xref: /openbmc/linux/drivers/phy/xilinx/phy-zynqmp.c (revision 76009ee7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4  *
5  * Copyright (C) 2018-2020 Xilinx Inc.
6  *
7  * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8  * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *
11  * This driver is tested for USB, SGMII, SATA and Display Port currently.
12  * PCIe should also work but that is experimental as of now.
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/phy/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/phy/phy.h>
27 
28 /*
29  * Lane Registers
30  */
31 
32 /* TX De-emphasis parameters */
33 #define L0_TX_ANA_TM_18			0x0048
34 #define L0_TX_ANA_TM_118		0x01d8
35 #define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
36 
37 /* DN Resistor calibration code parameters */
38 #define L0_TXPMA_ST_3			0x0b0c
39 #define L0_DN_CALIB_CODE		0x3f
40 
41 /* PMA control parameters */
42 #define L0_TXPMD_TM_45			0x0cb4
43 #define L0_TXPMD_TM_48			0x0cc0
44 #define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
45 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
46 #define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
47 #define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
48 #define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
49 #define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
50 
51 /* PCS control parameters */
52 #define L0_TM_DIG_6			0x106c
53 #define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
54 #define L0_TX_DIG_61			0x00f4
55 #define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
56 
57 /* PLL Test Mode register parameters */
58 #define L0_TM_PLL_DIG_37		0x2094
59 #define L0_TM_COARSE_CODE_LIMIT		0x10
60 
61 /* PLL SSC step size offsets */
62 #define L0_PLL_SS_STEPS_0_LSB		0x2368
63 #define L0_PLL_SS_STEPS_1_MSB		0x236c
64 #define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
65 #define L0_PLL_SS_STEP_SIZE_1		0x2374
66 #define L0_PLL_SS_STEP_SIZE_2		0x2378
67 #define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
68 #define L0_PLL_STATUS_READ_1		0x23e4
69 
70 /* SSC step size parameters */
71 #define STEP_SIZE_0_MASK		0xff
72 #define STEP_SIZE_1_MASK		0xff
73 #define STEP_SIZE_2_MASK		0xff
74 #define STEP_SIZE_3_MASK		0x3
75 #define STEP_SIZE_SHIFT			8
76 #define FORCE_STEP_SIZE			0x10
77 #define FORCE_STEPS			0x20
78 #define STEPS_0_MASK			0xff
79 #define STEPS_1_MASK			0x07
80 
81 /* Reference clock selection parameters */
82 #define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
83 #define L0_REF_CLK_SEL_MASK		0x8f
84 
85 /* Calibration digital logic parameters */
86 #define L3_TM_CALIB_DIG19		0xec4c
87 #define L3_CALIB_DONE_STATUS		0xef14
88 #define L3_TM_CALIB_DIG18		0xec48
89 #define L3_TM_CALIB_DIG19_NSW		0x07
90 #define L3_TM_CALIB_DIG18_NSW		0xe0
91 #define L3_TM_OVERRIDE_NSW_CODE         0x20
92 #define L3_CALIB_DONE			0x02
93 #define L3_NSW_SHIFT			5
94 #define L3_NSW_PIPE_SHIFT		4
95 #define L3_NSW_CALIB_SHIFT		3
96 
97 #define PHY_REG_OFFSET			0x4000
98 
99 /*
100  * Global Registers
101  */
102 
103 /* Refclk selection parameters */
104 #define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
105 #define PLL_FREQ_MASK			0x1f
106 #define PLL_STATUS_LOCKED		0x10
107 
108 /* Inter Connect Matrix parameters */
109 #define ICM_CFG0			0x10010
110 #define ICM_CFG1			0x10014
111 #define ICM_CFG0_L0_MASK		0x07
112 #define ICM_CFG0_L1_MASK		0x70
113 #define ICM_CFG1_L2_MASK		0x07
114 #define ICM_CFG2_L3_MASK		0x70
115 #define ICM_CFG_SHIFT			4
116 
117 /* Inter Connect Matrix allowed protocols */
118 #define ICM_PROTOCOL_PD			0x0
119 #define ICM_PROTOCOL_PCIE		0x1
120 #define ICM_PROTOCOL_SATA		0x2
121 #define ICM_PROTOCOL_USB		0x3
122 #define ICM_PROTOCOL_DP			0x4
123 #define ICM_PROTOCOL_SGMII		0x5
124 
125 /* Test Mode common reset control  parameters */
126 #define TM_CMN_RST			0x10018
127 #define TM_CMN_RST_EN			0x1
128 #define TM_CMN_RST_SET			0x2
129 #define TM_CMN_RST_MASK			0x3
130 
131 /* Bus width parameters */
132 #define TX_PROT_BUS_WIDTH		0x10040
133 #define RX_PROT_BUS_WIDTH		0x10044
134 #define PROT_BUS_WIDTH_10		0x0
135 #define PROT_BUS_WIDTH_20		0x1
136 #define PROT_BUS_WIDTH_40		0x2
