event *parent_event = child_event->parent;
13163 u64 child_val;
13164
13165 if (child_event->attr.inherit_stat) {
13166 struct task_struct *task = child_event->ctx->task;
13167
13168 if (task && task != TASK_TOMBSTONE)
13169 perf_event_read_event(child_event, task);
13170 }
13171
13172 child_val = perf_event_count(child_event);
13173
13174 /*
13175 * Add back the child's count to the parent's count:
13176 */
13177 atomic64_add(child_val, &parent_event->child_count);
13178 atomic64_add(child_event->total_time_enabled,
13179 &parent_event->child_total_time_enabled);
13180 atomic64_add(child_event->total_time_running,
13181 &parent_event->child_total_time_running);
13182 }
13183
13184 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13185 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13186 {
13187 struct perf_event *parent_event = event->parent;
13188 unsigned long detach_flags = 0;
13189
13190 if (parent_event) {
13191 /*
13192 * Do not destroy the 'original' grouping; because of the
13193 * context switch optimization the original events could've
13194 * ended up in a random child task.
13195 *
13196 * If we were to destroy the original group, all group related
13197 * operations would cease to function properly after this
13198 * random child dies.
13199 *
13200 * Do destroy all inherited groups, we don't care about those
13201 * and being thorough is better.
13202 */
13203 detach_flags = DETACH_GROUP | DETACH_CHILD;
13204 mutex_lock(&parent_event->child_mutex);
13205 }
13206
13207 perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13208
13209 /*
13210 * Child events can be freed.
13211 */
13212 if (parent_event) {
13213 mutex_unlock(&parent_event->child_mutex);
13214 /*
13215 * Kick perf_poll() for is_event_hup();
13216 */
13217 perf_event_wakeup(parent_event);
13218 free_event(event);
13219 put_event(parent_event);
13220 return;
13221 }
13222
13223 /*
13224 * Parent events are governed by their filedesc, retain them.
13225 */
13226 perf_event_wakeup(event);
13227 }
13228
perf_event_exit_task_context(struct task_struct * child)13229 static void perf_event_exit_task_context(struct task_struct *child)
13230 {
13231 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13232 struct perf_event *child_event, *next;
13233
13234 WARN_ON_ONCE(child != current);
13235
13236 child_ctx = perf_pin_task_context(child);
13237 if (!child_ctx)
13238 return;
13239
13240 /*
13241 * In order to reduce the amount of tricky in ctx tear-down, we hold
13242 * ctx::mutex over the entire thing. This serializes against almost
13243 * everything that wants to access the ctx.
13244 *
13245 * The exception is sys_perf_event_open() /
13246 * perf_event_create_kernel_count() which does find_get_context()
13247 * without ctx::mutex (it cannot because of the move_group double mutex
13248 * lock thing). See the comments in perf_install_in_context().
13249 */
13250 mutex_lock(&child_ctx->mutex);
13251
13252 /*
13253 * In a single ctx::lock section, de-schedule the events and detach the
13254 * context from the task such that we cannot ever get it scheduled back
13255 * in.
13256 */
13257 raw_spin_lock_irq(&child_ctx->lock);
13258 task_ctx_sched_out(child_ctx, EVENT_ALL);
13259
13260 /*
13261 * Now that the context is inactive, destroy the task <-> ctx relation
13262 * and mark the context dead.
13263 */
13264 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13265 put_ctx(child_ctx); /* cannot be last */
13266 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13267 put_task_struct(current); /* cannot be last */
13268
13269 clone_ctx = unclone_ctx(child_ctx);
13270 raw_spin_unlock_irq(&child_ctx->lock);
13271
13272 if (clone_ctx)
13273 put_ctx(clone_ctx);
13274
13275 /*
13276 * Report the task dead after unscheduling the events so that we
13277 * won't get any samples after PERF_RECORD_EXIT. We can however still
13278 * get a few PERF_RECORD_READ events.
