1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - Tunneling support
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2019, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/list.h>
12 #include <linux/ktime.h>
13 #include <linux/string_helpers.h>
14
15 #include "tunnel.h"
16 #include "tb.h"
17
18 /* PCIe adapters use always HopID of 8 for both directions */
19 #define TB_PCI_HOPID 8
20
21 #define TB_PCI_PATH_DOWN 0
22 #define TB_PCI_PATH_UP 1
23
24 #define TB_PCI_PRIORITY 3
25 #define TB_PCI_WEIGHT 1
26
27 /* USB3 adapters use always HopID of 8 for both directions */
28 #define TB_USB3_HOPID 8
29
30 #define TB_USB3_PATH_DOWN 0
31 #define TB_USB3_PATH_UP 1
32
33 #define TB_USB3_PRIORITY 3
34 #define TB_USB3_WEIGHT 2
35
36 /* DP adapters use HopID 8 for AUX and 9 for Video */
37 #define TB_DP_AUX_TX_HOPID 8
38 #define TB_DP_AUX_RX_HOPID 8
39 #define TB_DP_VIDEO_HOPID 9
40
41 #define TB_DP_VIDEO_PATH_OUT 0
42 #define TB_DP_AUX_PATH_OUT 1
43 #define TB_DP_AUX_PATH_IN 2
44
45 #define TB_DP_VIDEO_PRIORITY 1
46 #define TB_DP_VIDEO_WEIGHT 1
47
48 #define TB_DP_AUX_PRIORITY 2
49 #define TB_DP_AUX_WEIGHT 1
50
51 /* Minimum number of credits needed for PCIe path */
52 #define TB_MIN_PCIE_CREDITS 6U
53 /*
54 * Number of credits we try to allocate for each DMA path if not limited
55 * by the host router baMaxHI.
56 */
57 #define TB_DMA_CREDITS 14
58 /* Minimum number of credits for DMA path */
59 #define TB_MIN_DMA_CREDITS 1
60
61 #define TB_DMA_PRIORITY 5
62 #define TB_DMA_WEIGHT 1
63
64 /*
65 * Reserve additional bandwidth for USB 3.x and PCIe bulk traffic
66 * according to USB4 v2 Connection Manager guide. This ends up reserving
67 * 1500 Mb/s for PCIe and 3000 Mb/s for USB 3.x taking weights into
68 * account.
69 */
70 #define USB4_V2_PCI_MIN_BANDWIDTH (1500 * TB_PCI_WEIGHT)
71 #define USB4_V2_USB3_MIN_BANDWIDTH (1500 * TB_USB3_WEIGHT)
72
73 static unsigned int dma_credits = TB_DMA_CREDITS;
74 module_param(dma_credits, uint, 0444);
75 MODULE_PARM_DESC(dma_credits, "specify custom credits for DMA tunnels (default: "
76 __MODULE_STRING(TB_DMA_CREDITS) ")");
77
78 static bool bw_alloc_mode = true;
79 module_param(bw_alloc_mode, bool, 0444);
80 MODULE_PARM_DESC(bw_alloc_mode,
81 "enable bandwidth allocation mode if supported (default: true)");
82
83 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" };
84
tb_usable_credits(const struct tb_port * port)85 static inline unsigned int tb_usable_credits(const struct tb_port *port)
86 {
87 return port->total_credits - port->ctl_credits;
88 }
89
90 /**
91 * tb_available_credits() - Available credits for PCIe and DMA
92 * @port: Lane adapter to check
93 * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP
94 * streams possible through this lane adapter
95 */
tb_available_credits(const struct tb_port * port,size_t * max_dp_streams)96 static unsigned int tb_available_credits(const struct tb_port *port,
97 size_t *max_dp_streams)
98 {
99 const struct tb_switch *sw = port->sw;
100 int credits, usb3, pcie, spare;
101 size_t ndp;
102
103 usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0;
104 pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0;
105
106 if (tb_acpi_is_xdomain_allowed()) {
107 spare = min_not_zero(sw->max_dma_credits, dma_credits);
108 /* Add some credits for potential second DMA tunnel */
109 spare += TB_MIN_DMA_CREDITS;
110 } else {
111 spare = 0;
112 }
113
114 credits = tb_usable_credits(port);
115 if (tb_acpi_may_tunnel_dp()) {
116 /*
117 * Maximum number of DP streams possible through the
118 * lane adapter.
119 */
120 if (sw->min_dp_aux_credits + sw->min_dp_main_credits)
121 ndp = (credits - (usb3 + pcie + spare)) /
122 (sw->min_dp_aux_credits + sw->min_dp_main_credits);
123 else
124 ndp = 0;
125 } else {
126 ndp = 0;
127 }
128 credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits);
129 credits -= usb3;
130
131 if (max_dp_streams)
132 *max_dp_streams = ndp;
133
134 return credits > 0 ? credits : 0;
135 }
136
tb_tunnel_alloc(struct tb * tb,size_t npaths,enum tb_tunnel_type type)137 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths,
138 enum tb_tunnel_type type)
139 {
140 struct tb_tunnel *tunnel;
141
142 tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL);
143 if (!tunnel)
144 return NULL;
145
146 tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL);
147 if (!tunnel->paths) {
148 tb_tunnel_free(tunnel);
149 return NULL;
150 }
151
152 INIT_LIST_HEAD(&tunnel->list);
153 tunnel->tb = tb;
154 tunnel->npaths = npaths;
155 tunnel->type = type;
156
157 return tunnel;
158 }
159
tb_pci_set_ext_encapsulation(struct tb_tunnel * tunnel,bool enable)160 static int tb_pci_set_ext_encapsulation(struct tb_tunnel *tunnel, bool enable)
161 {
162 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw);
163 int ret;
164
165 /* Only supported of both routers are at least USB4 v2 */
166 if (tb_port_get_link_generation(port) < 4)
167 return 0;
168
169 ret = usb4_pci_port_set_ext_encapsulation(tunnel->src_port, enable);
170 if (ret)
171 return ret;
172
173 ret = usb4_pci_port_set_ext_encapsulation(tunnel->dst_port, enable);
174 if (ret)
175 return ret;
176
177 tb_tunnel_dbg(tunnel, "extended encapsulation %s\n",
178 str_enabled_disabled(enable));
179 return 0;
180 }
181
tb_pci_activate(struct tb_tunnel * tunnel,bool activate)182 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate)
183 {
184 int res;
185
186 if (activate) {
187 res = tb_pci_set_ext_encapsulation(tunnel, activate);
188 if (res)
189 return res;
190 }
191
192 res = tb_pci_port_enable(tunnel->src_port, activate);
193 if (res)
194 return res;
195
196 if (tb_port_is_pcie_up(tunnel->dst_port)) {
197 res = tb_pci_port_enable(tunnel->dst_port, activate);
198 if (res)
199 return res;
200 }
201
202 return activate ? 0 : tb_pci_set_ext_encapsulation(tunnel, activate);
203 }
204
tb_pci_init_credits(struct tb_path_hop * hop)205 static int tb_pci_init_credits(struct tb_path_hop *hop)
206 {
207 struct tb_port *port = hop->in_port;
208 struct tb_switch *sw = port->sw;
209 unsigned int credits;
210
211 if (tb_port_use_credit_allocation(port)) {
212 unsigned int available;
213
214 available = tb_available_credits(port, NULL);
215 credits = min(sw->max_pcie_credits, available);
216
217 if (credits < TB_MIN_PCIE_CREDITS)
218 return -ENOSPC;
219
220 credits = max(TB_MIN_PCIE_CREDITS, credits);
221 } else {
222 if (tb_port_is_null(port))
223 credits = port->bonded ? 32 : 16;
224 else
225 credits = 7;
226 }
227
228 hop->initial_credits = credits;
229 return 0;
230 }
231
tb_pci_init_path(struct tb_path * path)232 static int tb_pci_init_path(struct tb_path *path)
233 {
234 struct tb_path_hop *hop;
235
236 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
237 path->egress_shared_buffer = TB_PATH_NONE;
238 path->ingress_fc_enable = TB_PATH_ALL;
239 path->ingress_shared_buffer = TB_PATH_NONE;
240 path->priority = TB_PCI_PRIORITY;
241 path->weight = TB_PCI_WEIGHT;
242 path->drop_packages = 0;
243
244 tb_path_for_each_hop(path, hop) {
245 int ret;
246
247 ret = tb_pci_init_credits(hop);
248 if (ret)
249 return ret;
250 }
251
252 return 0;
253 }
254
255 /**
256 * tb_tunnel_discover_pci() - Discover existing PCIe tunnels
257 * @tb: Pointer to the domain structure
258 * @down: PCIe downstream adapter
259 * @alloc_hopid: Allocate HopIDs from visited ports
260 *
261 * If @down adapter is active, follows the tunnel to the PCIe upstream
262 * adapter and back. Returns the discovered tunnel or %NULL if there was
263 * no tunnel.
264 */
tb_tunnel_discover_pci(struct tb * tb,struct tb_port * down,bool alloc_hopid)265 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down,
266 bool alloc_hopid)
267 {
268 struct tb_tunnel *tunnel;
269 struct tb_path *path;
270
271 if (!tb_pci_port_is_enabled(down))
272 return NULL;
273
274 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI);
275 if (!tunnel)
276 return NULL;
277
278 tunnel->activate = tb_pci_activate;
279 tunnel->src_port = down;
280
281 /*
282 * Discover both paths even if they are not complete. We will
283 * clean them up by calling tb_tunnel_deactivate() below in that
284 * case.
285 */
286 path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1,
287 &tunnel->dst_port, "PCIe Up", alloc_hopid);
288 if (!path) {
289 /* Just disable the downstream port */
290 tb_pci_port_enable(down, false);
291 goto err_free;
292 }
293 tunnel->paths[TB_PCI_PATH_UP] = path;
294 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP]))
295 goto err_free;
296
297 path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL,
298 "PCIe Down", alloc_hopid);
299 if (!path)
300 goto err_deactivate;
301 tunnel->paths[TB_PCI_PATH_DOWN] = path;
302 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN]))
303 goto err_deactivate;
304
305 /* Validate that the tunnel is complete */
306 if (!tb_port_is_pcie_up(tunnel->dst_port)) {
307 tb_port_warn(tunnel->dst_port,
308 "path does not end on a PCIe adapter, cleaning up\n");
309 goto err_deactivate;
310 }
311
312 if (down != tunnel->src_port) {
313 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
314 goto err_deactivate;
315 }
316
317 if (!tb_pci_port_is_enabled(tunnel->dst_port)) {
318 tb_tunnel_warn(tunnel,
319 "tunnel is not fully activated, cleaning up\n");
320 goto err_deactivate;
321 }
322
323 tb_tunnel_dbg(tunnel, "discovered\n");
324 return tunnel;
325
326 err_deactivate:
327 tb_tunnel_deactivate(tunnel);
328 err_free:
329 tb_tunnel_free(tunnel);
330
331 return NULL;
332 }
333
334 /**
335 * tb_tunnel_alloc_pci() - allocate a pci tunnel
336 * @tb: Pointer to the domain structure
337 * @up: PCIe upstream adapter port
338 * @down: PCIe downstream adapter port
339 *
340 * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and
341 * TB_TYPE_PCIE_DOWN.