137 #define PROT_BUS_WIDTH_SHIFT(n)		((n) * 2)
138 #define PROT_BUS_WIDTH_MASK(n)		GENMASK((n) * 2 + 1, (n) * 2)
139 
140 /* Number of GT lanes */
141 #define NUM_LANES			4
142 
143 /* SIOU SATA control register */
144 #define SATA_CONTROL_OFFSET		0x0100
145 
146 /* Total number of controllers */
147 #define CONTROLLERS_PER_LANE		5
148 
149 /* Protocol Type parameters */
150 #define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
151 #define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
152 #define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
153 #define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
154 #define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
155 #define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
156 #define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
157 #define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
158 #define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
159 #define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
160 #define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
161 #define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
162 #define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
163 #define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
164 
165 /* Timeout values */
166 #define TIMEOUT_US			1000
167 
168 struct xpsgtr_dev;
169 
170 /**
171  * struct xpsgtr_ssc - structure to hold SSC settings for a lane
172  * @refclk_rate: PLL reference clock frequency
173  * @pll_ref_clk: value to be written to register for corresponding ref clk rate
174  * @steps: number of steps of SSC (Spread Spectrum Clock)
175  * @step_size: step size of each step
176  */
177 struct xpsgtr_ssc {
178 	u32 refclk_rate;
179 	u8  pll_ref_clk;
180 	u32 steps;
181 	u32 step_size;
182 };
183 
184 /**
185  * struct xpsgtr_phy - representation of a lane
186  * @phy: pointer to the kernel PHY device
187  * @type: controller which uses this lane
188  * @lane: lane number
189  * @protocol: protocol in which the lane operates
190  * @skip_phy_init: skip phy_init() if true
191  * @dev: pointer to the xpsgtr_dev instance
192  * @refclk: reference clock index
193  */
194 struct xpsgtr_phy {
195 	struct phy *phy;
196 	u8 type;
197 	u8 lane;
198 	u8 protocol;
199 	bool skip_phy_init;
200 	struct xpsgtr_dev *dev;
201 	unsigned int refclk;
202 };
203 
204 /**
205  * struct xpsgtr_dev - representation of a ZynMP GT device
206  * @dev: pointer to device
207  * @serdes: serdes base address
208  * @siou: siou base address
209  * @gtr_mutex: mutex for locking
210  * @phys: PHY lanes
211  * @refclk_sscs: spread spectrum settings for the reference clocks
212  * @clk: reference clocks
213  * @tx_term_fix: fix for GT issue
214  * @saved_icm_cfg0: stored value of ICM CFG0 register
215  * @saved_icm_cfg1: stored value of ICM CFG1 register
216  */
217 struct xpsgtr_dev {
218 	struct device *dev;
219 	void __iomem *serdes;
220 	void __iomem *siou;
221 	struct mutex gtr_mutex; /* mutex for locking */
222 	struct xpsgtr_phy phys[NUM_LANES];
223 	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
224 	struct clk *clk[NUM_LANES];
225 	bool tx_term_fix;
226 	unsigned int saved_icm_cfg0;
227 	unsigned int saved_icm_cfg1;
228 };
229 
230 /*
231  * Configuration Data
232  */
233 
234 /* lookup table to hold all settings needed for a ref clock frequency */
235 static const struct xpsgtr_ssc ssc_lookup[] = {
236 	{  19200000, 0x05,  608, 264020 },
237 	{  20000000, 0x06,  634, 243454 },
238 	{  24000000, 0x07,  760, 168973 },
239 	{  26000000, 0x08,  824, 143860 },
240 	{  27000000, 0x09,  856,  86551 },
241 	{  38400000, 0x0a, 1218,  65896 },
242 	{  40000000, 0x0b,  634, 243454 },
243 	{  52000000, 0x0c,  824, 143860 },
244 	{ 100000000, 0x0d, 1058,  87533 },
245 	{ 108000000, 0x0e,  856,  86551 },
246 	{ 125000000, 0x0f,  992, 119497 },
247 	{ 135000000, 0x10, 1070,  55393 },
248 	{ 150000000, 0x11,  792, 187091 }
249 };
250 
251 /*
252  * I/O Accessors
253  */
254 
xpsgtr_read(struct xpsgtr_dev * gtr_dev,u32 reg)255 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
256 {
257 	return readl(gtr_dev->serdes + reg);
258 }
259 