13279 */
13280 perf_event_task(child, child_ctx, 0);
13281
13282 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13283 perf_event_exit_event(child_event, child_ctx);
13284
13285 mutex_unlock(&child_ctx->mutex);
13286
13287 put_ctx(child_ctx);
13288 }
13289
13290 /*
13291 * When a child task exits, feed back event values to parent events.
13292 *
13293 * Can be called with exec_update_lock held when called from
13294 * setup_new_exec().
13295 */
perf_event_exit_task(struct task_struct * child)13296 void perf_event_exit_task(struct task_struct *child)
13297 {
13298 struct perf_event *event, *tmp;
13299
13300 mutex_lock(&child->perf_event_mutex);
13301 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13302 owner_entry) {
13303 list_del_init(&event->owner_entry);
13304
13305 /*
13306 * Ensure the list deletion is visible before we clear
13307 * the owner, closes a race against perf_release() where
13308 * we need to serialize on the owner->perf_event_mutex.
13309 */
13310 smp_store_release(&event->owner, NULL);
13311 }
13312 mutex_unlock(&child->perf_event_mutex);
13313
13314 perf_event_exit_task_context(child);
13315
13316 /*
13317 * The perf_event_exit_task_context calls perf_event_task
13318 * with child's task_ctx, which generates EXIT events for
13319 * child contexts and sets child->perf_event_ctxp[] to NULL.
13320 * At this point we need to send EXIT events to cpu contexts.
13321 */
13322 perf_event_task(child, NULL, 0);
13323 }
13324
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13325 static void perf_free_event(struct perf_event *event,
13326 struct perf_event_context *ctx)
13327 {
13328 struct perf_event *parent = event->parent;
13329
13330 if (WARN_ON_ONCE(!parent))
13331 return;
13332
13333 mutex_lock(&parent->child_mutex);
13334 list_del_init(&event->child_list);
13335 mutex_unlock(&parent->child_mutex);
13336
13337 put_event(parent);
13338
13339 raw_spin_lock_irq(&ctx->lock);
13340 perf_group_detach(event);
13341 list_del_event(event, ctx);
13342 raw_spin_unlock_irq(&ctx->lock);
13343 free_event(event);
13344 }
13345
13346 /*
13347 * Free a context as created by inheritance by perf_event_init_task() below,
13348 * used by fork() in case of fail.
13349 *
13350 * Even though the task has never lived, the context and events have been
13351 * exposed through the child_list, so we must take care tearing it all down.
13352 */
perf_event_free_task(struct task_struct * task)13353 void perf_event_free_task(struct task_struct *task)
13354 {
13355 struct perf_event_context *ctx;
13356 struct perf_event *event, *tmp;
13357
13358 ctx = rcu_access_pointer(task->perf_event_ctxp);
13359 if (!ctx)
13360 return;
13361
13362 mutex_lock(&ctx->mutex);
13363 raw_spin_lock_irq(&ctx->lock);
13364 /*
13365 * Destroy the task <-> ctx relation and mark the context dead.
13366 *
13367 * This is important because even though the task hasn't been
13368 * exposed yet the context has been (through child_list).
13369 */
13370 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13371 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13372 put_task_struct(task); /* cannot be last */
13373 raw_spin_unlock_irq(&ctx->lock);
13374
13375
13376 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13377 perf_free_event(event, ctx);
13378
13379 mutex_unlock(&ctx->mutex);
13380
13381 /*
13382 * perf_event_release_kernel() could've stolen some of our
13383 * child events and still have them on its free_list. In that
13384 * case we must wait for these events to have been freed (in
13385 * particular all their references to this task must've been
13386 * dropped).
13387 *
13388 * Without this copy_process() will unconditionally free this
13389 * task (irrespective of its reference count) and
13390 * _free_event()'s put_task_struct(event->hw.target) will be a
13391 * use-after-free.
13392 *
13393 * Wait for all events to drop their context reference.
