1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 // Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7 /* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26
27 #include "m_can.h"
28
29 /* registers definition */
30 enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79 };
80
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN 8
83
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK GENMASK(31, 28)
86 #define CREL_STEP_MASK GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC BIT(23)
91 #define DBTP_DBRP_MASK GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK GENMASK(7, 4)
94 #define DBTP_DSJW_MASK GENMASK(3, 0)
95
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK GENMASK(14, 8)
98 #define TDCR_TDCF_MASK GENMASK(6, 0)
99
100 /* Test Register (TEST) */
101 #define TEST_LBCK BIT(4)
102
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP BIT(14)
105 #define CCCR_TEST BIT(7)
106 #define CCCR_DAR BIT(6)
107 #define CCCR_MON BIT(5)
108 #define CCCR_CSR BIT(4)
109 #define CCCR_CSA BIT(3)
110 #define CCCR_ASM BIT(2)
111 #define CCCR_CCE BIT(1)
112 #define CCCR_INIT BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK GENMASK(11, 10)
115 #define CCCR_CMR_CANFD 0x1
116 #define CCCR_CMR_CANFD_BRS 0x2
117 #define CCCR_CMR_CAN 0x3
118 #define CCCR_CME_MASK GENMASK(9, 8)
119 #define CCCR_CME_CAN 0
120 #define CCCR_CME_CANFD 0x1
121 #define CCCR_CME_CANFD_BRS 0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI BIT(13)
124 #define CCCR_PXHD BIT(12)
125 #define CCCR_BRSE BIT(9)
126 #define CCCR_FDOE BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM BIT(11)
131 #define CCCR_UTSU BIT(10)
132
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK GENMASK(31, 25)
135 #define NBTP_NBRP_MASK GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK GENMASK(19, 16)
141 #define TSCC_TSS_MASK GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE 0x0
143 #define TSCC_TSS_INTERNAL 0x1
144 #define TSCC_TSS_EXTERNAL 0x2
145
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK GENMASK(15, 0)
148
149 /* Error Counter Register (ECR) */
150 #define ECR_RP BIT(15)
151 #define ECR_REC_MASK GENMASK(14, 8)
152 #define ECR_TEC_MASK GENMASK(7, 0)
153
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO BIT(7)
156 #define PSR_EW BIT(6)
157 #define PSR_EP BIT(5)
158 #define PSR_LEC_MASK GENMASK(2, 0)
159 #define PSR_DLEC_MASK GENMASK(10, 8)
160
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT 0xffffffff
163
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA BIT(29)
166 #define IR_PED BIT(28)
167 #define IR_PEA BIT(27)
168
169 /* Bits for version 3.0.x */
170 #define IR_STE BIT(31)
171 #define IR_FOE BIT(30)
172 #define IR_ACKE BIT(29)
173 #define IR_BE BIT(28)
174 #define IR_CRCE BIT(27)
175 #define IR_WDI BIT(26)
176 #define IR_BO BIT(25)
177 #define IR_EW BIT(24)
178 #define IR_EP BIT(23)
179 #define IR_ELO BIT(22)
180 #define IR_BEU BIT(21)
181 #define IR_BEC BIT(20)
182 #define IR_DRX BIT(19)
183 #define IR_TOO BIT(18)
184 #define IR_MRAF BIT(17)
185 #define IR_TSW BIT(16)
186 #define IR_TEFL BIT(15)
187 #define IR_TEFF BIT(14)
188 #define IR_TEFW BIT(13)
189 #define IR_TEFN BIT(12)
190 #define IR_TFE BIT(11)
191 #define IR_TCF BIT(10)
192 #define IR_TC BIT(9)
193 #define IR_HPM BIT(8)
194 #define IR_RF1L BIT(7)
195 #define IR_RF1F BIT(6)
196 #define IR_RF1W BIT(5)
197 #define IR_RF1N BIT(4)
198 #define IR_RF0L BIT(3)
199 #define IR_RF0F BIT(2)
200 #define IR_RF0W BIT(1)
201 #define IR_RF0N BIT(0)
202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
203
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 IR_RF0L)
209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
210
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 IR_RF0L)
216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
217
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0 0x0
220 #define ILS_ALL_INT1 0xFFFFFFFF
221
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1 BIT(1)
224 #define ILE_EINT0 BIT(0)
225
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK GENMASK(30, 24)
228 #define RXFC_FS_MASK GENMASK(22, 16)
229
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL BIT(25)
232 #define RXFS_FF BIT(24)
233 #define RXFS_FPI_MASK GENMASK(21, 16)
234 #define RXFS_FGI_MASK GENMASK(13, 8)
235 #define RXFS_FFL_MASK GENMASK(6, 0)
236
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK GENMASK(10, 8)
239 #define RXESC_F1DS_MASK GENMASK(6, 4)
240 #define RXESC_F0DS_MASK GENMASK(2, 0)
241 #define RXESC_64B 0x7
242
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK GENMASK(29, 24)
245 #define TXBC_NDTB_MASK GENMASK(21, 16)
246
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF BIT(21)
249 #define TXFQS_TFQPI_MASK GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK GENMASK(5, 0)
252
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK GENMASK(2, 0)
255 #define TXESC_TBDS_64B 0x7
256
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFS_MASK GENMASK(21, 16)
259
260 /* Tx Event FIFO Status (TXEFS) */
261 #define TXEFS_TEFL BIT(25)
262 #define TXEFS_EFF BIT(24)
263 #define TXEFS_EFGI_MASK GENMASK(12, 8)
264 #define TXEFS_EFFL_MASK GENMASK(5, 0)
265
266 /* Tx Event FIFO Acknowledge (TXEFA) */
267 #define TXEFA_EFAI_MASK GENMASK(4, 0)
268
269 /* Message RAM Configuration (in bytes) */
270 #define SIDF_ELEMENT_SIZE 4
271 #define XIDF_ELEMENT_SIZE 8
272 #define RXF0_ELEMENT_SIZE 72
273 #define RXF1_ELEMENT_SIZE 72
274 #define RXB_ELEMENT_SIZE 72
275 #define TXE_ELEMENT_SIZE 8
276 #define TXB_ELEMENT_SIZE 72
277
278 /* Message RAM Elements */
279 #define M_CAN_FIFO_ID 0x0
280 #define M_CAN_FIFO_DLC 0x4
281 #define M_CAN_FIFO_DATA 0x8
282
283 /* Rx Buffer Element */
284 /* R0 */
285 #define RX_BUF_ESI BIT(31)
286 #define RX_BUF_XTD BIT(30)
287 #define RX_BUF_RTR BIT(29)
288 /* R1 */
289 #define RX_BUF_ANMF BIT(31)
290 #define RX_BUF_FDF BIT(21)
291 #define RX_BUF_BRS BIT(20)
292 #define RX_BUF_RXTS_MASK GENMASK(15, 0)
293
294 /* Tx Buffer Element */
295 /* T0 */
296 #define TX_BUF_ESI BIT(31)
297 #define TX_BUF_XTD BIT(30)
298 #define TX_BUF_RTR BIT(29)
299 /* T1 */
300 #define TX_BUF_EFC BIT(23)
301 #define TX_BUF_FDF BIT(21)
302 #define TX_BUF_BRS BIT(20)
303 #define TX_BUF_MM_MASK GENMASK(31, 24)
304 #define TX_BUF_DLC_MASK GENMASK(19, 16)
305
306 /* Tx event FIFO Element */
307 /* E1 */
308 #define TX_EVENT_MM_MASK GENMASK(31, 24)
309 #define TX_EVENT_TXTS_MASK GENMASK(15, 0)
310
311 /* Hrtimer polling interval */
312 #define HRTIMER_POLL_INTERVAL_MS 1
313
314 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
315 * and we can save a (potentially slow) bus round trip by combining
316 * reads and writes to them.