xpsgtr_write(struct xpsgtr_dev * gtr_dev,u32 reg,u32 value)260 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
261 {
262 	writel(value, gtr_dev->serdes + reg);
263 }
264 
xpsgtr_clr_set(struct xpsgtr_dev * gtr_dev,u32 reg,u32 clr,u32 set)265 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
266 				  u32 clr, u32 set)
267 {
268 	u32 value = xpsgtr_read(gtr_dev, reg);
269 
270 	value &= ~clr;
271 	value |= set;
272 	xpsgtr_write(gtr_dev, reg, value);
273 }
274 
xpsgtr_read_phy(struct xpsgtr_phy * gtr_phy,u32 reg)275 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
276 {
277 	void __iomem *addr = gtr_phy->dev->serdes
278 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
279 
280 	return readl(addr);
281 }
282 
xpsgtr_write_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 value)283 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
284 				    u32 reg, u32 value)
285 {
286 	void __iomem *addr = gtr_phy->dev->serdes
287 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
288 
289 	writel(value, addr);
290 }
291 
xpsgtr_clr_set_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 clr,u32 set)292 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
293 				      u32 reg, u32 clr, u32 set)
294 {
295 	void __iomem *addr = gtr_phy->dev->serdes
296 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
297 
298 	writel((readl(addr) & ~clr) | set, addr);
299 }
300 
301 /*
302  * Hardware Configuration
303  */
304 
305 /* Wait for the PLL to lock (with a timeout). */
xpsgtr_wait_pll_lock(struct phy * phy)306 static int xpsgtr_wait_pll_lock(struct phy *phy)
307 {
308 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
309 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
310 	unsigned int timeout = TIMEOUT_US;
311 	int ret;
312 
313 	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
314 
315 	while (1) {
316 		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
317 
318 		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
319 			ret = 0;
320 			break;
321 		}
322 
323 		if (--timeout == 0) {
324 			ret = -ETIMEDOUT;
325 			break;
326 		}
327 
328 		udelay(1);
329 	}
330 
331 	if (ret == -ETIMEDOUT)
332 		dev_err(gtr_dev->dev,
333 			"lane %u (type %u, protocol %u): PLL lock timeout\n",
334 			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
335 
336 	return ret;
337 }
338 
339 /* Configure PLL and spread-sprectrum clock. */
xpsgtr_configure_pll(struct xpsgtr_phy * gtr_phy)340 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
341 {
342 	const struct xpsgtr_ssc *ssc;
343 	u32 step_size;
344 
345 	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
346 	step_size = ssc->step_size;
347 
348 	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
349 		       PLL_FREQ_MASK, ssc->pll_ref_clk);
350 
351 	/* Enable lane clock sharing, if required */
352 	if (gtr_phy->refclk != gtr_phy->lane) {
353 		/* Lane3 Ref Clock Selection Register */
354 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
355 			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
356 	}
357 
358 	/* SSC step size [7:0] */
359 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
360 			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
361 
362 	/* SSC step size [15:8] */
363 	step_size >>= STEP_SIZE_SHIFT;
364 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
365 			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
366 
367 	/* SSC step size [23:16] */
368 	step_size >>= STEP_SIZE_SHIFT;
369 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
370 			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
371 
372 	/* SSC steps [7:0] */
373 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
374 			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
375 
376 	/* SSC steps [10:8] */
377 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
378 			   STEPS_1_MASK,
379 			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
380 
381 	/* SSC step size [24:25] */
382 	step_size >>= STEP_SIZE_SHIFT;
383 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
384 			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
385 			   FORCE_STEP_SIZE | FORCE_STEPS);
386 }
387 
388 /* Configure the lane protocol. */
