1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Driver for AT91 USART Controllers as SPI
4 //
5 // Copyright (C) 2018 Microchip Technology Inc.
6 //
7 // Author: Radu Pirea <radu.pirea@microchip.com>
8
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-direction.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20
21 #include <linux/spi/spi.h>
22
23 #define US_CR 0x00
24 #define US_MR 0x04
25 #define US_IER 0x08
26 #define US_IDR 0x0C
27 #define US_CSR 0x14
28 #define US_RHR 0x18
29 #define US_THR 0x1C
30 #define US_BRGR 0x20
31 #define US_VERSION 0xFC
32
33 #define US_CR_RSTRX BIT(2)
34 #define US_CR_RSTTX BIT(3)
35 #define US_CR_RXEN BIT(4)
36 #define US_CR_RXDIS BIT(5)
37 #define US_CR_TXEN BIT(6)
38 #define US_CR_TXDIS BIT(7)
39
40 #define US_MR_SPI_HOST 0x0E
41 #define US_MR_CHRL GENMASK(7, 6)
42 #define US_MR_CPHA BIT(8)
43 #define US_MR_CPOL BIT(16)
44 #define US_MR_CLKO BIT(18)
45 #define US_MR_WRDBT BIT(20)
46 #define US_MR_LOOP BIT(15)
47
48 #define US_IR_RXRDY BIT(0)
49 #define US_IR_TXRDY BIT(1)
50 #define US_IR_OVRE BIT(5)
51
52 #define US_BRGR_SIZE BIT(16)
53
54 #define US_MIN_CLK_DIV 0x06
55 #define US_MAX_CLK_DIV BIT(16)
56
57 #define US_RESET (US_CR_RSTRX | US_CR_RSTTX)
58 #define US_DISABLE (US_CR_RXDIS | US_CR_TXDIS)
59 #define US_ENABLE (US_CR_RXEN | US_CR_TXEN)
60 #define US_OVRE_RXRDY_IRQS (US_IR_OVRE | US_IR_RXRDY)
61
62 #define US_INIT \
63 (US_MR_SPI_HOST | US_MR_CHRL | US_MR_CLKO | US_MR_WRDBT)
64 #define US_DMA_MIN_BYTES 16
65 #define US_DMA_TIMEOUT (msecs_to_jiffies(1000))
66
67 /* Register access macros */
68 #define at91_usart_spi_readl(port, reg) \
69 readl_relaxed((port)->regs + US_##reg)
70 #define at91_usart_spi_writel(port, reg, value) \
71 writel_relaxed((value), (port)->regs + US_##reg)
72
73 #define at91_usart_spi_readb(port, reg) \
74 readb_relaxed((port)->regs + US_##reg)
75 #define at91_usart_spi_writeb(port, reg, value) \
76 writeb_relaxed((value), (port)->regs + US_##reg)
77
78 struct at91_usart_spi {
79 struct platform_device *mpdev;
80 struct spi_transfer *current_transfer;
81 void __iomem *regs;
82 struct device *dev;
83 struct clk *clk;
84
85 struct completion xfer_completion;
86
87 /*used in interrupt to protect data reading*/
88 spinlock_t lock;
89
90 phys_addr_t phybase;
91
92 int irq;
93 unsigned int current_tx_remaining_bytes;
94 unsigned int current_rx_remaining_bytes;
95
96 u32 spi_clk;
97 u32 status;
98
99 bool xfer_failed;
100 bool use_dma;
101 };
102
dma_callback(void * data)103 static void dma_callback(void *data)
104 {
105 struct spi_controller *ctlr = data;
106 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
107
108 at91_usart_spi_writel(aus, IER, US_IR_RXRDY);
109 aus->current_rx_remaining_bytes = 0;
110 complete(&aus->xfer_completion);
111 }
112
at91_usart_spi_can_dma(struct spi_controller * ctrl,struct spi_device * spi,struct spi_transfer * xfer)113 static bool at91_usart_spi_can_dma(struct spi_controller *ctrl,
114 struct spi_device *spi,
115 struct spi_transfer *xfer)
116 {
117 struct at91_usart_spi *aus = spi_controller_get_devdata(ctrl);
118
119 return aus->use_dma && xfer->len >= US_DMA_MIN_BYTES;
120 }
121
at91_usart_spi_configure_dma(struct spi_controller * ctlr,struct at91_usart_spi * aus)122 static int at91_usart_spi_configure_dma(struct spi_controller *ctlr,
123 struct at91_usart_spi *aus)