342 *
343 * Return: Returns a tb_tunnel on success or NULL on failure.
344 */
tb_tunnel_alloc_pci(struct tb * tb,struct tb_port * up,struct tb_port * down)345 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up,
346 struct tb_port *down)
347 {
348 struct tb_tunnel *tunnel;
349 struct tb_path *path;
350
351 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI);
352 if (!tunnel)
353 return NULL;
354
355 tunnel->activate = tb_pci_activate;
356 tunnel->src_port = down;
357 tunnel->dst_port = up;
358
359 path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0,
360 "PCIe Down");
361 if (!path)
362 goto err_free;
363 tunnel->paths[TB_PCI_PATH_DOWN] = path;
364 if (tb_pci_init_path(path))
365 goto err_free;
366
367 path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0,
368 "PCIe Up");
369 if (!path)
370 goto err_free;
371 tunnel->paths[TB_PCI_PATH_UP] = path;
372 if (tb_pci_init_path(path))
373 goto err_free;
374
375 return tunnel;
376
377 err_free:
378 tb_tunnel_free(tunnel);
379 return NULL;
380 }
381
382 /**
383 * tb_tunnel_reserved_pci() - Amount of bandwidth to reserve for PCIe
384 * @port: Lane 0 adapter
385 * @reserved_up: Upstream bandwidth in Mb/s to reserve
386 * @reserved_down: Downstream bandwidth in Mb/s to reserve
387 *
388 * Can be called to any connected lane 0 adapter to find out how much
389 * bandwidth needs to be left in reserve for possible PCIe bulk traffic.
390 * Returns true if there is something to be reserved and writes the
391 * amount to @reserved_down/@reserved_up. Otherwise returns false and
392 * does not touch the parameters.
393 */
tb_tunnel_reserved_pci(struct tb_port * port,int * reserved_up,int * reserved_down)394 bool tb_tunnel_reserved_pci(struct tb_port *port, int *reserved_up,
395 int *reserved_down)
396 {
397 if (WARN_ON_ONCE(!port->remote))
398 return false;
399
400 if (!tb_acpi_may_tunnel_pcie())
401 return false;
402
403 if (tb_port_get_link_generation(port) < 4)
404 return false;
405
406 /* Must have PCIe adapters */
407 if (tb_is_upstream_port(port)) {
408 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_UP))
409 return false;
410 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_DOWN))
411 return false;
412 } else {
413 if (!tb_switch_find_port(port->sw, TB_TYPE_PCIE_DOWN))
414 return false;
415 if (!tb_switch_find_port(port->remote->sw, TB_TYPE_PCIE_UP))
416 return false;
417 }
418
419 *reserved_up = USB4_V2_PCI_MIN_BANDWIDTH;
420 *reserved_down = USB4_V2_PCI_MIN_BANDWIDTH;
421
422 tb_port_dbg(port, "reserving %u/%u Mb/s for PCIe\n", *reserved_up,
423 *reserved_down);
424 return true;
425 }
426
tb_dp_is_usb4(const struct tb_switch * sw)427 static bool tb_dp_is_usb4(const struct tb_switch *sw)
428 {
429 /* Titan Ridge DP adapters need the same treatment as USB4 */
430 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw);
431 }
432
tb_dp_cm_handshake(struct tb_port * in,struct tb_port * out,int timeout_msec)433 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out,
434 int timeout_msec)
435 {
436 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
437 u32 val;
438 int ret;
439
440 /* Both ends need to support this */
441 if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw))
442 return 0;
443
444 ret = tb_port_read(out, &val, TB_CFG_PORT,
445 out->cap_adap + DP_STATUS_CTRL, 1);
446 if (ret)
447 return ret;
448
449 val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS;
450
451 ret = tb_port_write(out, &val, TB_CFG_PORT,
452 out->cap_adap + DP_STATUS_CTRL, 1);
453 if (ret)
454 return ret;
455
456 do {
457 ret = tb_port_read(out, &val, TB_CFG_PORT,
458 out->cap_adap + DP_STATUS_CTRL, 1);
459 if (ret)
460 return ret;
461 if (!(val & DP_STATUS_CTRL_CMHS))
462 return 0;
463 usleep_range(100, 150);
464 } while (ktime_before(ktime_get(), timeout));
465
466 return -ETIMEDOUT;
467 }
468
469 /*
470 * Returns maximum possible rate from capability supporting only DP 2.0
471 * and below. Used when DP BW allocation mode is not enabled.
472 */
tb_dp_cap_get_rate(u32 val)473 static inline u32 tb_dp_cap_get_rate(u32 val)
474 {
475 u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT;
476
477 switch (rate) {
478 case DP_COMMON_CAP_RATE_RBR:
479 return 1620;
480 case DP_COMMON_CAP_RATE_HBR:
481 return 2700;
482 case DP_COMMON_CAP_RATE_HBR2:
483 return 5400;
484 case DP_COMMON_CAP_RATE_HBR3:
485 return 8100;
486 default:
487 return 0;
488 }
489 }
490
491 /*
492 * Returns maximum possible rate from capability supporting DP 2.1
493 * UHBR20, 13.5 and 10 rates as well. Use only when DP BW allocation
494 * mode is enabled.
495 */
tb_dp_cap_get_rate_ext(u32 val)496 static inline u32 tb_dp_cap_get_rate_ext(u32 val)
497 {
498 if (val & DP_COMMON_CAP_UHBR20)
499 return 20000;
500 else if (val & DP_COMMON_CAP_UHBR13_5)
501 return 13500;
502 else if (val & DP_COMMON_CAP_UHBR10)
503 return 10000;
504
505 return tb_dp_cap_get_rate(val);
506 }
507
tb_dp_is_uhbr_rate(unsigned int rate)508 static inline bool tb_dp_is_uhbr_rate(unsigned int rate)
509 {
510 return rate >= 10000;
511 }
512
tb_dp_cap_set_rate(u32 val,u32 rate)513 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate)
514 {
515 val &= ~DP_COMMON_CAP_RATE_MASK;
516 switch (rate) {
517 default:
518 WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate);
519 fallthrough;
520 case 1620:
521 val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT;
522 break;
523 case 2700:
524 val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT;
525 break;
526 case 5400:
527 val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT;
528 break;
529 case 8100:
530 val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT;
531 break;
532 }
533 return val;
534 }
535
tb_dp_cap_get_lanes(u32 val)536 static inline u32 tb_dp_cap_get_lanes(u32 val)
537 {
538 u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT;
539
540 switch (lanes) {
541 case DP_COMMON_CAP_1_LANE:
542 return 1;
543 case DP_COMMON_CAP_2_LANES:
544 return 2;
545 case DP_COMMON_CAP_4_LANES:
546 return 4;
547 default:
548 return 0;
549 }
550 }
551
tb_dp_cap_set_lanes(u32 val,u32 lanes)552 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes)
553 {
554 val &= ~DP_COMMON_CAP_LANES_MASK;
555 switch (lanes) {
556 default:
557 WARN(1, "invalid number of lanes %u passed, defaulting to 1\n",
558 lanes);
559 fallthrough;
560 case 1:
561 val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT;
562 break;
563 case 2:
564 val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT;
565 break;
566 case 4:
567 val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT;
568 break;
569 }
570 return val;
571 }
572
tb_dp_bandwidth(unsigned int rate,unsigned int lanes)573 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes)
574 {
575 /* Tunneling removes the DP 8b/10b 128/132b encoding */
576 if (tb_dp_is_uhbr_rate(rate))
577 return rate * lanes * 128 / 132;
578 return rate * lanes * 8 / 10;
579 }
580
tb_dp_reduce_bandwidth(int max_bw,u32 in_rate,u32 in_lanes,u32 out_rate,u32 out_lanes,u32 * new_rate,u32 * new_lanes)581 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes,
582 u32 out_rate, u32 out_lanes, u32 *new_rate,
583 u32 *new_lanes)
584 {
585 static const u32 dp_bw[][2] = {
586 /* Mb/s, lanes */
587 { 8100, 4 }, /* 25920 Mb/s */
588 { 5400, 4 }, /* 17280 Mb/s */
589 { 8100, 2 }, /* 12960 Mb/s */
590 { 2700, 4 }, /* 8640 Mb/s */
591 { 5400, 2 }, /* 8640 Mb/s */
592 { 8100, 1 }, /* 6480 Mb/s */
593 { 1620, 4 }, /* 5184 Mb/s */
594 { 5400, 1 }, /* 4320 Mb/s */
595 { 2700, 2 }, /* 4320 Mb/s */
596 { 1620, 2 }, /* 2592 Mb/s */
597 { 2700, 1 }, /* 2160 Mb/s */
598 { 1620, 1 }, /* 1296 Mb/s */
599 };
600 unsigned int i;
601
602 /*
603 * Find a combination that can fit into max_bw and does not
604 * exceed the maximum rate and lanes supported by the DP OUT and
605 * DP IN adapters.
606 */
607 for (i = 0; i < ARRAY_SIZE(dp_bw); i++) {
608 if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes)
609 continue;
610
611 if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes)
612 continue;
613
614 if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) {
615 *new_rate = dp_bw[i][0];
616 *new_lanes = dp_bw[i][1];
617 return 0;
618 }
619 }
620
621 return -ENOSR;
622 }
623
tb_dp_xchg_caps(struct tb_tunnel * tunnel)624 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel)
625 {
626 u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw;
627 struct tb_port *out = tunnel->dst_port;
628 struct tb_port *in = tunnel->src_port;
629 int ret, max_bw;
630
631 /*
632 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for
633 * newer generation hardware.
634 */
635 if (in->sw->generation < 2 || out->sw->generation < 2)
636 return 0;
637
638 /*
639 * Perform connection manager handshake between IN and OUT ports
640 * before capabilities exchange can take place.