xpsgtr_lane_set_protocol(struct xpsgtr_phy * gtr_phy)389 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
390 {
391 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
392 	u8 protocol = gtr_phy->protocol;
393 
394 	switch (gtr_phy->lane) {
395 	case 0:
396 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
397 		break;
398 	case 1:
399 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
400 			       protocol << ICM_CFG_SHIFT);
401 		break;
402 	case 2:
403 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
404 		break;
405 	case 3:
406 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
407 			       protocol << ICM_CFG_SHIFT);
408 		break;
409 	default:
410 		/* We already checked 0 <= lane <= 3 */
411 		break;
412 	}
413 }
414 
415 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */
xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy * gtr_phy)416 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
417 {
418 	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
419 	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
420 }
421 
422 /* DP-specific initialization. */
xpsgtr_phy_init_dp(struct xpsgtr_phy * gtr_phy)423 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
424 {
425 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
426 			 L0_TXPMD_TM_45_OVER_DP_MAIN |
427 			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
428 			 L0_TXPMD_TM_45_OVER_DP_POST1 |
429 			 L0_TXPMD_TM_45_OVER_DP_POST2 |
430 			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
431 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
432 			 L0_TX_ANA_TM_118_FORCE_17_0);
433 }
434 
435 /* SATA-specific initialization. */
xpsgtr_phy_init_sata(struct xpsgtr_phy * gtr_phy)436 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
437 {
438 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
439 
440 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
441 
442 	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
443 }
444 
445 /* SGMII-specific initialization. */
xpsgtr_phy_init_sgmii(struct xpsgtr_phy * gtr_phy)446 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
447 {
448 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
449 	u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
450 	u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
451 
452 	/* Set SGMII protocol TX and RX bus width to 10 bits. */
453 	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
454 	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
455 
456 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
457 }
458 
459 /* Configure TX de-emphasis and margining for DP. */
xpsgtr_phy_configure_dp(struct xpsgtr_phy * gtr_phy,unsigned int pre,unsigned int voltage)460 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
461 				    unsigned int voltage)
462 {
463 	static const u8 voltage_swing[4][4] = {
464 		{ 0x2a, 0x27, 0x24, 0x20 },
465 		{ 0x27, 0x23, 0x20, 0xff },
466 		{ 0x24, 0x20, 0xff, 0xff },
467 		{ 0xff, 0xff, 0xff, 0xff }
468 	};
469 	static const u8 pre_emphasis[4][4] = {
470 		{ 0x02, 0x02, 0x02, 0x02 },
471 		{ 0x01, 0x01, 0x01, 0xff },
472 		{ 0x00, 0x00, 0xff, 0xff },
473 		{ 0xff, 0xff, 0xff, 0xff }
474 	};
475 
476 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
477 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
478 }
479 
480 /*
481  * PHY Operations
482  */
483 
xpsgtr_phy_init_required(struct xpsgtr_phy * gtr_phy)484 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
485 {
486 	/*
487 	 * As USB may save the snapshot of the states during hibernation, doing
488 	 * phy_init() will put the USB controller into reset, resulting in the
489 	 * losing of the saved snapshot. So try to avoid phy_init() for USB
490 	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
491 	 * shutdown during suspend or when gt lane is changed from current one)
492 	 */
493 	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
494 		return false;
495 	else
496 		return true;
497 }
498 
499 /*
500  * There is a functional issue in the GT. The TX termination resistance can be
501  * out of spec due to a issue in the calibration logic. This is the workaround
502  * to fix it, required for XCZU9EG silicon.