124 {
125 struct dma_slave_config slave_config;
126 struct device *dev = &aus->mpdev->dev;
127 phys_addr_t phybase = aus->phybase;
128 dma_cap_mask_t mask;
129 int err = 0;
130
131 dma_cap_zero(mask);
132 dma_cap_set(DMA_SLAVE, mask);
133
134 ctlr->dma_tx = dma_request_chan(dev, "tx");
135 if (IS_ERR_OR_NULL(ctlr->dma_tx)) {
136 if (IS_ERR(ctlr->dma_tx)) {
137 err = PTR_ERR(ctlr->dma_tx);
138 goto at91_usart_spi_error_clear;
139 }
140
141 dev_dbg(dev,
142 "DMA TX channel not available, SPI unable to use DMA\n");
143 err = -EBUSY;
144 goto at91_usart_spi_error_clear;
145 }
146
147 ctlr->dma_rx = dma_request_chan(dev, "rx");
148 if (IS_ERR_OR_NULL(ctlr->dma_rx)) {
149 if (IS_ERR(ctlr->dma_rx)) {
150 err = PTR_ERR(ctlr->dma_rx);
151 goto at91_usart_spi_error;
152 }
153
154 dev_dbg(dev,
155 "DMA RX channel not available, SPI unable to use DMA\n");
156 err = -EBUSY;
157 goto at91_usart_spi_error;
158 }
159
160 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
161 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
162 slave_config.dst_addr = (dma_addr_t)phybase + US_THR;
163 slave_config.src_addr = (dma_addr_t)phybase + US_RHR;
164 slave_config.src_maxburst = 1;
165 slave_config.dst_maxburst = 1;
166 slave_config.device_fc = false;
167
168 slave_config.direction = DMA_DEV_TO_MEM;
169 if (dmaengine_slave_config(ctlr->dma_rx, &slave_config)) {
170 dev_err(&ctlr->dev,
171 "failed to configure rx dma channel\n");
172 err = -EINVAL;
173 goto at91_usart_spi_error;
174 }
175
176 slave_config.direction = DMA_MEM_TO_DEV;
177 if (dmaengine_slave_config(ctlr->dma_tx, &slave_config)) {
178 dev_err(&ctlr->dev,
179 "failed to configure tx dma channel\n");
180 err = -EINVAL;
181 goto at91_usart_spi_error;
182 }
183
184 aus->use_dma = true;
185 return 0;
186
187 at91_usart_spi_error:
188 if (!IS_ERR_OR_NULL(ctlr->dma_tx))
189 dma_release_channel(ctlr->dma_tx);
190 if (!IS_ERR_OR_NULL(ctlr->dma_rx))
191 dma_release_channel(ctlr->dma_rx);
192 ctlr->dma_tx = NULL;
193 ctlr->dma_rx = NULL;
194
195 at91_usart_spi_error_clear:
196 return err;
197 }
198
at91_usart_spi_release_dma(struct spi_controller * ctlr)199 static void at91_usart_spi_release_dma(struct spi_controller *ctlr)
200 {
201 if (ctlr->dma_rx)
202 dma_release_channel(ctlr->dma_rx);
203 if (ctlr->dma_tx)
204 dma_release_channel(ctlr->dma_tx);
205 }
206
at91_usart_spi_stop_dma(struct spi_controller * ctlr)207 static void at91_usart_spi_stop_dma(struct spi_controller *ctlr)
208 {
209 if (ctlr->dma_rx)
210 dmaengine_terminate_all(ctlr->dma_rx);
211 if (ctlr->dma_tx)
212 dmaengine_terminate_all(ctlr->dma_tx);
213 }
214
at91_usart_spi_dma_transfer(struct spi_controller * ctlr,struct spi_transfer * xfer)215 static int at91_usart_spi_dma_transfer(struct spi_controller *ctlr,
216 struct spi_transfer *xfer)
217 {
218 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
219 struct dma_chan *rxchan = ctlr->dma_rx;
220 struct dma_chan *txchan = ctlr->dma_tx;
221 struct dma_async_tx_descriptor *rxdesc;
222 struct dma_async_tx_descriptor *txdesc;
223 dma_cookie_t cookie;
224
225 /* Disable RX interrupt */
226 at91_usart_spi_writel(aus, IDR, US_IR_RXRDY);
227
228 rxdesc = dmaengine_prep_slave_sg(rxchan,
229 xfer->rx_sg.sgl,
230 xfer->rx_sg.nents,
231 DMA_DEV_TO_MEM,
232 DMA_PREP_INTERRUPT |
233 DMA_CTRL_ACK);
234 if (!rxdesc)
