xref: /openbmc/qemu/system/physmem.c (revision 7fd0224457aadf94176e4d94008db94cbdc8004a)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29 
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace.h"
57 
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
61 
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
66 
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
69 
70 #include "qemu/pmem.h"
71 
72 #include "migration/vmstate.h"
73 
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
78 
79 #include "monitor/monitor.h"
80 
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
84 
85 //#define DEBUG_SUBPAGE
86 
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
88  * are protected by the ramlist lock.
89  */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91 
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94 
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97 
98 static MemoryRegion io_mem_unassigned;
99 
100 typedef struct PhysPageEntry PhysPageEntry;
101 
102 struct PhysPageEntry {
103     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104     uint32_t skip : 6;
105      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106     uint32_t ptr : 26;
107 };
108 
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110 
111 /* Size of the L2 (and L3, etc) page tables.  */
112 #define ADDR_SPACE_BITS 64
113 
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
116 
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118 
119 typedef PhysPageEntry Node[P_L2_SIZE];
120 
121 typedef struct PhysPageMap {
122     struct rcu_head rcu;
123 
124     unsigned sections_nb;
125     unsigned sections_nb_alloc;
126     unsigned nodes_nb;
127     unsigned nodes_nb_alloc;
128     Node *nodes;
129     MemoryRegionSection *sections;
130 } PhysPageMap;
131 
132 struct AddressSpaceDispatch {
133     MemoryRegionSection *mru_section;
134     /* This is a multi-level map on the physical address space.
135      * The bottom level has pointers to MemoryRegionSections.
136      */
137     PhysPageEntry phys_map;
138     PhysPageMap map;
139 };
140 
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143     MemoryRegion iomem;
144     FlatView *fv;
145     hwaddr base;
146     uint16_t sub_section[];
147 } subpage_t;
148 
149 #define PHYS_SECTION_UNASSIGNED 0
150 
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
155 
156 /**
157  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158  * @cpu: the CPU whose AddressSpace this is
159  * @as: the AddressSpace itself
160  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161  * @tcg_as_listener: listener for tracking changes to the AddressSpace
162  */
163 typedef struct CPUAddressSpace {
164     CPUState *cpu;
165     AddressSpace *as;
166     struct AddressSpaceDispatch *memory_dispatch;
167     MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
169 
170 struct DirtyBitmapSnapshot {
171     ram_addr_t start;
172     ram_addr_t end;
173     unsigned long dirty[];
174 };
175 
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177 {
178     static unsigned alloc_hint = 16;
179     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182         alloc_hint = map->nodes_nb_alloc;
183     }
184 }
185 
phys_map_node_alloc(PhysPageMap * map,bool leaf)186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187 {
188     unsigned i;
189     uint32_t ret;
190     PhysPageEntry e;
191     PhysPageEntry *p;
192 
193     ret = map->nodes_nb++;
194     p = map->nodes[ret];
195     assert(ret != PHYS_MAP_NODE_NIL);
196     assert(ret != map->nodes_nb_alloc);
197 
198     e.skip = leaf ? 0 : 1;
199     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200     for (i = 0; i < P_L2_SIZE; ++i) {
201         memcpy(&p[i], &e, sizeof(e));
202     }
203     return ret;
204 }
205 
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
208                                 int level)
209 {
210     PhysPageEntry *p;
211     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212 
213     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214         lp->ptr = phys_map_node_alloc(map, level == 0);
215     }
216     p = map->nodes[lp->ptr];
217     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218 
219     while (*nb && lp < &p[P_L2_SIZE]) {
220         if ((*index & (step - 1)) == 0 && *nb >= step) {
221             lp->skip = 0;
222             lp->ptr = leaf;
223             *index += step;
224             *nb -= step;
225         } else {
226             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227         }
228         ++lp;
229     }
230 }
231 
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)232 static void phys_page_set(AddressSpaceDispatch *d,
233                           hwaddr index, uint64_t nb,
234                           uint16_t leaf)
235 {
236     /* Wildly overreserve - it doesn't matter much. */
237     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238 
239     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 }
241 
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243  * and update our entry so we can skip it and go directly to the destination.
244  */
phys_page_compact(PhysPageEntry * lp,Node * nodes)245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246 {
247     unsigned valid_ptr = P_L2_SIZE;
248     int valid = 0;
249     PhysPageEntry *p;
250     int i;
251 
252     if (lp->ptr == PHYS_MAP_NODE_NIL) {
253         return;
254     }
255 
256     p = nodes[lp->ptr];
257     for (i = 0; i < P_L2_SIZE; i++) {
258         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259             continue;
260         }
261 
262         valid_ptr = i;
263         valid++;
264         if (p[i].skip) {
265             phys_page_compact(&p[i], nodes);
266         }
267     }
268 
269     /* We can only compress if there's only one child. */
270     if (valid != 1) {
271         return;
272     }
273 
274     assert(valid_ptr < P_L2_SIZE);
275 
276     /* Don't compress if it won't fit in the # of bits we have. */
277     if (P_L2_LEVELS >= (1 << 6) &&
278         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279         return;
280     }
281 
282     lp->ptr = p[valid_ptr].ptr;
283     if (!p[valid_ptr].skip) {
284         /* If our only child is a leaf, make this a leaf. */
285         /* By design, we should have made this node a leaf to begin with so we
286          * should never reach here.