13394 */
13395 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13396 put_ctx(ctx); /* must be last */
13397 }
13398
perf_event_delayed_put(struct task_struct * task)13399 void perf_event_delayed_put(struct task_struct *task)
13400 {
13401 WARN_ON_ONCE(task->perf_event_ctxp);
13402 }
13403
perf_event_get(unsigned int fd)13404 struct file *perf_event_get(unsigned int fd)
13405 {
13406 struct file *file = fget(fd);
13407 if (!file)
13408 return ERR_PTR(-EBADF);
13409
13410 if (file->f_op != &perf_fops) {
13411 fput(file);
13412 return ERR_PTR(-EBADF);
13413 }
13414
13415 return file;
13416 }
13417
perf_get_event(struct file * file)13418 const struct perf_event *perf_get_event(struct file *file)
13419 {
13420 if (file->f_op != &perf_fops)
13421 return ERR_PTR(-EINVAL);
13422
13423 return file->private_data;
13424 }
13425
perf_event_attrs(struct perf_event * event)13426 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13427 {
13428 if (!event)
13429 return ERR_PTR(-EINVAL);
13430
13431 return &event->attr;
13432 }
13433
perf_allow_kernel(struct perf_event_attr * attr)13434 int perf_allow_kernel(struct perf_event_attr *attr)
13435 {
13436 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13437 return -EACCES;
13438
13439 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13440 }
13441 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13442
13443 /*
13444 * Inherit an event from parent task to child task.
13445 *
13446 * Returns:
13447 * - valid pointer on success
13448 * - NULL for orphaned events
13449 * - IS_ERR() on error
13450 */
13451 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13452 inherit_event(struct perf_event *parent_event,
13453 struct task_struct *parent,
13454 struct perf_event_context *parent_ctx,
13455 struct task_struct *child,
13456 struct perf_event *group_leader,
13457 struct perf_event_context *child_ctx)
13458 {
13459 enum perf_event_state parent_state = parent_event->state;
13460 struct perf_event_pmu_context *pmu_ctx;
13461 struct perf_event *child_event;
13462 unsigned long flags;
13463
13464 /*
13465 * Instead of creating recursive hierarchies of events,
13466 * we link inherited events back to the original parent,
13467 * which has a filp for sure, which we use as the reference
13468 * count:
13469 */
13470 if (parent_event->parent)
13471 parent_event = parent_event->parent;
13472
13473 child_event = perf_event_alloc(&parent_event->attr,
13474 parent_event->cpu,
13475 child,
13476 group_leader, parent_event,
13477 NULL, NULL, -1);
13478 if (IS_ERR(child_event))
13479 return child_event;
13480
13481 get_ctx(child_ctx);
13482 child_event->ctx = child_ctx;
13483
13484 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13485 if (IS_ERR(pmu_ctx)) {
13486 free_event(child_event);
13487 return ERR_CAST(pmu_ctx);
13488 }
13489 child_event->pmu_ctx = pmu_ctx;
13490
13491 /*
13492 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13493 * must be under the same lock in order to serialize against
13494 * perf_event_release_kernel(), such that either we must observe
13495 * is_orphaned_event() or they will observe us on the child_list.
13496 */
13497 mutex_lock(&parent_event->child_mutex);
13498 if (is_orphaned_event(parent_event) ||
13499 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13500 mutex_unlock(&parent_event->child_mutex);
13501 /* task_ctx_data is freed with child_ctx */
13502 free_event(child_event);
13503 return NULL;
13504 }
13505
13506 /*
13507 * Make the child state follow the state of the parent event,
13508 * not its attr.disabled bit. We hold the parent's mutex,
13509 * so we won't race with perf_event_{en, dis}able_family.
