xref: /openbmc/linux/fs/xfs/libxfs/xfs_trans_resv.c (revision 55e43d6abd078ed6d219902ce8cb4d68e3c993ba)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4   * Copyright (C) 2010 Red Hat, Inc.
5   * All Rights Reserved.
6   */
7  #include "xfs.h"
8  #include "xfs_fs.h"
9  #include "xfs_shared.h"
10  #include "xfs_format.h"
11  #include "xfs_log_format.h"
12  #include "xfs_trans_resv.h"
13  #include "xfs_mount.h"
14  #include "xfs_da_format.h"
15  #include "xfs_da_btree.h"
16  #include "xfs_inode.h"
17  #include "xfs_bmap_btree.h"
18  #include "xfs_quota.h"
19  #include "xfs_trans.h"
20  #include "xfs_qm.h"
21  #include "xfs_trans_space.h"
22  
23  #define _ALLOC	true
24  #define _FREE	false
25  
26  /*
27   * A buffer has a format structure overhead in the log in addition
28   * to the data, so we need to take this into account when reserving
29   * space in a transaction for a buffer.  Round the space required up
30   * to a multiple of 128 bytes so that we don't change the historical
31   * reservation that has been used for this overhead.
32   */
33  STATIC uint
xfs_buf_log_overhead(void)34  xfs_buf_log_overhead(void)
35  {
36  	return round_up(sizeof(struct xlog_op_header) +
37  			sizeof(struct xfs_buf_log_format), 128);
38  }
39  
40  /*
41   * Calculate out transaction log reservation per item in bytes.
42   *
43   * The nbufs argument is used to indicate the number of items that
44   * will be changed in a transaction.  size is used to tell how many
45   * bytes should be reserved per item.
46   */
47  STATIC uint
xfs_calc_buf_res(uint nbufs,uint size)48  xfs_calc_buf_res(
49  	uint		nbufs,
50  	uint		size)
51  {
52  	return nbufs * (size + xfs_buf_log_overhead());
53  }
54  
55  /*
56   * Per-extent log reservation for the btree changes involved in freeing or
57   * allocating an extent.  In classic XFS there were two trees that will be
58   * modified (bnobt + cntbt).  With rmap enabled, there are three trees
59   * (rmapbt).  The number of blocks reserved is based on the formula:
60   *
61   * num trees * ((2 blocks/level * max depth) - 1)
62   *
63   * Keep in mind that max depth is calculated separately for each type of tree.
64   */
65  uint
xfs_allocfree_block_count(struct xfs_mount * mp,uint num_ops)66  xfs_allocfree_block_count(
67  	struct xfs_mount *mp,
68  	uint		num_ops)
69  {
70  	uint		blocks;
71  
72  	blocks = num_ops * 2 * (2 * mp->m_alloc_maxlevels - 1);
73  	if (xfs_has_rmapbt(mp))
74  		blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
75  
76  	return blocks;
77  }
78  
79  /*
80   * Per-extent log reservation for refcount btree changes.  These are never done
81   * in the same transaction as an allocation or a free, so we compute them
82   * separately.
83   */
84  static unsigned int
xfs_refcountbt_block_count(struct xfs_mount * mp,unsigned int num_ops)85  xfs_refcountbt_block_count(
86  	struct xfs_mount	*mp,
87  	unsigned int		num_ops)
88  {
89  	return num_ops * (2 * mp->m_refc_maxlevels - 1);
90  }
91  
92  /*
93   * Logging inodes is really tricksy. They are logged in memory format,
94   * which means that what we write into the log doesn't directly translate into
95   * the amount of space they use on disk.
96   *
97   * Case in point - btree format forks in memory format use more space than the
98   * on-disk format. In memory, the buffer contains a normal btree block header so
99   * the btree code can treat it as though it is just another generic buffer.
100   * However, when we write it to the inode fork, we don't write all of this
101   * header as it isn't needed. e.g. the root is only ever in the inode, so
102   * there's no need for sibling pointers which would waste 16 bytes of space.
103   *
104   * Hence when we have an inode with a maximally sized btree format fork, then
105   * amount of information we actually log is greater than the size of the inode
106   * on disk. Hence we need an inode reservation function that calculates all this
107   * correctly. So, we log:
108   *
109   * - 4 log op headers for object
110   *	- for the ilf, the inode core and 2 forks
111   * - inode log format object
112   * - the inode core
113   * - two inode forks containing bmap btree root blocks.
114   *	- the btree data contained by both forks will fit into the inode size,
115   *	  hence when combined with the inode core above, we have a total of the
116   *	  actual inode size.
117   *	- the BMBT headers need to be accounted separately, as they are
118   *	  additional to the records and pointers that fit inside the inode
119   *	  forks.