287          * But since it's so simple to handle this, let's do it just in case we
288          * change this rule.
289          */
290         lp->skip = 0;
291     } else {
292         lp->skip += p[valid_ptr].skip;
293     }
294 }
295 
address_space_dispatch_compact(AddressSpaceDispatch * d)296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
297 {
298     if (d->phys_map.skip) {
299         phys_page_compact(&d->phys_map, d->map.nodes);
300     }
301 }
302 
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304                                        hwaddr addr)
305 {
306     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307      * the section must cover the entire address space.
308      */
309     return int128_gethi(section->size) ||
310            range_covers_byte(section->offset_within_address_space,
311                              int128_getlo(section->size), addr);
312 }
313 
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315 {
316     PhysPageEntry lp = d->phys_map, *p;
317     Node *nodes = d->map.nodes;
318     MemoryRegionSection *sections = d->map.sections;
319     hwaddr index = addr >> TARGET_PAGE_BITS;
320     int i;
321 
322     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323         if (lp.ptr == PHYS_MAP_NODE_NIL) {
324             return &sections[PHYS_SECTION_UNASSIGNED];
325         }
326         p = nodes[lp.ptr];
327         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328     }
329 
330     if (section_covers_addr(&sections[lp.ptr], addr)) {
331         return &sections[lp.ptr];
332     } else {
333         return &sections[PHYS_SECTION_UNASSIGNED];
334     }
335 }
336 
337 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339                                                         hwaddr addr,
340                                                         bool resolve_subpage)
341 {
342     MemoryRegionSection *section = qatomic_read(&d->mru_section);
343     subpage_t *subpage;
344 
345     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346         !section_covers_addr(section, addr)) {
347         section = phys_page_find(d, addr);
348         qatomic_set(&d->mru_section, section);
349     }
350     if (resolve_subpage && section->mr->subpage) {
351         subpage = container_of(section->mr, subpage_t, iomem);
352         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353     }
354     return section;
355 }
356 
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360                                  hwaddr *plen, bool resolve_subpage)
361 {
362     MemoryRegionSection *section;
363     MemoryRegion *mr;
364     Int128 diff;
365 
366     section = address_space_lookup_region(d, addr, resolve_subpage);
367     /* Compute offset within MemoryRegionSection */
368     addr -= section->offset_within_address_space;
369 
370     /* Compute offset within MemoryRegion */
371     *xlat = addr + section->offset_within_region;
372 
373     mr = section->mr;
374 
375     /* MMIO registers can be expected to perform full-width accesses based only
376      * on their address, without considering adjacent registers that could
377      * decode to completely different MemoryRegions.  When such registers
378      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379      * regions overlap wildly.  For this reason we cannot clamp the accesses
380      * here.
381      *
382      * If the length is small (as is the case for address_space_ldl/stl),
383      * everything works fine.  If the incoming length is large, however,
384      * the caller really has to do the clamping through memory_access_size.
385      */
386     if (memory_region_is_ram(mr)) {
387         diff = int128_sub(section->size, int128_make64(addr));
388         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389     }
390     return section;
391 }
392 
393 /**
394  * address_space_translate_iommu - translate an address through an IOMMU
395  * memory region and then through the target address space.
396  *
397  * @iommu_mr: the IOMMU memory region that we start the translation from
398  * @addr: the address to be translated through the MMU
399  * @xlat: the translated address offset within the destination memory region.
400  *        It cannot be %NULL.
401  * @plen_out: valid read/write length of the translated address. It
402  *            cannot be %NULL.
403  * @page_mask_out: page mask for the translated address. This
404  *            should only be meaningful for IOMMU translated
405  *            addresses, since there may be huge pages that this bit
406  *            would tell. It can be %NULL if we don't care about it.
407  * @is_write: whether the translation operation is for write
408  * @is_mmio: whether this can be MMIO, set true if it can
409  * @target_as: the address space targeted by the IOMMU
410  * @attrs: transaction attributes
411  *
412  * This function is called from RCU critical section.  It is the common
413  * part of flatview_do_translate and address_space_translate_cached.
414  */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416                                                          hwaddr *xlat,
417                                                          hwaddr *plen_out,
418                                                          hwaddr *page_mask_out,
419                                                          bool is_write,
420                                                          bool is_mmio,
421                                                          AddressSpace **target_as,
422                                                          MemTxAttrs attrs)
423 {
424     MemoryRegionSection *section;
425     hwaddr page_mask = (hwaddr)-1;
426 
427     do {
428         hwaddr addr = *xlat;
429         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430         int iommu_idx = 0;
431         IOMMUTLBEntry iotlb;
432 
433         if (imrc->attrs_to_index) {
434             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435         }
436 
437         iotlb = imrc->translate(iommu_mr, addr, is_write ?