13510 */
13511 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13512 child_event->state = PERF_EVENT_STATE_INACTIVE;
13513 else
13514 child_event->state = PERF_EVENT_STATE_OFF;
13515
13516 if (parent_event->attr.freq) {
13517 u64 sample_period = parent_event->hw.sample_period;
13518 struct hw_perf_event *hwc = &child_event->hw;
13519
13520 hwc->sample_period = sample_period;
13521 hwc->last_period = sample_period;
13522
13523 local64_set(&hwc->period_left, sample_period);
13524 }
13525
13526 child_event->overflow_handler = parent_event->overflow_handler;
13527 child_event->overflow_handler_context
13528 = parent_event->overflow_handler_context;
13529
13530 /*
13531 * Precalculate sample_data sizes
13532 */
13533 perf_event__header_size(child_event);
13534 perf_event__id_header_size(child_event);
13535
13536 /*
13537 * Link it up in the child's context:
13538 */
13539 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13540 add_event_to_ctx(child_event, child_ctx);
13541 child_event->attach_state |= PERF_ATTACH_CHILD;
13542 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13543
13544 /*
13545 * Link this into the parent event's child list
13546 */
13547 list_add_tail(&child_event->child_list, &parent_event->child_list);
13548 mutex_unlock(&parent_event->child_mutex);
13549
13550 return child_event;
13551 }
13552
13553 /*
13554 * Inherits an event group.
13555 *
13556 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13557 * This matches with perf_event_release_kernel() removing all child events.
13558 *
13559 * Returns:
13560 * - 0 on success
13561 * - <0 on error
13562 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13563 static int inherit_group(struct perf_event *parent_event,
13564 struct task_struct *parent,
13565 struct perf_event_context *parent_ctx,
13566 struct task_struct *child,
13567 struct perf_event_context *child_ctx)
13568 {
13569 struct perf_event *leader;
13570 struct perf_event *sub;
13571 struct perf_event *child_ctr;
13572
13573 leader = inherit_event(parent_event, parent, parent_ctx,
13574 child, NULL, child_ctx);
13575 if (IS_ERR(leader))
13576 return PTR_ERR(leader);
13577 /*
13578 * @leader can be NULL here because of is_orphaned_event(). In this
13579 * case inherit_event() will create individual events, similar to what
13580 * perf_group_detach() would do anyway.
13581 */
13582 for_each_sibling_event(sub, parent_event) {
13583 child_ctr = inherit_event(sub, parent, parent_ctx,
13584 child, leader, child_ctx);
13585 if (IS_ERR(child_ctr))
13586 return PTR_ERR(child_ctr);
13587
13588 if (sub->aux_event == parent_event && child_ctr &&
13589 !perf_get_aux_event(child_ctr, leader))
13590 return -EINVAL;
13591 }
13592 if (leader)
13593 leader->group_generation = parent_event->group_generation;
13594 return 0;
13595 }
13596
13597 /*
13598 * Creates the child task context and tries to inherit the event-group.
13599 *
13600 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13601 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13602 * consistent with perf_event_release_kernel() removing all child events.
13603 *
13604 * Returns:
13605 * - 0 on success
13606 * - <0 on error
13607 */
13608 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13609 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13610 struct perf_event_context *parent_ctx,
13611 struct task_struct *child,
13612 u64 clone_flags, int *inherited_all)
13613 {
13614 struct perf_event_context *child_ctx;
13615 int ret;
13616
13617 if (!event->attr.inherit ||
13618 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13619 /* Do not inherit if sigtrap and signal handlers were cleared. */
13620 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13621 *inherited_all = 0;
13622 return 0;
13623 }
13624
13625 child_ctx = child->perf_event_ctxp;
13626 if (!child_ctx) {
13627 /*
13628 * This is executed from the parent task context, so
13629 * inherit events that have been marked for cloning.
13630 * First allocate and initialize a context for the
13631 * child.