503  */
xpsgtr_phy_tx_term_fix(struct xpsgtr_phy * gtr_phy)504 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
505 {
506 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
507 	u32 timeout = TIMEOUT_US;
508 	u32 nsw;
509 
510 	/* Enabling Test Mode control for CMN Rest */
511 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
512 
513 	/* Set Test Mode reset */
514 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
515 
516 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
517 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
518 
519 	/*
520 	 * As a part of work around sequence for PMOS calibration fix,
521 	 * we need to configure any lane ICM_CFG to valid protocol. This
522 	 * will deassert the CMN_Resetn signal.
523 	 */
524 	xpsgtr_lane_set_protocol(gtr_phy);
525 
526 	/* Clear Test Mode reset */
527 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
528 
529 	dev_dbg(gtr_dev->dev, "calibrating...\n");
530 
531 	do {
532 		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
533 
534 		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
535 			break;
536 
537 		if (!--timeout) {
538 			dev_err(gtr_dev->dev, "calibration time out\n");
539 			return -ETIMEDOUT;
540 		}
541 
542 		udelay(1);
543 	} while (timeout > 0);
544 
545 	dev_dbg(gtr_dev->dev, "calibration done\n");
546 
547 	/* Reading NMOS Register Code */
548 	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
549 
550 	/* Set Test Mode reset */
551 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
552 
553 	/* Writing NMOS register values back [5:3] */
554 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
555 
556 	/* Writing NMOS register value [2:0] */
557 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
558 		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
559 		     (1 << L3_NSW_PIPE_SHIFT));
560 
561 	/* Clear Test Mode reset */
562 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
563 
564 	return 0;
565 }
566 
xpsgtr_phy_init(struct phy * phy)567 static int xpsgtr_phy_init(struct phy *phy)
568 {
569 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
570 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
571 	int ret = 0;
572 
573 	mutex_lock(&gtr_dev->gtr_mutex);
574 
575 	/* Configure and enable the clock when peripheral phy_init call */
576 	if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane]))
577 		goto out;
578 
579 	/* Skip initialization if not required. */
580 	if (!xpsgtr_phy_init_required(gtr_phy))
581 		goto out;
582 
583 	if (gtr_dev->tx_term_fix) {
584 		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
585 		if (ret < 0)
586 			goto out;
587 
588 		gtr_dev->tx_term_fix = false;
589 	}
590 
591 	/* Enable coarse code saturation limiting logic. */
592 	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
593 
594 	/*
595 	 * Configure the PLL, the lane protocol, and perform protocol-specific
596 	 * initialization.
597 	 */
598 	xpsgtr_configure_pll(gtr_phy);
599 	xpsgtr_lane_set_protocol(gtr_phy);
600 
601 	switch (gtr_phy->protocol) {
602 	case ICM_PROTOCOL_DP:
603 		xpsgtr_phy_init_dp(gtr_phy);
604 		break;
605 
606 	case ICM_PROTOCOL_SATA:
607 		xpsgtr_phy_init_sata(gtr_phy);
608 		break;
609 
610 	case ICM_PROTOCOL_SGMII:
611 		xpsgtr_phy_init_sgmii(gtr_phy);
612 		break;
613 	}
614 
615 out:
616 	mutex_unlock(&gtr_dev->gtr_mutex);
617 	return ret;
618 }
619 
xpsgtr_phy_exit(struct phy * phy)620 static int xpsgtr_phy_exit(struct phy *phy)
621 {
622 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
623 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
624 
625 	gtr_phy->skip_phy_init = false;
626 
627 	/* Ensure that disable clock only, which configure for lane */
628 	clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]);
629 
630 	return 0;
631 }
632 
xpsgtr_phy_power_on(struct phy * phy)633 static int xpsgtr_phy_power_on(struct phy *phy)
634 {
635 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
636 	int ret = 0;
637 
638 	/* Skip initialization if not required. */
639 	if (!xpsgtr_phy_init_required(gtr_phy))
640 		return ret;
641 	/*
642 	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
643 	 * cumulating waits for both lanes. The user is expected to initialize
644 	 * lane 0 last.