120   */
121  STATIC uint
xfs_calc_inode_res(struct xfs_mount * mp,uint ninodes)122  xfs_calc_inode_res(
123  	struct xfs_mount	*mp,
124  	uint			ninodes)
125  {
126  	return ninodes *
127  		(4 * sizeof(struct xlog_op_header) +
128  		 sizeof(struct xfs_inode_log_format) +
129  		 mp->m_sb.sb_inodesize +
130  		 2 * XFS_BMBT_BLOCK_LEN(mp));
131  }
132  
133  /*
134   * Inode btree record insertion/removal modifies the inode btree and free space
135   * btrees (since the inobt does not use the agfl). This requires the following
136   * reservation:
137   *
138   * the inode btree: max depth * blocksize
139   * the allocation btrees: 2 trees * (max depth - 1) * block size
140   *
141   * The caller must account for SB and AG header modifications, etc.
142   */
143  STATIC uint
xfs_calc_inobt_res(struct xfs_mount * mp)144  xfs_calc_inobt_res(
145  	struct xfs_mount	*mp)
146  {
147  	return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
148  			XFS_FSB_TO_B(mp, 1)) +
149  				xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
150  			XFS_FSB_TO_B(mp, 1));
151  }
152  
153  /*
154   * The free inode btree is a conditional feature. The behavior differs slightly
155   * from that of the traditional inode btree in that the finobt tracks records
156   * for inode chunks with at least one free inode. A record can be removed from
157   * the tree during individual inode allocation. Therefore the finobt
158   * reservation is unconditional for both the inode chunk allocation and
159   * individual inode allocation (modify) cases.
160   *
161   * Behavior aside, the reservation for finobt modification is equivalent to the
162   * traditional inobt: cover a full finobt shape change plus block allocation.
163   */
164  STATIC uint
xfs_calc_finobt_res(struct xfs_mount * mp)165  xfs_calc_finobt_res(
166  	struct xfs_mount	*mp)
167  {
168  	if (!xfs_has_finobt(mp))
169  		return 0;
170  
171  	return xfs_calc_inobt_res(mp);
172  }
173  
174  /*
175   * Calculate the reservation required to allocate or free an inode chunk. This
176   * includes:
177   *
178   * the allocation btrees: 2 trees * (max depth - 1) * block size
179   * the inode chunk: m_ino_geo.ialloc_blks * N
180   *
181   * The size N of the inode chunk reservation depends on whether it is for
182   * allocation or free and which type of create transaction is in use. An inode
183   * chunk free always invalidates the buffers and only requires reservation for
184   * headers (N == 0). An inode chunk allocation requires a chunk sized
185   * reservation on v4 and older superblocks to initialize the chunk. No chunk
186   * reservation is required for allocation on v5 supers, which use ordered
187   * buffers to initialize.
188   */
189  STATIC uint
xfs_calc_inode_chunk_res(struct xfs_mount * mp,bool alloc)190  xfs_calc_inode_chunk_res(
191  	struct xfs_mount	*mp,
192  	bool			alloc)
193  {
194  	uint			res, size = 0;
195  
196  	res = xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
197  			       XFS_FSB_TO_B(mp, 1));
198  	if (alloc) {
199  		/* icreate tx uses ordered buffers */
200  		if (xfs_has_v3inodes(mp))
201  			return res;
202  		size = XFS_FSB_TO_B(mp, 1);
203  	}
204  
205  	res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
206  	return res;
207  }
208  
209  /*
210   * Per-extent log reservation for the btree changes involved in freeing or
211   * allocating a realtime extent.  We have to be able to log as many rtbitmap
212   * blocks as needed to mark inuse XFS_BMBT_MAX_EXTLEN blocks' worth of realtime
213   * extents, as well as the realtime summary block.
214   */
215  static unsigned int
xfs_rtalloc_block_count(struct xfs_mount * mp,unsigned int num_ops)216  xfs_rtalloc_block_count(
217  	struct xfs_mount	*mp,
218  	unsigned int		num_ops)
219  {
220  	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
221  	unsigned int		rtbmp_bytes;
222  
223  	rtbmp_bytes = (XFS_MAX_BMBT_EXTLEN / mp->m_sb.sb_rextsize) / NBBY;
224  	return (howmany(rtbmp_bytes, blksz) + 1) * num_ops;
225  }
226  
227  /*
228   * Various log reservation values.
229   *
230   * These are based on the size of the file system block because that is what
231   * most transactions manipulate.  Each adds in an additional 128 bytes per
232   * item logged to try to account for the overhead of the transaction mechanism.
233   *
234   * Note:  Most of the reservations underestimate the number of allocation
235   * groups into which they could free extents in the xfs_defer_finish() call.
236   * This is because the number in the worst case is quite high and quite
237   * unusual.  In order to fix this we need to change xfs_defer_finish() to free
238   * extents in only a single AG at a time.  This will require changes to the
239   * EFI code as well, however, so that the EFI for the extents not freed is
240   * logged again in each transaction.  See SGI PV #261917.