438                                 IOMMU_WO : IOMMU_RO, iommu_idx);
439 
440         if (!(iotlb.perm & (1 << is_write))) {
441             goto unassigned;
442         }
443 
444         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445                 | (addr & iotlb.addr_mask));
446         page_mask &= iotlb.addr_mask;
447         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448         *target_as = iotlb.target_as;
449 
450         section = address_space_translate_internal(
451                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452                 plen_out, is_mmio);
453 
454         iommu_mr = memory_region_get_iommu(section->mr);
455     } while (unlikely(iommu_mr));
456 
457     if (page_mask_out) {
458         *page_mask_out = page_mask;
459     }
460     return *section;
461 
462 unassigned:
463     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 }
465 
466 /**
467  * flatview_do_translate - translate an address in FlatView
468  *
469  * @fv: the flat view that we want to translate on
470  * @addr: the address to be translated in above address space
471  * @xlat: the translated address offset within memory region. It
472  *        cannot be @NULL.
473  * @plen_out: valid read/write length of the translated address. It
474  *            can be @NULL when we don't care about it.
475  * @page_mask_out: page mask for the translated address. This
476  *            should only be meaningful for IOMMU translated
477  *            addresses, since there may be huge pages that this bit
478  *            would tell. It can be @NULL if we don't care about it.
479  * @is_write: whether the translation operation is for write
480  * @is_mmio: whether this can be MMIO, set true if it can
481  * @target_as: the address space targeted by the IOMMU
482  * @attrs: memory transaction attributes
483  *
484  * This function is called from RCU critical section
485  */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487                                                  hwaddr addr,
488                                                  hwaddr *xlat,
489                                                  hwaddr *plen_out,
490                                                  hwaddr *page_mask_out,
491                                                  bool is_write,
492                                                  bool is_mmio,
493                                                  AddressSpace **target_as,
494                                                  MemTxAttrs attrs)
495 {
496     MemoryRegionSection *section;
497     IOMMUMemoryRegion *iommu_mr;
498     hwaddr plen = (hwaddr)(-1);
499 
500     if (!plen_out) {
501         plen_out = &plen;
502     }
503 
504     section = address_space_translate_internal(
505             flatview_to_dispatch(fv), addr, xlat,
506             plen_out, is_mmio);
507 
508     iommu_mr = memory_region_get_iommu(section->mr);
509     if (unlikely(iommu_mr)) {
510         return address_space_translate_iommu(iommu_mr, xlat,
511                                              plen_out, page_mask_out,
512                                              is_write, is_mmio,
513                                              target_as, attrs);
514     }
515     if (page_mask_out) {
516         /* Not behind an IOMMU, use default page size. */
517         *page_mask_out = ~TARGET_PAGE_MASK;
518     }
519 
520     return *section;
521 }
522 
523 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525                                             bool is_write, MemTxAttrs attrs)
526 {
527     MemoryRegionSection section;
528     hwaddr xlat, page_mask;
529 
530     /*
531      * This can never be MMIO, and we don't really care about plen,
532      * but page mask.
533      */
534     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535                                     NULL, &page_mask, is_write, false, &as,
536                                     attrs);
537 
538     /* Illegal translation */
539     if (section.mr == &io_mem_unassigned) {
540         goto iotlb_fail;
541     }
542 
543     /* Convert memory region offset into address space offset */
544     xlat += section.offset_within_address_space -
545         section.offset_within_region;
546 
547     return (IOMMUTLBEntry) {
548         .target_as = as,
549         .iova = addr & ~page_mask,
550         .translated_addr = xlat & ~page_mask,
551         .addr_mask = page_mask,
552         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553         .perm = IOMMU_RW,
554     };
555 
556 iotlb_fail:
557     return (IOMMUTLBEntry) {0};
558 }
559 
560 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562                                  hwaddr *plen, bool is_write,
563                                  MemTxAttrs attrs)
564 {
565     MemoryRegion *mr;
566     MemoryRegionSection section;
567     AddressSpace *as = NULL;
568 
569     /* This can be MMIO, so setup MMIO bit. */
570     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571                                     is_write, true, &as, attrs);
572     mr = section.mr;
573 
574     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576         *plen = MIN(page, *plen);
577     }
578 
579     return mr;
580 }
581 
582 typedef struct TCGIOMMUNotifier {
583     IOMMUNotifier n;
584     MemoryRegion *mr;
585     CPUState *cpu;
586     int iommu_idx;
587     bool active;
588 } TCGIOMMUNotifier;
589 
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591 {
592     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593 
594     if (!notifier->active) {
595         return;
596     }
597     tlb_flush(notifier->cpu);
598     notifier->active = false;
599     /* We leave the notifier struct on the list to avoid reallocating it later.