645 	 */
646 	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
647 	    gtr_phy->type == XPSGTR_TYPE_DP_0)
648 		ret = xpsgtr_wait_pll_lock(phy);
649 
650 	return ret;
651 }
652 
xpsgtr_phy_configure(struct phy * phy,union phy_configure_opts * opts)653 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
654 {
655 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
656 
657 	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
658 		return 0;
659 
660 	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
661 
662 	return 0;
663 }
664 
665 static const struct phy_ops xpsgtr_phyops = {
666 	.init		= xpsgtr_phy_init,
667 	.exit		= xpsgtr_phy_exit,
668 	.power_on	= xpsgtr_phy_power_on,
669 	.configure	= xpsgtr_phy_configure,
670 	.owner		= THIS_MODULE,
671 };
672 
673 /*
674  * OF Xlate Support
675  */
676 
677 /* Set the lane type and protocol based on the PHY type and instance number. */
xpsgtr_set_lane_type(struct xpsgtr_phy * gtr_phy,u8 phy_type,unsigned int phy_instance)678 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
679 				unsigned int phy_instance)
680 {
681 	unsigned int num_phy_types;
682 	const int *phy_types;
683 
684 	switch (phy_type) {
685 	case PHY_TYPE_SATA: {
686 		static const int types[] = {
687 			XPSGTR_TYPE_SATA_0,
688 			XPSGTR_TYPE_SATA_1,
689 		};
690 
691 		phy_types = types;
692 		num_phy_types = ARRAY_SIZE(types);
693 		gtr_phy->protocol = ICM_PROTOCOL_SATA;
694 		break;
695 	}
696 	case PHY_TYPE_USB3: {
697 		static const int types[] = {
698 			XPSGTR_TYPE_USB0,
699 			XPSGTR_TYPE_USB1,
700 		};
701 
702 		phy_types = types;
703 		num_phy_types = ARRAY_SIZE(types);
704 		gtr_phy->protocol = ICM_PROTOCOL_USB;
705 		break;
706 	}
707 	case PHY_TYPE_DP: {
708 		static const int types[] = {
709 			XPSGTR_TYPE_DP_0,
710 			XPSGTR_TYPE_DP_1,
711 		};
712 
713 		phy_types = types;
714 		num_phy_types = ARRAY_SIZE(types);
715 		gtr_phy->protocol = ICM_PROTOCOL_DP;
716 		break;
717 	}
718 	case PHY_TYPE_PCIE: {
719 		static const int types[] = {
720 			XPSGTR_TYPE_PCIE_0,
721 			XPSGTR_TYPE_PCIE_1,
722 			XPSGTR_TYPE_PCIE_2,
723 			XPSGTR_TYPE_PCIE_3,
724 		};
725 
726 		phy_types = types;
727 		num_phy_types = ARRAY_SIZE(types);
728 		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
729 		break;
730 	}
731 	case PHY_TYPE_SGMII: {
732 		static const int types[] = {
733 			XPSGTR_TYPE_SGMII0,
734 			XPSGTR_TYPE_SGMII1,
735 			XPSGTR_TYPE_SGMII2,
736 			XPSGTR_TYPE_SGMII3,
737 		};
738 
739 		phy_types = types;
740 		num_phy_types = ARRAY_SIZE(types);
741 		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
742 		break;
743 	}
744 	default:
745 		return -EINVAL;
746 	}
747 
748 	if (phy_instance >= num_phy_types)
749 		return -EINVAL;
750 
751 	gtr_phy->type = phy_types[phy_instance];
752 	return 0;
753 }
754 
755 /*
756  * Valid combinations of controllers and lanes (Interconnect Matrix).