235 goto at91_usart_spi_err_dma;
236
237 txdesc = dmaengine_prep_slave_sg(txchan,
238 xfer->tx_sg.sgl,
239 xfer->tx_sg.nents,
240 DMA_MEM_TO_DEV,
241 DMA_PREP_INTERRUPT |
242 DMA_CTRL_ACK);
243 if (!txdesc)
244 goto at91_usart_spi_err_dma;
245
246 rxdesc->callback = dma_callback;
247 rxdesc->callback_param = ctlr;
248
249 cookie = rxdesc->tx_submit(rxdesc);
250 if (dma_submit_error(cookie))
251 goto at91_usart_spi_err_dma;
252
253 cookie = txdesc->tx_submit(txdesc);
254 if (dma_submit_error(cookie))
255 goto at91_usart_spi_err_dma;
256
257 rxchan->device->device_issue_pending(rxchan);
258 txchan->device->device_issue_pending(txchan);
259
260 return 0;
261
262 at91_usart_spi_err_dma:
263 /* Enable RX interrupt if something fails and fallback to PIO */
264 at91_usart_spi_writel(aus, IER, US_IR_RXRDY);
265 at91_usart_spi_stop_dma(ctlr);
266
267 return -ENOMEM;
268 }
269
at91_usart_spi_dma_timeout(struct at91_usart_spi * aus)270 static unsigned long at91_usart_spi_dma_timeout(struct at91_usart_spi *aus)
271 {
272 return wait_for_completion_timeout(&aus->xfer_completion,
273 US_DMA_TIMEOUT);
274 }
275
at91_usart_spi_tx_ready(struct at91_usart_spi * aus)276 static inline u32 at91_usart_spi_tx_ready(struct at91_usart_spi *aus)
277 {
278 return aus->status & US_IR_TXRDY;
279 }
280
at91_usart_spi_rx_ready(struct at91_usart_spi * aus)281 static inline u32 at91_usart_spi_rx_ready(struct at91_usart_spi *aus)
282 {
283 return aus->status & US_IR_RXRDY;
284 }
285
at91_usart_spi_check_overrun(struct at91_usart_spi * aus)286 static inline u32 at91_usart_spi_check_overrun(struct at91_usart_spi *aus)
287 {
288 return aus->status & US_IR_OVRE;
289 }
290
at91_usart_spi_read_status(struct at91_usart_spi * aus)291 static inline u32 at91_usart_spi_read_status(struct at91_usart_spi *aus)
292 {
293 aus->status = at91_usart_spi_readl(aus, CSR);
294 return aus->status;
295 }
296
at91_usart_spi_tx(struct at91_usart_spi * aus)297 static inline void at91_usart_spi_tx(struct at91_usart_spi *aus)
298 {
299 unsigned int len = aus->current_transfer->len;
300 unsigned int remaining = aus->current_tx_remaining_bytes;
301 const u8 *tx_buf = aus->current_transfer->tx_buf;
302
303 if (!remaining)
304 return;
305
306 if (at91_usart_spi_tx_ready(aus)) {
307 at91_usart_spi_writeb(aus, THR, tx_buf[len - remaining]);
308 aus->current_tx_remaining_bytes--;
309 }
310 }
311
at91_usart_spi_rx(struct at91_usart_spi * aus)312 static inline void at91_usart_spi_rx(struct at91_usart_spi *aus)
313 {
314 int len = aus->current_transfer->len;
315 int remaining = aus->current_rx_remaining_bytes;
316 u8 *rx_buf = aus->current_transfer->rx_buf;
317
318 if (!remaining)
319 return;
320
321 rx_buf[len - remaining] = at91_usart_spi_readb(aus, RHR);
322 aus->current_rx_remaining_bytes--;
323 }
324
325 static inline void
at91_usart_spi_set_xfer_speed(struct at91_usart_spi * aus,struct spi_transfer * xfer)326 at91_usart_spi_set_xfer_speed(struct at91_usart_spi *aus,
327 struct spi_transfer *xfer)
328 {
329 at91_usart_spi_writel(aus, BRGR,
330 DIV_ROUND_UP(aus->spi_clk, xfer->speed_hz));
331 }
332
at91_usart_spi_interrupt(int irq,void * dev_id)333 static irqreturn_t at91_usart_spi_interrupt(int irq, void *dev_id)
334 {
335 struct spi_controller *controller = dev_id;
336 struct at91_usart_spi *aus = spi_controller_get_devdata(controller);
337