600      * Generally the number of IOMMUs a CPU deals with will be small.
601      * In any case we can't unregister the iommu notifier from a notify
602      * callback.
603      */
604 }
605 
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)606 static void tcg_register_iommu_notifier(CPUState *cpu,
607                                         IOMMUMemoryRegion *iommu_mr,
608                                         int iommu_idx)
609 {
610     /* Make sure this CPU has an IOMMU notifier registered for this
611      * IOMMU/IOMMU index combination, so that we can flush its TLB
612      * when the IOMMU tells us the mappings we've cached have changed.
613      */
614     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615     TCGIOMMUNotifier *notifier = NULL;
616     int i;
617 
618     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621             break;
622         }
623     }
624     if (i == cpu->iommu_notifiers->len) {
625         /* Not found, add a new entry at the end of the array */
626         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627         notifier = g_new0(TCGIOMMUNotifier, 1);
628         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629 
630         notifier->mr = mr;
631         notifier->iommu_idx = iommu_idx;
632         notifier->cpu = cpu;
633         /* Rather than trying to register interest in the specific part
634          * of the iommu's address space that we've accessed and then
635          * expand it later as subsequent accesses touch more of it, we
636          * just register interest in the whole thing, on the assumption
637          * that iommu reconfiguration will be rare.
638          */
639         iommu_notifier_init(&notifier->n,
640                             tcg_iommu_unmap_notify,
641                             IOMMU_NOTIFIER_UNMAP,
642                             0,
643                             HWADDR_MAX,
644                             iommu_idx);
645         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
646                                               &error_fatal);
647     }
648 
649     if (!notifier->active) {
650         notifier->active = true;
651     }
652 }
653 
tcg_iommu_free_notifier_list(CPUState * cpu)654 void tcg_iommu_free_notifier_list(CPUState *cpu)
655 {
656     /* Destroy the CPU's notifier list */
657     int i;
658     TCGIOMMUNotifier *notifier;
659 
660     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
663         g_free(notifier);
664     }
665     g_array_free(cpu->iommu_notifiers, true);
666 }
667 
tcg_iommu_init_notifier_list(CPUState * cpu)668 void tcg_iommu_init_notifier_list(CPUState *cpu)
669 {
670     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 }
672 
673 /* Called from RCU critical section */
674 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676                                   hwaddr *xlat, hwaddr *plen,
677                                   MemTxAttrs attrs, int *prot)
678 {
679     MemoryRegionSection *section;
680     IOMMUMemoryRegion *iommu_mr;
681     IOMMUMemoryRegionClass *imrc;
682     IOMMUTLBEntry iotlb;
683     int iommu_idx;
684     hwaddr addr = orig_addr;
685     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686 
687     for (;;) {
688         section = address_space_translate_internal(d, addr, &addr, plen, false);
689 
690         iommu_mr = memory_region_get_iommu(section->mr);
691         if (!iommu_mr) {
692             break;
693         }
694 
695         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696 
697         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700          * doesn't short-cut its translation table walk.
701          */
702         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704                 | (addr & iotlb.addr_mask));
705         /* Update the caller's prot bits to remove permissions the IOMMU
706          * is giving us a failure response for. If we get down to no
707          * permissions left at all we can give up now.
708          */
709         if (!(iotlb.perm & IOMMU_RO)) {
710             *prot &= ~(PAGE_READ | PAGE_EXEC);
711         }
712         if (!(iotlb.perm & IOMMU_WO)) {
713             *prot &= ~PAGE_WRITE;
714         }
715 
716         if (!*prot) {
717             goto translate_fail;
718         }
719 
720         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721     }
722 
723     assert(!memory_region_is_iommu(section->mr));
724     *xlat = addr;
725     return section;
726 
727 translate_fail:
728     /*
729      * We should be given a page-aligned address -- certainly
730      * tlb_set_page_with_attrs() does so.  The page offset of xlat
731      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732      * The page portion of xlat will be logged by memory_region_access_valid()
733      * when this memory access is rejected, so use the original untranslated
734      * physical address.