641 */
642 ret = tb_dp_cm_handshake(in, out, 3000);
643 if (ret)
644 return ret;
645
646 /* Read both DP_LOCAL_CAP registers */
647 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT,
648 in->cap_adap + DP_LOCAL_CAP, 1);
649 if (ret)
650 return ret;
651
652 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT,
653 out->cap_adap + DP_LOCAL_CAP, 1);
654 if (ret)
655 return ret;
656
657 /* Write IN local caps to OUT remote caps */
658 ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT,
659 out->cap_adap + DP_REMOTE_CAP, 1);
660 if (ret)
661 return ret;
662
663 in_rate = tb_dp_cap_get_rate(in_dp_cap);
664 in_lanes = tb_dp_cap_get_lanes(in_dp_cap);
665 tb_tunnel_dbg(tunnel,
666 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
667 in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes));
668
669 /*
670 * If the tunnel bandwidth is limited (max_bw is set) then see
671 * if we need to reduce bandwidth to fit there.
672 */
673 out_rate = tb_dp_cap_get_rate(out_dp_cap);
674 out_lanes = tb_dp_cap_get_lanes(out_dp_cap);
675 bw = tb_dp_bandwidth(out_rate, out_lanes);
676 tb_tunnel_dbg(tunnel,
677 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
678 out_rate, out_lanes, bw);
679
680 if (tb_port_path_direction_downstream(in, out))
681 max_bw = tunnel->max_down;
682 else
683 max_bw = tunnel->max_up;
684
685 if (max_bw && bw > max_bw) {
686 u32 new_rate, new_lanes, new_bw;
687
688 ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes,
689 out_rate, out_lanes, &new_rate,
690 &new_lanes);
691 if (ret) {
692 tb_tunnel_info(tunnel, "not enough bandwidth\n");
693 return ret;
694 }
695
696 new_bw = tb_dp_bandwidth(new_rate, new_lanes);
697 tb_tunnel_dbg(tunnel,
698 "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n",
699 new_rate, new_lanes, new_bw);
700
701 /*
702 * Set new rate and number of lanes before writing it to
703 * the IN port remote caps.
704 */
705 out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate);
706 out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes);
707 }
708
709 /*
710 * Titan Ridge does not disable AUX timers when it gets
711 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with
712 * DP tunneling.
713 */
714 if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) {
715 out_dp_cap |= DP_COMMON_CAP_LTTPR_NS;
716 tb_tunnel_dbg(tunnel, "disabling LTTPR\n");
717 }
718
719 return tb_port_write(in, &out_dp_cap, TB_CFG_PORT,
720 in->cap_adap + DP_REMOTE_CAP, 1);
721 }
722
tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel * tunnel)723 static int tb_dp_bandwidth_alloc_mode_enable(struct tb_tunnel *tunnel)
724 {
725 int ret, estimated_bw, granularity, tmp;
726 struct tb_port *out = tunnel->dst_port;
727 struct tb_port *in = tunnel->src_port;
728 u32 out_dp_cap, out_rate, out_lanes;
729 u32 in_dp_cap, in_rate, in_lanes;
730 u32 rate, lanes;
731
732 if (!bw_alloc_mode)
733 return 0;
734
735 ret = usb4_dp_port_set_cm_bandwidth_mode_supported(in, true);
736 if (ret)
737 return ret;
738
739 ret = usb4_dp_port_set_group_id(in, in->group->index);
740 if (ret)
741 return ret;
742
743 /*
744 * Get the non-reduced rate and lanes based on the lowest
745 * capability of both adapters.
746 */
747 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT,
748 in->cap_adap + DP_LOCAL_CAP, 1);
749 if (ret)
750 return ret;
751
752 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT,
753 out->cap_adap + DP_LOCAL_CAP, 1);
754 if (ret)
755 return ret;
756
757 in_rate = tb_dp_cap_get_rate(in_dp_cap);
758 in_lanes = tb_dp_cap_get_lanes(in_dp_cap);
759 out_rate = tb_dp_cap_get_rate(out_dp_cap);
760 out_lanes = tb_dp_cap_get_lanes(out_dp_cap);
761
762 rate = min(in_rate, out_rate);
763 lanes = min(in_lanes, out_lanes);
764 tmp = tb_dp_bandwidth(rate, lanes);
765
766 tb_tunnel_dbg(tunnel, "non-reduced bandwidth %u Mb/s x%u = %u Mb/s\n",
767 rate, lanes, tmp);
768
769 ret = usb4_dp_port_set_nrd(in, rate, lanes);
770 if (ret)
771 return ret;
772
773 /*
774 * Pick up granularity that supports maximum possible bandwidth.
775 * For that we use the UHBR rates too.
776 */
777 in_rate = tb_dp_cap_get_rate_ext(in_dp_cap);
778 out_rate = tb_dp_cap_get_rate_ext(out_dp_cap);
779 rate = min(in_rate, out_rate);
780 tmp = tb_dp_bandwidth(rate, lanes);
781
782 tb_tunnel_dbg(tunnel,
783 "maximum bandwidth through allocation mode %u Mb/s x%u = %u Mb/s\n",
784 rate, lanes, tmp);
785
786 for (granularity = 250; tmp / granularity > 255 && granularity <= 1000;
787 granularity *= 2)
788 ;
789
790 tb_tunnel_dbg(tunnel, "granularity %d Mb/s\n", granularity);
791
792 /*
793 * Returns -EINVAL if granularity above is outside of the
794 * accepted ranges.
795 */
796 ret = usb4_dp_port_set_granularity(in, granularity);
797 if (ret)
798 return ret;
799
800 /*
801 * Bandwidth estimation is pretty much what we have in
802 * max_up/down fields. For discovery we just read what the
803 * estimation was set to.
804 */
805 if (tb_port_path_direction_downstream(in, out))
806 estimated_bw = tunnel->max_down;
807 else
808 estimated_bw = tunnel->max_up;
809
810 tb_tunnel_dbg(tunnel, "estimated bandwidth %d Mb/s\n", estimated_bw);
811
812 ret = usb4_dp_port_set_estimated_bandwidth(in, estimated_bw);
813 if (ret)
814 return ret;
815
816 /* Initial allocation should be 0 according the spec */
817 ret = usb4_dp_port_allocate_bandwidth(in, 0);
818 if (ret)
819 return ret;
820
821 tb_tunnel_dbg(tunnel, "bandwidth allocation mode enabled\n");
822 return 0;
823 }
824
tb_dp_init(struct tb_tunnel * tunnel)825 static int tb_dp_init(struct tb_tunnel *tunnel)
826 {
827 struct tb_port *in = tunnel->src_port;
828 struct tb_switch *sw = in->sw;
829 struct tb *tb = in->sw->tb;
830 int ret;
831
832 ret = tb_dp_xchg_caps(tunnel);
833 if (ret)
834 return ret;
835
836 if (!tb_switch_is_usb4(sw))
837 return 0;
838
839 if (!usb4_dp_port_bandwidth_mode_supported(in))
840 return 0;
841
842 tb_tunnel_dbg(tunnel, "bandwidth allocation mode supported\n");
843
844 ret = usb4_dp_port_set_cm_id(in, tb->index);
845 if (ret)
846 return ret;
847
848 return tb_dp_bandwidth_alloc_mode_enable(tunnel);
849 }
850
tb_dp_deinit(struct tb_tunnel * tunnel)851 static void tb_dp_deinit(struct tb_tunnel *tunnel)
852 {
853 struct tb_port *in = tunnel->src_port;
854
855 if (!usb4_dp_port_bandwidth_mode_supported(in))
856 return;
857 if (usb4_dp_port_bandwidth_mode_enabled(in)) {
858 usb4_dp_port_set_cm_bandwidth_mode_supported(in, false);
859 tb_tunnel_dbg(tunnel, "bandwidth allocation mode disabled\n");
860 }
861 }
862
tb_dp_activate(struct tb_tunnel * tunnel,bool active)863 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active)
864 {
865 int ret;
866
867 if (active) {
868 struct tb_path **paths;
869 int last;
870
871 paths = tunnel->paths;
872 last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1;
873
874 tb_dp_port_set_hops(tunnel->src_port,
875 paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index,
876 paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index,
877 paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index);
878
879 tb_dp_port_set_hops(tunnel->dst_port,
880 paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index,
881 paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index,
882 paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index);
883 } else {
884 tb_dp_port_hpd_clear(tunnel->src_port);
885 tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0);
886 if (tb_port_is_dpout(tunnel->dst_port))
887 tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0);
888 }
889
890 ret = tb_dp_port_enable(tunnel->src_port, active);
891 if (ret)
892 return ret;
893
894 if (tb_port_is_dpout(tunnel->dst_port))
895 return tb_dp_port_enable(tunnel->dst_port, active);
896
897 return 0;
898 }
899
900 /* max_bw is rounded up to next granularity */
tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel * tunnel,int * max_bw)901 static int tb_dp_bandwidth_mode_maximum_bandwidth(struct tb_tunnel *tunnel,
902 int *max_bw)
903 {
904 struct tb_port *in = tunnel->src_port;
905 int ret, rate, lanes, nrd_bw;
906 u32 cap;
907
908 /*
909 * DP IN adapter DP_LOCAL_CAP gets updated to the lowest AUX
910 * read parameter values so this so we can use this to determine
911 * the maximum possible bandwidth over this link.
912 *
913 * See USB4 v2 spec 1.0 10.4.4.5.
914 */
915 ret = tb_port_read(in, &cap, TB_CFG_PORT,
916 in->cap_adap + DP_LOCAL_CAP, 1);
917 if (ret)
918 return ret;
919
920 rate = tb_dp_cap_get_rate_ext(cap);
921 if (tb_dp_is_uhbr_rate(rate)) {
922 /*
923 * When UHBR is used there is no reduction in lanes so
924 * we can use this directly.
925 */
926 lanes = tb_dp_cap_get_lanes(cap);
927 } else {
928 /*
929 * If there is no UHBR supported then check the
930 * non-reduced rate and lanes.
931 */
932 ret = usb4_dp_port_nrd(in, &rate, &lanes);
933 if (ret)
934 return ret;
935 }
936
937 nrd_bw = tb_dp_bandwidth(rate, lanes);
938
939 if (max_bw) {
940 ret = usb4_dp_port_granularity(in);
941 if (ret < 0)
942 return ret;
943 *max_bw = roundup(nrd_bw, ret);
944 }
945
946 return nrd_bw;
947 }
948
tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel * tunnel,int * consumed_up,int * consumed_down)949 static int tb_dp_bandwidth_mode_consumed_bandwidth(struct tb_tunnel *tunnel,
950 int *consumed_up,
951 int *consumed_down)
952 {
953 struct tb_port *out = tunnel->dst_port;
954 struct tb_port *in = tunnel->src_port;
955 int ret, allocated_bw, max_bw;
956
957 if (!usb4_dp_port_bandwidth_mode_enabled(in))
958 return -EOPNOTSUPP;
959
960 if (!tunnel->bw_mode)
961 return -EOPNOTSUPP;
962
963 /* Read what was allocated previously if any */
964 ret = usb4_dp_port_allocated_bandwidth(in);
965 if (ret < 0)
966 return ret;
967 allocated_bw = ret;
968
969 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw);
970 if (ret < 0)
971 return ret;
972 if (allocated_bw == max_bw)
973 allocated_bw = ret;
974
975 if (tb_port_path_direction_downstream(in, out)) {
976 *consumed_up = 0;
977 *consumed_down = allocated_bw;
978 } else {
979 *consumed_up = allocated_bw;
980 *consumed_down = 0;
981 }
982
983 return 0;
984 }
985
tb_dp_allocated_bandwidth(struct tb_tunnel * tunnel,int * allocated_up,int * allocated_down)986 static int tb_dp_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up,
987 int *allocated_down)
988 {
989 struct tb_port *out = tunnel->dst_port;
990 struct tb_port *in = tunnel->src_port;
991
992 /*
993 * If we have already set the allocated bandwidth then use that.