338 spin_lock(&aus->lock);
339 at91_usart_spi_read_status(aus);
340
341 if (at91_usart_spi_check_overrun(aus)) {
342 aus->xfer_failed = true;
343 at91_usart_spi_writel(aus, IDR, US_IR_OVRE | US_IR_RXRDY);
344 spin_unlock(&aus->lock);
345 return IRQ_HANDLED;
346 }
347
348 if (at91_usart_spi_rx_ready(aus)) {
349 at91_usart_spi_rx(aus);
350 spin_unlock(&aus->lock);
351 return IRQ_HANDLED;
352 }
353
354 spin_unlock(&aus->lock);
355
356 return IRQ_NONE;
357 }
358
at91_usart_spi_setup(struct spi_device * spi)359 static int at91_usart_spi_setup(struct spi_device *spi)
360 {
361 struct at91_usart_spi *aus = spi_controller_get_devdata(spi->controller);
362 u32 *ausd = spi->controller_state;
363 unsigned int mr = at91_usart_spi_readl(aus, MR);
364
365 if (spi->mode & SPI_CPOL)
366 mr |= US_MR_CPOL;
367 else
368 mr &= ~US_MR_CPOL;
369
370 if (spi->mode & SPI_CPHA)
371 mr |= US_MR_CPHA;
372 else
373 mr &= ~US_MR_CPHA;
374
375 if (spi->mode & SPI_LOOP)
376 mr |= US_MR_LOOP;
377 else
378 mr &= ~US_MR_LOOP;
379
380 if (!ausd) {
381 ausd = kzalloc(sizeof(*ausd), GFP_KERNEL);
382 if (!ausd)
383 return -ENOMEM;
384
385 spi->controller_state = ausd;
386 }
387
388 *ausd = mr;
389
390 dev_dbg(&spi->dev,
391 "setup: bpw %u mode 0x%x -> mr %d %08x\n",
392 spi->bits_per_word, spi->mode, spi_get_chipselect(spi, 0), mr);
393
394 return 0;
395 }
396
at91_usart_spi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)397 static int at91_usart_spi_transfer_one(struct spi_controller *ctlr,
398 struct spi_device *spi,
399 struct spi_transfer *xfer)
400 {
401 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
402 unsigned long dma_timeout = 0;
403 int ret = 0;
404
405 at91_usart_spi_set_xfer_speed(aus, xfer);
406 aus->xfer_failed = false;
407 aus->current_transfer = xfer;
408 aus->current_tx_remaining_bytes = xfer->len;
409 aus->current_rx_remaining_bytes = xfer->len;
410
411 while ((aus->current_tx_remaining_bytes ||
412 aus->current_rx_remaining_bytes) && !aus->xfer_failed) {
413 reinit_completion(&aus->xfer_completion);
414 if (at91_usart_spi_can_dma(ctlr, spi, xfer) &&
415 !ret) {
416 ret = at91_usart_spi_dma_transfer(ctlr, xfer);
417 if (ret)
418 continue;
419
420 dma_timeout = at91_usart_spi_dma_timeout(aus);
421
422 if (WARN_ON(dma_timeout == 0)) {
423 dev_err(&spi->dev, "DMA transfer timeout\n");
424 return -EIO;
425 }
426 aus->current_tx_remaining_bytes = 0;
427 } else {
428 at91_usart_spi_read_status(aus);
429 at91_usart_spi_tx(aus);
430 }
431
432 cpu_relax();
433 }
434
435 if (aus->xfer_failed) {
436 dev_err(aus->dev, "Overrun!\n");
437 return -EIO;
438 }
439
440 return 0;
441 }
442
at91_usart_spi_prepare_message(struct spi_controller * ctlr,struct spi_message * message)443 static int at91_usart_spi_prepare_message(struct spi_controller *ctlr,
444 struct spi_message *message)
445 {
446 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
447 struct spi_device *spi = message->spi;
448 u32 *ausd = spi->controller_state;
449
450 at91_usart_spi_writel(aus, CR, US_ENABLE);
451 at91_usart_spi_writel(aus, IER, US_OVRE_RXRDY_IRQS);
452 at91_usart_spi_writel(aus, MR, *ausd);
453
454 return 0;
455 }
456
at91_usart_spi_unprepare_message(struct spi_controller * ctlr,struct spi_message * message)457 static int at91_usart_spi_unprepare_message(struct spi_controller *ctlr,
458 struct spi_message *message)
459 {
