1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * OpenRISC Linux
4  *
5  * Linux architectural port borrowing liberally from similar works of
6  * others.  All original copyrights apply as per the original source
7  * declaration.
8  *
9  * OpenRISC implementation:
10  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12  * et al.
13  */
14 
15 /* or1k pgtable.h - macros and functions to manipulate page tables
16  *
17  * Based on:
18  * include/asm-cris/pgtable.h
19  */
20 
21 #ifndef __ASM_OPENRISC_PGTABLE_H
22 #define __ASM_OPENRISC_PGTABLE_H
23 
24 #include <asm-generic/pgtable-nopmd.h>
25 
26 #ifndef __ASSEMBLY__
27 #include <asm/mmu.h>
28 #include <asm/fixmap.h>
29 
30 /*
31  * The Linux memory management assumes a three-level page table setup. On
32  * or1k, we use that, but "fold" the mid level into the top-level page
33  * table. Since the MMU TLB is software loaded through an interrupt, it
34  * supports any page table structure, so we could have used a three-level
35  * setup, but for the amounts of memory we normally use, a two-level is
36  * probably more efficient.
37  *
38  * This file contains the functions and defines necessary to modify and use
39  * the or1k page table tree.
40  */
41 
42 extern void paging_init(void);
43 
44 /* Certain architectures need to do special things when pte's
45  * within a page table are directly modified.  Thus, the following
46  * hook is made available.
47  */
48 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
49 
50 /*
51  * (pmds are folded into pgds so this doesn't get actually called,
52  * but the define is needed for a generic inline function.)
53  */
54 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
55 
56 #define PGDIR_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
57 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
58 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
59 
60 /*
61  * entries per page directory level: we use a two-level, so
62  * we don't really have any PMD directory physically.
63  * pointers are 4 bytes so we can use the page size and
64  * divide it by 4 (shift by 2).
65  */
66 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
67 
68 #define PTRS_PER_PGD	(1UL << (32-PGDIR_SHIFT))
69 
70 /* calculate how many PGD entries a user-level program can use
71  * the first mappable virtual address is 0
72  * (TASK_SIZE is the maximum virtual address space)
73  */
74 
75 #define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
76 
77 /*
78  * Kernels own virtual memory area.
79  */
80 
81 /*
82  * The size and location of the vmalloc area are chosen so that modules
83  * placed in this area aren't more than a 28-bit signed offset from any
84  * kernel functions that they may need.  This greatly simplifies handling
85  * of the relocations for l.j and l.jal instructions as we don't need to
86  * introduce any trampolines for reaching "distant" code.
87  *
88  * 64 MB of vmalloc area is comparable to what's available on other arches.
89  */
90 
91 #define VMALLOC_START	(PAGE_OFFSET-0x04000000UL)
92 #define VMALLOC_END	(PAGE_OFFSET)
93 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
94 
95 /* Define some higher level generic page attributes.
96  *
97  * If you change _PAGE_CI definition be sure to change it in
98  * io.h for ioremap() too.
99  */
100 
101 /*
102  * An OR32 PTE looks like this:
103  *
104  * |  31 ... 10 |  9  |  8 ... 6  |  5  |  4  |  3  |  2  |  1  |  0  |
105  *  Phys pg.num    L     PP Index    D     A    WOM   WBC   CI    CC
106  *
107  *  L  : link
108  *  PPI: Page protection index
109  *  D  : Dirty
110  *  A  : Accessed
111  *  WOM: Weakly ordered memory
112  *  WBC: Write-back cache
113  *  CI : Cache inhibit
114  *  CC : Cache coherent
115  *
116  * The protection bits below should correspond to the layout of the actual
117  * PTE as per above
118  */
119 
120 #define _PAGE_CC       0x001 /* software: pte contains a translation */
121 #define _PAGE_CI       0x002 /* cache inhibit          */
122 #define _PAGE_WBC      0x004 /* write back cache       */
123 #define _PAGE_WOM      0x008 /* weakly ordered memory  */
124 
125 #define _PAGE_A        0x010 /* accessed               */
126 #define _PAGE_D        0x020 /* dirty                  */
127 #define _PAGE_URE      0x040 /* user read enable       */
128 #define _PAGE_UWE      0x080 /* user write enable      */
129 
130 #define _PAGE_SRE      0x100 /* superuser read enable  */
131 #define _PAGE_SWE      0x200 /* superuser write enable */
132 #define _PAGE_EXEC     0x400 /* software: page is executable */
133 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
134 
135 /* 0x001 is cache coherency bit, which should always be set to
136  *       1 - for SMP (when we support it)
137  *       0 - otherwise
138  *
139  * we just reuse this bit in software for _PAGE_PRESENT and
140  * force it to 0 when loading it into TLB.
