xref: /openbmc/linux/drivers/media/tuners/mt2060.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
4   *
5   *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
6   */
7  
8  /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
9  
10  #include <linux/module.h>
11  #include <linux/delay.h>
12  #include <linux/dvb/frontend.h>
13  #include <linux/i2c.h>
14  #include <linux/slab.h>
15  
16  #include <media/dvb_frontend.h>
17  
18  #include "mt2060.h"
19  #include "mt2060_priv.h"
20  
21  static int debug;
22  module_param(debug, int, 0644);
23  MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
24  
25  #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
26  
27  // Reads a single register
mt2060_readreg(struct mt2060_priv * priv,u8 reg,u8 * val)28  static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
29  {
30  	struct i2c_msg msg[2] = {
31  		{ .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
32  		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
33  	};
34  	int rc = 0;
35  	u8 *b;
36  
37  	b = kmalloc(2, GFP_KERNEL);
38  	if (!b)
39  		return -ENOMEM;
40  
41  	b[0] = reg;
42  	b[1] = 0;
43  
44  	msg[0].buf = b;
45  	msg[1].buf = b + 1;
46  
47  	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
48  		printk(KERN_WARNING "mt2060 I2C read failed\n");
49  		rc = -EREMOTEIO;
50  	}
51  	*val = b[1];
52  	kfree(b);
53  
54  	return rc;
55  }
56  
57  // Writes a single register
mt2060_writereg(struct mt2060_priv * priv,u8 reg,u8 val)58  static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
59  {
60  	struct i2c_msg msg = {
61  		.addr = priv->cfg->i2c_address, .flags = 0, .len = 2
62  	};
63  	u8 *buf;
64  	int rc = 0;
65  
66  	buf = kmalloc(2, GFP_KERNEL);
67  	if (!buf)
68  		return -ENOMEM;
69  
70  	buf[0] = reg;
71  	buf[1] = val;
72  
73  	msg.buf = buf;
74  
75  	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
76  		printk(KERN_WARNING "mt2060 I2C write failed\n");
77  		rc = -EREMOTEIO;
78  	}
79  	kfree(buf);
80  	return rc;
81  }
82  
83  // Writes a set of consecutive registers
mt2060_writeregs(struct mt2060_priv * priv,u8 * buf,u8 len)84  static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
85  {
86  	int rem, val_len;
87  	u8 *xfer_buf;
88  	int rc = 0;
89  	struct i2c_msg msg = {
90  		.addr = priv->cfg->i2c_address, .flags = 0
91  	};
92  
93  	xfer_buf = kmalloc(16, GFP_KERNEL);
94  	if (!xfer_buf)
95  		return -ENOMEM;
96  
97  	msg.buf = xfer_buf;
98  
99  	for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
100  		val_len = min_t(int, rem, priv->i2c_max_regs);
101  		msg.len = 1 + val_len;
102  		xfer_buf[0] = buf[0] + len - 1 - rem;
103  		memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
104  
105  		if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
106  			printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
107  			rc = -EREMOTEIO;
108  			break;
109  		}
110  	}
111  
112  	kfree(xfer_buf);
113  	return rc;
114  }
115  
116  // Initialisation sequences
117  // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
118  static u8 mt2060_config1[] = {
119  	REG_LO1C1,
120  	0x3F,	0x74,	0x00,	0x08,	0x93
121  };
122  
123  // FMCG=2, GP2=0, GP1=0
124  static u8 mt2060_config2[] = {
125  	REG_MISC_CTRL,
126  	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42
127  };
128  
129  //  VGAG=3, V1CSE=1
130  
131  #ifdef  MT2060_SPURCHECK
132  /* The function below calculates the frequency offset between the output frequency if2
133   and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)134  static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
135  {
136  	int I,J;
137  	int dia,diamin,diff;
138  	diamin=1000000;
139  	for (I = 1; I < 10; I++) {
140  		J = ((2*I*lo1)/lo2+1)/2;
141  		diff = I*(int)lo1-J*(int)lo2;