460 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
461
462 at91_usart_spi_writel(aus, CR, US_RESET | US_DISABLE);
463 at91_usart_spi_writel(aus, IDR, US_OVRE_RXRDY_IRQS);
464
465 return 0;
466 }
467
at91_usart_spi_cleanup(struct spi_device * spi)468 static void at91_usart_spi_cleanup(struct spi_device *spi)
469 {
470 struct at91_usart_spi_device *ausd = spi->controller_state;
471
472 spi->controller_state = NULL;
473 kfree(ausd);
474 }
475
at91_usart_spi_init(struct at91_usart_spi * aus)476 static void at91_usart_spi_init(struct at91_usart_spi *aus)
477 {
478 at91_usart_spi_writel(aus, MR, US_INIT);
479 at91_usart_spi_writel(aus, CR, US_RESET | US_DISABLE);
480 }
481
at91_usart_gpio_setup(struct platform_device * pdev)482 static int at91_usart_gpio_setup(struct platform_device *pdev)
483 {
484 struct gpio_descs *cs_gpios;
485
486 cs_gpios = devm_gpiod_get_array_optional(&pdev->dev, "cs", GPIOD_OUT_LOW);
487
488 return PTR_ERR_OR_ZERO(cs_gpios);
489 }
490
at91_usart_spi_probe(struct platform_device * pdev)491 static int at91_usart_spi_probe(struct platform_device *pdev)
492 {
493 struct resource *regs;
494 struct spi_controller *controller;
495 struct at91_usart_spi *aus;
496 struct clk *clk;
497 int irq;
498 int ret;
499
500 regs = platform_get_resource(to_platform_device(pdev->dev.parent),
501 IORESOURCE_MEM, 0);
502 if (!regs)
503 return -EINVAL;
504
505 irq = platform_get_irq(to_platform_device(pdev->dev.parent), 0);
506 if (irq < 0)
507 return irq;
508
509 clk = devm_clk_get(pdev->dev.parent, "usart");
510 if (IS_ERR(clk))
511 return PTR_ERR(clk);
512
513 ret = -ENOMEM;
514 controller = spi_alloc_host(&pdev->dev, sizeof(*aus));
515 if (!controller)
516 goto at91_usart_spi_probe_fail;
517
518 ret = at91_usart_gpio_setup(pdev);
519 if (ret)
520 goto at91_usart_spi_probe_fail;
521
522 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
523 controller->dev.of_node = pdev->dev.parent->of_node;
524 controller->bits_per_word_mask = SPI_BPW_MASK(8);
525 controller->setup = at91_usart_spi_setup;
526 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
527 controller->transfer_one = at91_usart_spi_transfer_one;
528 controller->prepare_message = at91_usart_spi_prepare_message;
529 controller->unprepare_message = at91_usart_spi_unprepare_message;
530 controller->can_dma = at91_usart_spi_can_dma;
531 controller->cleanup = at91_usart_spi_cleanup;
532 controller->max_speed_hz = DIV_ROUND_UP(clk_get_rate(clk),
533 US_MIN_CLK_DIV);
534 controller->min_speed_hz = DIV_ROUND_UP(clk_get_rate(clk),
535 US_MAX_CLK_DIV);
536 platform_set_drvdata(pdev, controller);
537
538 aus = spi_controller_get_devdata(controller);
539
540 aus->dev = &pdev->dev;
541 aus->regs = devm_ioremap_resource(&pdev->dev, regs);
542 if (IS_ERR(aus->regs)) {
543 ret = PTR_ERR(aus->regs);
544 goto at91_usart_spi_probe_fail;
545 }
546
547 aus->irq = irq;
548 aus->clk = clk;
549
550 ret = devm_request_irq(&pdev->dev, irq, at91_usart_spi_interrupt, 0,
551 dev_name(&pdev->dev), controller);
552 if (ret)
553 goto at91_usart_spi_probe_fail;
554
555 ret = clk_prepare_enable(clk);
556 if (ret)
557 goto at91_usart_spi_probe_fail;
558
559 aus->spi_clk = clk_get_rate(clk);
560 at91_usart_spi_init(aus);
561
562 aus->phybase = regs->start;
563
564 aus->mpdev = to_platform_device(pdev->dev.parent);
565
566 ret = at91_usart_spi_configure_dma(controller, aus);