735      */
736     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737     *xlat = orig_addr;
738     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 }
740 
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)741 void cpu_address_space_init(CPUState *cpu, int asidx,
742                             const char *prefix, MemoryRegion *mr)
743 {
744     CPUAddressSpace *newas;
745     AddressSpace *as = g_new0(AddressSpace, 1);
746     char *as_name;
747 
748     assert(mr);
749     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750     address_space_init(as, mr, as_name);
751     g_free(as_name);
752 
753     /* Target code should have set num_ases before calling us */
754     assert(asidx < cpu->num_ases);
755 
756     if (asidx == 0) {
757         /* address space 0 gets the convenience alias */
758         cpu->as = as;
759     }
760 
761     /* KVM cannot currently support multiple address spaces. */
762     assert(asidx == 0 || !kvm_enabled());
763 
764     if (!cpu->cpu_ases) {
765         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766         cpu->cpu_ases_count = cpu->num_ases;
767     }
768 
769     newas = &cpu->cpu_ases[asidx];
770     newas->cpu = cpu;
771     newas->as = as;
772     if (tcg_enabled()) {
773         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
774         newas->tcg_as_listener.commit = tcg_commit;
775         newas->tcg_as_listener.name = "tcg";
776         memory_listener_register(&newas->tcg_as_listener, as);
777     }
778 }
779 
cpu_address_space_destroy(CPUState * cpu,int asidx)780 void cpu_address_space_destroy(CPUState *cpu, int asidx)
781 {
782     CPUAddressSpace *cpuas;
783 
784     assert(cpu->cpu_ases);
785     assert(asidx >= 0 && asidx < cpu->num_ases);
786     /* KVM cannot currently support multiple address spaces. */
787     assert(asidx == 0 || !kvm_enabled());
788 
789     cpuas = &cpu->cpu_ases[asidx];
790     if (tcg_enabled()) {
791         memory_listener_unregister(&cpuas->tcg_as_listener);
792     }
793 
794     address_space_destroy(cpuas->as);
795     g_free_rcu(cpuas->as, rcu);
796 
797     if (asidx == 0) {
798         /* reset the convenience alias for address space 0 */
799         cpu->as = NULL;
800     }
801 
802     if (--cpu->cpu_ases_count == 0) {
803         g_free(cpu->cpu_ases);
804         cpu->cpu_ases = NULL;
805     }
806 }
807 
cpu_get_address_space(CPUState * cpu,int asidx)808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
809 {
810     /* Return the AddressSpace corresponding to the specified index */
811     return cpu->cpu_ases[asidx].as;
812 }
813 
814 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
816 {
817     RAMBlock *block;
818 
819     block = qatomic_rcu_read(&ram_list.mru_block);
820     if (block && addr - block->offset < block->max_length) {
821         return block;
822     }
823     RAMBLOCK_FOREACH(block) {
824         if (addr - block->offset < block->max_length) {
825             goto found;
826         }
827     }
828 
829     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
830     abort();
831 
832 found:
833     /* It is safe to write mru_block outside the BQL.  This
834      * is what happens:
835      *
836      *     mru_block = xxx
837      *     rcu_read_unlock()
838      *                                        xxx removed from list
839      *                  rcu_read_lock()
840      *                  read mru_block
841      *                                        mru_block = NULL;
842      *                                        call_rcu(reclaim_ramblock, xxx);
843      *                  rcu_read_unlock()
844      *
845      * qatomic_rcu_set is not needed here.  The block was already published
846      * when it was placed into the list.  Here we're just making an extra
847      * copy of the pointer.
848      */
849     ram_list.mru_block = block;
850     return block;
851 }
852 
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
854 {
855     CPUState *cpu;
856     ram_addr_t start1;
857     RAMBlock *block;
858     ram_addr_t end;
859 
860     assert(tcg_enabled());
861     end = TARGET_PAGE_ALIGN(start + length);
862     start &= TARGET_PAGE_MASK;
863 
864     RCU_READ_LOCK_GUARD();
865     block = qemu_get_ram_block(start);
866     assert(block == qemu_get_ram_block(end - 1));
867     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868     CPU_FOREACH(cpu) {
869         tlb_reset_dirty(cpu, start1, length);
870     }
871 }
872 
873 /* Note: start and end must be within the same ram block.  */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
875                                               ram_addr_t length,
876                                               unsigned client)
877 {
878     DirtyMemoryBlocks *blocks;
879     unsigned long end, page, start_page;
880     bool dirty = false;
881     RAMBlock *ramblock;
882     uint64_t mr_offset, mr_size;
883 
884     if (length == 0) {
885         return false;
886     }
887 
888     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
889     start_page = start >> TARGET_PAGE_BITS;
890     page = start_page;
891 
892     WITH_RCU_READ_LOCK_GUARD() {
893         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
894         ramblock = qemu_get_ram_block(start);
895         /* Range sanity check on the ramblock */
896         assert(start >= ramblock->offset &&
897                start + length <= ramblock->offset + ramblock->used_length);
898 
899         while (page < end) {
900             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
901             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
902             unsigned long num = MIN(end - page,
903                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
904 
905             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
906                                                   offset, num);
907             page += num;
908         }
909 
910         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
911         mr_size = (end - start_page) << TARGET_PAGE_BITS;
912         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
913     }
914 
915     if (dirty) {
916         cpu_physical_memory_dirty_bits_cleared(start, length);
917     }
918 
919     return dirty;
920 }
921 
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
923     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
924 {
925     DirtyMemoryBlocks *blocks;
926     ram_addr_t start, first, last;