241   *
242   * Reservation functions here avoid a huge stack in xfs_trans_init due to
243   * register overflow from temporaries in the calculations.
244   */
245  
246  /*
247   * Compute the log reservation required to handle the refcount update
248   * transaction.  Refcount updates are always done via deferred log items.
249   *
250   * This is calculated as:
251   * Data device refcount updates (t1):
252   *    the agfs of the ags containing the blocks: nr_ops * sector size
253   *    the refcount btrees: nr_ops * 1 trees * (2 * max depth - 1) * block size
254   */
255  static unsigned int
xfs_calc_refcountbt_reservation(struct xfs_mount * mp,unsigned int nr_ops)256  xfs_calc_refcountbt_reservation(
257  	struct xfs_mount	*mp,
258  	unsigned int		nr_ops)
259  {
260  	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
261  
262  	if (!xfs_has_reflink(mp))
263  		return 0;
264  
265  	return xfs_calc_buf_res(nr_ops, mp->m_sb.sb_sectsize) +
266  	       xfs_calc_buf_res(xfs_refcountbt_block_count(mp, nr_ops), blksz);
267  }
268  
269  /*
270   * In a write transaction we can allocate a maximum of 2
271   * extents.  This gives (t1):
272   *    the inode getting the new extents: inode size
273   *    the inode's bmap btree: max depth * block size
274   *    the agfs of the ags from which the extents are allocated: 2 * sector
275   *    the superblock free block counter: sector size
276   *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
277   * Or, if we're writing to a realtime file (t2):
278   *    the inode getting the new extents: inode size
279   *    the inode's bmap btree: max depth * block size
280   *    the agfs of the ags from which the extents are allocated: 2 * sector
281   *    the superblock free block counter: sector size
282   *    the realtime bitmap: ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
283   *    the realtime summary: 1 block
284   *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
285   * And the bmap_finish transaction can free bmap blocks in a join (t3):
286   *    the agfs of the ags containing the blocks: 2 * sector size
287   *    the agfls of the ags containing the blocks: 2 * sector size
288   *    the super block free block counter: sector size
289   *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
290   * And any refcount updates that happen in a separate transaction (t4).
291   */
292  STATIC uint
xfs_calc_write_reservation(struct xfs_mount * mp,bool for_minlogsize)293  xfs_calc_write_reservation(
294  	struct xfs_mount	*mp,
295  	bool			for_minlogsize)
296  {
297  	unsigned int		t1, t2, t3, t4;
298  	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
299  
300  	t1 = xfs_calc_inode_res(mp, 1) +
301  	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
302  	     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
303  	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
304  
305  	if (xfs_has_realtime(mp)) {
306  		t2 = xfs_calc_inode_res(mp, 1) +
307  		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
308  				     blksz) +
309  		     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
310  		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 1), blksz) +
311  		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1), blksz);
312  	} else {
313  		t2 = 0;
314  	}
315  
316  	t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
317  	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
318  
319  	/*
320  	 * In the early days of reflink, we included enough reservation to log
321  	 * two refcountbt splits for each transaction.  The codebase runs
322  	 * refcountbt updates in separate transactions now, so to compute the
323  	 * minimum log size, add the refcountbtree splits back to t1 and t3 and
324  	 * do not account them separately as t4.  Reflink did not support
325  	 * realtime when the reservations were established, so no adjustment to
326  	 * t2 is needed.
327  	 */
328  	if (for_minlogsize) {
329  		unsigned int	adj = 0;
330  
331  		if (xfs_has_reflink(mp))
332  			adj = xfs_calc_buf_res(
333  					xfs_refcountbt_block_count(mp, 2),
334  					blksz);
335  		t1 += adj;
336  		t3 += adj;
337  		return XFS_DQUOT_LOGRES + max3(t1, t2, t3);
338  	}
339  
340  	t4 = xfs_calc_refcountbt_reservation(mp, 1);
341  	return XFS_DQUOT_LOGRES + max(t4, max3(t1, t2, t3));
342  }
343  
344  unsigned int
xfs_calc_write_reservation_minlogsize(struct xfs_mount * mp)345  xfs_calc_write_reservation_minlogsize(
346  	struct xfs_mount	*mp)
347  {
348  	return xfs_calc_write_reservation(mp, true);
349  }
350  
351  /*
352   * In truncating a file we free up to two extents at once.  We can modify (t1):
353   *    the inode being truncated: inode size
354   *    the inode's bmap btree: (max depth + 1) * block size
355   * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
356   *    the agf for each of the ags: 4 * sector size
357   *    the agfl for each of the ags: 4 * sector size
358   *    the super block to reflect the freed blocks: sector size
359   *    worst case split in allocation btrees per extent assuming 4 extents:
360   *		4 exts * 2 trees * (2 * max depth - 1) * block size
361   * Or, if it's a realtime file (t3):
362   *    the agf for each of the ags: 2 * sector size
363   *    the agfl for each of the ags: 2 * sector size
364   *    the super block to reflect the freed blocks: sector size
365   *    the realtime bitmap:
366   *		2 exts * ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
367   *    the realtime summary: 2 exts * 1 block
368   *    worst case split in allocation btrees per extent assuming 2 extents:
369   *		2 exts * 2 trees * (2 * max depth - 1) * block size
370   * And any refcount updates that happen in a separate transaction (t4).