757  */
758 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
759 	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
760 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
761 	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
762 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
763 	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
764 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
765 	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
766 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
767 };
768 
769 /* Translate OF phandle and args to PHY instance. */
xpsgtr_xlate(struct device * dev,struct of_phandle_args * args)770 static struct phy *xpsgtr_xlate(struct device *dev,
771 				struct of_phandle_args *args)
772 {
773 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
774 	struct xpsgtr_phy *gtr_phy;
775 	unsigned int phy_instance;
776 	unsigned int phy_lane;
777 	unsigned int phy_type;
778 	unsigned int refclk;
779 	unsigned int i;
780 	int ret;
781 
782 	if (args->args_count != 4) {
783 		dev_err(dev, "Invalid number of cells in 'phy' property\n");
784 		return ERR_PTR(-EINVAL);
785 	}
786 
787 	/*
788 	 * Get the PHY parameters from the OF arguments and derive the lane
789 	 * type.
790 	 */
791 	phy_lane = args->args[0];
792 	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
793 		dev_err(dev, "Invalid lane number %u\n", phy_lane);
794 		return ERR_PTR(-ENODEV);
795 	}
796 
797 	gtr_phy = &gtr_dev->phys[phy_lane];
798 	phy_type = args->args[1];
799 	phy_instance = args->args[2];
800 
801 	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
802 	if (ret < 0) {
803 		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
804 		return ERR_PTR(ret);
805 	}
806 
807 	refclk = args->args[3];
808 	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
809 	    !gtr_dev->refclk_sscs[refclk]) {
810 		dev_err(dev, "Invalid reference clock number %u\n", refclk);
811 		return ERR_PTR(-EINVAL);
812 	}
813 
814 	gtr_phy->refclk = refclk;
815 
816 	/*
817 	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
818 	 * is allowed to operate on the lane.
819 	 */
820 	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
821 		if (icm_matrix[phy_lane][i] == gtr_phy->type)
822 			return gtr_phy->phy;
823 	}
824 
825 	return ERR_PTR(-EINVAL);
826 }
827 
828 /*
829  * Power Management
830  */
831 
xpsgtr_runtime_suspend(struct device * dev)832 static int xpsgtr_runtime_suspend(struct device *dev)
833 {
834 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
835 
836 	/* Save the snapshot ICM_CFG registers. */
837 	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
838 	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
839 
840 	return 0;
841 }
842 
xpsgtr_runtime_resume(struct device * dev)843 static int xpsgtr_runtime_resume(struct device *dev)
844 {
845 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
846 	unsigned int icm_cfg0, icm_cfg1;
847 	unsigned int i;
848 	bool skip_phy_init;
849 
850 	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
851 	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
852 
853 	/* Return if no GT lanes got configured before suspend. */
854 	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
855 		return 0;
856 
857 	/* Check if the ICM configurations changed after suspend. */
858 	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
859 	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
860 		skip_phy_init = true;
861 	else
862 		skip_phy_init = false;
863 
864 	/* Update the skip_phy_init for all gtr_phy instances. */
865 	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
866 		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
867 
868 	return 0;
869 }
870 
871 static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
872 				 xpsgtr_runtime_resume, NULL);
873 /*
874  * Probe & Platform Driver
875  */
876 
xpsgtr_get_ref_clocks(struct xpsgtr_dev * gtr_dev)877 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
878 {
879 	unsigned int refclk;
880 
881 	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
882 		unsigned long rate;
883 		unsigned int i;
884 		struct clk *clk;
885 		char name[8];
886 
887 		snprintf(name, sizeof(name), "ref%u", refclk);
888 		clk = devm_clk_get_optional(gtr_dev->dev, name);
889 		if (IS_ERR(clk)) {
890 			return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
891 					     "Failed to get ref clock %u\n",
892 					     refclk);
893 		}
894 
895 		if (!clk)
896 			continue;
897 
898 		gtr_dev->clk[refclk] = clk;
899 
900 		/*
901 		 * Get the spread spectrum (SSC) settings for the reference
902 		 * clock rate.