927     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
928     DirtyBitmapSnapshot *snap;
929     unsigned long page, end, dest;
930 
931     start = memory_region_get_ram_addr(mr);
932     /* We know we're only called for RAM MemoryRegions */
933     assert(start != RAM_ADDR_INVALID);
934     start += offset;
935 
936     first = QEMU_ALIGN_DOWN(start, align);
937     last  = QEMU_ALIGN_UP(start + length, align);
938 
939     snap = g_malloc0(sizeof(*snap) +
940                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
941     snap->start = first;
942     snap->end   = last;
943 
944     page = first >> TARGET_PAGE_BITS;
945     end  = last  >> TARGET_PAGE_BITS;
946     dest = 0;
947 
948     WITH_RCU_READ_LOCK_GUARD() {
949         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
950 
951         while (page < end) {
952             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
953             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
954             unsigned long num = MIN(end - page,
955                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
956 
957             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
958             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
959             ofs >>= BITS_PER_LEVEL;
960 
961             bitmap_copy_and_clear_atomic(snap->dirty + dest,
962                                          blocks->blocks[idx] + ofs,
963                                          num);
964             page += num;
965             dest += num >> BITS_PER_LEVEL;
966         }
967     }
968 
969     cpu_physical_memory_dirty_bits_cleared(start, length);
970 
971     memory_region_clear_dirty_bitmap(mr, offset, length);
972 
973     return snap;
974 }
975 
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
977                                             ram_addr_t start,
978                                             ram_addr_t length)
979 {
980     unsigned long page, end;
981 
982     assert(start >= snap->start);
983     assert(start + length <= snap->end);
984 
985     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
986     page = (start - snap->start) >> TARGET_PAGE_BITS;
987 
988     while (page < end) {
989         if (test_bit(page, snap->dirty)) {
990             return true;
991         }
992         page++;
993     }
994     return false;
995 }
996 
997 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)998 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
999                                        MemoryRegionSection *section)
1000 {
1001     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1002     return section - d->map.sections;
1003 }
1004 
1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1006                             uint16_t section);
1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1008 
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1009 static uint16_t phys_section_add(PhysPageMap *map,
1010                                  MemoryRegionSection *section)
1011 {
1012     /* The physical section number is ORed with a page-aligned
1013      * pointer to produce the iotlb entries.  Thus it should
1014      * never overflow into the page-aligned value.
1015      */
1016     assert(map->sections_nb < TARGET_PAGE_SIZE);
1017 
1018     if (map->sections_nb == map->sections_nb_alloc) {
1019         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1020         map->sections = g_renew(MemoryRegionSection, map->sections,
1021                                 map->sections_nb_alloc);
1022     }
1023     map->sections[map->sections_nb] = *section;
1024     memory_region_ref(section->mr);
1025     return map->sections_nb++;
1026 }
1027 
phys_section_destroy(MemoryRegion * mr)1028 static void phys_section_destroy(MemoryRegion *mr)
1029 {
1030     bool have_sub_page = mr->subpage;
1031 
1032     memory_region_unref(mr);
1033 
1034     if (have_sub_page) {
1035         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1036         object_unref(OBJECT(&subpage->iomem));
1037         g_free(subpage);
1038     }
1039 }
1040 
phys_sections_free(PhysPageMap * map)1041 static void phys_sections_free(PhysPageMap *map)
1042 {
1043     while (map->sections_nb > 0) {
1044         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1045         phys_section_destroy(section->mr);
1046     }
1047     g_free(map->sections);
1048     g_free(map->nodes);
1049 }
1050 
register_subpage(FlatView * fv,MemoryRegionSection * section)1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1052 {
1053     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1054     subpage_t *subpage;
1055     hwaddr base = section->offset_within_address_space
1056         & TARGET_PAGE_MASK;
1057     MemoryRegionSection *existing = phys_page_find(d, base);
1058     MemoryRegionSection subsection = {
1059         .offset_within_address_space = base,
1060         .size = int128_make64(TARGET_PAGE_SIZE),
1061     };
1062     hwaddr start, end;
1063 
1064     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1065 
1066     if (!(existing->mr->subpage)) {
1067         subpage = subpage_init(fv, base);
1068         subsection.fv = fv;
1069         subsection.mr = &subpage->iomem;
1070         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1071                       phys_section_add(&d->map, &subsection));
1072     } else {
1073         subpage = container_of(existing->mr, subpage_t, iomem);
1074     }
1075     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1076     end = start + int128_get64(section->size) - 1;
1077     subpage_register(subpage, start, end,
1078                      phys_section_add(&d->map, section));
1079 }
1080 
1081 
register_multipage(FlatView * fv,MemoryRegionSection * section)1082 static void register_multipage(FlatView *fv,
1083                                MemoryRegionSection *section)
1084 {
1085     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1086     hwaddr start_addr = section->offset_within_address_space;
1087     uint16_t section_index = phys_section_add(&d->map, section);
1088     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1089                                                     TARGET_PAGE_BITS));
1090 
1091     assert(num_pages);
1092     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1093 }
1094 
1095 /*
1096  * The range in *section* may look like this:
1097  *
1098  *      |s|PPPPPPP|s|
1099  *
1100  * where s stands for subpage and P for page.