371   */
372  STATIC uint
xfs_calc_itruncate_reservation(struct xfs_mount * mp,bool for_minlogsize)373  xfs_calc_itruncate_reservation(
374  	struct xfs_mount	*mp,
375  	bool			for_minlogsize)
376  {
377  	unsigned int		t1, t2, t3, t4;
378  	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
379  
380  	t1 = xfs_calc_inode_res(mp, 1) +
381  	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
382  
383  	t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
384  	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4), blksz);
385  
386  	if (xfs_has_realtime(mp)) {
387  		t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
388  		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 2), blksz) +
389  		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
390  	} else {
391  		t3 = 0;
392  	}
393  
394  	/*
395  	 * In the early days of reflink, we included enough reservation to log
396  	 * four refcountbt splits in the same transaction as bnobt/cntbt
397  	 * updates.  The codebase runs refcountbt updates in separate
398  	 * transactions now, so to compute the minimum log size, add the
399  	 * refcount btree splits back here and do not compute them separately
400  	 * as t4.  Reflink did not support realtime when the reservations were
401  	 * established, so do not adjust t3.
402  	 */
403  	if (for_minlogsize) {
404  		if (xfs_has_reflink(mp))
405  			t2 += xfs_calc_buf_res(
406  					xfs_refcountbt_block_count(mp, 4),
407  					blksz);
408  
409  		return XFS_DQUOT_LOGRES + max3(t1, t2, t3);
410  	}
411  
412  	t4 = xfs_calc_refcountbt_reservation(mp, 2);
413  	return XFS_DQUOT_LOGRES + max(t4, max3(t1, t2, t3));
414  }
415  
416  unsigned int
xfs_calc_itruncate_reservation_minlogsize(struct xfs_mount * mp)417  xfs_calc_itruncate_reservation_minlogsize(
418  	struct xfs_mount	*mp)
419  {
420  	return xfs_calc_itruncate_reservation(mp, true);
421  }
422  
423  /*
424   * In renaming a files we can modify:
425   *    the five inodes involved: 5 * inode size
426   *    the two directory btrees: 2 * (max depth + v2) * dir block size
427   *    the two directory bmap btrees: 2 * max depth * block size
428   * And the bmap_finish transaction can free dir and bmap blocks (two sets
429   *	of bmap blocks) giving:
430   *    the agf for the ags in which the blocks live: 3 * sector size
431   *    the agfl for the ags in which the blocks live: 3 * sector size
432   *    the superblock for the free block count: sector size
433   *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
434   */
435  STATIC uint
xfs_calc_rename_reservation(struct xfs_mount * mp)436  xfs_calc_rename_reservation(
437  	struct xfs_mount	*mp)
438  {
439  	return XFS_DQUOT_LOGRES +
440  		max((xfs_calc_inode_res(mp, 5) +
441  		     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
442  				      XFS_FSB_TO_B(mp, 1))),
443  		    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
444  		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 3),
445  				      XFS_FSB_TO_B(mp, 1))));
446  }
447  
448  /*
449   * For removing an inode from unlinked list at first, we can modify:
450   *    the agi hash list and counters: sector size
451   *    the on disk inode before ours in the agi hash list: inode cluster size
452   *    the on disk inode in the agi hash list: inode cluster size
453   */
454  STATIC uint
xfs_calc_iunlink_remove_reservation(struct xfs_mount * mp)455  xfs_calc_iunlink_remove_reservation(
456  	struct xfs_mount        *mp)
457  {
458  	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
459  	       2 * M_IGEO(mp)->inode_cluster_size;
460  }
461  
462  /*
463   * For creating a link to an inode:
464   *    the parent directory inode: inode size
465   *    the linked inode: inode size
466   *    the directory btree could split: (max depth + v2) * dir block size
467   *    the directory bmap btree could join or split: (max depth + v2) * blocksize
468   * And the bmap_finish transaction can free some bmap blocks giving:
469   *    the agf for the ag in which the blocks live: sector size
470   *    the agfl for the ag in which the blocks live: sector size
471   *    the superblock for the free block count: sector size
472   *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
473   */
474  STATIC uint
xfs_calc_link_reservation(struct xfs_mount * mp)475  xfs_calc_link_reservation(
476  	struct xfs_mount	*mp)
477  {