317 */
318 struct id_and_dlc {
319 u32 id;
320 u32 dlc;
321 };
322
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324 {
325 return cdev->ops->read_reg(cdev, reg);
326 }
327
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329 u32 val)
330 {
331 cdev->ops->write_reg(cdev, reg, val);
332 }
333
334 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)335 m_can_fifo_read(struct m_can_classdev *cdev,
336 u32 fgi, unsigned int offset, void *val, size_t val_count)
337 {
338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 offset;
340
341 if (val_count == 0)
342 return 0;
343
344 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
345 }
346
347 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)348 m_can_fifo_write(struct m_can_classdev *cdev,
349 u32 fpi, unsigned int offset, const void *val, size_t val_count)
350 {
351 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
352 offset;
353
354 if (val_count == 0)
355 return 0;
356
357 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
358 }
359
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)360 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
361 u32 fpi, u32 val)
362 {
363 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
364 }
365
366 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)367 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
368 {
369 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
370 offset;
371
372 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
373 }
374
_m_can_tx_fifo_full(u32 txfqs)375 static inline bool _m_can_tx_fifo_full(u32 txfqs)
376 {
377 return !!(txfqs & TXFQS_TFQF);
378 }
379
m_can_tx_fifo_full(struct m_can_classdev * cdev)380 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
381 {
382 return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
383 }
384
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)385 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
386 {
387 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
388 u32 timeout = 10;
389 u32 val = 0;
390
391 /* Clear the Clock stop request if it was set */
392 if (cccr & CCCR_CSR)
393 cccr &= ~CCCR_CSR;
394
395 if (enable) {
396 /* enable m_can configuration */
397 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
398 udelay(5);
399 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
400 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
401 } else {
402 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
403 }
404
405 /* there's a delay for module initialization */
406 if (enable)
407 val = CCCR_INIT | CCCR_CCE;
408
409 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
410 if (timeout == 0) {
411 netdev_warn(cdev->net, "Failed to init module\n");
412 return;
413 }
414 timeout--;
415 udelay(1);
416 }
417 }
418
m_can_enable_all_interrupts(struct m_can_classdev * cdev)419 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
420 {
421 if (!cdev->net->irq) {
422 dev_dbg(cdev->dev, "Start hrtimer\n");
423 hrtimer_start(&cdev->hrtimer,
424 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
425 HRTIMER_MODE_REL_PINNED);
426 }
427
428 /* Only interrupt line 0 is used in this driver */
429 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
430 }
431
m_can_disable_all_interrupts(struct m_can_classdev * cdev)432 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
433 {
434 m_can_write(cdev, M_CAN_ILE, 0x0);
435
436 if (!cdev->net->irq) {
437 dev_dbg(cdev->dev, "Stop hrtimer\n");
438 hrtimer_cancel(&cdev->hrtimer);
439 }
440 }
441
442 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
443 * width.
444 */
m_can_get_timestamp(struct m_can_classdev * cdev)445 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
446 {
447 u32 tscv;
448 u32 tsc;
449
450 tscv = m_can_read(cdev, M_CAN_TSCV);
451 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
452
453 return (tsc << 16);
454 }
455
m_can_clean(struct net_device * net)456 static void m_can_clean(struct net_device *net)
457 {
458 struct m_can_classdev *cdev = netdev_priv(net);
459
460 if (cdev->tx_skb) {
461 int putidx = 0;
462
463 net->stats.tx_errors++;
464 if (cdev->version > 30)
465 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
466 m_can_read(cdev, M_CAN_TXFQS));
467
468 can_free_echo_skb(cdev->net, putidx, NULL);
469 cdev->tx_skb = NULL;
470 }
471 }
472
473 /* For peripherals, pass skb to rx-offload, which will push skb from
474 * napi. For non-peripherals, RX is done in napi already, so push
475 * directly. timestamp is used to ensure good skb ordering in
476 * rx-offload and is ignored for non-peripherals.
477 */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)478 static void m_can_receive_skb(struct m_can_classdev *cdev,
479 struct sk_buff *skb,
480 u32 timestamp)
481 {
482 if (cdev->is_peripheral) {
483 struct net_device_stats *stats = &cdev->net->stats;
484 int err;
485
486 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
487 timestamp);
488 if (err)
489 stats->rx_fifo_errors++;
490 } else {
491 netif_receive_skb(skb);
492 }
493 }
494
m_can_read_fifo(struct net_device * dev,u32 fgi)495 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
496 {
497 struct net_device_stats *stats = &dev->stats;
498 struct m_can_classdev *cdev = netdev_priv(dev);
499 struct canfd_frame *cf;
500 struct sk_buff *skb;
501 struct id_and_dlc fifo_header;
502 u32 timestamp = 0;
503 int err;
504
505 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
506 if (err)
507 goto out_fail;
508
509 if (fifo_header.dlc & RX_BUF_FDF)
510 skb = alloc_canfd_skb(dev, &cf);
511 else
512 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
513 if (!skb) {
514 stats->rx_dropped++;
515 return 0;
516 }
517
518 if (fifo_header.dlc & RX_BUF_FDF)
519 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
520 else
521 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
522
523 if (fifo_header.id & RX_BUF_XTD)
524 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
525 else
526 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
527
528 if (fifo_header.id & RX_BUF_ESI) {
529 cf->flags |= CANFD_ESI;
530 netdev_dbg(dev, "ESI Error\n");
531 }
532
533 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
534 cf->can_id |= CAN_RTR_FLAG;
535 } else {
536 if (fifo_header.dlc & RX_BUF_BRS)
537 cf->flags |= CANFD_BRS;
538
539 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
540 cf->data, DIV_ROUND_UP(cf->len, 4));
541 if (err)
542 goto out_free_skb;
543
544 stats->rx_bytes += cf->len;
545 }
546 stats->rx_packets++;
547
548 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
549
550 m_can_receive_skb(cdev, skb, timestamp);
551
552 return 0;
553
554 out_free_skb:
555 kfree_skb(skb);
556 out_fail:
557 netdev_err(dev, "FIFO read returned %d\n", err);
558 return err;
559 }
560
m_can_do_rx_poll(struct net_device * dev,int quota)561 static int m_can_do_rx_poll(struct net_device *dev, int quota)
562 {
563 struct m_can_classdev *cdev = netdev_priv(dev);
564 u32 pkts = 0;
565 u32 rxfs;
566 u32 rx_count;
567 u32 fgi;
568 int ack_fgi = -1;
569 int i;
570 int err = 0;
571
572 rxfs = m_can_read(cdev, M_CAN_RXF0S);
573 if (!(rxfs & RXFS_FFL_MASK)) {
574 netdev_dbg(dev, "no messages in fifo0\n");
575 return 0;
576 }
577
578 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
579 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