13632 */
13633 child_ctx = alloc_perf_context(child);
13634 if (!child_ctx)
13635 return -ENOMEM;
13636
13637 child->perf_event_ctxp = child_ctx;
13638 }
13639
13640 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13641 if (ret)
13642 *inherited_all = 0;
13643
13644 return ret;
13645 }
13646
13647 /*
13648 * Initialize the perf_event context in task_struct
13649 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13650 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13651 {
13652 struct perf_event_context *child_ctx, *parent_ctx;
13653 struct perf_event_context *cloned_ctx;
13654 struct perf_event *event;
13655 struct task_struct *parent = current;
13656 int inherited_all = 1;
13657 unsigned long flags;
13658 int ret = 0;
13659
13660 if (likely(!parent->perf_event_ctxp))
13661 return 0;
13662
13663 /*
13664 * If the parent's context is a clone, pin it so it won't get
13665 * swapped under us.
13666 */
13667 parent_ctx = perf_pin_task_context(parent);
13668 if (!parent_ctx)
13669 return 0;
13670
13671 /*
13672 * No need to check if parent_ctx != NULL here; since we saw
13673 * it non-NULL earlier, the only reason for it to become NULL
13674 * is if we exit, and since we're currently in the middle of
13675 * a fork we can't be exiting at the same time.
13676 */
13677
13678 /*
13679 * Lock the parent list. No need to lock the child - not PID
13680 * hashed yet and not running, so nobody can access it.
13681 */
13682 mutex_lock(&parent_ctx->mutex);
13683
13684 /*
13685 * We dont have to disable NMIs - we are only looking at
13686 * the list, not manipulating it:
13687 */
13688 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13689 ret = inherit_task_group(event, parent, parent_ctx,
13690 child, clone_flags, &inherited_all);
13691 if (ret)
13692 goto out_unlock;
13693 }
13694
13695 /*
13696 * We can't hold ctx->lock when iterating the ->flexible_group list due
13697 * to allocations, but we need to prevent rotation because
13698 * rotate_ctx() will change the list from interrupt context.
13699 */
13700 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13701 parent_ctx->rotate_disable = 1;
13702 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13703
13704 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13705 ret = inherit_task_group(event, parent, parent_ctx,
13706 child, clone_flags, &inherited_all);
13707 if (ret)
13708 goto out_unlock;
13709 }
13710
13711 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13712 parent_ctx->rotate_disable = 0;
13713
13714 child_ctx = child->perf_event_ctxp;
13715
13716 if (child_ctx && inherited_all) {
13717 /*
13718 * Mark the child context as a clone of the parent
13719 * context, or of whatever the parent is a clone of.
13720 *
13721 * Note that if the parent is a clone, the holding of
13722 * parent_ctx->lock avoids it from being uncloned.
13723 */
13724 cloned_ctx = parent_ctx->parent_ctx;
13725 if (cloned_ctx) {
13726 child_ctx->parent_ctx = cloned_ctx;
13727 child_ctx->parent_gen = parent_ctx->parent_gen;
13728 } else {
13729 child_ctx->parent_ctx = parent_ctx;
13730 child_ctx->parent_gen = parent_ctx->generation;
13731 }
13732 get_ctx(child_ctx->parent_ctx);
13733 }
13734
13735 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13736 out_unlock:
13737 mutex_unlock(&parent_ctx->mutex);
13738
13739 perf_unpin_context(parent_ctx);
13740 put_ctx(parent_ctx);
13741
13742 return ret;
13743 }
13744
13745 /*
13746 * Initialize the perf_event context in task_struct
13747 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13748 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13749 {
13750 int ret;
13751
13752 child->perf_event_ctxp = NULL;
13753 mutex_init(&child->perf_event_mutex);
13754 INIT_LIST_HEAD(&child->perf_event_list);
13755
13756 ret = perf_event_init_context(child, clone_flags);
13757 if (ret) {
13758 perf_event_free_task(child);