478  	return XFS_DQUOT_LOGRES +
479  		xfs_calc_iunlink_remove_reservation(mp) +
480  		max((xfs_calc_inode_res(mp, 2) +
481  		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
482  				      XFS_FSB_TO_B(mp, 1))),
483  		    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
484  		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
485  				      XFS_FSB_TO_B(mp, 1))));
486  }
487  
488  /*
489   * For adding an inode to unlinked list we can modify:
490   *    the agi hash list: sector size
491   *    the on disk inode: inode cluster size
492   */
493  STATIC uint
xfs_calc_iunlink_add_reservation(xfs_mount_t * mp)494  xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
495  {
496  	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
497  			M_IGEO(mp)->inode_cluster_size;
498  }
499  
500  /*
501   * For removing a directory entry we can modify:
502   *    the parent directory inode: inode size
503   *    the removed inode: inode size
504   *    the directory btree could join: (max depth + v2) * dir block size
505   *    the directory bmap btree could join or split: (max depth + v2) * blocksize
506   * And the bmap_finish transaction can free the dir and bmap blocks giving:
507   *    the agf for the ag in which the blocks live: 2 * sector size
508   *    the agfl for the ag in which the blocks live: 2 * sector size
509   *    the superblock for the free block count: sector size
510   *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
511   */
512  STATIC uint
xfs_calc_remove_reservation(struct xfs_mount * mp)513  xfs_calc_remove_reservation(
514  	struct xfs_mount	*mp)
515  {
516  	return XFS_DQUOT_LOGRES +
517  		xfs_calc_iunlink_add_reservation(mp) +
518  		max((xfs_calc_inode_res(mp, 2) +
519  		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
520  				      XFS_FSB_TO_B(mp, 1))),
521  		    (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
522  		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
523  				      XFS_FSB_TO_B(mp, 1))));
524  }
525  
526  /*
527   * For create, break it in to the two cases that the transaction
528   * covers. We start with the modify case - allocation done by modification
529   * of the state of existing inodes - and the allocation case.
530   */
531  
532  /*
533   * For create we can modify:
534   *    the parent directory inode: inode size
535   *    the new inode: inode size
536   *    the inode btree entry: block size
537   *    the superblock for the nlink flag: sector size
538   *    the directory btree: (max depth + v2) * dir block size
539   *    the directory inode's bmap btree: (max depth + v2) * block size
540   *    the finobt (record modification and allocation btrees)
541   */
542  STATIC uint
xfs_calc_create_resv_modify(struct xfs_mount * mp)543  xfs_calc_create_resv_modify(
544  	struct xfs_mount	*mp)
545  {
546  	return xfs_calc_inode_res(mp, 2) +
547  		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
548  		(uint)XFS_FSB_TO_B(mp, 1) +
549  		xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
550  		xfs_calc_finobt_res(mp);
551  }
552  
553  /*
554   * For icreate we can allocate some inodes giving:
555   *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
556   *    the superblock for the nlink flag: sector size
557   *    the inode chunk (allocation, optional init)
558   *    the inobt (record insertion)
559   *    the finobt (optional, record insertion)
560   */
561  STATIC uint
xfs_calc_icreate_resv_alloc(struct xfs_mount * mp)562  xfs_calc_icreate_resv_alloc(
563  	struct xfs_mount	*mp)
564  {
565  	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
566  		mp->m_sb.sb_sectsize +
567  		xfs_calc_inode_chunk_res(mp, _ALLOC) +
568  		xfs_calc_inobt_res(mp) +
569  		xfs_calc_finobt_res(mp);
570  }
571  
572  STATIC uint
xfs_calc_icreate_reservation(xfs_mount_t * mp)573  xfs_calc_icreate_reservation(xfs_mount_t *mp)
574  {
575  	return XFS_DQUOT_LOGRES +
576  		max(xfs_calc_icreate_resv_alloc(mp),
577  		    xfs_calc_create_resv_modify(mp));
578  }
579  
580  STATIC uint
xfs_calc_create_tmpfile_reservation(struct xfs_mount * mp)581  xfs_calc_create_tmpfile_reservation(
582  	struct xfs_mount        *mp)
583  {
584  	uint	res = XFS_DQUOT_LOGRES;
585  
586  	res += xfs_calc_icreate_resv_alloc(mp);
587  	return res + xfs_calc_iunlink_add_reservation(mp);
588  }
589  
590  /*
591   * Making a new directory is the same as creating a new file.