142  		if (diff < 0) diff=-diff;
143  		dia = (diff-(int)if2);
144  		if (dia < 0) dia=-dia;
145  		if (diamin > dia) diamin=dia;
146  	}
147  	return diamin;
148  }
149  
150  #define BANDWIDTH 4000 // kHz
151  
152  /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)153  static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
154  {
155  	u32 Spur,Sp1,Sp2;
156  	int I,J;
157  	I=0;
158  	J=1000;
159  
160  	Spur=mt2060_spurcalc(lo1,lo2,if2);
161  	if (Spur < BANDWIDTH) {
162  		/* Potential spurs detected */
163  		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
164  			(int)lo1,(int)lo2);
165  		I=1000;
166  		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
167  		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
168  
169  		if (Sp1 < Sp2) {
170  			J=-J; I=-I; Spur=Sp2;
171  		} else
172  			Spur=Sp1;
173  
174  		while (Spur < BANDWIDTH) {
175  			I += J;
176  			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
177  		}
178  		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
179  			(int)(lo1+I),(int)(lo2+I));
180  	}
181  	return I;
182  }
183  #endif
184  
185  #define IF2  36150       // IF2 frequency = 36.150 MHz
186  #define FREF 16000       // Quartz oscillator 16 MHz
187  
mt2060_set_params(struct dvb_frontend * fe)188  static int mt2060_set_params(struct dvb_frontend *fe)
189  {
190  	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
191  	struct mt2060_priv *priv;
192  	int i=0;
193  	u32 freq;
194  	u8  lnaband;
195  	u32 f_lo1,f_lo2;
196  	u32 div1,num1,div2,num2;
197  	u8  b[8];
198  	u32 if1;
199  
200  	priv = fe->tuner_priv;
201  
202  	if1 = priv->if1_freq;
203  	b[0] = REG_LO1B1;
204  	b[1] = 0xFF;
205  
206  	if (fe->ops.i2c_gate_ctrl)
207  		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
208  
209  	mt2060_writeregs(priv,b,2);
210  
211  	freq = c->frequency / 1000; /* Hz -> kHz */
212  
213  	f_lo1 = freq + if1 * 1000;
214  	f_lo1 = (f_lo1 / 250) * 250;
215  	f_lo2 = f_lo1 - freq - IF2;
216  	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
217  	f_lo2 = ((f_lo2 + 25) / 50) * 50;
218  	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000;
219  
220  #ifdef MT2060_SPURCHECK
221  	// LO-related spurs detection and correction
222  	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
223  	f_lo1 += num1;
224  	f_lo2 += num1;
225  #endif
226  	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
227  	num1 = f_lo1 / (FREF / 64);
228  	div1 = num1 / 64;
229  	num1 &= 0x3f;
230  
231  	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
232  	num2 = f_lo2 * 64 / (FREF / 128);
233  	div2 = num2 / 8192;
234  	num2 &= 0x1fff;
235  
236  	if (freq <=  95000) lnaband = 0xB0; else
237  	if (freq <= 180000) lnaband = 0xA0; else
238  	if (freq <= 260000) lnaband = 0x90; else
239  	if (freq <= 335000) lnaband = 0x80; else
240  	if (freq <= 425000) lnaband = 0x70; else
241  	if (freq <= 480000) lnaband = 0x60; else
242  	if (freq <= 570000) lnaband = 0x50; else
243  	if (freq <= 645000) lnaband = 0x40; else
244  	if (freq <= 730000) lnaband = 0x30; else
245  	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
246  
247  	b[0] = REG_LO1C1;
248  	b[1] = lnaband | ((num1 >>2) & 0x0F);
249  	b[2] = div1;
250  	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
251  	b[4] = num2 >> 4;
252  	b[5] = ((num2 >>12) & 1) | (div2 << 1);
253  
254  	dprintk("IF1: %dMHz",(int)if1);
255  	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
256  	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
257  	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
258  
259  	mt2060_writeregs(priv,b,6);
260  
261  	//Waits for pll lock or timeout
262  	i = 0;
263  	do {
264  		mt2060_readreg(priv,REG_LO_STATUS,b);
265  		if ((b[0] & 0x88)==0x88)
266  			break;