580
581 for (i = 0; i < rx_count && quota > 0; ++i) {
582 err = m_can_read_fifo(dev, fgi);
583 if (err)
584 break;
585
586 quota--;
587 pkts++;
588 ack_fgi = fgi;
589 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
590 }
591
592 if (ack_fgi != -1)
593 m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
594
595 if (err)
596 return err;
597
598 return pkts;
599 }
600
m_can_handle_lost_msg(struct net_device * dev)601 static int m_can_handle_lost_msg(struct net_device *dev)
602 {
603 struct m_can_classdev *cdev = netdev_priv(dev);
604 struct net_device_stats *stats = &dev->stats;
605 struct sk_buff *skb;
606 struct can_frame *frame;
607 u32 timestamp = 0;
608
609 netdev_err(dev, "msg lost in rxf0\n");
610
611 stats->rx_errors++;
612 stats->rx_over_errors++;
613
614 skb = alloc_can_err_skb(dev, &frame);
615 if (unlikely(!skb))
616 return 0;
617
618 frame->can_id |= CAN_ERR_CRTL;
619 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
620
621 if (cdev->is_peripheral)
622 timestamp = m_can_get_timestamp(cdev);
623
624 m_can_receive_skb(cdev, skb, timestamp);
625
626 return 1;
627 }
628
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)629 static int m_can_handle_lec_err(struct net_device *dev,
630 enum m_can_lec_type lec_type)
631 {
632 struct m_can_classdev *cdev = netdev_priv(dev);
633 struct net_device_stats *stats = &dev->stats;
634 struct can_frame *cf;
635 struct sk_buff *skb;
636 u32 timestamp = 0;
637
638 cdev->can.can_stats.bus_error++;
639 stats->rx_errors++;
640
641 /* propagate the error condition to the CAN stack */
642 skb = alloc_can_err_skb(dev, &cf);
643 if (unlikely(!skb))
644 return 0;
645
646 /* check for 'last error code' which tells us the
647 * type of the last error to occur on the CAN bus
648 */
649 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
650
651 switch (lec_type) {
652 case LEC_STUFF_ERROR:
653 netdev_dbg(dev, "stuff error\n");
654 cf->data[2] |= CAN_ERR_PROT_STUFF;
655 break;
656 case LEC_FORM_ERROR:
657 netdev_dbg(dev, "form error\n");
658 cf->data[2] |= CAN_ERR_PROT_FORM;
659 break;
660 case LEC_ACK_ERROR:
661 netdev_dbg(dev, "ack error\n");
662 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
663 break;
664 case LEC_BIT1_ERROR:
665 netdev_dbg(dev, "bit1 error\n");
666 cf->data[2] |= CAN_ERR_PROT_BIT1;
667 break;
668 case LEC_BIT0_ERROR:
669 netdev_dbg(dev, "bit0 error\n");
670 cf->data[2] |= CAN_ERR_PROT_BIT0;
671 break;
672 case LEC_CRC_ERROR:
673 netdev_dbg(dev, "CRC error\n");
674 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
675 break;
676 default:
677 break;
678 }
679
680 if (cdev->is_peripheral)
681 timestamp = m_can_get_timestamp(cdev);
682
683 m_can_receive_skb(cdev, skb, timestamp);
684
685 return 1;
686 }
687
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)688 static int __m_can_get_berr_counter(const struct net_device *dev,
689 struct can_berr_counter *bec)
690 {
691 struct m_can_classdev *cdev = netdev_priv(dev);
692 unsigned int ecr;
693
694 ecr = m_can_read(cdev, M_CAN_ECR);
695 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
696 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
697
698 return 0;
699 }
700
m_can_clk_start(struct m_can_classdev * cdev)701 static int m_can_clk_start(struct m_can_classdev *cdev)
702 {
703 if (cdev->pm_clock_support == 0)
704 return 0;
705
706 return pm_runtime_resume_and_get(cdev->dev);
707 }
708
m_can_clk_stop(struct m_can_classdev * cdev)709 static void m_can_clk_stop(struct m_can_classdev *cdev)
710 {
711 if (cdev->pm_clock_support)
712 pm_runtime_put_sync(cdev->dev);
713 }
714
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)715 static int m_can_get_berr_counter(const struct net_device *dev,
716 struct can_berr_counter *bec)
717 {
718 struct m_can_classdev *cdev = netdev_priv(dev);
719 int err;
720
721 err = m_can_clk_start(cdev);
722 if (err)
723 return err;
724
725 __m_can_get_berr_counter(dev, bec);
726
727 m_can_clk_stop(cdev);
728
729 return 0;
730 }
731
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)732 static int m_can_handle_state_change(struct net_device *dev,
733 enum can_state new_state)
734 {
735 struct m_can_classdev *cdev = netdev_priv(dev);
736 struct can_frame *cf;
737 struct sk_buff *skb;
738 struct can_berr_counter bec;
739 unsigned int ecr;
740 u32 timestamp = 0;
741
742 switch (new_state) {
743 case CAN_STATE_ERROR_WARNING:
744 /* error warning state */
745 cdev->can.can_stats.error_warning++;
746 cdev->can.state = CAN_STATE_ERROR_WARNING;
747 break;
748 case CAN_STATE_ERROR_PASSIVE:
749 /* error passive state */
750 cdev->can.can_stats.error_passive++;
751 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
752 break;
753 case CAN_STATE_BUS_OFF:
754 /* bus-off state */
755 cdev->can.state = CAN_STATE_BUS_OFF;
756 m_can_disable_all_interrupts(cdev);
757 cdev->can.can_stats.bus_off++;
758 can_bus_off(dev);
759 break;
760 default:
761 break;
762 }
763
764 /* propagate the error condition to the CAN stack */
765 skb = alloc_can_err_skb(dev, &cf);
766 if (unlikely(!skb))
767 return 0;
768
769 __m_can_get_berr_counter(dev, &bec);
770
771 switch (new_state) {
772 case CAN_STATE_ERROR_WARNING:
773 /* error warning state */
774 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
775 cf->data[1] = (bec.txerr > bec.rxerr) ?
776 CAN_ERR_CRTL_TX_WARNING :
777 CAN_ERR_CRTL_RX_WARNING;
778 cf->data[6] = bec.txerr;
779 cf->data[7] = bec.rxerr;
780 break;
781 case CAN_STATE_ERROR_PASSIVE:
782 /* error passive state */
783 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
784 ecr = m_can_read(cdev, M_CAN_ECR);
785 if (ecr & ECR_RP)
786 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
787 if (bec.txerr > 127)
788 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
789 cf->data[6] = bec.txerr;
790 cf->data[7] = bec.rxerr;
791 break;
792 case CAN_STATE_BUS_OFF:
793 /* bus-off state */
794 cf->can_id |= CAN_ERR_BUSOFF;
795 break;
796 default:
797 break;
798 }
799
800 if (cdev->is_peripheral)
801 timestamp = m_can_get_timestamp(cdev);
802
803 m_can_receive_skb(cdev, skb, timestamp);
804
805 return 1;
806 }
807
m_can_handle_state_errors(struct net_device * dev,u32 psr)808 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
809 {
810 struct m_can_classdev *cdev = netdev_priv(dev);
811 int work_done = 0;
812
813 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
814 netdev_dbg(dev, "entered error warning state\n");
815 work_done += m_can_handle_state_change(dev,
816 CAN_STATE_ERROR_WARNING);
817 }
818
819 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
820 netdev_dbg(dev, "entered error passive state\n");
821 work_done += m_can_handle_state_change(dev,
822 CAN_STATE_ERROR_PASSIVE);
823 }
824
825 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
826 netdev_dbg(dev, "entered error bus off state\n");
827 work_done += m_can_handle_state_change(dev,
828 CAN_STATE_BUS_OFF);
829 }
830
831 return work_done;
832 }
833
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)834 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
835 {
836 if (irqstatus & IR_WDI)
837 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
838 if (irqstatus & IR_BEU)
839 netdev_err(dev, "Bit Error Uncorrected\n");
840 if (irqstatus & IR_BEC)
841 netdev_err(dev, "Bit Error Corrected\n");
842 if (irqstatus & IR_TOO)