1101  */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1103 {
1104     MemoryRegionSection remain = *section;
1105     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1106 
1107     /* register first subpage */
1108     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1109         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1110                         - remain.offset_within_address_space;
1111 
1112         MemoryRegionSection now = remain;
1113         now.size = int128_min(int128_make64(left), now.size);
1114         register_subpage(fv, &now);
1115         if (int128_eq(remain.size, now.size)) {
1116             return;
1117         }
1118         remain.size = int128_sub(remain.size, now.size);
1119         remain.offset_within_address_space += int128_get64(now.size);
1120         remain.offset_within_region += int128_get64(now.size);
1121     }
1122 
1123     /* register whole pages */
1124     if (int128_ge(remain.size, page_size)) {
1125         MemoryRegionSection now = remain;
1126         now.size = int128_and(now.size, int128_neg(page_size));
1127         register_multipage(fv, &now);
1128         if (int128_eq(remain.size, now.size)) {
1129             return;
1130         }
1131         remain.size = int128_sub(remain.size, now.size);
1132         remain.offset_within_address_space += int128_get64(now.size);
1133         remain.offset_within_region += int128_get64(now.size);
1134     }
1135 
1136     /* register last subpage */
1137     register_subpage(fv, &remain);
1138 }
1139 
qemu_flush_coalesced_mmio_buffer(void)1140 void qemu_flush_coalesced_mmio_buffer(void)
1141 {
1142     if (kvm_enabled())
1143         kvm_flush_coalesced_mmio_buffer();
1144 }
1145 
qemu_mutex_lock_ramlist(void)1146 void qemu_mutex_lock_ramlist(void)
1147 {
1148     qemu_mutex_lock(&ram_list.mutex);
1149 }
1150 
qemu_mutex_unlock_ramlist(void)1151 void qemu_mutex_unlock_ramlist(void)
1152 {
1153     qemu_mutex_unlock(&ram_list.mutex);
1154 }
1155 
ram_block_format(void)1156 GString *ram_block_format(void)
1157 {
1158     RAMBlock *block;
1159     char *psize;
1160     GString *buf = g_string_new("");
1161 
1162     RCU_READ_LOCK_GUARD();
1163     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1164                            "Block Name", "PSize", "Offset", "Used", "Total",
1165                            "HVA", "RO");
1166 
1167     RAMBLOCK_FOREACH(block) {
1168         psize = size_to_str(block->page_size);
1169         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1170                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1171                                block->idstr, psize,
1172                                (uint64_t)block->offset,
1173                                (uint64_t)block->used_length,
1174                                (uint64_t)block->max_length,
1175                                (uint64_t)(uintptr_t)block->host,
1176                                block->mr->readonly ? "ro" : "rw");
1177 
1178         g_free(psize);
1179     }
1180 
1181     return buf;
1182 }
1183 
find_min_backend_pagesize(Object * obj,void * opaque)1184 static int find_min_backend_pagesize(Object *obj, void *opaque)
1185 {
1186     long *hpsize_min = opaque;
1187 
1188     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1189         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1190         long hpsize = host_memory_backend_pagesize(backend);
1191 
1192         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1193             *hpsize_min = hpsize;
1194         }
1195     }
1196 
1197     return 0;
1198 }
1199 
find_max_backend_pagesize(Object * obj,void * opaque)1200 static int find_max_backend_pagesize(Object *obj, void *opaque)
1201 {
1202     long *hpsize_max = opaque;
1203 
1204     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1205         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1206         long hpsize = host_memory_backend_pagesize(backend);
1207 
1208         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1209             *hpsize_max = hpsize;
1210         }
1211     }
1212 
1213     return 0;
1214 }
1215 
1216 /*
1217  * TODO: We assume right now that all mapped host memory backends are
1218  * used as RAM, however some might be used for different purposes.