994 * Otherwise we read it from the DPRX.
995 */
996 if (usb4_dp_port_bandwidth_mode_enabled(in) && tunnel->bw_mode) {
997 int ret, allocated_bw, max_bw;
998
999 ret = usb4_dp_port_allocated_bandwidth(in);
1000 if (ret < 0)
1001 return ret;
1002 allocated_bw = ret;
1003
1004 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw);
1005 if (ret < 0)
1006 return ret;
1007 if (allocated_bw == max_bw)
1008 allocated_bw = ret;
1009
1010 if (tb_port_path_direction_downstream(in, out)) {
1011 *allocated_up = 0;
1012 *allocated_down = allocated_bw;
1013 } else {
1014 *allocated_up = allocated_bw;
1015 *allocated_down = 0;
1016 }
1017 return 0;
1018 }
1019
1020 return tunnel->consumed_bandwidth(tunnel, allocated_up,
1021 allocated_down);
1022 }
1023
tb_dp_alloc_bandwidth(struct tb_tunnel * tunnel,int * alloc_up,int * alloc_down)1024 static int tb_dp_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up,
1025 int *alloc_down)
1026 {
1027 struct tb_port *out = tunnel->dst_port;
1028 struct tb_port *in = tunnel->src_port;
1029 int max_bw, ret, tmp;
1030
1031 if (!usb4_dp_port_bandwidth_mode_enabled(in))
1032 return -EOPNOTSUPP;
1033
1034 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, &max_bw);
1035 if (ret < 0)
1036 return ret;
1037
1038 if (tb_port_path_direction_downstream(in, out)) {
1039 tmp = min(*alloc_down, max_bw);
1040 ret = usb4_dp_port_allocate_bandwidth(in, tmp);
1041 if (ret)
1042 return ret;
1043 *alloc_down = tmp;
1044 *alloc_up = 0;
1045 } else {
1046 tmp = min(*alloc_up, max_bw);
1047 ret = usb4_dp_port_allocate_bandwidth(in, tmp);
1048 if (ret)
1049 return ret;
1050 *alloc_down = 0;
1051 *alloc_up = tmp;
1052 }
1053
1054 /* Now we can use BW mode registers to figure out the bandwidth */
1055 /* TODO: need to handle discovery too */
1056 tunnel->bw_mode = true;
1057 return 0;
1058 }
1059
tb_dp_read_dprx(struct tb_tunnel * tunnel,u32 * rate,u32 * lanes,int timeout_msec)1060 static int tb_dp_read_dprx(struct tb_tunnel *tunnel, u32 *rate, u32 *lanes,
1061 int timeout_msec)
1062 {
1063 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1064 struct tb_port *in = tunnel->src_port;
1065
1066 /*
1067 * Wait for DPRX done. Normally it should be already set for
1068 * active tunnel.
1069 */
1070 do {
1071 u32 val;
1072 int ret;
1073
1074 ret = tb_port_read(in, &val, TB_CFG_PORT,
1075 in->cap_adap + DP_COMMON_CAP, 1);
1076 if (ret)
1077 return ret;
1078
1079 if (val & DP_COMMON_CAP_DPRX_DONE) {
1080 *rate = tb_dp_cap_get_rate(val);
1081 *lanes = tb_dp_cap_get_lanes(val);
1082
1083 tb_tunnel_dbg(tunnel, "DPRX read done\n");
1084 return 0;
1085 }
1086 usleep_range(100, 150);
1087 } while (ktime_before(ktime_get(), timeout));
1088
1089 return -ETIMEDOUT;
1090 }
1091
1092 /* Read cap from tunnel DP IN */
tb_dp_read_cap(struct tb_tunnel * tunnel,unsigned int cap,u32 * rate,u32 * lanes)1093 static int tb_dp_read_cap(struct tb_tunnel *tunnel, unsigned int cap, u32 *rate,
1094 u32 *lanes)
1095 {
1096 struct tb_port *in = tunnel->src_port;
1097 u32 val;
1098 int ret;
1099
1100 switch (cap) {
1101 case DP_LOCAL_CAP:
1102 case DP_REMOTE_CAP:
1103 break;
1104
1105 default:
1106 tb_tunnel_WARN(tunnel, "invalid capability index %#x\n", cap);
1107 return -EINVAL;
1108 }
1109
1110 /*
1111 * Read from the copied remote cap so that we take into account
1112 * if capabilities were reduced during exchange.
1113 */
1114 ret = tb_port_read(in, &val, TB_CFG_PORT, in->cap_adap + cap, 1);
1115 if (ret)
1116 return ret;
1117
1118 *rate = tb_dp_cap_get_rate(val);
1119 *lanes = tb_dp_cap_get_lanes(val);
1120 return 0;
1121 }
1122
tb_dp_maximum_bandwidth(struct tb_tunnel * tunnel,int * max_up,int * max_down)1123 static int tb_dp_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up,
1124 int *max_down)
1125 {
1126 struct tb_port *in = tunnel->src_port;
1127 int ret;
1128
1129 if (!usb4_dp_port_bandwidth_mode_enabled(in))
1130 return -EOPNOTSUPP;
1131
1132 ret = tb_dp_bandwidth_mode_maximum_bandwidth(tunnel, NULL);
1133 if (ret < 0)
1134 return ret;
1135
1136 if (tb_port_path_direction_downstream(in, tunnel->dst_port)) {
1137 *max_up = 0;
1138 *max_down = ret;
1139 } else {
1140 *max_up = ret;
1141 *max_down = 0;
1142 }
1143
1144 return 0;
1145 }
1146
tb_dp_consumed_bandwidth(struct tb_tunnel * tunnel,int * consumed_up,int * consumed_down)1147 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up,
1148 int *consumed_down)
1149 {
1150 struct tb_port *in = tunnel->src_port;
1151 const struct tb_switch *sw = in->sw;
1152 u32 rate = 0, lanes = 0;
1153 int ret;
1154
1155 if (tb_dp_is_usb4(sw)) {
1156 /*
1157 * On USB4 routers check if the bandwidth allocation
1158 * mode is enabled first and then read the bandwidth
1159 * through those registers.
1160 */
1161 ret = tb_dp_bandwidth_mode_consumed_bandwidth(tunnel, consumed_up,
1162 consumed_down);
1163 if (ret < 0) {
1164 if (ret != -EOPNOTSUPP)
1165 return ret;
1166 } else if (!ret) {
1167 return 0;
1168 }
1169 /*
1170 * Then see if the DPRX negotiation is ready and if yes
1171 * return that bandwidth (it may be smaller than the
1172 * reduced one). Otherwise return the remote (possibly
1173 * reduced) caps.
1174 */
1175 ret = tb_dp_read_dprx(tunnel, &rate, &lanes, 150);
1176 if (ret) {
1177 if (ret == -ETIMEDOUT)
1178 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP,
1179 &rate, &lanes);
1180 if (ret)
1181 return ret;
1182 }
1183 } else if (sw->generation >= 2) {
1184 ret = tb_dp_read_cap(tunnel, DP_REMOTE_CAP, &rate, &lanes);
1185 if (ret)
1186 return ret;
1187 } else {
1188 /* No bandwidth management for legacy devices */
1189 *consumed_up = 0;
1190 *consumed_down = 0;
1191 return 0;
1192 }
1193
1194 if (tb_port_path_direction_downstream(in, tunnel->dst_port)) {
1195 *consumed_up = 0;
1196 *consumed_down = tb_dp_bandwidth(rate, lanes);
1197 } else {
1198 *consumed_up = tb_dp_bandwidth(rate, lanes);
1199 *consumed_down = 0;
1200 }
1201
1202 return 0;
1203 }
1204
tb_dp_init_aux_credits(struct tb_path_hop * hop)1205 static void tb_dp_init_aux_credits(struct tb_path_hop *hop)
1206 {
1207 struct tb_port *port = hop->in_port;
1208 struct tb_switch *sw = port->sw;
1209
1210 if (tb_port_use_credit_allocation(port))
1211 hop->initial_credits = sw->min_dp_aux_credits;
1212 else
1213 hop->initial_credits = 1;
1214 }
1215
tb_dp_init_aux_path(struct tb_path * path)1216 static void tb_dp_init_aux_path(struct tb_path *path)
1217 {
1218 struct tb_path_hop *hop;
1219
1220 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
1221 path->egress_shared_buffer = TB_PATH_NONE;
1222 path->ingress_fc_enable = TB_PATH_ALL;
1223 path->ingress_shared_buffer = TB_PATH_NONE;
1224 path->priority = TB_DP_AUX_PRIORITY;
1225 path->weight = TB_DP_AUX_WEIGHT;
1226
1227 tb_path_for_each_hop(path, hop)
1228 tb_dp_init_aux_credits(hop);
1229 }
1230
tb_dp_init_video_credits(struct tb_path_hop * hop)1231 static int tb_dp_init_video_credits(struct tb_path_hop *hop)
1232 {
1233 struct tb_port *port = hop->in_port;
1234 struct tb_switch *sw = port->sw;
1235
1236 if (tb_port_use_credit_allocation(port)) {
1237 unsigned int nfc_credits;
1238 size_t max_dp_streams;
1239
1240 tb_available_credits(port, &max_dp_streams);
1241 /*
1242 * Read the number of currently allocated NFC credits
1243 * from the lane adapter. Since we only use them for DP
1244 * tunneling we can use that to figure out how many DP
1245 * tunnels already go through the lane adapter.