843 netdev_err(dev, "Timeout reached\n");
844 if (irqstatus & IR_MRAF)
845 netdev_err(dev, "Message RAM access failure occurred\n");
846 }
847
is_lec_err(u8 lec)848 static inline bool is_lec_err(u8 lec)
849 {
850 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
851 }
852
m_can_is_protocol_err(u32 irqstatus)853 static inline bool m_can_is_protocol_err(u32 irqstatus)
854 {
855 return irqstatus & IR_ERR_LEC_31X;
856 }
857
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)858 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
859 {
860 struct net_device_stats *stats = &dev->stats;
861 struct m_can_classdev *cdev = netdev_priv(dev);
862 struct can_frame *cf;
863 struct sk_buff *skb;
864 u32 timestamp = 0;
865
866 /* propagate the error condition to the CAN stack */
867 skb = alloc_can_err_skb(dev, &cf);
868
869 /* update tx error stats since there is protocol error */
870 stats->tx_errors++;
871
872 /* update arbitration lost status */
873 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
874 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
875 cdev->can.can_stats.arbitration_lost++;
876 if (skb) {
877 cf->can_id |= CAN_ERR_LOSTARB;
878 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
879 }
880 }
881
882 if (unlikely(!skb)) {
883 netdev_dbg(dev, "allocation of skb failed\n");
884 return 0;
885 }
886
887 if (cdev->is_peripheral)
888 timestamp = m_can_get_timestamp(cdev);
889
890 m_can_receive_skb(cdev, skb, timestamp);
891
892 return 1;
893 }
894
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)895 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
896 u32 psr)
897 {
898 struct m_can_classdev *cdev = netdev_priv(dev);
899 int work_done = 0;
900
901 if (irqstatus & IR_RF0L)
902 work_done += m_can_handle_lost_msg(dev);
903
904 /* handle lec errors on the bus */
905 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
906 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
907 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
908
909 if (is_lec_err(lec)) {
910 netdev_dbg(dev, "Arbitration phase error detected\n");
911 work_done += m_can_handle_lec_err(dev, lec);
912 }
913
914 if (is_lec_err(dlec)) {
915 netdev_dbg(dev, "Data phase error detected\n");
916 work_done += m_can_handle_lec_err(dev, dlec);
917 }
918 }
919
920 /* handle protocol errors in arbitration phase */
921 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
922 m_can_is_protocol_err(irqstatus))
923 work_done += m_can_handle_protocol_error(dev, irqstatus);
924
925 /* other unproccessed error interrupts */
926 m_can_handle_other_err(dev, irqstatus);
927
928 return work_done;
929 }
930
m_can_rx_handler(struct net_device * dev,int quota,u32 irqstatus)931 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
932 {
933 struct m_can_classdev *cdev = netdev_priv(dev);
934 int rx_work_or_err;
935 int work_done = 0;
936
937 if (!irqstatus)
938 goto end;
939
940 /* Errata workaround for issue "Needless activation of MRAF irq"
941 * During frame reception while the MCAN is in Error Passive state
942 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
943 * it may happen that MCAN_IR.MRAF is set although there was no
944 * Message RAM access failure.
945 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
946 * The Message RAM Access Failure interrupt routine needs to check
947 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
948 * In this case, reset MCAN_IR.MRAF. No further action is required.
949 */
950 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
951 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
952 struct can_berr_counter bec;
953
954 __m_can_get_berr_counter(dev, &bec);
955 if (bec.rxerr == 127) {
956 m_can_write(cdev, M_CAN_IR, IR_MRAF);
957 irqstatus &= ~IR_MRAF;
958 }
959 }
960
961 if (irqstatus & IR_ERR_STATE)
962 work_done += m_can_handle_state_errors(dev,
963 m_can_read(cdev, M_CAN_PSR));
964
965 if (irqstatus & IR_ERR_BUS_30X)
966 work_done += m_can_handle_bus_errors(dev, irqstatus,
967 m_can_read(cdev, M_CAN_PSR));
968
969 if (irqstatus & IR_RF0N) {
970 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
971 if (rx_work_or_err < 0)
972 return rx_work_or_err;
973
974 work_done += rx_work_or_err;
975 }
976 end:
977 return work_done;
978 }
979
m_can_rx_peripheral(struct net_device * dev,u32 irqstatus)980 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
981 {
982 struct m_can_classdev *cdev = netdev_priv(dev);
983 int work_done;
984
985 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
986
987 /* Don't re-enable interrupts if the driver had a fatal error
988 * (e.g., FIFO read failure).
989 */
990 if (work_done < 0)
991 m_can_disable_all_interrupts(cdev);
992
993 return work_done;
994 }
995
m_can_poll(struct napi_struct * napi,int quota)996 static int m_can_poll(struct napi_struct *napi, int quota)
997 {
998 struct net_device *dev = napi->dev;
999 struct m_can_classdev *cdev = netdev_priv(dev);
1000 int work_done;
1001 u32 irqstatus;
1002
1003 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1004
1005 work_done = m_can_rx_handler(dev, quota, irqstatus);
1006
1007 /* Don't re-enable interrupts if the driver had a fatal error
1008 * (e.g., FIFO read failure).
1009 */
1010 if (work_done >= 0 && work_done < quota) {
1011 napi_complete_done(napi, work_done);
1012 m_can_enable_all_interrupts(cdev);
1013 }
1014
1015 return work_done;
1016 }
1017
1018 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1019 * echo. timestamp is used for peripherals to ensure correct ordering
1020 * by rx-offload, and is ignored for non-peripherals.
1021 */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)1022 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
1023 unsigned int msg_mark,
1024 u32 timestamp)
1025 {
1026 struct net_device *dev = cdev->net;
1027 struct net_device_stats *stats = &dev->stats;
1028
1029 if (cdev->is_peripheral)
1030 stats->tx_bytes +=
1031 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1032 msg_mark,
1033 timestamp,
1034 NULL);
1035 else
1036 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1037
1038 stats->tx_packets++;
1039 }
1040
m_can_echo_tx_event(struct net_device * dev)1041 static int m_can_echo_tx_event(struct net_device *dev)
1042 {
1043 u32 txe_count = 0;
1044 u32 m_can_txefs;
1045 u32 fgi = 0;
1046 int ack_fgi = -1;
1047 int i = 0;
1048 int err = 0;
1049 unsigned int msg_mark;
1050
1051 struct m_can_classdev *cdev = netdev_priv(dev);
1052
1053 /* read tx event fifo status */
1054 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1055
1056 /* Get Tx Event fifo element count */
1057 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1058 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1059
1060 /* Get and process all sent elements */
1061 for (i = 0; i < txe_count; i++) {
1062 u32 txe, timestamp = 0;
1063
1064 /* get message marker, timestamp */
1065 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1066 if (err) {
1067 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1068 break;
1069 }
1070
1071 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1072 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1073
1074 ack_fgi = fgi;
1075 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1076
1077 /* update stats */
1078 m_can_tx_update_stats(cdev, msg_mark, timestamp);