592   */
593  STATIC uint
xfs_calc_mkdir_reservation(struct xfs_mount * mp)594  xfs_calc_mkdir_reservation(
595  	struct xfs_mount	*mp)
596  {
597  	return xfs_calc_icreate_reservation(mp);
598  }
599  
600  
601  /*
602   * Making a new symplink is the same as creating a new file, but
603   * with the added blocks for remote symlink data which can be up to 1kB in
604   * length (XFS_SYMLINK_MAXLEN).
605   */
606  STATIC uint
xfs_calc_symlink_reservation(struct xfs_mount * mp)607  xfs_calc_symlink_reservation(
608  	struct xfs_mount	*mp)
609  {
610  	return xfs_calc_icreate_reservation(mp) +
611  	       xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
612  }
613  
614  /*
615   * In freeing an inode we can modify:
616   *    the inode being freed: inode size
617   *    the super block free inode counter, AGF and AGFL: sector size
618   *    the on disk inode (agi unlinked list removal)
619   *    the inode chunk (invalidated, headers only)
620   *    the inode btree
621   *    the finobt (record insertion, removal or modification)
622   *
623   * Note that the inode chunk res. includes an allocfree res. for freeing of the
624   * inode chunk. This is technically extraneous because the inode chunk free is
625   * deferred (it occurs after a transaction roll). Include the extra reservation
626   * anyways since we've had reports of ifree transaction overruns due to too many
627   * agfl fixups during inode chunk frees.
628   */
629  STATIC uint
xfs_calc_ifree_reservation(struct xfs_mount * mp)630  xfs_calc_ifree_reservation(
631  	struct xfs_mount	*mp)
632  {
633  	return XFS_DQUOT_LOGRES +
634  		xfs_calc_inode_res(mp, 1) +
635  		xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
636  		xfs_calc_iunlink_remove_reservation(mp) +
637  		xfs_calc_inode_chunk_res(mp, _FREE) +
638  		xfs_calc_inobt_res(mp) +
639  		xfs_calc_finobt_res(mp);
640  }
641  
642  /*
643   * When only changing the inode we log the inode and possibly the superblock
644   * We also add a bit of slop for the transaction stuff.
645   */
646  STATIC uint
xfs_calc_ichange_reservation(struct xfs_mount * mp)647  xfs_calc_ichange_reservation(
648  	struct xfs_mount	*mp)
649  {
650  	return XFS_DQUOT_LOGRES +
651  		xfs_calc_inode_res(mp, 1) +
652  		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
653  
654  }
655  
656  /*
657   * Growing the data section of the filesystem.
658   *	superblock
659   *	agi and agf
660   *	allocation btrees
661   */
662  STATIC uint
xfs_calc_growdata_reservation(struct xfs_mount * mp)663  xfs_calc_growdata_reservation(
664  	struct xfs_mount	*mp)
665  {
666  	return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
667  		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
668  				 XFS_FSB_TO_B(mp, 1));
669  }
670  
671  /*
672   * Growing the rt section of the filesystem.
673   * In the first set of transactions (ALLOC) we allocate space to the
674   * bitmap or summary files.
675   *	superblock: sector size
676   *	agf of the ag from which the extent is allocated: sector size
677   *	bmap btree for bitmap/summary inode: max depth * blocksize
678   *	bitmap/summary inode: inode size
679   *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
680   */
681  STATIC uint
xfs_calc_growrtalloc_reservation(struct xfs_mount * mp)682  xfs_calc_growrtalloc_reservation(
683  	struct xfs_mount	*mp)
684  {
685  	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
686  		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
687  				 XFS_FSB_TO_B(mp, 1)) +
688  		xfs_calc_inode_res(mp, 1) +
689  		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
690  				 XFS_FSB_TO_B(mp, 1));
691  }
692  
693  /*
694   * Growing the rt section of the filesystem.
695   * In the second set of transactions (ZERO) we zero the new metadata blocks.
696   *	one bitmap/summary block: blocksize
697   */
698  STATIC uint
xfs_calc_growrtzero_reservation(struct xfs_mount * mp)699  xfs_calc_growrtzero_reservation(
700  	struct xfs_mount	*mp)
701  {
702  	return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
703  }
704  
705  /*
706   * Growing the rt section of the filesystem.
707   * In the third set of transactions (FREE) we update metadata without
708   * allocating any new blocks.
709   *	superblock: sector size
710   *	bitmap inode: inode size
711   *	summary inode: inode size
712   *	one bitmap block: blocksize
713   *	summary blocks: new summary size
714   */
715  STATIC uint
xfs_calc_growrtfree_reservation(struct xfs_mount * mp)716  xfs_calc_growrtfree_reservation(
717  	struct xfs_mount	*mp)
718  {
719  	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
720  		xfs_calc_inode_res(mp, 2) +
721  		xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
722  		xfs_calc_buf_res(1, mp->m_rsumsize);
723  }
724  
725  /*
726   * Logging the inode modification timestamp on a synchronous write.