267  		msleep(4);
268  		i++;
269  	} while (i<10);
270  
271  	if (fe->ops.i2c_gate_ctrl)
272  		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
273  
274  	return 0;
275  }
276  
mt2060_calibrate(struct mt2060_priv * priv)277  static void mt2060_calibrate(struct mt2060_priv *priv)
278  {
279  	u8 b = 0;
280  	int i = 0;
281  
282  	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
283  		return;
284  	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
285  		return;
286  
287  	/* initialize the clock output */
288  	mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
289  
290  	do {
291  		b |= (1 << 6); // FM1SS;
292  		mt2060_writereg(priv, REG_LO2C1,b);
293  		msleep(20);
294  
295  		if (i == 0) {
296  			b |= (1 << 7); // FM1CA;
297  			mt2060_writereg(priv, REG_LO2C1,b);
298  			b &= ~(1 << 7); // FM1CA;
299  			msleep(20);
300  		}
301  
302  		b &= ~(1 << 6); // FM1SS
303  		mt2060_writereg(priv, REG_LO2C1,b);
304  
305  		msleep(20);
306  		i++;
307  	} while (i < 9);
308  
309  	i = 0;
310  	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
311  		msleep(20);
312  
313  	if (i <= 10) {
314  		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
315  		dprintk("calibration was successful: %d", (int)priv->fmfreq);
316  	} else
317  		dprintk("FMCAL timed out");
318  }
319  
mt2060_get_frequency(struct dvb_frontend * fe,u32 * frequency)320  static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
321  {
322  	struct mt2060_priv *priv = fe->tuner_priv;
323  	*frequency = priv->frequency;
324  	return 0;
325  }
326  
mt2060_get_if_frequency(struct dvb_frontend * fe,u32 * frequency)327  static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
328  {
329  	*frequency = IF2 * 1000;
330  	return 0;
331  }
332  
mt2060_init(struct dvb_frontend * fe)333  static int mt2060_init(struct dvb_frontend *fe)
334  {
335  	struct mt2060_priv *priv = fe->tuner_priv;
336  	int ret;
337  
338  	if (fe->ops.i2c_gate_ctrl)
339  		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
340  
341  	if (priv->sleep) {
342  		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
343  		if (ret)
344  			goto err_i2c_gate_ctrl;
345  	}
346  
347  	ret = mt2060_writereg(priv, REG_VGAG,
348  			      (priv->cfg->clock_out << 6) | 0x33);
349  
350  err_i2c_gate_ctrl:
351  	if (fe->ops.i2c_gate_ctrl)
352  		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
353  
354  	return ret;
355  }
356  
mt2060_sleep(struct dvb_frontend * fe)357  static int mt2060_sleep(struct dvb_frontend *fe)
358  {
359  	struct mt2060_priv *priv = fe->tuner_priv;
360  	int ret;
361  
362  	if (fe->ops.i2c_gate_ctrl)
363  		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
364  
365  	ret = mt2060_writereg(priv, REG_VGAG,
366  			      (priv->cfg->clock_out << 6) | 0x30);
367  	if (ret)
368  		goto err_i2c_gate_ctrl;
369  
370  	if (priv->sleep)
371  		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
372  
373  err_i2c_gate_ctrl:
374  	if (fe->ops.i2c_gate_ctrl)
375  		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
376  
377  	return ret;
378  }
379  
mt2060_release(struct dvb_frontend * fe)380  static void mt2060_release(struct dvb_frontend *fe)
381  {
382  	kfree(fe->tuner_priv);
383  	fe->tuner_priv = NULL;
384  }
385  
386  static const struct dvb_tuner_ops mt2060_tuner_ops = {
387  	.info = {
388  		.name              = "Microtune MT2060",
389  		.frequency_min_hz  =  48 * MHz,
390  		.frequency_max_hz  = 860 * MHz,
391  		.frequency_step_hz =  50 * kHz,
392  	},
393  
394  	.release       = mt2060_release,
395  
396  	.init          = mt2060_init,
397  	.sleep         = mt2060_sleep,
398  
399  	.set_params    = mt2060_set_params,
400  	.get_frequency = mt2060_get_frequency,
401  	.get_if_frequency = mt2060_get_if_frequency,