1079 }
1080
1081 if (ack_fgi != -1)
1082 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1083 ack_fgi));
1084
1085 return err;
1086 }
1087
m_can_isr(int irq,void * dev_id)1088 static irqreturn_t m_can_isr(int irq, void *dev_id)
1089 {
1090 struct net_device *dev = (struct net_device *)dev_id;
1091 struct m_can_classdev *cdev = netdev_priv(dev);
1092 u32 ir;
1093
1094 if (pm_runtime_suspended(cdev->dev))
1095 return IRQ_NONE;
1096 ir = m_can_read(cdev, M_CAN_IR);
1097 if (!ir)
1098 return IRQ_NONE;
1099
1100 /* ACK all irqs */
1101 m_can_write(cdev, M_CAN_IR, ir);
1102
1103 if (cdev->ops->clear_interrupts)
1104 cdev->ops->clear_interrupts(cdev);
1105
1106 /* schedule NAPI in case of
1107 * - rx IRQ
1108 * - state change IRQ
1109 * - bus error IRQ and bus error reporting
1110 */
1111 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1112 cdev->irqstatus = ir;
1113 if (!cdev->is_peripheral) {
1114 m_can_disable_all_interrupts(cdev);
1115 napi_schedule(&cdev->napi);
1116 } else if (m_can_rx_peripheral(dev, ir) < 0) {
1117 goto out_fail;
1118 }
1119 }
1120
1121 if (cdev->version == 30) {
1122 if (ir & IR_TC) {
1123 /* Transmission Complete Interrupt*/
1124 u32 timestamp = 0;
1125
1126 if (cdev->is_peripheral)
1127 timestamp = m_can_get_timestamp(cdev);
1128 m_can_tx_update_stats(cdev, 0, timestamp);
1129 netif_wake_queue(dev);
1130 }
1131 } else {
1132 if (ir & IR_TEFN) {
1133 /* New TX FIFO Element arrived */
1134 if (m_can_echo_tx_event(dev) != 0)
1135 goto out_fail;
1136
1137 if (netif_queue_stopped(dev) &&
1138 !m_can_tx_fifo_full(cdev))
1139 netif_wake_queue(dev);
1140 }
1141 }
1142
1143 if (cdev->is_peripheral)
1144 can_rx_offload_threaded_irq_finish(&cdev->offload);
1145
1146 return IRQ_HANDLED;
1147
1148 out_fail:
1149 m_can_disable_all_interrupts(cdev);
1150 return IRQ_HANDLED;
1151 }
1152
1153 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1154 .name = KBUILD_MODNAME,
1155 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1156 .tseg1_max = 64,
1157 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1158 .tseg2_max = 16,
1159 .sjw_max = 16,
1160 .brp_min = 1,
1161 .brp_max = 1024,
1162 .brp_inc = 1,
1163 };
1164
1165 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1166 .name = KBUILD_MODNAME,
1167 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1168 .tseg1_max = 16,
1169 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1170 .tseg2_max = 8,
1171 .sjw_max = 4,
1172 .brp_min = 1,
1173 .brp_max = 32,
1174 .brp_inc = 1,
1175 };
1176
1177 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1178 .name = KBUILD_MODNAME,
1179 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1180 .tseg1_max = 256,
1181 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1182 .tseg2_max = 128,
1183 .sjw_max = 128,
1184 .brp_min = 1,
1185 .brp_max = 512,
1186 .brp_inc = 1,
1187 };
1188
1189 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1190 .name = KBUILD_MODNAME,
1191 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1192 .tseg1_max = 32,
1193 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1194 .tseg2_max = 16,
1195 .sjw_max = 16,
1196 .brp_min = 1,
1197 .brp_max = 32,
1198 .brp_inc = 1,
1199 };
1200
m_can_set_bittiming(struct net_device * dev)1201 static int m_can_set_bittiming(struct net_device *dev)
1202 {
1203 struct m_can_classdev *cdev = netdev_priv(dev);
1204 const struct can_bittiming *bt = &cdev->can.bittiming;
1205 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1206 u16 brp, sjw, tseg1, tseg2;
1207 u32 reg_btp;
1208
1209 brp = bt->brp - 1;
1210 sjw = bt->sjw - 1;
1211 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1212 tseg2 = bt->phase_seg2 - 1;
1213 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1214 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1215 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1216 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1217 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1218
1219 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1220 reg_btp = 0;
1221 brp = dbt->brp - 1;
1222 sjw = dbt->sjw - 1;
1223 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1224 tseg2 = dbt->phase_seg2 - 1;
1225
1226 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1227 * This is mentioned in the "Bit Time Requirements for CAN FD"
1228 * paper presented at the International CAN Conference 2013
1229 */
1230 if (dbt->bitrate > 2500000) {
1231 u32 tdco, ssp;
1232
1233 /* Use the same value of secondary sampling point
1234 * as the data sampling point
1235 */
1236 ssp = dbt->sample_point;
1237
1238 /* Equation based on Bosch's M_CAN User Manual's
1239 * Transmitter Delay Compensation Section
1240 */
1241 tdco = (cdev->can.clock.freq / 1000) *
1242 ssp / dbt->bitrate;
1243
1244 /* Max valid TDCO value is 127 */
1245 if (tdco > 127) {
1246 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1247 tdco);
1248 tdco = 127;
1249 }
1250
1251 reg_btp |= DBTP_TDC;
1252 m_can_write(cdev, M_CAN_TDCR,
1253 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1254 }
1255
1256 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1257 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1258 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1259 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1260
1261 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* Configure M_CAN chip:
1268 * - set rx buffer/fifo element size
1269 * - configure rx fifo
1270 * - accept non-matching frame into fifo 0
1271 * - configure tx buffer
1272 * - >= v3.1.x: TX FIFO is used
1273 * - configure mode
1274 * - setup bittiming
1275 * - configure timestamp generation
1276 */
m_can_chip_config(struct net_device * dev)1277 static int m_can_chip_config(struct net_device *dev)
1278 {
1279 struct m_can_classdev *cdev = netdev_priv(dev);
1280 u32 interrupts = IR_ALL_INT;
1281 u32 cccr, test;
1282 int err;
1283
1284 err = m_can_init_ram(cdev);
1285 if (err) {
1286 dev_err(cdev->dev, "Message RAM configuration failed\n");
1287 return err;
1288 }
1289
1290 /* Disable unused interrupts */
1291 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
1292 IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
1293 IR_RF0F | IR_RF0W);
1294
1295 m_can_config_endisable(cdev, true);
1296
1297 /* RX Buffer/FIFO Element Size 64 bytes data field */
1298 m_can_write(cdev, M_CAN_RXESC,
1299 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1300 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1301 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1302
1303 /* Accept Non-matching Frames Into FIFO 0 */
1304 m_can_write(cdev, M_CAN_GFC, 0x0);
1305
1306 if (cdev->version == 30) {
1307 /* only support one Tx Buffer currently */
1308 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1309 cdev->mcfg[MRAM_TXB].off);
1310 } else {
1311 /* TX FIFO is used for newer IP Core versions */
1312 m_can_write(cdev, M_CAN_TXBC,
1313 FIELD_PREP(TXBC_TFQS_MASK,
1314 cdev->mcfg[MRAM_TXB].num) |
1315 cdev->mcfg[MRAM_TXB].off);
1316 }
1317
1318 /* support 64 bytes payload */
1319 m_can_write(cdev, M_CAN_TXESC,
1320 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1321
1322 /* TX Event FIFO */
1323 if (cdev->version == 30) {
1324 m_can_write(cdev, M_CAN_TXEFC,
1325 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1326 cdev->mcfg[MRAM_TXE].off);