1246 */
1247 nfc_credits = port->config.nfc_credits &
1248 ADP_CS_4_NFC_BUFFERS_MASK;
1249 if (nfc_credits / sw->min_dp_main_credits > max_dp_streams)
1250 return -ENOSPC;
1251
1252 hop->nfc_credits = sw->min_dp_main_credits;
1253 } else {
1254 hop->nfc_credits = min(port->total_credits - 2, 12U);
1255 }
1256
1257 return 0;
1258 }
1259
tb_dp_init_video_path(struct tb_path * path)1260 static int tb_dp_init_video_path(struct tb_path *path)
1261 {
1262 struct tb_path_hop *hop;
1263
1264 path->egress_fc_enable = TB_PATH_NONE;
1265 path->egress_shared_buffer = TB_PATH_NONE;
1266 path->ingress_fc_enable = TB_PATH_NONE;
1267 path->ingress_shared_buffer = TB_PATH_NONE;
1268 path->priority = TB_DP_VIDEO_PRIORITY;
1269 path->weight = TB_DP_VIDEO_WEIGHT;
1270
1271 tb_path_for_each_hop(path, hop) {
1272 int ret;
1273
1274 ret = tb_dp_init_video_credits(hop);
1275 if (ret)
1276 return ret;
1277 }
1278
1279 return 0;
1280 }
1281
tb_dp_dump(struct tb_tunnel * tunnel)1282 static void tb_dp_dump(struct tb_tunnel *tunnel)
1283 {
1284 struct tb_port *in, *out;
1285 u32 dp_cap, rate, lanes;
1286
1287 in = tunnel->src_port;
1288 out = tunnel->dst_port;
1289
1290 if (tb_port_read(in, &dp_cap, TB_CFG_PORT,
1291 in->cap_adap + DP_LOCAL_CAP, 1))
1292 return;
1293
1294 rate = tb_dp_cap_get_rate(dp_cap);
1295 lanes = tb_dp_cap_get_lanes(dp_cap);
1296
1297 tb_tunnel_dbg(tunnel,
1298 "DP IN maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
1299 rate, lanes, tb_dp_bandwidth(rate, lanes));
1300
1301 out = tunnel->dst_port;
1302
1303 if (tb_port_read(out, &dp_cap, TB_CFG_PORT,
1304 out->cap_adap + DP_LOCAL_CAP, 1))
1305 return;
1306
1307 rate = tb_dp_cap_get_rate(dp_cap);
1308 lanes = tb_dp_cap_get_lanes(dp_cap);
1309
1310 tb_tunnel_dbg(tunnel,
1311 "DP OUT maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n",
1312 rate, lanes, tb_dp_bandwidth(rate, lanes));
1313
1314 if (tb_port_read(in, &dp_cap, TB_CFG_PORT,
1315 in->cap_adap + DP_REMOTE_CAP, 1))
1316 return;
1317
1318 rate = tb_dp_cap_get_rate(dp_cap);
1319 lanes = tb_dp_cap_get_lanes(dp_cap);
1320
1321 tb_tunnel_dbg(tunnel, "reduced bandwidth %u Mb/s x%u = %u Mb/s\n",
1322 rate, lanes, tb_dp_bandwidth(rate, lanes));
1323 }
1324
1325 /**
1326 * tb_tunnel_discover_dp() - Discover existing Display Port tunnels
1327 * @tb: Pointer to the domain structure
1328 * @in: DP in adapter
1329 * @alloc_hopid: Allocate HopIDs from visited ports
1330 *
1331 * If @in adapter is active, follows the tunnel to the DP out adapter
1332 * and back. Returns the discovered tunnel or %NULL if there was no
1333 * tunnel.
1334 *
1335 * Return: DP tunnel or %NULL if no tunnel found.
1336 */
tb_tunnel_discover_dp(struct tb * tb,struct tb_port * in,bool alloc_hopid)1337 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in,
1338 bool alloc_hopid)
1339 {
1340 struct tb_tunnel *tunnel;
1341 struct tb_port *port;
1342 struct tb_path *path;
1343
1344 if (!tb_dp_port_is_enabled(in))
1345 return NULL;
1346
1347 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP);
1348 if (!tunnel)
1349 return NULL;
1350
1351 tunnel->init = tb_dp_init;
1352 tunnel->deinit = tb_dp_deinit;
1353 tunnel->activate = tb_dp_activate;
1354 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth;
1355 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth;
1356 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth;
1357 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth;
1358 tunnel->src_port = in;
1359
1360 path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1,
1361 &tunnel->dst_port, "Video", alloc_hopid);
1362 if (!path) {
1363 /* Just disable the DP IN port */
1364 tb_dp_port_enable(in, false);
1365 goto err_free;
1366 }
1367 tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path;
1368 if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT]))
1369 goto err_free;
1370
1371 path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX",
1372 alloc_hopid);
1373 if (!path)
1374 goto err_deactivate;
1375 tunnel->paths[TB_DP_AUX_PATH_OUT] = path;
1376 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT]);
1377
1378 path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID,
1379 &port, "AUX RX", alloc_hopid);
1380 if (!path)
1381 goto err_deactivate;
1382 tunnel->paths[TB_DP_AUX_PATH_IN] = path;
1383 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN]);
1384
1385 /* Validate that the tunnel is complete */
1386 if (!tb_port_is_dpout(tunnel->dst_port)) {
1387 tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n");
1388 goto err_deactivate;
1389 }
1390
1391 if (!tb_dp_port_is_enabled(tunnel->dst_port))
1392 goto err_deactivate;
1393
1394 if (!tb_dp_port_hpd_is_active(tunnel->dst_port))
1395 goto err_deactivate;
1396
1397 if (port != tunnel->src_port) {
1398 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
1399 goto err_deactivate;
1400 }
1401
1402 tb_dp_dump(tunnel);
1403
1404 tb_tunnel_dbg(tunnel, "discovered\n");
1405 return tunnel;
1406
1407 err_deactivate:
1408 tb_tunnel_deactivate(tunnel);
1409 err_free:
1410 tb_tunnel_free(tunnel);
1411
1412 return NULL;
1413 }
1414
1415 /**
1416 * tb_tunnel_alloc_dp() - allocate a Display Port tunnel
1417 * @tb: Pointer to the domain structure
1418 * @in: DP in adapter port
1419 * @out: DP out adapter port
1420 * @link_nr: Preferred lane adapter when the link is not bonded
1421 * @max_up: Maximum available upstream bandwidth for the DP tunnel (%0
1422 * if not limited)
1423 * @max_down: Maximum available downstream bandwidth for the DP tunnel
1424 * (%0 if not limited)
1425 *
1426 * Allocates a tunnel between @in and @out that is capable of tunneling
1427 * Display Port traffic.
1428 *
1429 * Return: Returns a tb_tunnel on success or NULL on failure.
1430 */
tb_tunnel_alloc_dp(struct tb * tb,struct tb_port * in,struct tb_port * out,int link_nr,int max_up,int max_down)1431 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in,
1432 struct tb_port *out, int link_nr,
1433 int max_up, int max_down)
1434 {
1435 struct tb_tunnel *tunnel;
1436 struct tb_path **paths;
1437 struct tb_path *path;
1438
1439 if (WARN_ON(!in->cap_adap || !out->cap_adap))
1440 return NULL;
1441
1442 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP);
1443 if (!tunnel)
1444 return NULL;
1445
1446 tunnel->init = tb_dp_init;
1447 tunnel->deinit = tb_dp_deinit;
1448 tunnel->activate = tb_dp_activate;
1449 tunnel->maximum_bandwidth = tb_dp_maximum_bandwidth;
1450 tunnel->allocated_bandwidth = tb_dp_allocated_bandwidth;
1451 tunnel->alloc_bandwidth = tb_dp_alloc_bandwidth;
1452 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth;
1453 tunnel->src_port = in;
1454 tunnel->dst_port = out;
1455 tunnel->max_up = max_up;
1456 tunnel->max_down = max_down;
1457
1458 paths = tunnel->paths;
1459
1460 path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID,
1461 link_nr, "Video");
1462 if (!path)
1463 goto err_free;
1464 tb_dp_init_video_path(path);
1465 paths[TB_DP_VIDEO_PATH_OUT] = path;
1466
1467 path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out,
1468 TB_DP_AUX_TX_HOPID, link_nr, "AUX TX");
1469 if (!path)
1470 goto err_free;
1471 tb_dp_init_aux_path(path);
1472 paths[TB_DP_AUX_PATH_OUT] = path;
1473
1474 path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in,
1475 TB_DP_AUX_RX_HOPID, link_nr, "AUX RX");
1476 if (!path)
1477 goto err_free;
1478 tb_dp_init_aux_path(path);
1479 paths[TB_DP_AUX_PATH_IN] = path;
1480
1481 return tunnel;
1482
1483 err_free:
1484 tb_tunnel_free(tunnel);
1485 return NULL;
1486 }
1487
tb_dma_available_credits(const struct tb_port * port)1488 static unsigned int tb_dma_available_credits(const struct tb_port *port)
1489 {
1490 const struct tb_switch *sw = port->sw;
1491 int credits;
1492
1493 credits = tb_available_credits(port, NULL);
1494 if (tb_acpi_may_tunnel_pcie())
1495 credits -= sw->max_pcie_credits;
1496 credits -= port->dma_credits;
1497
1498 return credits > 0 ? credits : 0;
1499 }
1500
tb_dma_reserve_credits(struct tb_path_hop * hop,unsigned int credits)1501 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits)
1502 {
1503 struct tb_port *port = hop->in_port;
1504
1505 if (tb_port_use_credit_allocation(port)) {
1506 unsigned int available = tb_dma_available_credits(port);
1507
1508 /*
1509 * Need to have at least TB_MIN_DMA_CREDITS, otherwise
1510 * DMA path cannot be established.
1511 */
1512 if (available < TB_MIN_DMA_CREDITS)
1513 return -ENOSPC;
1514
1515 while (credits > available)
1516 credits--;
1517
1518 tb_port_dbg(port, "reserving %u credits for DMA path\n",
1519 credits);
1520
1521 port->dma_credits += credits;
1522 } else {
1523 if (tb_port_is_null(port))
1524 credits = port->bonded ? 14 : 6;
1525 else
1526 credits = min(port->total_credits, credits);
1527 }
1528
1529 hop->initial_credits = credits;
1530 return 0;
1531 }
1532
1533 /* Path from lane adapter to NHI */
tb_dma_init_rx_path(struct tb_path * path,unsigned int credits)1534 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits)
1535 {
1536 struct tb_path_hop *hop;
1537 unsigned int i, tmp;
1538
1539 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
1540 path->ingress_fc_enable = TB_PATH_ALL;
1541 path->egress_shared_buffer = TB_PATH_NONE;
1542 path->ingress_shared_buffer = TB_PATH_NONE;
1543 path->priority = TB_DMA_PRIORITY;
1544 path->weight = TB_DMA_WEIGHT;
1545 path->clear_fc = true;
1546
1547 /*
1548 * First lane adapter is the one connected to the remote host.