402  };
403  
404  /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
mt2060_attach(struct dvb_frontend * fe,struct i2c_adapter * i2c,struct mt2060_config * cfg,u16 if1)405  struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
406  {
407  	struct mt2060_priv *priv = NULL;
408  	u8 id = 0;
409  
410  	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
411  	if (priv == NULL)
412  		return NULL;
413  
414  	priv->cfg      = cfg;
415  	priv->i2c      = i2c;
416  	priv->if1_freq = if1;
417  	priv->i2c_max_regs = ~0;
418  
419  	if (fe->ops.i2c_gate_ctrl)
420  		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
421  
422  	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
423  		kfree(priv);
424  		return NULL;
425  	}
426  
427  	if (id != PART_REV) {
428  		kfree(priv);
429  		return NULL;
430  	}
431  	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
432  	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
433  
434  	fe->tuner_priv = priv;
435  
436  	mt2060_calibrate(priv);
437  
438  	if (fe->ops.i2c_gate_ctrl)
439  		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
440  
441  	return fe;
442  }
443  EXPORT_SYMBOL_GPL(mt2060_attach);
444  
mt2060_probe(struct i2c_client * client)445  static int mt2060_probe(struct i2c_client *client)
446  {
447  	struct mt2060_platform_data *pdata = client->dev.platform_data;
448  	struct dvb_frontend *fe;
449  	struct mt2060_priv *dev;
450  	int ret;
451  	u8 chip_id;
452  
453  	dev_dbg(&client->dev, "\n");
454  
455  	if (!pdata) {
456  		dev_err(&client->dev, "Cannot proceed without platform data\n");
457  		ret = -EINVAL;
458  		goto err;
459  	}
460  
461  	dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
462  	if (!dev) {
463  		ret = -ENOMEM;
464  		goto err;
465  	}
466  
467  	fe = pdata->dvb_frontend;
468  	dev->config.i2c_address = client->addr;
469  	dev->config.clock_out = pdata->clock_out;
470  	dev->cfg = &dev->config;
471  	dev->i2c = client->adapter;
472  	dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
473  	dev->client = client;
474  	dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
475  	dev->sleep = true;
476  
477  	ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
478  	if (ret) {
479  		ret = -ENODEV;
480  		goto err;
481  	}
482  
483  	dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
484  
485  	if (chip_id != PART_REV) {
486  		ret = -ENODEV;
487  		goto err;
488  	}
489  
490  	/* Power on, calibrate, sleep */
491  	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
492  	if (ret)
493  		goto err;
494  	mt2060_calibrate(dev);
495  	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
496  	if (ret)
497  		goto err;
498  
499  	dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
500  	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
501  	fe->ops.tuner_ops.release = NULL;
502  	fe->tuner_priv = dev;
503  	i2c_set_clientdata(client, dev);
504  
505  	return 0;
506  err:
507  	dev_dbg(&client->dev, "failed=%d\n", ret);
508  	return ret;
509  }
510  
mt2060_remove(struct i2c_client * client)511  static void mt2060_remove(struct i2c_client *client)
512  {
513  	dev_dbg(&client->dev, "\n");
514  }
515  
516  static const struct i2c_device_id mt2060_id_table[] = {
517  	{"mt2060", 0},
518  	{}
519  };
520  MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
521  
522  static struct i2c_driver mt2060_driver = {
523  	.driver = {
524  		.name = "mt2060",
525  		.suppress_bind_attrs = true,
526  	},
527  	.probe		= mt2060_probe,
528  	.remove		= mt2060_remove,
529  	.id_table	= mt2060_id_table,
530  };
531  
532  module_i2c_driver(mt2060_driver);
533  
534  MODULE_AUTHOR("Olivier DANET");
535  MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
536  MODULE_LICENSE("GPL");
537