1327 } else {
1328 /* Full TX Event FIFO is used */
1329 m_can_write(cdev, M_CAN_TXEFC,
1330 FIELD_PREP(TXEFC_EFS_MASK,
1331 cdev->mcfg[MRAM_TXE].num) |
1332 cdev->mcfg[MRAM_TXE].off);
1333 }
1334
1335 /* rx fifo configuration, blocking mode, fifo size 1 */
1336 m_can_write(cdev, M_CAN_RXF0C,
1337 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1338 cdev->mcfg[MRAM_RXF0].off);
1339
1340 m_can_write(cdev, M_CAN_RXF1C,
1341 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1342 cdev->mcfg[MRAM_RXF1].off);
1343
1344 cccr = m_can_read(cdev, M_CAN_CCCR);
1345 test = m_can_read(cdev, M_CAN_TEST);
1346 test &= ~TEST_LBCK;
1347 if (cdev->version == 30) {
1348 /* Version 3.0.x */
1349
1350 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1351 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1352 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1353
1354 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1355 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1356
1357 } else {
1358 /* Version 3.1.x or 3.2.x */
1359 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1360 CCCR_NISO | CCCR_DAR);
1361
1362 /* Only 3.2.x has NISO Bit implemented */
1363 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1364 cccr |= CCCR_NISO;
1365
1366 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1367 cccr |= (CCCR_BRSE | CCCR_FDOE);
1368 }
1369
1370 /* Loopback Mode */
1371 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1372 cccr |= CCCR_TEST | CCCR_MON;
1373 test |= TEST_LBCK;
1374 }
1375
1376 /* Enable Monitoring (all versions) */
1377 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1378 cccr |= CCCR_MON;
1379
1380 /* Disable Auto Retransmission (all versions) */
1381 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1382 cccr |= CCCR_DAR;
1383
1384 /* Write config */
1385 m_can_write(cdev, M_CAN_CCCR, cccr);
1386 m_can_write(cdev, M_CAN_TEST, test);
1387
1388 /* Enable interrupts */
1389 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1390 if (cdev->version == 30)
1391 interrupts &= ~(IR_ERR_LEC_30X);
1392 else
1393 interrupts &= ~(IR_ERR_LEC_31X);
1394 }
1395 m_can_write(cdev, M_CAN_IE, interrupts);
1396
1397 /* route all interrupts to INT0 */
1398 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1399
1400 /* set bittiming params */
1401 m_can_set_bittiming(dev);
1402
1403 /* enable internal timestamp generation, with a prescaler of 16. The
1404 * prescaler is applied to the nominal bit timing
1405 */
1406 m_can_write(cdev, M_CAN_TSCC,
1407 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1408 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1409
1410 m_can_config_endisable(cdev, false);
1411
1412 if (cdev->ops->init)
1413 cdev->ops->init(cdev);
1414
1415 return 0;
1416 }
1417
m_can_start(struct net_device * dev)1418 static int m_can_start(struct net_device *dev)
1419 {
1420 struct m_can_classdev *cdev = netdev_priv(dev);
1421 int ret;
1422
1423 /* basic m_can configuration */
1424 ret = m_can_chip_config(dev);
1425 if (ret)
1426 return ret;
1427
1428 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1429
1430 m_can_enable_all_interrupts(cdev);
1431
1432 return 0;
1433 }
1434
m_can_set_mode(struct net_device * dev,enum can_mode mode)1435 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1436 {
1437 switch (mode) {
1438 case CAN_MODE_START:
1439 m_can_clean(dev);
1440 m_can_start(dev);
1441 netif_wake_queue(dev);
1442 break;
1443 default:
1444 return -EOPNOTSUPP;
1445 }
1446
1447 return 0;
1448 }
1449
1450 /* Checks core release number of M_CAN
1451 * returns 0 if an unsupported device is detected
1452 * else it returns the release and step coded as:
1453 * return value = 10 * <release> + 1 * <step>
1454 */
m_can_check_core_release(struct m_can_classdev * cdev)1455 static int m_can_check_core_release(struct m_can_classdev *cdev)
1456 {
1457 u32 crel_reg;
1458 u8 rel;
1459 u8 step;
1460 int res;
1461
1462 /* Read Core Release Version and split into version number
1463 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1464 */
1465 crel_reg = m_can_read(cdev, M_CAN_CREL);
1466 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1467 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1468
1469 if (rel == 3) {
1470 /* M_CAN v3.x.y: create return value */
1471 res = 30 + step;
1472 } else {
1473 /* Unsupported M_CAN version */
1474 res = 0;
1475 }
1476
1477 return res;
1478 }
1479
1480 /* Selectable Non ISO support only in version 3.2.x
1481 * This function checks if the bit is writable.
1482 */
m_can_niso_supported(struct m_can_classdev * cdev)1483 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1484 {
1485 u32 cccr_reg, cccr_poll = 0;
1486 int niso_timeout = -ETIMEDOUT;
1487 int i;
1488
1489 m_can_config_endisable(cdev, true);
1490 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1491 cccr_reg |= CCCR_NISO;
1492 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1493
1494 for (i = 0; i <= 10; i++) {
1495 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1496 if (cccr_poll == cccr_reg) {
1497 niso_timeout = 0;
1498 break;
1499 }
1500
1501 usleep_range(1, 5);
1502 }
1503
1504 /* Clear NISO */
1505 cccr_reg &= ~(CCCR_NISO);
1506 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1507
1508 m_can_config_endisable(cdev, false);
1509
1510 /* return false if time out (-ETIMEDOUT), else return true */
1511 return !niso_timeout;
1512 }
1513
m_can_dev_setup(struct m_can_classdev * cdev)1514 static int m_can_dev_setup(struct m_can_classdev *cdev)
1515 {
1516 struct net_device *dev = cdev->net;
1517 int m_can_version, err;
1518
1519 m_can_version = m_can_check_core_release(cdev);
1520 /* return if unsupported version */
1521 if (!m_can_version) {
1522 dev_err(cdev->dev, "Unsupported version number: %2d",
1523 m_can_version);
1524 return -EINVAL;
1525 }
1526
1527 if (!cdev->is_peripheral)
1528 netif_napi_add(dev, &cdev->napi, m_can_poll);
1529
1530 /* Shared properties of all M_CAN versions */
1531 cdev->version = m_can_version;
1532 cdev->can.do_set_mode = m_can_set_mode;
1533 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1534
1535 /* Set M_CAN supported operations */
1536 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1537 CAN_CTRLMODE_LISTENONLY |
1538 CAN_CTRLMODE_BERR_REPORTING |
1539 CAN_CTRLMODE_FD |
1540 CAN_CTRLMODE_ONE_SHOT;
1541
1542 /* Set properties depending on M_CAN version */
1543 switch (cdev->version) {
1544 case 30:
1545 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1546 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1547 if (err)
1548 return err;
1549 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1550 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1551 break;
1552 case 31:
1553 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1554 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1555 if (err)
1556 return err;
1557 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1558 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1559 break;
1560 case 32:
1561 case 33:
1562 /* Support both MCAN version v3.2.x and v3.3.0 */
1563 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1564 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1565
1566 cdev->can.ctrlmode_supported |=
1567 (m_can_niso_supported(cdev) ?