1549 * We don't tunnel other traffic over this link so can use all
1550 * the credits (except the ones reserved for control traffic).
1551 */
1552 hop = &path->hops[0];
1553 tmp = min(tb_usable_credits(hop->in_port), credits);
1554 hop->initial_credits = tmp;
1555 hop->in_port->dma_credits += tmp;
1556
1557 for (i = 1; i < path->path_length; i++) {
1558 int ret;
1559
1560 ret = tb_dma_reserve_credits(&path->hops[i], credits);
1561 if (ret)
1562 return ret;
1563 }
1564
1565 return 0;
1566 }
1567
1568 /* Path from NHI to lane adapter */
tb_dma_init_tx_path(struct tb_path * path,unsigned int credits)1569 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits)
1570 {
1571 struct tb_path_hop *hop;
1572
1573 path->egress_fc_enable = TB_PATH_ALL;
1574 path->ingress_fc_enable = TB_PATH_ALL;
1575 path->egress_shared_buffer = TB_PATH_NONE;
1576 path->ingress_shared_buffer = TB_PATH_NONE;
1577 path->priority = TB_DMA_PRIORITY;
1578 path->weight = TB_DMA_WEIGHT;
1579 path->clear_fc = true;
1580
1581 tb_path_for_each_hop(path, hop) {
1582 int ret;
1583
1584 ret = tb_dma_reserve_credits(hop, credits);
1585 if (ret)
1586 return ret;
1587 }
1588
1589 return 0;
1590 }
1591
tb_dma_release_credits(struct tb_path_hop * hop)1592 static void tb_dma_release_credits(struct tb_path_hop *hop)
1593 {
1594 struct tb_port *port = hop->in_port;
1595
1596 if (tb_port_use_credit_allocation(port)) {
1597 port->dma_credits -= hop->initial_credits;
1598
1599 tb_port_dbg(port, "released %u DMA path credits\n",
1600 hop->initial_credits);
1601 }
1602 }
1603
tb_dma_deinit_path(struct tb_path * path)1604 static void tb_dma_deinit_path(struct tb_path *path)
1605 {
1606 struct tb_path_hop *hop;
1607
1608 tb_path_for_each_hop(path, hop)
1609 tb_dma_release_credits(hop);
1610 }
1611
tb_dma_deinit(struct tb_tunnel * tunnel)1612 static void tb_dma_deinit(struct tb_tunnel *tunnel)
1613 {
1614 int i;
1615
1616 for (i = 0; i < tunnel->npaths; i++) {
1617 if (!tunnel->paths[i])
1618 continue;
1619 tb_dma_deinit_path(tunnel->paths[i]);
1620 }
1621 }
1622
1623 /**
1624 * tb_tunnel_alloc_dma() - allocate a DMA tunnel
1625 * @tb: Pointer to the domain structure
1626 * @nhi: Host controller port
1627 * @dst: Destination null port which the other domain is connected to
1628 * @transmit_path: HopID used for transmitting packets
1629 * @transmit_ring: NHI ring number used to send packets towards the
1630 * other domain. Set to %-1 if TX path is not needed.
1631 * @receive_path: HopID used for receiving packets
1632 * @receive_ring: NHI ring number used to receive packets from the
1633 * other domain. Set to %-1 if RX path is not needed.
1634 *
1635 * Return: Returns a tb_tunnel on success or NULL on failure.
1636 */
tb_tunnel_alloc_dma(struct tb * tb,struct tb_port * nhi,struct tb_port * dst,int transmit_path,int transmit_ring,int receive_path,int receive_ring)1637 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi,
1638 struct tb_port *dst, int transmit_path,
1639 int transmit_ring, int receive_path,
1640 int receive_ring)
1641 {
1642 struct tb_tunnel *tunnel;
1643 size_t npaths = 0, i = 0;
1644 struct tb_path *path;
1645 int credits;
1646
1647 /* Ring 0 is reserved for control channel */
1648 if (WARN_ON(!receive_ring || !transmit_ring))
1649 return NULL;
1650
1651 if (receive_ring > 0)
1652 npaths++;
1653 if (transmit_ring > 0)
1654 npaths++;
1655
1656 if (WARN_ON(!npaths))
1657 return NULL;
1658
1659 tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA);
1660 if (!tunnel)
1661 return NULL;
1662
1663 tunnel->src_port = nhi;
1664 tunnel->dst_port = dst;
1665 tunnel->deinit = tb_dma_deinit;
1666
1667 credits = min_not_zero(dma_credits, nhi->sw->max_dma_credits);
1668
1669 if (receive_ring > 0) {
1670 path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0,
1671 "DMA RX");
1672 if (!path)
1673 goto err_free;
1674 tunnel->paths[i++] = path;
1675 if (tb_dma_init_rx_path(path, credits)) {
1676 tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n");
1677 goto err_free;
1678 }
1679 }
1680
1681 if (transmit_ring > 0) {
1682 path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0,
1683 "DMA TX");
1684 if (!path)
1685 goto err_free;
1686 tunnel->paths[i++] = path;
1687 if (tb_dma_init_tx_path(path, credits)) {
1688 tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n");
1689 goto err_free;
1690 }
1691 }
1692
1693 return tunnel;
1694
1695 err_free:
1696 tb_tunnel_free(tunnel);
1697 return NULL;
1698 }
1699
1700 /**
1701 * tb_tunnel_match_dma() - Match DMA tunnel
1702 * @tunnel: Tunnel to match
1703 * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore.
1704 * @transmit_ring: NHI ring number used to send packets towards the
1705 * other domain. Pass %-1 to ignore.
1706 * @receive_path: HopID used for receiving packets. Pass %-1 to ignore.
1707 * @receive_ring: NHI ring number used to receive packets from the
1708 * other domain. Pass %-1 to ignore.
1709 *
1710 * This function can be used to match specific DMA tunnel, if there are
1711 * multiple DMA tunnels going through the same XDomain connection.
1712 * Returns true if there is match and false otherwise.
1713 */
tb_tunnel_match_dma(const struct tb_tunnel * tunnel,int transmit_path,int transmit_ring,int receive_path,int receive_ring)1714 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path,
1715 int transmit_ring, int receive_path, int receive_ring)
1716 {
1717 const struct tb_path *tx_path = NULL, *rx_path = NULL;
1718 int i;
1719
1720 if (!receive_ring || !transmit_ring)
1721 return false;
1722
1723 for (i = 0; i < tunnel->npaths; i++) {
1724 const struct tb_path *path = tunnel->paths[i];
1725
1726 if (!path)
1727 continue;
1728
1729 if (tb_port_is_nhi(path->hops[0].in_port))
1730 tx_path = path;
1731 else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port))
1732 rx_path = path;
1733 }
1734
1735 if (transmit_ring > 0 || transmit_path > 0) {
1736 if (!tx_path)
1737 return false;
1738 if (transmit_ring > 0 &&
1739 (tx_path->hops[0].in_hop_index != transmit_ring))
1740 return false;
1741 if (transmit_path > 0 &&
1742 (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path))
1743 return false;
1744 }
1745
1746 if (receive_ring > 0 || receive_path > 0) {
1747 if (!rx_path)
1748 return false;
1749 if (receive_path > 0 &&
1750 (rx_path->hops[0].in_hop_index != receive_path))
1751 return false;
1752 if (receive_ring > 0 &&
1753 (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring))
1754 return false;
1755 }
1756
1757 return true;
1758 }
1759
tb_usb3_max_link_rate(struct tb_port * up,struct tb_port * down)1760 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down)
1761 {
1762 int ret, up_max_rate, down_max_rate;
1763
1764 ret = usb4_usb3_port_max_link_rate(up);
1765 if (ret < 0)
1766 return ret;
1767 up_max_rate = ret;
1768
1769 ret = usb4_usb3_port_max_link_rate(down);
1770 if (ret < 0)
1771 return ret;
1772 down_max_rate = ret;
1773
1774 return min(up_max_rate, down_max_rate);
1775 }
1776
tb_usb3_init(struct tb_tunnel * tunnel)1777 static int tb_usb3_init(struct tb_tunnel *tunnel)
1778 {
1779 tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n",
1780 tunnel->allocated_up, tunnel->allocated_down);
1781
1782 return usb4_usb3_port_allocate_bandwidth(tunnel->src_port,
1783 &tunnel->allocated_up,
1784 &tunnel->allocated_down);
1785 }
1786
tb_usb3_activate(struct tb_tunnel * tunnel,bool activate)1787 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate)
1788 {
1789 int res;
1790
1791 res = tb_usb3_port_enable(tunnel->src_port, activate);
1792 if (res)
1793 return res;
1794
1795 if (tb_port_is_usb3_up(tunnel->dst_port))
1796 return tb_usb3_port_enable(tunnel->dst_port, activate);
1797
1798 return 0;
1799 }
1800
tb_usb3_consumed_bandwidth(struct tb_tunnel * tunnel,int * consumed_up,int * consumed_down)1801 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel,
1802 int *consumed_up, int *consumed_down)
1803 {
1804 struct tb_port *port = tb_upstream_port(tunnel->dst_port->sw);
1805 int pcie_weight = tb_acpi_may_tunnel_pcie() ? TB_PCI_WEIGHT : 0;
1806
1807 /*
1808 * PCIe tunneling, if enabled, affects the USB3 bandwidth so
1809 * take that it into account here.
1810 */
1811 *consumed_up = tunnel->allocated_up *
1812 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT;
1813 *consumed_down = tunnel->allocated_down *
1814 (TB_USB3_WEIGHT + pcie_weight) / TB_USB3_WEIGHT;
1815
1816 if (tb_port_get_link_generation(port) >= 4) {
1817 *consumed_up = max(*consumed_up, USB4_V2_USB3_MIN_BANDWIDTH);
1818 *consumed_down = max(*consumed_down, USB4_V2_USB3_MIN_BANDWIDTH);
1819 }
1820
1821 return 0;
1822 }
1823
tb_usb3_release_unused_bandwidth(struct tb_tunnel * tunnel)1824 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel)
1825 {
1826 int ret;
1827
1828 ret = usb4_usb3_port_release_bandwidth(tunnel->src_port,
1829 &tunnel->allocated_up,
1830 &tunnel->allocated_down);
1831 if (ret)
1832 return ret;
1833
1834 tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n",
1835 tunnel->allocated_up, tunnel->allocated_down);
1836 return 0;
1837 }
1838
tb_usb3_reclaim_available_bandwidth(struct tb_tunnel * tunnel,int * available_up,int * available_down)1839 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel,
1840 int *available_up,
1841 int *available_down)
1842 {
1843 int ret, max_rate, allocate_up, allocate_down;
1844
1845 ret = usb4_usb3_port_actual_link_rate(tunnel->src_port);
1846 if (ret < 0) {
1847 tb_tunnel_warn(tunnel, "failed to read actual link rate\n");
1848 return;
1849 } else if (!ret) {
1850 /* Use maximum link rate if the link valid is not set */
1851 ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port);
1852 if (ret < 0) {
1853 tb_tunnel_warn(tunnel, "failed to read maximum link rate\n");
1854 return;
1855 }
1856 }
1857
1858 /*
1859 * 90% of the max rate can be allocated for isochronous
1860 * transfers.