567 if (ret)
568 goto at91_usart_fail_dma;
569
570 spin_lock_init(&aus->lock);
571 init_completion(&aus->xfer_completion);
572
573 ret = devm_spi_register_controller(&pdev->dev, controller);
574 if (ret)
575 goto at91_usart_fail_register_controller;
576
577 dev_info(&pdev->dev,
578 "AT91 USART SPI Controller version 0x%x at %pa (irq %d)\n",
579 at91_usart_spi_readl(aus, VERSION),
580 ®s->start, irq);
581
582 return 0;
583
584 at91_usart_fail_register_controller:
585 at91_usart_spi_release_dma(controller);
586 at91_usart_fail_dma:
587 clk_disable_unprepare(clk);
588 at91_usart_spi_probe_fail:
589 spi_controller_put(controller);
590 return ret;
591 }
592
at91_usart_spi_runtime_suspend(struct device * dev)593 __maybe_unused static int at91_usart_spi_runtime_suspend(struct device *dev)
594 {
595 struct spi_controller *ctlr = dev_get_drvdata(dev);
596 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
597
598 clk_disable_unprepare(aus->clk);
599 pinctrl_pm_select_sleep_state(dev);
600
601 return 0;
602 }
603
at91_usart_spi_runtime_resume(struct device * dev)604 __maybe_unused static int at91_usart_spi_runtime_resume(struct device *dev)
605 {
606 struct spi_controller *ctrl = dev_get_drvdata(dev);
607 struct at91_usart_spi *aus = spi_controller_get_devdata(ctrl);
608
609 pinctrl_pm_select_default_state(dev);
610
611 return clk_prepare_enable(aus->clk);
612 }
613
at91_usart_spi_suspend(struct device * dev)614 __maybe_unused static int at91_usart_spi_suspend(struct device *dev)
615 {
616 struct spi_controller *ctrl = dev_get_drvdata(dev);
617 int ret;
618
619 ret = spi_controller_suspend(ctrl);
620 if (ret)
621 return ret;
622
623 if (!pm_runtime_suspended(dev))
624 at91_usart_spi_runtime_suspend(dev);
625
626 return 0;
627 }
628
at91_usart_spi_resume(struct device * dev)629 __maybe_unused static int at91_usart_spi_resume(struct device *dev)
630 {
631 struct spi_controller *ctrl = dev_get_drvdata(dev);
632 struct at91_usart_spi *aus = spi_controller_get_devdata(ctrl);
633 int ret;
634
635 if (!pm_runtime_suspended(dev)) {
636 ret = at91_usart_spi_runtime_resume(dev);
637 if (ret)
638 return ret;
639 }
640
641 at91_usart_spi_init(aus);
642
643 return spi_controller_resume(ctrl);
644 }
645
at91_usart_spi_remove(struct platform_device * pdev)646 static void at91_usart_spi_remove(struct platform_device *pdev)
647 {
648 struct spi_controller *ctlr = platform_get_drvdata(pdev);
649 struct at91_usart_spi *aus = spi_controller_get_devdata(ctlr);
650
651 at91_usart_spi_release_dma(ctlr);
652 clk_disable_unprepare(aus->clk);
653 }
654
655 static const struct dev_pm_ops at91_usart_spi_pm_ops = {
656 SET_SYSTEM_SLEEP_PM_OPS(at91_usart_spi_suspend, at91_usart_spi_resume)
657 SET_RUNTIME_PM_OPS(at91_usart_spi_runtime_suspend,
658 at91_usart_spi_runtime_resume, NULL)
659 };
660
661 static struct platform_driver at91_usart_spi_driver = {
662 .driver = {
663 .name = "at91_usart_spi",
664 .pm = &at91_usart_spi_pm_ops,
665 },
666 .probe = at91_usart_spi_probe,
667 .remove_new = at91_usart_spi_remove,
668 };
669
670 module_platform_driver(at91_usart_spi_driver);
671
672 MODULE_DESCRIPTION("Microchip AT91 USART SPI Controller driver");
673 MODULE_AUTHOR("Radu Pirea <radu.pirea@microchip.com>");
674 MODULE_LICENSE("GPL v2");
675 MODULE_ALIAS("platform:at91_usart_spi");
676