13759 return ret;
13760 }
13761
13762 return 0;
13763 }
13764
perf_event_init_all_cpus(void)13765 static void __init perf_event_init_all_cpus(void)
13766 {
13767 struct swevent_htable *swhash;
13768 struct perf_cpu_context *cpuctx;
13769 int cpu;
13770
13771 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13772
13773 for_each_possible_cpu(cpu) {
13774 swhash = &per_cpu(swevent_htable, cpu);
13775 mutex_init(&swhash->hlist_mutex);
13776
13777 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13778 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13779
13780 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13781
13782 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13783 __perf_event_init_context(&cpuctx->ctx);
13784 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13785 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13786 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13787 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13788 cpuctx->heap = cpuctx->heap_default;
13789 }
13790 }
13791
perf_swevent_init_cpu(unsigned int cpu)13792 static void perf_swevent_init_cpu(unsigned int cpu)
13793 {
13794 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13795
13796 mutex_lock(&swhash->hlist_mutex);
13797 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13798 struct swevent_hlist *hlist;
13799
13800 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13801 WARN_ON(!hlist);
13802 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13803 }
13804 mutex_unlock(&swhash->hlist_mutex);
13805 }
13806
13807 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13808 static void __perf_event_exit_context(void *__info)
13809 {
13810 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13811 struct perf_event_context *ctx = __info;
13812 struct perf_event *event;
13813
13814 raw_spin_lock(&ctx->lock);
13815 ctx_sched_out(ctx, EVENT_TIME);
13816 list_for_each_entry(event, &ctx->event_list, event_entry)
13817 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13818 raw_spin_unlock(&ctx->lock);
13819 }
13820
perf_event_exit_cpu_context(int cpu)13821 static void perf_event_exit_cpu_context(int cpu)
13822 {
13823 struct perf_cpu_context *cpuctx;
13824 struct perf_event_context *ctx;
13825
13826 // XXX simplify cpuctx->online
13827 mutex_lock(&pmus_lock);
13828 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13829 ctx = &cpuctx->ctx;
13830
13831 mutex_lock(&ctx->mutex);
13832 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13833 cpuctx->online = 0;
13834 mutex_unlock(&ctx->mutex);
13835 cpumask_clear_cpu(cpu, perf_online_mask);
13836 mutex_unlock(&pmus_lock);
13837 }
13838 #else
13839
perf_event_exit_cpu_context(int cpu)13840 static void perf_event_exit_cpu_context(int cpu) { }
13841
13842 #endif
13843
perf_event_init_cpu(unsigned int cpu)13844 int perf_event_init_cpu(unsigned int cpu)
13845 {
13846 struct perf_cpu_context *cpuctx;
13847 struct perf_event_context *ctx;
13848
13849 perf_swevent_init_cpu(cpu);
13850
13851 mutex_lock(&pmus_lock);
13852 cpumask_set_cpu(cpu, perf_online_mask);
13853 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13854 ctx = &cpuctx->ctx;
13855
13856 mutex_lock(&ctx->mutex);
13857 cpuctx->online = 1;
13858 mutex_unlock(&ctx->mutex);
13859 mutex_unlock(&pmus_lock);
13860
13861 return 0;
13862 }
13863
perf_event_exit_cpu(unsigned int cpu)13864 int perf_event_exit_cpu(unsigned int cpu)
13865 {
13866 perf_event_exit_cpu_context(cpu);
13867 return 0;
13868 }
13869
13870 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13871 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13872 {
13873 int cpu;
13874
13875 for_each_online_cpu(cpu)
13876 perf_event_exit_cpu(cpu);
13877
13878 return NOTIFY_OK;
13879 }
13880
13881 /*
13882 * Run the perf reboot notifier at the very last possible moment so that
13883 * the generic watchdog code runs as long as possible.