903 		 */
904 		rate = clk_get_rate(clk);
905 
906 		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
907 			/* Allow an error of 100 ppm */
908 			unsigned long error = ssc_lookup[i].refclk_rate / 10000;
909 
910 			if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
911 				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
912 				break;
913 			}
914 		}
915 
916 		if (i == ARRAY_SIZE(ssc_lookup)) {
917 			dev_err(gtr_dev->dev,
918 				"Invalid rate %lu for reference clock %u\n",
919 				rate, refclk);
920 			return -EINVAL;
921 		}
922 	}
923 
924 	return 0;
925 }
926 
xpsgtr_probe(struct platform_device * pdev)927 static int xpsgtr_probe(struct platform_device *pdev)
928 {
929 	struct device_node *np = pdev->dev.of_node;
930 	struct xpsgtr_dev *gtr_dev;
931 	struct phy_provider *provider;
932 	unsigned int port;
933 	int ret;
934 
935 	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
936 	if (!gtr_dev)
937 		return -ENOMEM;
938 
939 	gtr_dev->dev = &pdev->dev;
940 	platform_set_drvdata(pdev, gtr_dev);
941 
942 	mutex_init(&gtr_dev->gtr_mutex);
943 
944 	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
945 		gtr_dev->tx_term_fix =
946 			of_property_read_bool(np, "xlnx,tx-termination-fix");
947 
948 	/* Acquire resources. */
949 	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
950 	if (IS_ERR(gtr_dev->serdes))
951 		return PTR_ERR(gtr_dev->serdes);
952 
953 	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
954 	if (IS_ERR(gtr_dev->siou))
955 		return PTR_ERR(gtr_dev->siou);
956 
957 	ret = xpsgtr_get_ref_clocks(gtr_dev);
958 	if (ret)
959 		return ret;
960 
961 	/* Create PHYs. */
962 	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
963 		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
964 		struct phy *phy;
965 
966 		gtr_phy->lane = port;
967 		gtr_phy->dev = gtr_dev;
968 
969 		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
970 		if (IS_ERR(phy)) {
971 			dev_err(&pdev->dev, "failed to create PHY\n");
972 			return PTR_ERR(phy);
973 		}
974 
975 		gtr_phy->phy = phy;
976 		phy_set_drvdata(phy, gtr_phy);
977 	}
978 
979 	/* Register the PHY provider. */
980 	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
981 	if (IS_ERR(provider)) {
982 		dev_err(&pdev->dev, "registering provider failed\n");
983 		return PTR_ERR(provider);
984 	}
985 
986 	pm_runtime_set_active(gtr_dev->dev);
987 	pm_runtime_enable(gtr_dev->dev);
988 
989 	ret = pm_runtime_resume_and_get(gtr_dev->dev);
990 	if (ret < 0) {
991 		pm_runtime_disable(gtr_dev->dev);
992 		return ret;
993 	}
994 
995 	return 0;
996 }
997 
xpsgtr_remove(struct platform_device * pdev)998 static int xpsgtr_remove(struct platform_device *pdev)
999 {
1000 	struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
1001 
1002 	pm_runtime_disable(gtr_dev->dev);
1003 	pm_runtime_put_noidle(gtr_dev->dev);
1004 	pm_runtime_set_suspended(gtr_dev->dev);
1005 
1006 	return 0;
1007 }
1008 
1009 static const struct of_device_id xpsgtr_of_match[] = {
1010 	{ .compatible = "xlnx,zynqmp-psgtr", },
1011 	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1012 	{},
1013 };
1014 MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1015 
1016 static struct platform_driver xpsgtr_driver = {
1017 	.probe = xpsgtr_probe,
1018 	.remove	= xpsgtr_remove,
1019 	.driver = {
1020 		.name = "xilinx-psgtr",
1021 		.of_match_table	= xpsgtr_of_match,
1022 		.pm =  pm_ptr(&xpsgtr_pm_ops),
1023 	},
1024 };
1025 
1026 module_platform_driver(xpsgtr_driver);
1027 
1028 MODULE_AUTHOR("Xilinx Inc.");
1029 MODULE_LICENSE("GPL v2");
1030 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
1031