1861 */
1862 max_rate = ret * 90 / 100;
1863
1864 /* No need to reclaim if already at maximum */
1865 if (tunnel->allocated_up >= max_rate &&
1866 tunnel->allocated_down >= max_rate)
1867 return;
1868
1869 /* Don't go lower than what is already allocated */
1870 allocate_up = min(max_rate, *available_up);
1871 if (allocate_up < tunnel->allocated_up)
1872 allocate_up = tunnel->allocated_up;
1873
1874 allocate_down = min(max_rate, *available_down);
1875 if (allocate_down < tunnel->allocated_down)
1876 allocate_down = tunnel->allocated_down;
1877
1878 /* If no changes no need to do more */
1879 if (allocate_up == tunnel->allocated_up &&
1880 allocate_down == tunnel->allocated_down)
1881 return;
1882
1883 ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up,
1884 &allocate_down);
1885 if (ret) {
1886 tb_tunnel_info(tunnel, "failed to allocate bandwidth\n");
1887 return;
1888 }
1889
1890 tunnel->allocated_up = allocate_up;
1891 *available_up -= tunnel->allocated_up;
1892
1893 tunnel->allocated_down = allocate_down;
1894 *available_down -= tunnel->allocated_down;
1895
1896 tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n",
1897 tunnel->allocated_up, tunnel->allocated_down);
1898 }
1899
tb_usb3_init_credits(struct tb_path_hop * hop)1900 static void tb_usb3_init_credits(struct tb_path_hop *hop)
1901 {
1902 struct tb_port *port = hop->in_port;
1903 struct tb_switch *sw = port->sw;
1904 unsigned int credits;
1905
1906 if (tb_port_use_credit_allocation(port)) {
1907 credits = sw->max_usb3_credits;
1908 } else {
1909 if (tb_port_is_null(port))
1910 credits = port->bonded ? 32 : 16;
1911 else
1912 credits = 7;
1913 }
1914
1915 hop->initial_credits = credits;
1916 }
1917
tb_usb3_init_path(struct tb_path * path)1918 static void tb_usb3_init_path(struct tb_path *path)
1919 {
1920 struct tb_path_hop *hop;
1921
1922 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
1923 path->egress_shared_buffer = TB_PATH_NONE;
1924 path->ingress_fc_enable = TB_PATH_ALL;
1925 path->ingress_shared_buffer = TB_PATH_NONE;
1926 path->priority = TB_USB3_PRIORITY;
1927 path->weight = TB_USB3_WEIGHT;
1928 path->drop_packages = 0;
1929
1930 tb_path_for_each_hop(path, hop)
1931 tb_usb3_init_credits(hop);
1932 }
1933
1934 /**
1935 * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels
1936 * @tb: Pointer to the domain structure
1937 * @down: USB3 downstream adapter
1938 * @alloc_hopid: Allocate HopIDs from visited ports
1939 *
1940 * If @down adapter is active, follows the tunnel to the USB3 upstream
1941 * adapter and back. Returns the discovered tunnel or %NULL if there was
1942 * no tunnel.
1943 */
tb_tunnel_discover_usb3(struct tb * tb,struct tb_port * down,bool alloc_hopid)1944 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down,
1945 bool alloc_hopid)
1946 {
1947 struct tb_tunnel *tunnel;
1948 struct tb_path *path;
1949
1950 if (!tb_usb3_port_is_enabled(down))
1951 return NULL;
1952
1953 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3);
1954 if (!tunnel)
1955 return NULL;
1956
1957 tunnel->activate = tb_usb3_activate;
1958 tunnel->src_port = down;
1959
1960 /*
1961 * Discover both paths even if they are not complete. We will
1962 * clean them up by calling tb_tunnel_deactivate() below in that
1963 * case.
1964 */
1965 path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1,
1966 &tunnel->dst_port, "USB3 Down", alloc_hopid);
1967 if (!path) {
1968 /* Just disable the downstream port */
1969 tb_usb3_port_enable(down, false);
1970 goto err_free;
1971 }
1972 tunnel->paths[TB_USB3_PATH_DOWN] = path;
1973 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]);
1974
1975 path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL,
1976 "USB3 Up", alloc_hopid);
1977 if (!path)
1978 goto err_deactivate;
1979 tunnel->paths[TB_USB3_PATH_UP] = path;
1980 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]);
1981
1982 /* Validate that the tunnel is complete */
1983 if (!tb_port_is_usb3_up(tunnel->dst_port)) {
1984 tb_port_warn(tunnel->dst_port,
1985 "path does not end on an USB3 adapter, cleaning up\n");
1986 goto err_deactivate;
1987 }
1988
1989 if (down != tunnel->src_port) {
1990 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
1991 goto err_deactivate;
1992 }
1993
1994 if (!tb_usb3_port_is_enabled(tunnel->dst_port)) {
1995 tb_tunnel_warn(tunnel,
1996 "tunnel is not fully activated, cleaning up\n");
1997 goto err_deactivate;
1998 }
1999
2000 if (!tb_route(down->sw)) {
2001 int ret;
2002
2003 /*
2004 * Read the initial bandwidth allocation for the first
2005 * hop tunnel.
2006 */
2007 ret = usb4_usb3_port_allocated_bandwidth(down,
2008 &tunnel->allocated_up, &tunnel->allocated_down);
2009 if (ret)
2010 goto err_deactivate;
2011
2012 tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n",
2013 tunnel->allocated_up, tunnel->allocated_down);
2014
2015 tunnel->init = tb_usb3_init;
2016 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth;
2017 tunnel->release_unused_bandwidth =
2018 tb_usb3_release_unused_bandwidth;
2019 tunnel->reclaim_available_bandwidth =
2020 tb_usb3_reclaim_available_bandwidth;
2021 }
2022
2023 tb_tunnel_dbg(tunnel, "discovered\n");
2024 return tunnel;
2025
2026 err_deactivate:
2027 tb_tunnel_deactivate(tunnel);
2028 err_free:
2029 tb_tunnel_free(tunnel);
2030
2031 return NULL;
2032 }
2033
2034 /**
2035 * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel
2036 * @tb: Pointer to the domain structure
2037 * @up: USB3 upstream adapter port
2038 * @down: USB3 downstream adapter port
2039 * @max_up: Maximum available upstream bandwidth for the USB3 tunnel (%0
2040 * if not limited).
2041 * @max_down: Maximum available downstream bandwidth for the USB3 tunnel
2042 * (%0 if not limited).
2043 *
2044 * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and
2045 * @TB_TYPE_USB3_DOWN.
2046 *
2047 * Return: Returns a tb_tunnel on success or %NULL on failure.
2048 */
tb_tunnel_alloc_usb3(struct tb * tb,struct tb_port * up,struct tb_port * down,int max_up,int max_down)2049 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up,
2050 struct tb_port *down, int max_up,
2051 int max_down)
2052 {
2053 struct tb_tunnel *tunnel;
2054 struct tb_path *path;
2055 int max_rate = 0;
2056
2057 /*
2058 * Check that we have enough bandwidth available for the new
2059 * USB3 tunnel.
2060 */
2061 if (max_up > 0 || max_down > 0) {
2062 max_rate = tb_usb3_max_link_rate(down, up);
2063 if (max_rate < 0)
2064 return NULL;
2065
2066 /* Only 90% can be allocated for USB3 isochronous transfers */
2067 max_rate = max_rate * 90 / 100;
2068 tb_port_dbg(up, "required bandwidth for USB3 tunnel %d Mb/s\n",
2069 max_rate);
2070
2071 if (max_rate > max_up || max_rate > max_down) {
2072 tb_port_warn(up, "not enough bandwidth for USB3 tunnel\n");
2073 return NULL;
2074 }
2075 }
2076
2077 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3);
2078 if (!tunnel)
2079 return NULL;
2080
2081 tunnel->activate = tb_usb3_activate;
2082 tunnel->src_port = down;
2083 tunnel->dst_port = up;
2084 tunnel->max_up = max_up;
2085 tunnel->max_down = max_down;
2086
2087 path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0,
2088 "USB3 Down");
2089 if (!path) {
2090 tb_tunnel_free(tunnel);
2091 return NULL;
2092 }
2093 tb_usb3_init_path(path);
2094 tunnel->paths[TB_USB3_PATH_DOWN] = path;
2095
2096 path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0,
2097 "USB3 Up");
2098 if (!path) {
2099 tb_tunnel_free(tunnel);
2100 return NULL;
2101 }
2102 tb_usb3_init_path(path);
2103 tunnel->paths[TB_USB3_PATH_UP] = path;
2104
2105 if (!tb_route(down->sw)) {
2106 tunnel->allocated_up = max_rate;
2107 tunnel->allocated_down = max_rate;
2108
2109 tunnel->init = tb_usb3_init;
2110 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth;
2111 tunnel->release_unused_bandwidth =
2112 tb_usb3_release_unused_bandwidth;
2113 tunnel->reclaim_available_bandwidth =
2114 tb_usb3_reclaim_available_bandwidth;
2115 }
2116
2117 return tunnel;
2118 }
2119
2120 /**
2121 * tb_tunnel_free() - free a tunnel
2122 * @tunnel: Tunnel to be freed
2123 *
2124 * Frees a tunnel. The tunnel does not need to be deactivated.