1568 CAN_CTRLMODE_FD_NON_ISO : 0);
1569 break;
1570 default:
1571 dev_err(cdev->dev, "Unsupported version number: %2d",
1572 cdev->version);
1573 return -EINVAL;
1574 }
1575
1576 if (cdev->ops->init)
1577 cdev->ops->init(cdev);
1578
1579 return 0;
1580 }
1581
m_can_stop(struct net_device * dev)1582 static void m_can_stop(struct net_device *dev)
1583 {
1584 struct m_can_classdev *cdev = netdev_priv(dev);
1585
1586 /* disable all interrupts */
1587 m_can_disable_all_interrupts(cdev);
1588
1589 /* Set init mode to disengage from the network */
1590 m_can_config_endisable(cdev, true);
1591
1592 /* set the state as STOPPED */
1593 cdev->can.state = CAN_STATE_STOPPED;
1594 }
1595
m_can_close(struct net_device * dev)1596 static int m_can_close(struct net_device *dev)
1597 {
1598 struct m_can_classdev *cdev = netdev_priv(dev);
1599
1600 netif_stop_queue(dev);
1601
1602 m_can_stop(dev);
1603 if (dev->irq)
1604 free_irq(dev->irq, dev);
1605
1606 if (cdev->is_peripheral) {
1607 cdev->tx_skb = NULL;
1608 destroy_workqueue(cdev->tx_wq);
1609 cdev->tx_wq = NULL;
1610 can_rx_offload_disable(&cdev->offload);
1611 } else {
1612 napi_disable(&cdev->napi);
1613 }
1614
1615 close_candev(dev);
1616
1617 m_can_clk_stop(cdev);
1618 phy_power_off(cdev->transceiver);
1619
1620 return 0;
1621 }
1622
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1623 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1624 {
1625 struct m_can_classdev *cdev = netdev_priv(dev);
1626 /*get wrap around for loopback skb index */
1627 unsigned int wrap = cdev->can.echo_skb_max;
1628 int next_idx;
1629
1630 /* calculate next index */
1631 next_idx = (++putidx >= wrap ? 0 : putidx);
1632
1633 /* check if occupied */
1634 return !!cdev->can.echo_skb[next_idx];
1635 }
1636
m_can_tx_handler(struct m_can_classdev * cdev)1637 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1638 {
1639 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1640 struct net_device *dev = cdev->net;
1641 struct sk_buff *skb = cdev->tx_skb;
1642 struct id_and_dlc fifo_header;
1643 u32 cccr, fdflags;
1644 u32 txfqs;
1645 int err;
1646 int putidx;
1647
1648 cdev->tx_skb = NULL;
1649
1650 /* Generate ID field for TX buffer Element */
1651 /* Common to all supported M_CAN versions */
1652 if (cf->can_id & CAN_EFF_FLAG) {
1653 fifo_header.id = cf->can_id & CAN_EFF_MASK;
1654 fifo_header.id |= TX_BUF_XTD;
1655 } else {
1656 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1657 }
1658
1659 if (cf->can_id & CAN_RTR_FLAG)
1660 fifo_header.id |= TX_BUF_RTR;
1661
1662 if (cdev->version == 30) {
1663 netif_stop_queue(dev);
1664
1665 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1666
1667 /* Write the frame ID, DLC, and payload to the FIFO element. */
1668 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1669 if (err)
1670 goto out_fail;
1671
1672 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1673 cf->data, DIV_ROUND_UP(cf->len, 4));
1674 if (err)
1675 goto out_fail;
1676
1677 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1678 cccr = m_can_read(cdev, M_CAN_CCCR);
1679 cccr &= ~CCCR_CMR_MASK;
1680 if (can_is_canfd_skb(skb)) {
1681 if (cf->flags & CANFD_BRS)
1682 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1683 CCCR_CMR_CANFD_BRS);
1684 else
1685 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1686 CCCR_CMR_CANFD);
1687 } else {
1688 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1689 }
1690 m_can_write(cdev, M_CAN_CCCR, cccr);
1691 }
1692 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1693
1694 can_put_echo_skb(skb, dev, 0, 0);
1695
1696 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1697 /* End of xmit function for version 3.0.x */
1698 } else {
1699 /* Transmit routine for version >= v3.1.x */
1700
1701 txfqs = m_can_read(cdev, M_CAN_TXFQS);
1702
1703 /* Check if FIFO full */
1704 if (_m_can_tx_fifo_full(txfqs)) {
1705 /* This shouldn't happen */
1706 netif_stop_queue(dev);
1707 netdev_warn(dev,
1708 "TX queue active although FIFO is full.");
1709
1710 if (cdev->is_peripheral) {
1711 kfree_skb(skb);
1712 dev->stats.tx_dropped++;
1713 return NETDEV_TX_OK;
1714 } else {
1715 return NETDEV_TX_BUSY;
1716 }
1717 }
1718
1719 /* get put index for frame */
1720 putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
1721
1722 /* Construct DLC Field, with CAN-FD configuration.
1723 * Use the put index of the fifo as the message marker,
1724 * used in the TX interrupt for sending the correct echo frame.
1725 */
1726
1727 /* get CAN FD configuration of frame */
1728 fdflags = 0;
1729 if (can_is_canfd_skb(skb)) {
1730 fdflags |= TX_BUF_FDF;
1731 if (cf->flags & CANFD_BRS)
1732 fdflags |= TX_BUF_BRS;
1733 }
1734
1735 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1736 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1737 fdflags | TX_BUF_EFC;
1738 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1739 if (err)
1740 goto out_fail;
1741
1742 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1743 cf->data, DIV_ROUND_UP(cf->len, 4));
1744 if (err)
1745 goto out_fail;
1746
1747 /* Push loopback echo.
1748 * Will be looped back on TX interrupt based on message marker
1749 */
1750 can_put_echo_skb(skb, dev, putidx, 0);
1751
1752 /* Enable TX FIFO element to start transfer */
1753 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1754
1755 /* stop network queue if fifo full */
1756 if (m_can_tx_fifo_full(cdev) ||
1757 m_can_next_echo_skb_occupied(dev, putidx))
1758 netif_stop_queue(dev);
1759 }
1760
1761 return NETDEV_TX_OK;
1762
1763 out_fail:
1764 netdev_err(dev, "FIFO write returned %d\n", err);
1765 m_can_disable_all_interrupts(cdev);
1766 return NETDEV_TX_BUSY;
1767 }
1768
m_can_tx_work_queue(struct work_struct * ws)1769 static void m_can_tx_work_queue(struct work_struct *ws)
1770 {
1771 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1772 tx_work);
1773
1774 m_can_tx_handler(cdev);
1775 }
1776
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1777 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1778 struct net_device *dev)
1779 {
1780 struct m_can_classdev *cdev = netdev_priv(dev);
1781
1782 if (can_dev_dropped_skb(dev, skb))
1783 return NETDEV_TX_OK;
1784
1785 if (cdev->is_peripheral) {
1786 if (cdev->tx_skb) {
1787 netdev_err(dev, "hard_xmit called while tx busy\n");
1788 return NETDEV_TX_BUSY;
1789 }
1790
1791 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1792 m_can_clean(dev);
1793 } else {
1794 /* Need to stop the queue to avoid numerous requests
1795 * from being sent. Suggested improvement is to create
1796 * a queueing mechanism that will queue the skbs and
1797 * process them in order.
1798 */
1799 cdev->tx_skb = skb;
1800 netif_stop_queue(cdev->net);
1801 queue_work(cdev->tx_wq, &cdev->tx_work);
1802 }
1803 } else {
1804 cdev->tx_skb = skb;
1805 return m_can_tx_handler(cdev);
1806 }
1807
1808 return NETDEV_TX_OK;
1809 }
1810
hrtimer_callback(struct hrtimer * timer)1811 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1812 {
1813 struct m_can_classdev *cdev = container_of(timer, struct
1814 m_can_classdev, hrtimer);
1815
1816 m_can_isr(0, cdev->net);
1817
1818 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1819
1820 return HRTIMER_RESTART;
1821 }
1822
m_can_open(struct net_device * dev)1823 static int m_can_open(struct net_device *dev)
1824 {
1825 struct m_can_classdev *cdev = netdev_priv(dev);
1826 int err;
1827
1828 err = phy_power_on(cdev->transceiver);
1829 if (err)
1830 return err;
1831
1832 err = m_can_clk_start(cdev);
1833 if (err)
1834 goto out_phy_power_off;
1835
1836 /* open the can device */
1837 err = open_candev(dev);
1838 if (err) {
1839 netdev_err(dev, "failed to open can device\n");
1840 goto exit_disable_clks;
1841 }
1842
1843 if (cdev->is_peripheral)
1844 can_rx_offload_enable(&cdev->offload);
1845 else
1846 napi_enable(&cdev->napi);
1847
1848 /* register interrupt handler */
1849 if (cdev->is_peripheral) {
1850 cdev->tx_skb = NULL;
1851 cdev->tx_wq = alloc_workqueue("mcan_wq",
1852 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1853 if (!cdev->tx_wq) {
1854 err = -ENOMEM;
1855 goto out_wq_fail;
1856 }
1857
1858 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1859
1860 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1861 IRQF_ONESHOT,
1862 dev->name, dev);
1863 } else if (dev->irq) {
1864 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1865 dev);
1866 }
1867
1868 if (err < 0) {
1869 netdev_err(dev, "failed to request interrupt\n");
1870 goto exit_irq_fail;
1871 }
1872
1873 /* start the m_can controller */
1874 err = m_can_start(dev);
1875 if (err)
1876 goto exit_start_fail;
1877
1878 netif_start_queue(dev);
1879
1880 return 0;
1881
1882 exit_start_fail:
1883 if (cdev->is_peripheral || dev->irq)
1884 free_irq(dev->irq, dev);
1885 exit_irq_fail:
1886 if (cdev->is_peripheral)
1887 destroy_workqueue(cdev->tx_wq);
1888 out_wq_fail:
1889 if (cdev->is_peripheral)
1890 can_rx_offload_disable(&cdev->offload);
1891 else
1892 napi_disable(&cdev->napi);
1893 close_candev(dev);
1894 exit_disable_clks:
1895 m_can_clk_stop(cdev);
1896 out_phy_power_off:
1897 phy_power_off(cdev->transceiver);
1898 return err;
1899 }
1900
1901 static const struct net_device_ops m_can_netdev_ops = {
1902 .ndo_open = m_can_open,
1903 .ndo_stop = m_can_close,
1904 .ndo_start_xmit = m_can_start_xmit,
1905 .ndo_change_mtu = can_change_mtu,
1906 };
1907
1908 static const struct ethtool_ops m_can_ethtool_ops = {
1909 .get_ts_info = ethtool_op_get_ts_info,
1910 };
1911
register_m_can_dev(struct net_device * dev)1912 static int register_m_can_dev(struct net_device *dev)
1913 {
1914 dev->flags |= IFF_ECHO; /* we support local echo */
1915 dev->netdev_ops = &m_can_netdev_ops;
1916 dev->ethtool_ops = &m_can_ethtool_ops;
1917
1918 return register_candev(dev);
1919 }
1920
m_can_check_mram_cfg(struct m_can_classdev * cdev,u32 mram_max_size)1921 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
1922 {
1923 u32 total_size;
1924
1925 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
1926 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1927 if (total_size > mram_max_size) {
1928 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
1929 total_size, mram_max_size);
1930 return -EINVAL;
1931 }
1932
1933 return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
1936
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1937 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1938 const u32 *mram_config_vals)
1939 {
1940 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1941 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1942 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1943 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1944 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1945 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1946 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1947 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1948 FIELD_MAX(RXFC_FS_MASK);
1949 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1950 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1951 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1952 FIELD_MAX(RXFC_FS_MASK);
1953 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1954 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1955 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1956 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1957 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1958 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1959 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1960 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1961 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1962 FIELD_MAX(TXBC_NDTB_MASK);
1963
1964 dev_dbg(cdev->dev,
1965 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1966 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1967 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1968 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1969 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1970 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1971 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1972 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1973 }
1974
m_can_init_ram(struct m_can_classdev * cdev)1975 int m_can_init_ram(struct m_can_classdev *cdev)
1976 {
1977 int end, i, start;
1978 int err = 0;
1979
1980 /* initialize the entire Message RAM in use to avoid possible
1981 * ECC/parity checksum errors when reading an uninitialized buffer
1982 */
1983 start = cdev->mcfg[MRAM_SIDF].off;
1984 end = cdev->mcfg[MRAM_TXB].off +
1985 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1986
1987 for (i = start; i < end; i += 4) {
1988 err = m_can_fifo_write_no_off(cdev, i, 0x0);
1989 if (err)
1990 break;
1991 }
1992
1993 return err;
1994 }
1995 EXPORT_SYMBOL_GPL(m_can_init_ram);
1996
m_can_class_get_clocks(struct m_can_classdev * cdev)1997 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1998 {
1999 int ret = 0;
2000
2001 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2002 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2003
2004 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2005 dev_err(cdev->dev, "no clock found\n");
2006 ret = -ENODEV;
2007 }
2008
2009 return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2012
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)2013 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2014 int sizeof_priv)
2015 {
2016 struct m_can_classdev *class_dev = NULL;
2017 u32 mram_config_vals[MRAM_CFG_LEN];
2018 struct net_device *net_dev;
2019 u32 tx_fifo_size;
2020 int ret;
2021
2022 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2023 "bosch,mram-cfg",
2024 mram_config_vals,
2025 sizeof(mram_config_vals) / 4);
2026 if (ret) {
2027 dev_err(dev, "Could not get Message RAM configuration.");
2028 goto out;
2029 }
2030
2031 /* Get TX FIFO size
2032 * Defines the total amount of echo buffers for loopback
2033 */
2034 tx_fifo_size = mram_config_vals[7];
2035
2036 /* allocate the m_can device */
2037 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2038 if (!net_dev) {
2039 dev_err(dev, "Failed to allocate CAN device");
2040 goto out;
2041 }
2042
2043 class_dev = netdev_priv(net_dev);
2044 class_dev->net = net_dev;
2045 class_dev->dev = dev;
2046 SET_NETDEV_DEV(net_dev, dev);
2047
2048 m_can_of_parse_mram(class_dev, mram_config_vals);
2049 out:
2050 return class_dev;
2051 }
2052 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2053
m_can_class_free_dev(struct net_device * net)2054 void m_can_class_free_dev(struct net_device *net)
2055 {
2056 free_candev(net);
2057 }
2058 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2059
m_can_class_register(struct m_can_classdev * cdev)2060 int m_can_class_register(struct m_can_classdev *cdev)
2061 {
2062 int ret;
2063
2064 if (cdev->pm_clock_support) {
2065 ret = m_can_clk_start(cdev);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 if (cdev->is_peripheral) {
2071 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2072 NAPI_POLL_WEIGHT);
2073 if (ret)
2074 goto clk_disable;
2075 }
2076
2077 if (!cdev->net->irq)
2078 cdev->hrtimer.function = &hrtimer_callback;
2079
2080 ret = m_can_dev_setup(cdev);
2081 if (ret)
2082 goto rx_offload_del;
2083
2084 ret = register_m_can_dev(cdev->net);
2085 if (ret) {
2086 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2087 cdev->net->name, ret);
2088 goto rx_offload_del;
2089 }
2090
2091 of_can_transceiver(cdev->net);
2092
2093 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2094 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2095
2096 /* Probe finished
2097 * Stop clocks. They will be reactivated once the M_CAN device is opened
2098 */
2099 m_can_clk_stop(cdev);
2100
2101 return 0;
2102
2103 rx_offload_del:
2104 if (cdev->is_peripheral)
2105 can_rx_offload_del(&cdev->offload);
2106 clk_disable:
2107 m_can_clk_stop(cdev);
2108
2109 return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(m_can_class_register);
2112
m_can_class_unregister(struct m_can_classdev * cdev)2113 void m_can_class_unregister(struct m_can_classdev *cdev)
2114 {
2115 if (cdev->is_peripheral)
2116 can_rx_offload_del(&cdev->offload);
2117 unregister_candev(cdev->net);
2118 }
2119 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2120
m_can_class_suspend(struct device * dev)2121 int m_can_class_suspend(struct device *dev)
2122 {
2123 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2124 struct net_device *ndev = cdev->net;
2125
2126 if (netif_running(ndev)) {
2127 netif_stop_queue(ndev);
2128 netif_device_detach(ndev);
2129 m_can_stop(ndev);
2130 m_can_clk_stop(cdev);
2131 }
2132
2133 pinctrl_pm_select_sleep_state(dev);
2134
2135 cdev->can.state = CAN_STATE_SLEEPING;
2136
2137 return 0;
2138 }
2139 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2140
m_can_class_resume(struct device * dev)2141 int m_can_class_resume(struct device *dev)
2142 {
2143 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2144 struct net_device *ndev = cdev->net;
2145
2146 pinctrl_pm_select_default_state(dev);
2147
2148 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2149
2150 if (netif_running(ndev)) {
2151 int ret;
2152
2153 ret = m_can_clk_start(cdev);
2154 if (ret)
2155 return ret;
2156 ret = m_can_start(ndev);
2157 if (ret) {
2158 m_can_clk_stop(cdev);
2159
2160 return ret;
2161 }
2162
2163 netif_device_attach(ndev);
2164 netif_start_queue(ndev);
2165 }
2166
2167 return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(m_can_class_resume);
2170
2171 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2172 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2173 MODULE_LICENSE("GPL v2");
2174 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2175