141  */
142 #define _PAGE_PRESENT  _PAGE_CC
143 #define _PAGE_USER     _PAGE_URE
144 #define _PAGE_WRITE    (_PAGE_UWE | _PAGE_SWE)
145 #define _PAGE_DIRTY    _PAGE_D
146 #define _PAGE_ACCESSED _PAGE_A
147 #define _PAGE_NO_CACHE _PAGE_CI
148 #define _PAGE_SHARED   _PAGE_U_SHARED
149 #define _PAGE_READ     (_PAGE_URE | _PAGE_SRE)
150 
151 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
152 #define _PAGE_BASE     (_PAGE_PRESENT | _PAGE_ACCESSED)
153 #define _PAGE_ALL      (_PAGE_PRESENT | _PAGE_ACCESSED)
154 #define _KERNPG_TABLE \
155 	(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
156 
157 /* We borrow bit 11 to store the exclusive marker in swap PTEs. */
158 #define _PAGE_SWP_EXCLUSIVE	_PAGE_U_SHARED
159 
160 #define PAGE_NONE       __pgprot(_PAGE_ALL)
161 #define PAGE_READONLY   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
162 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
163 #define PAGE_SHARED \
164 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
165 		 | _PAGE_SHARED)
166 #define PAGE_SHARED_X \
167 	__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168 		 | _PAGE_SHARED | _PAGE_EXEC)
169 #define PAGE_COPY       __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
170 #define PAGE_COPY_X     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
171 
172 #define PAGE_KERNEL \
173 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
174 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
175 #define PAGE_KERNEL_RO \
176 	__pgprot(_PAGE_ALL | _PAGE_SRE \
177 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178 #define PAGE_KERNEL_NOCACHE \
179 	__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
180 		 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
181 
182 /* zero page used for uninitialized stuff */
183 extern unsigned long empty_zero_page[2048];
184 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
185 
186 /* number of bits that fit into a memory pointer */
187 #define BITS_PER_PTR			(8*sizeof(unsigned long))
188 
189 /* to align the pointer to a pointer address */
190 #define PTR_MASK			(~(sizeof(void *)-1))
191 
192 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
193 /* 64-bit machines, beware!  SRB. */
194 #define SIZEOF_PTR_LOG2			2
195 
196 /* to find an entry in a page-table */
197 #define PAGE_PTR(address) \
198 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
199 
200 /* to set the page-dir */
201 #define SET_PAGE_DIR(tsk, pgdir)
202 
203 #define pte_none(x)	(!pte_val(x))
204 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
205 #define pte_clear(mm, addr, xp)	do { pte_val(*(xp)) = 0; } while (0)
206 
207 #define pmd_none(x)	(!pmd_val(x))
208 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
209 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
210 #define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
211 
212 /*
213  * The following only work if pte_present() is true.
214  * Undefined behaviour if not..
215  */
216 
pte_read(pte_t pte)217 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_READ; }
pte_write(pte_t pte)218 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
pte_exec(pte_t pte)219 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
pte_dirty(pte_t pte)220 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)221 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
222 
pte_wrprotect(pte_t pte)223 static inline pte_t pte_wrprotect(pte_t pte)
224 {
225 	pte_val(pte) &= ~(_PAGE_WRITE);
226 	return pte;
227 }
228 
pte_rdprotect(pte_t pte)229 static inline pte_t pte_rdprotect(pte_t pte)
230 {
231 	pte_val(pte) &= ~(_PAGE_READ);
232 	return pte;
233 }
234 
pte_exprotect(pte_t pte)235 static inline pte_t pte_exprotect(pte_t pte)
236 {
237 	pte_val(pte) &= ~(_PAGE_EXEC);
238 	return pte;
239 }
240 
pte_mkclean(pte_t pte)241 static inline pte_t pte_mkclean(pte_t pte)
242 {
243 	pte_val(pte) &= ~(_PAGE_DIRTY);
244 	return pte;
245 }
246 
pte_mkold(pte_t pte)247 static inline pte_t pte_mkold(pte_t pte)
248 {
249 	pte_val(pte) &= ~(_PAGE_ACCESSED);
250 	return pte;
251 }
252 
pte_mkwrite_novma(pte_t pte)253 static inline pte_t pte_mkwrite_novma(pte_t pte)
254 {
255 	pte_val(pte) |= _PAGE_WRITE;
256 	return pte;
257 }
258 
pte_mkread(pte_t pte)259 static inline pte_t pte_mkread(pte_t pte)
260 {
261 	pte_val(pte) |= _PAGE_READ;
262 	return pte;
263 }
264 
pte_mkexec(pte_t pte)265 static inline pte_t pte_mkexec(pte_t pte)
266 {
267 	pte_val(pte) |= _PAGE_EXEC;
268 	return pte;
269 }
270 
pte_mkdirty(pte_t pte)271 static inline pte_t pte_mkdirty(pte_t pte)
272 {
273 	pte_val(pte) |= _PAGE_DIRTY;
274 	return pte;
275 }
276 
pte_mkyoung(pte_t pte)277 static inline pte_t pte_mkyoung(pte_t pte)
278 {
279 	pte_val(pte) |= _PAGE_ACCESSED;
280 	return pte;
281 }
282 
283 /*
284  * Conversion functions: convert a page and protection to a page entry,
285  * and a page entry and page directory to the page they refer to.