2125 */
tb_tunnel_free(struct tb_tunnel * tunnel)2126 void tb_tunnel_free(struct tb_tunnel *tunnel)
2127 {
2128 int i;
2129
2130 if (!tunnel)
2131 return;
2132
2133 if (tunnel->deinit)
2134 tunnel->deinit(tunnel);
2135
2136 for (i = 0; i < tunnel->npaths; i++) {
2137 if (tunnel->paths[i])
2138 tb_path_free(tunnel->paths[i]);
2139 }
2140
2141 kfree(tunnel->paths);
2142 kfree(tunnel);
2143 }
2144
2145 /**
2146 * tb_tunnel_is_invalid - check whether an activated path is still valid
2147 * @tunnel: Tunnel to check
2148 */
tb_tunnel_is_invalid(struct tb_tunnel * tunnel)2149 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel)
2150 {
2151 int i;
2152
2153 for (i = 0; i < tunnel->npaths; i++) {
2154 WARN_ON(!tunnel->paths[i]->activated);
2155 if (tb_path_is_invalid(tunnel->paths[i]))
2156 return true;
2157 }
2158
2159 return false;
2160 }
2161
2162 /**
2163 * tb_tunnel_restart() - activate a tunnel after a hardware reset
2164 * @tunnel: Tunnel to restart
2165 *
2166 * Return: 0 on success and negative errno in case if failure
2167 */
tb_tunnel_restart(struct tb_tunnel * tunnel)2168 int tb_tunnel_restart(struct tb_tunnel *tunnel)
2169 {
2170 int res, i;
2171
2172 tb_tunnel_dbg(tunnel, "activating\n");
2173
2174 /*
2175 * Make sure all paths are properly disabled before enabling
2176 * them again.
2177 */
2178 for (i = 0; i < tunnel->npaths; i++) {
2179 if (tunnel->paths[i]->activated) {
2180 tb_path_deactivate(tunnel->paths[i]);
2181 tunnel->paths[i]->activated = false;
2182 }
2183 }
2184
2185 if (tunnel->init) {
2186 res = tunnel->init(tunnel);
2187 if (res)
2188 return res;
2189 }
2190
2191 for (i = 0; i < tunnel->npaths; i++) {
2192 res = tb_path_activate(tunnel->paths[i]);
2193 if (res)
2194 goto err;
2195 }
2196
2197 if (tunnel->activate) {
2198 res = tunnel->activate(tunnel, true);
2199 if (res)
2200 goto err;
2201 }
2202
2203 return 0;
2204
2205 err:
2206 tb_tunnel_warn(tunnel, "activation failed\n");
2207 tb_tunnel_deactivate(tunnel);
2208 return res;
2209 }
2210
2211 /**
2212 * tb_tunnel_activate() - activate a tunnel
2213 * @tunnel: Tunnel to activate
2214 *
2215 * Return: Returns 0 on success or an error code on failure.
2216 */
tb_tunnel_activate(struct tb_tunnel * tunnel)2217 int tb_tunnel_activate(struct tb_tunnel *tunnel)
2218 {
2219 int i;
2220
2221 for (i = 0; i < tunnel->npaths; i++) {
2222 if (tunnel->paths[i]->activated) {
2223 tb_tunnel_WARN(tunnel,
2224 "trying to activate an already activated tunnel\n");
2225 return -EINVAL;
2226 }
2227 }
2228
2229 return tb_tunnel_restart(tunnel);
2230 }
2231
2232 /**
2233 * tb_tunnel_deactivate() - deactivate a tunnel
2234 * @tunnel: Tunnel to deactivate
2235 */
tb_tunnel_deactivate(struct tb_tunnel * tunnel)2236 void tb_tunnel_deactivate(struct tb_tunnel *tunnel)
2237 {
2238 int i;
2239
2240 tb_tunnel_dbg(tunnel, "deactivating\n");
2241
2242 if (tunnel->activate)
2243 tunnel->activate(tunnel, false);
2244
2245 for (i = 0; i < tunnel->npaths; i++) {
2246 if (tunnel->paths[i] && tunnel->paths[i]->activated)
2247 tb_path_deactivate(tunnel->paths[i]);
2248 }
2249 }
2250
2251 /**
2252 * tb_tunnel_port_on_path() - Does the tunnel go through port
2253 * @tunnel: Tunnel to check
2254 * @port: Port to check
2255 *
2256 * Returns true if @tunnel goes through @port (direction does not matter),
2257 * false otherwise.
2258 */
tb_tunnel_port_on_path(const struct tb_tunnel * tunnel,const struct tb_port * port)2259 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel,
2260 const struct tb_port *port)
2261 {
2262 int i;
2263
2264 for (i = 0; i < tunnel->npaths; i++) {
2265 if (!tunnel->paths[i])
2266 continue;
2267
2268 if (tb_path_port_on_path(tunnel->paths[i], port))
2269 return true;
2270 }
2271
2272 return false;
2273 }
2274
tb_tunnel_is_active(const struct tb_tunnel * tunnel)2275 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel)
2276 {
2277 int i;
2278
2279 for (i = 0; i < tunnel->npaths; i++) {
2280 if (!tunnel->paths[i])
2281 return false;
2282 if (!tunnel->paths[i]->activated)
2283 return false;
2284 }
2285
2286 return true;
2287 }
2288
2289 /**
2290 * tb_tunnel_maximum_bandwidth() - Return maximum possible bandwidth
2291 * @tunnel: Tunnel to check
2292 * @max_up: Maximum upstream bandwidth in Mb/s
2293 * @max_down: Maximum downstream bandwidth in Mb/s
2294 *
2295 * Returns maximum possible bandwidth this tunnel can go if not limited
2296 * by other bandwidth clients. If the tunnel does not support this
2297 * returns %-EOPNOTSUPP.
2298 */
tb_tunnel_maximum_bandwidth(struct tb_tunnel * tunnel,int * max_up,int * max_down)2299 int tb_tunnel_maximum_bandwidth(struct tb_tunnel *tunnel, int *max_up,
2300 int *max_down)
2301 {
2302 if (!tb_tunnel_is_active(tunnel))
2303 return -EINVAL;
2304
2305 if (tunnel->maximum_bandwidth)
2306 return tunnel->maximum_bandwidth(tunnel, max_up, max_down);
2307 return -EOPNOTSUPP;
2308 }
2309
2310 /**
2311 * tb_tunnel_allocated_bandwidth() - Return bandwidth allocated for the tunnel
2312 * @tunnel: Tunnel to check
2313 * @allocated_up: Currently allocated upstream bandwidth in Mb/s is stored here
2314 * @allocated_down: Currently allocated downstream bandwidth in Mb/s is
2315 * stored here
2316 *
2317 * Returns the bandwidth allocated for the tunnel. This may be higher
2318 * than what the tunnel actually consumes.
2319 */
tb_tunnel_allocated_bandwidth(struct tb_tunnel * tunnel,int * allocated_up,int * allocated_down)2320 int tb_tunnel_allocated_bandwidth(struct tb_tunnel *tunnel, int *allocated_up,
2321 int *allocated_down)
2322 {
2323 if (!tb_tunnel_is_active(tunnel))
2324 return -EINVAL;
2325
2326 if (tunnel->allocated_bandwidth)
2327 return tunnel->allocated_bandwidth(tunnel, allocated_up,
2328 allocated_down);
2329 return -EOPNOTSUPP;
2330 }
2331
2332 /**
2333 * tb_tunnel_alloc_bandwidth() - Change tunnel bandwidth allocation
2334 * @tunnel: Tunnel whose bandwidth allocation to change
2335 * @alloc_up: New upstream bandwidth in Mb/s
2336 * @alloc_down: New downstream bandwidth in Mb/s
2337 *
2338 * Tries to change tunnel bandwidth allocation. If succeeds returns %0
2339 * and updates @alloc_up and @alloc_down to that was actually allocated
2340 * (it may not be the same as passed originally). Returns negative errno
2341 * in case of failure.
2342 */
tb_tunnel_alloc_bandwidth(struct tb_tunnel * tunnel,int * alloc_up,int * alloc_down)2343 int tb_tunnel_alloc_bandwidth(struct tb_tunnel *tunnel, int *alloc_up,
2344 int *alloc_down)
2345 {
2346 if (!tb_tunnel_is_active(tunnel))
2347 return -EINVAL;
2348
2349 if (tunnel->alloc_bandwidth)
2350 return tunnel->alloc_bandwidth(tunnel, alloc_up, alloc_down);
2351
2352 return -EOPNOTSUPP;
2353 }
2354
2355 /**
2356 * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel
2357 * @tunnel: Tunnel to check
2358 * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port.
2359 * Can be %NULL.
2360 * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port.
2361 * Can be %NULL.
2362 *
2363 * Stores the amount of isochronous bandwidth @tunnel consumes in
2364 * @consumed_up and @consumed_down. In case of success returns %0,
2365 * negative errno otherwise.
2366 */
tb_tunnel_consumed_bandwidth(struct tb_tunnel * tunnel,int * consumed_up,int * consumed_down)2367 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up,
2368 int *consumed_down)
2369 {
2370 int up_bw = 0, down_bw = 0;
2371
2372 if (!tb_tunnel_is_active(tunnel))
2373 goto out;
2374
2375 if (tunnel->consumed_bandwidth) {
2376 int ret;
2377
2378 ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw);
2379 if (ret)
2380 return ret;
2381
2382 tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw,
2383 down_bw);
2384 }
2385
2386 out:
2387 if (consumed_up)
2388 *consumed_up = up_bw;
2389 if (consumed_down)
2390 *consumed_down = down_bw;
2391
2392 return 0;
2393 }
2394
2395 /**
2396 * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth
2397 * @tunnel: Tunnel whose unused bandwidth to release
2398 *
2399 * If tunnel supports dynamic bandwidth management (USB3 tunnels at the
2400 * moment) this function makes it to release all the unused bandwidth.
2401 *
2402 * Returns %0 in case of success and negative errno otherwise.
2403 */
tb_tunnel_release_unused_bandwidth(struct tb_tunnel * tunnel)2404 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel)
2405 {
2406 if (!tb_tunnel_is_active(tunnel))
2407 return 0;
2408
2409 if (tunnel->release_unused_bandwidth) {
2410 int ret;
2411
2412 ret = tunnel->release_unused_bandwidth(tunnel);
2413 if (ret)
2414 return ret;
2415 }
2416
2417 return 0;
2418 }
2419
2420 /**
2421 * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth
2422 * @tunnel: Tunnel reclaiming available bandwidth
2423 * @available_up: Available upstream bandwidth (in Mb/s)
2424 * @available_down: Available downstream bandwidth (in Mb/s)
2425 *
2426 * Reclaims bandwidth from @available_up and @available_down and updates
2427 * the variables accordingly (e.g decreases both according to what was
2428 * reclaimed by the tunnel). If nothing was reclaimed the values are
2429 * kept as is.
2430 */
tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel * tunnel,int * available_up,int * available_down)2431 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel,
2432 int *available_up,
2433 int *available_down)
2434 {
2435 if (!tb_tunnel_is_active(tunnel))
2436 return;
2437
2438 if (tunnel->reclaim_available_bandwidth)
2439 tunnel->reclaim_available_bandwidth(tunnel, available_up,
2440 available_down);
2441 }
2442
tb_tunnel_type_name(const struct tb_tunnel * tunnel)2443 const char *tb_tunnel_type_name(const struct tb_tunnel *tunnel)
2444 {
2445 return tb_tunnel_names[tunnel->type];
2446 }
2447