727   *	inode
728   */
729  STATIC uint
xfs_calc_swrite_reservation(struct xfs_mount * mp)730  xfs_calc_swrite_reservation(
731  	struct xfs_mount	*mp)
732  {
733  	return xfs_calc_inode_res(mp, 1);
734  }
735  
736  /*
737   * Logging the inode mode bits when writing a setuid/setgid file
738   *	inode
739   */
740  STATIC uint
xfs_calc_writeid_reservation(struct xfs_mount * mp)741  xfs_calc_writeid_reservation(
742  	struct xfs_mount	*mp)
743  {
744  	return xfs_calc_inode_res(mp, 1);
745  }
746  
747  /*
748   * Converting the inode from non-attributed to attributed.
749   *	the inode being converted: inode size
750   *	agf block and superblock (for block allocation)
751   *	the new block (directory sized)
752   *	bmap blocks for the new directory block
753   *	allocation btrees
754   */
755  STATIC uint
xfs_calc_addafork_reservation(struct xfs_mount * mp)756  xfs_calc_addafork_reservation(
757  	struct xfs_mount	*mp)
758  {
759  	return XFS_DQUOT_LOGRES +
760  		xfs_calc_inode_res(mp, 1) +
761  		xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
762  		xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
763  		xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
764  				 XFS_FSB_TO_B(mp, 1)) +
765  		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
766  				 XFS_FSB_TO_B(mp, 1));
767  }
768  
769  /*
770   * Removing the attribute fork of a file
771   *    the inode being truncated: inode size
772   *    the inode's bmap btree: max depth * block size
773   * And the bmap_finish transaction can free the blocks and bmap blocks:
774   *    the agf for each of the ags: 4 * sector size
775   *    the agfl for each of the ags: 4 * sector size
776   *    the super block to reflect the freed blocks: sector size
777   *    worst case split in allocation btrees per extent assuming 4 extents:
778   *		4 exts * 2 trees * (2 * max depth - 1) * block size
779   */
780  STATIC uint
xfs_calc_attrinval_reservation(struct xfs_mount * mp)781  xfs_calc_attrinval_reservation(
782  	struct xfs_mount	*mp)
783  {
784  	return max((xfs_calc_inode_res(mp, 1) +
785  		    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
786  				     XFS_FSB_TO_B(mp, 1))),
787  		   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
788  		    xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4),
789  				     XFS_FSB_TO_B(mp, 1))));
790  }
791  
792  /*
793   * Setting an attribute at mount time.
794   *	the inode getting the attribute
795   *	the superblock for allocations
796   *	the agfs extents are allocated from
797   *	the attribute btree * max depth
798   *	the inode allocation btree
799   * Since attribute transaction space is dependent on the size of the attribute,
800   * the calculation is done partially at mount time and partially at runtime(see
801   * below).
802   */
803  STATIC uint
xfs_calc_attrsetm_reservation(struct xfs_mount * mp)804  xfs_calc_attrsetm_reservation(
805  	struct xfs_mount	*mp)
806  {
807  	return XFS_DQUOT_LOGRES +
808  		xfs_calc_inode_res(mp, 1) +
809  		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
810  		xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
811  }
812  
813  /*
814   * Setting an attribute at runtime, transaction space unit per block.
815   * 	the superblock for allocations: sector size
816   *	the inode bmap btree could join or split: max depth * block size
817   * Since the runtime attribute transaction space is dependent on the total
818   * blocks needed for the 1st bmap, here we calculate out the space unit for
819   * one block so that the caller could figure out the total space according
820   * to the attibute extent length in blocks by:
821   *	ext * M_RES(mp)->tr_attrsetrt.tr_logres
822   */
823  STATIC uint
xfs_calc_attrsetrt_reservation(struct xfs_mount * mp)824  xfs_calc_attrsetrt_reservation(
825  	struct xfs_mount	*mp)
826  {
827  	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
828  		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
829  				 XFS_FSB_TO_B(mp, 1));
830  }
831  
832  /*
833   * Removing an attribute.
834   *    the inode: inode size
835   *    the attribute btree could join: max depth * block size
836   *    the inode bmap btree could join or split: max depth * block size
837   * And the bmap_finish transaction can free the attr blocks freed giving:
838   *    the agf for the ag in which the blocks live: 2 * sector size
839   *    the agfl for the ag in which the blocks live: 2 * sector size
840   *    the superblock for the free block count: sector size
841   *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
842   */
843  STATIC uint
xfs_calc_attrrm_reservation(struct xfs_mount * mp)844  xfs_calc_attrrm_reservation(
845  	struct xfs_mount	*mp)
846  {
847  	return XFS_DQUOT_LOGRES +
848  		max((xfs_calc_inode_res(mp, 1) +
849  		     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
850  				      XFS_FSB_TO_B(mp, 1)) +
851  		     (uint)XFS_FSB_TO_B(mp,
852  					XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
853  		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
854  		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
855  		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
856  				      XFS_FSB_TO_B(mp, 1))));
857  }
858  
859  /*
860   * Clearing a bad agino number in an agi hash bucket.