286  */
287 
288 /* What actually goes as arguments to the various functions is less than
289  * obvious, but a rule of thumb is that struct page's goes as struct page *,
290  * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
291  * addresses (the 0xc0xxxxxx's) goes as void *'s.
292  */
293 
__mk_pte(void * page,pgprot_t pgprot)294 static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
295 {
296 	pte_t pte;
297 	/* the PTE needs a physical address */
298 	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
299 	return pte;
300 }
301 
302 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
303 
304 #define mk_pte_phys(physpage, pgprot) \
305 ({                                                                      \
306 	pte_t __pte;                                                    \
307 									\
308 	pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
309 	__pte;                                                          \
310 })
311 
pte_modify(pte_t pte,pgprot_t newprot)312 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
313 {
314 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
315 	return pte;
316 }
317 
318 
319 /*
320  * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
321  * __pte_page(pte_val) refers to the "virtual" DRAM interval
322  * pte_pagenr refers to the page-number counted starting from the virtual
323  * DRAM start
324  */
325 
__pte_page(pte_t pte)326 static inline unsigned long __pte_page(pte_t pte)
327 {
328 	/* the PTE contains a physical address */
329 	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
330 }
331 
332 #define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
333 
334 /* permanent address of a page */
335 
336 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
337 #define pte_page(pte)		(mem_map+pte_pagenr(pte))
338 
339 /*
340  * only the pte's themselves need to point to physical DRAM (see above)
341  * the pagetable links are purely handled within the kernel SW and thus
342  * don't need the __pa and __va transformations.
343  */
pmd_set(pmd_t * pmdp,pte_t * ptep)344 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
345 {
346 	pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
347 }
348 
349 #define pmd_pfn(pmd)		(pmd_val(pmd) >> PAGE_SHIFT)
350 #define pmd_page(pmd)		(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
351 
pmd_page_vaddr(pmd_t pmd)352 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
353 {
354 	return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
355 }
356 
357 #define __pmd_offset(address) \
358 	(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
359 
360 #define PFN_PTE_SHIFT		PAGE_SHIFT
361 #define pte_pfn(x)		((unsigned long)(((x).pte)) >> PAGE_SHIFT)
362 #define pfn_pte(pfn, prot)  __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
363 
364 #define pte_ERROR(e) \
365 	printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
366 	       __FILE__, __LINE__, &(e), pte_val(e))
367 #define pgd_ERROR(e) \
368 	printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
369 	       __FILE__, __LINE__, &(e), pgd_val(e))
370 
371 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
372 
373 struct vm_area_struct;
374 
update_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * pte)375 static inline void update_tlb(struct vm_area_struct *vma,
376 	unsigned long address, pte_t *pte)
377 {
378 }
379 
380 extern void update_cache(struct vm_area_struct *vma,
381 	unsigned long address, pte_t *pte);
382 
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)383 static inline void update_mmu_cache_range(struct vm_fault *vmf,
384 		struct vm_area_struct *vma, unsigned long address,
385 		pte_t *ptep, unsigned int nr)
386 {
387 	update_tlb(vma, address, ptep);
388 	update_cache(vma, address, ptep);
389 }
390 
391 #define update_mmu_cache(vma, addr, ptep) \
392 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
393 
394 /* __PHX__ FIXME, SWAP, this probably doesn't work */
395 
396 /*
397  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
398  * are !pte_none() && !pte_present().
399  *
400  * Format of swap PTEs:
401  *
402  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
403  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
404  *   <-------------- offset ---------------> E <- type --> 0 0 0 0 0
405  *
406  *   E is the exclusive marker that is not stored in swap entries.
407  *   The zero'ed bits include _PAGE_PRESENT.
408  */
409 #define __swp_type(x)			(((x).val >> 5) & 0x3f)
410 #define __swp_offset(x)			((x).val >> 12)
411 #define __swp_entry(type, offset) \
412 	((swp_entry_t) { (((type) & 0x3f) << 5) | ((offset) << 12) })
413 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
414 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
415 
pte_swp_exclusive(pte_t pte)416 static inline int pte_swp_exclusive(pte_t pte)
417 {
418 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
419 }
420 
pte_swp_mkexclusive(pte_t pte)421 static inline pte_t pte_swp_mkexclusive(pte_t pte)
422 {
423 	pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
424 	return pte;
425 }
426 
pte_swp_clear_exclusive(pte_t pte)427 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
428 {
429 	pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
430 	return pte;
431 }
432 
433 typedef pte_t *pte_addr_t;
434 
435 #endif /* __ASSEMBLY__ */
436 #endif /* __ASM_OPENRISC_PGTABLE_H */
437