xref: /openbmc/linux/lib/crypto/sha1.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * SHA1 routine optimized to do word accesses rather than byte accesses,
4   * and to avoid unnecessary copies into the context array.
5   *
6   * This was based on the git SHA1 implementation.
7   */
8  
9  #include <linux/kernel.h>
10  #include <linux/export.h>
11  #include <linux/module.h>
12  #include <linux/bitops.h>
13  #include <linux/string.h>
14  #include <crypto/sha1.h>
15  #include <asm/unaligned.h>
16  
17  /*
18   * If you have 32 registers or more, the compiler can (and should)
19   * try to change the array[] accesses into registers. However, on
20   * machines with less than ~25 registers, that won't really work,
21   * and at least gcc will make an unholy mess of it.
22   *
23   * So to avoid that mess which just slows things down, we force
24   * the stores to memory to actually happen (we might be better off
25   * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
26   * suggested by Artur Skawina - that will also make gcc unable to
27   * try to do the silly "optimize away loads" part because it won't
28   * see what the value will be).
29   *
30   * Ben Herrenschmidt reports that on PPC, the C version comes close
31   * to the optimized asm with this (ie on PPC you don't want that
32   * 'volatile', since there are lots of registers).
33   *
34   * On ARM we get the best code generation by forcing a full memory barrier
35   * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
36   * the stack frame size simply explode and performance goes down the drain.
37   */
38  
39  #ifdef CONFIG_X86
40    #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
41  #elif defined(CONFIG_ARM)
42    #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
43  #else
44    #define setW(x, val) (W(x) = (val))
45  #endif
46  
47  /* This "rolls" over the 512-bit array */
48  #define W(x) (array[(x)&15])
49  
50  /*
51   * Where do we get the source from? The first 16 iterations get it from
52   * the input data, the next mix it from the 512-bit array.
53   */
54  #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
55  #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
56  
57  #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
58  	__u32 TEMP = input(t); setW(t, TEMP); \
59  	E += TEMP + rol32(A,5) + (fn) + (constant); \
60  	B = ror32(B, 2); \
61  	TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
62  
63  #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
64  #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
65  #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
66  #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
67  #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
68  
69  /**
70   * sha1_transform - single block SHA1 transform (deprecated)
71   *
72   * @digest: 160 bit digest to update
73   * @data:   512 bits of data to hash
74   * @array:  16 words of workspace (see note)
75   *
76   * This function executes SHA-1's internal compression function.  It updates the
77   * 160-bit internal state (@digest) with a single 512-bit data block (@data).
78   *
79   * Don't use this function.  SHA-1 is no longer considered secure.  And even if
80   * you do have to use SHA-1, this isn't the correct way to hash something with
81   * SHA-1 as this doesn't handle padding and finalization.
82   *
83   * Note: If the hash is security sensitive, the caller should be sure
84   * to clear the workspace. This is left to the caller to avoid
85   * unnecessary clears between chained hashing operations.
86   */
sha1_transform(__u32 * digest,const char * data,__u32 * array)87  void sha1_transform(__u32 *digest, const char *data, __u32 *array)
88  {
89  	__u32 A, B, C, D, E;
90  	unsigned int i = 0;
91  
92  	A = digest[0];
93  	B = digest[1];
94  	C = digest[2];
95  	D = digest[3];
96  	E = digest[4];
97  
98  	/* Round 1 - iterations 0-16 take their input from 'data' */
99  	for (; i < 16; ++i)
100  		T_0_15(i, A, B, C, D, E);
101  
102  	/* Round 1 - tail. Input from 512-bit mixing array */
103  	for (; i < 20; ++i)
104  		T_16_19(i, A, B, C, D, E);
105  
106  	/* Round 2 */
107  	for (; i < 40; ++i)
108  		T_20_39(i, A, B, C, D, E);
109  
110  	/* Round 3 */
111  	for (; i < 60; ++i)
112  		T_40_59(i, A, B, C, D, E);
113  
114  	/* Round 4 */
115  	for (; i < 80; ++i)
116  		T_60_79(i, A, B, C, D, E);
117  
118  	digest[0] += A;
119  	digest[1] += B;
120  	digest[2] += C;
121  	digest[3] += D;
122  	digest[4] += E;
123  }
124  EXPORT_SYMBOL(sha1_transform);
125  
126  /**
127   * sha1_init - initialize the vectors for a SHA1 digest
128   * @buf: vector to initialize
129   */
sha1_init(__u32 * buf)130  void sha1_init(__u32 *buf)
131  {
132  	buf[0] = 0x67452301;
133  	buf[1] = 0xefcdab89;
134  	buf[2] = 0x98badcfe;
135  	buf[3] = 0x10325476;
136  	buf[4] = 0xc3d2e1f0;
137  }
138  EXPORT_SYMBOL(sha1_init);
139  
140  MODULE_LICENSE("GPL");
141