861   */
862  STATIC uint
xfs_calc_clear_agi_bucket_reservation(struct xfs_mount * mp)863  xfs_calc_clear_agi_bucket_reservation(
864  	struct xfs_mount	*mp)
865  {
866  	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
867  }
868  
869  /*
870   * Adjusting quota limits.
871   *    the disk quota buffer: sizeof(struct xfs_disk_dquot)
872   */
873  STATIC uint
xfs_calc_qm_setqlim_reservation(void)874  xfs_calc_qm_setqlim_reservation(void)
875  {
876  	return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
877  }
878  
879  /*
880   * Allocating quota on disk if needed.
881   *	the write transaction log space for quota file extent allocation
882   *	the unit of quota allocation: one system block size
883   */
884  STATIC uint
xfs_calc_qm_dqalloc_reservation(struct xfs_mount * mp,bool for_minlogsize)885  xfs_calc_qm_dqalloc_reservation(
886  	struct xfs_mount	*mp,
887  	bool			for_minlogsize)
888  {
889  	return xfs_calc_write_reservation(mp, for_minlogsize) +
890  		xfs_calc_buf_res(1,
891  			XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
892  }
893  
894  unsigned int
xfs_calc_qm_dqalloc_reservation_minlogsize(struct xfs_mount * mp)895  xfs_calc_qm_dqalloc_reservation_minlogsize(
896  	struct xfs_mount	*mp)
897  {
898  	return xfs_calc_qm_dqalloc_reservation(mp, true);
899  }
900  
901  /*
902   * Syncing the incore super block changes to disk.
903   *     the super block to reflect the changes: sector size
904   */
905  STATIC uint
xfs_calc_sb_reservation(struct xfs_mount * mp)906  xfs_calc_sb_reservation(
907  	struct xfs_mount	*mp)
908  {
909  	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
910  }
911  
912  void
xfs_trans_resv_calc(struct xfs_mount * mp,struct xfs_trans_resv * resp)913  xfs_trans_resv_calc(
914  	struct xfs_mount	*mp,
915  	struct xfs_trans_resv	*resp)
916  {
917  	int			logcount_adj = 0;
918  
919  	/*
920  	 * The following transactions are logged in physical format and
921  	 * require a permanent reservation on space.
922  	 */
923  	resp->tr_write.tr_logres = xfs_calc_write_reservation(mp, false);
924  	resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
925  	resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
926  
927  	resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp, false);
928  	resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
929  	resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
930  
931  	resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
932  	resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
933  	resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
934  
935  	resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
936  	resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
937  	resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
938  
939  	resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
940  	resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
941  	resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
942  
943  	resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
944  	resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
945  	resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
946  
947  	resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
948  	resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
949  	resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
950  
951  	resp->tr_create_tmpfile.tr_logres =
952  			xfs_calc_create_tmpfile_reservation(mp);
953  	resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
954  	resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
955  
956  	resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
957  	resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
958  	resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
959  
960  	resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
961  	resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
962  	resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
963  
964  	resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
965  	resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
966  	resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
967  
968  	resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
969  	resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
970  	resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
971  
972  	resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
973  	resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
974  	resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
975  
976  	resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
977  	resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
978  	resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
979  
980  	resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
981  	resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
982  	resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
983  
984  	resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp,
985  			false);
986  	resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
987  	resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
988  
989  	/*
990  	 * The following transactions are logged in logical format with
991  	 * a default log count.
992  	 */
993  	resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
994  	resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
995  
996  	resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
997  	resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
998  
999  	/* growdata requires permanent res; it can free space to the last AG */
1000  	resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
1001  	resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
1002  	resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
1003  
1004  	/* The following transaction are logged in logical format */
1005  	resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
1006  	resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
1007  	resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
1008  	resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
1009  	resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
1010  	resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
1011  	resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
1012  
1013  	/*
1014  	 * Add one logcount for BUI items that appear with rmap or reflink,
1015  	 * one logcount for refcount intent items, and one logcount for rmap
1016  	 * intent items.
1017  	 */
1018  	if (xfs_has_reflink(mp) || xfs_has_rmapbt(mp))
1019  		logcount_adj++;
1020  	if (xfs_has_reflink(mp))
1021  		logcount_adj++;
1022  	if (xfs_has_rmapbt(mp))
1023  		logcount_adj++;
1024  
1025  	resp->tr_itruncate.tr_logcount += logcount_adj;
1026  	resp->tr_write.tr_logcount += logcount_adj;
1027  	resp->tr_qm_dqalloc.tr_logcount += logcount_adj;
1028  }
1029