13884 */
13885 static struct notifier_block perf_reboot_notifier = {
13886 .notifier_call = perf_reboot,
13887 .priority = INT_MIN,
13888 };
13889
perf_event_init(void)13890 void __init perf_event_init(void)
13891 {
13892 int ret;
13893
13894 idr_init(&pmu_idr);
13895
13896 perf_event_init_all_cpus();
13897 init_srcu_struct(&pmus_srcu);
13898 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13899 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13900 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13901 perf_tp_register();
13902 perf_event_init_cpu(smp_processor_id());
13903 register_reboot_notifier(&perf_reboot_notifier);
13904
13905 ret = init_hw_breakpoint();
13906 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13907
13908 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13909
13910 /*
13911 * Build time assertion that we keep the data_head at the intended
13912 * location. IOW, validation we got the __reserved[] size right.
13913 */
13914 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13915 != 1024);
13916 }
13917
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13918 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13919 char *page)
13920 {
13921 struct perf_pmu_events_attr *pmu_attr =
13922 container_of(attr, struct perf_pmu_events_attr, attr);
13923
13924 if (pmu_attr->event_str)
13925 return sprintf(page, "%s\n", pmu_attr->event_str);
13926
13927 return 0;
13928 }
13929 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13930
perf_event_sysfs_init(void)13931 static int __init perf_event_sysfs_init(void)
13932 {
13933 struct pmu *pmu;
13934 int ret;
13935
13936 mutex_lock(&pmus_lock);
13937
13938 ret = bus_register(&pmu_bus);
13939 if (ret)
13940 goto unlock;
13941
13942 list_for_each_entry(pmu, &pmus, entry) {
13943 if (pmu->dev)
13944 continue;
13945
13946 ret = pmu_dev_alloc(pmu);
13947 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13948 }
13949 pmu_bus_running = 1;
13950 ret = 0;
13951
13952 unlock:
13953 mutex_unlock(&pmus_lock);
13954
13955 return ret;
13956 }
13957 device_initcall(perf_event_sysfs_init);
13958
13959 #ifdef CONFIG_CGROUP_PERF
13960 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13961 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13962 {
13963 struct perf_cgroup *jc;
13964
13965 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13966 if (!jc)
13967 return ERR_PTR(-ENOMEM);
13968
13969 jc->info = alloc_percpu(struct perf_cgroup_info);
13970 if (!jc->info) {
13971 kfree(jc);
13972 return ERR_PTR(-ENOMEM);
13973 }
13974
13975 return &jc->css;
13976 }
13977
perf_cgroup_css_free(struct cgroup_subsys_state * css)13978 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13979 {
13980 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13981
13982 free_percpu(jc->info);
13983 kfree(jc);
13984 }
13985
perf_cgroup_css_online(struct cgroup_subsys_state * css)13986 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13987 {
13988 perf_event_cgroup(css->cgroup);
13989 return 0;
13990 }
13991
__perf_cgroup_move(void * info)13992 static int __perf_cgroup_move(void *info)
13993 {
13994 struct task_struct *task = info;
13995
13996 preempt_disable();
13997 perf_cgroup_switch(task);
13998 preempt_enable();
13999
14000 return 0;
14001 }
14002
perf_cgroup_attach(struct cgroup_taskset * tset)14003 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14004 {
14005 struct task_struct *task;
14006 struct cgroup_subsys_state *css;
14007
14008 cgroup_taskset_for_each(task, css, tset)
14009 task_function_call(task, __perf_cgroup_move, task);
14010 }
14011
14012 struct cgroup_subsys perf_event_cgrp_subsys = {
14013 .css_alloc = perf_cgroup_css_alloc,
14014 .css_free = perf_cgroup_css_free,
14015 .css_online = perf_cgroup_css_online,
14016 .attach = perf_cgroup_attach,
14017 /*
14018 * Implicitly enable on dfl hierarchy so that perf events can
14019 * always be filtered by cgroup2 path as long as perf_event
14020 * controller is not mounted on a legacy hierarchy.
14021 */
14022 .implicit_on_dfl = true,
14023 .threaded = true,
14024 };
14025 #endif /* CONFIG_CGROUP_PERF */
14026
14027 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14028