1219  */
qemu_minrampagesize(void)1220 long qemu_minrampagesize(void)
1221 {
1222     long hpsize = LONG_MAX;
1223     Object *memdev_root = object_resolve_path("/objects", NULL);
1224 
1225     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1226     return hpsize;
1227 }
1228 
qemu_maxrampagesize(void)1229 long qemu_maxrampagesize(void)
1230 {
1231     long pagesize = 0;
1232     Object *memdev_root = object_resolve_path("/objects", NULL);
1233 
1234     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1235     return pagesize;
1236 }
1237 
1238 #ifdef CONFIG_POSIX
get_file_size(int fd)1239 static int64_t get_file_size(int fd)
1240 {
1241     int64_t size;
1242 #if defined(__linux__)
1243     struct stat st;
1244 
1245     if (fstat(fd, &st) < 0) {
1246         return -errno;
1247     }
1248 
1249     /* Special handling for devdax character devices */
1250     if (S_ISCHR(st.st_mode)) {
1251         g_autofree char *subsystem_path = NULL;
1252         g_autofree char *subsystem = NULL;
1253 
1254         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1255                                          major(st.st_rdev), minor(st.st_rdev));
1256         subsystem = g_file_read_link(subsystem_path, NULL);
1257 
1258         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1259             g_autofree char *size_path = NULL;
1260             g_autofree char *size_str = NULL;
1261 
1262             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1263                                     major(st.st_rdev), minor(st.st_rdev));
1264 
1265             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1266                 return g_ascii_strtoll(size_str, NULL, 0);
1267             }
1268         }
1269     }
1270 #endif /* defined(__linux__) */
1271 
1272     /* st.st_size may be zero for special files yet lseek(2) works */
1273     size = lseek(fd, 0, SEEK_END);
1274     if (size < 0) {
1275         return -errno;
1276     }
1277     return size;
1278 }
1279 
get_file_align(int fd)1280 static int64_t get_file_align(int fd)
1281 {
1282     int64_t align = -1;
1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1284     struct stat st;
1285 
1286     if (fstat(fd, &st) < 0) {
1287         return -errno;
1288     }
1289 
1290     /* Special handling for devdax character devices */
1291     if (S_ISCHR(st.st_mode)) {
1292         g_autofree char *path = NULL;
1293         g_autofree char *rpath = NULL;
1294         struct daxctl_ctx *ctx;
1295         struct daxctl_region *region;
1296         int rc = 0;
1297 
1298         path = g_strdup_printf("/sys/dev/char/%d:%d",
1299                     major(st.st_rdev), minor(st.st_rdev));
1300         rpath = realpath(path, NULL);
1301         if (!rpath) {
1302             return -errno;
1303         }
1304 
1305         rc = daxctl_new(&ctx);
1306         if (rc) {
1307             return -1;
1308         }
1309 
1310         daxctl_region_foreach(ctx, region) {
1311             if (strstr(rpath, daxctl_region_get_path(region))) {
1312                 align = daxctl_region_get_align(region);
1313                 break;
1314             }
1315         }
1316         daxctl_unref(ctx);
1317     }
1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1319 
1320     return align;
1321 }
1322 
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1323 static int file_ram_open(const char *path,
1324                          const char *region_name,
1325                          bool readonly,
1326                          bool *created)
1327 {
1328     char *filename;
1329     char *sanitized_name;
1330     char *c;
1331     int fd = -1;
1332 
1333     *created = false;
1334     for (;;) {
1335         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1336         if (fd >= 0) {
1337             /*
1338              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1339              * opened a directory and fail similarly to how we fail ENOENT
1340              * in readonly mode. Note that mkstemp() would imply O_RDWR.
1341              */
1342             if (readonly) {
1343                 struct stat file_stat;
1344 
1345                 if (fstat(fd, &file_stat)) {
1346                     close(fd);
1347                     if (errno == EINTR) {
1348                         continue;
1349                     }
1350                     return -errno;
1351                 } else if (S_ISDIR(file_stat.st_mode)) {
1352                     close(fd);
1353                     return -EISDIR;
1354                 }
1355             }
1356             /* @path names an existing file, use it */
1357             break;
1358         }
1359         if (errno == ENOENT) {
1360             if (readonly) {
1361                 /* Refuse to create new, readonly files. */
1362                 return -ENOENT;
1363             }
1364             /* @path names a file that doesn't exist, create it */
1365             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1366             if (fd >= 0) {
1367                 *created = true;
1368                 break;
1369             }
1370         } else if (errno == EISDIR) {
1371             /* @path names a directory, create a file there */
1372             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1373             sanitized_name = g_strdup(region_name);
1374             for (c = sanitized_name; *c != '\0'; c++) {
1375                 if (*c == '/') {
1376                     *c = '_';
1377                 }
1378             }
1379 
1380             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1381                                        sanitized_name);
1382             g_free(sanitized_name);
1383 
1384             fd = mkstemp(filename);
1385             if (fd >= 0) {
1386                 unlink(filename);
1387                 g_free(filename);
1388                 break;
1389             }
1390             g_free(filename);
1391         }
1392         if (errno != EEXIST && errno != EINTR) {
1393             return -errno;
1394         }
1395         /*
1396          * Try again on EINTR and EEXIST.  The latter happens when
1397          * something else creates the file between our two open().
1398          */
1399     }
1400 
1401     return fd;
1402 }
1403 
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1404 static void *file_ram_alloc(RAMBlock *block,
1405                             ram_addr_t memory,
1406                             int fd,
1407                             bool truncate,
1408                             off_t offset,
1409                             Error **errp)
1410 {
1411     uint32_t qemu_map_flags;
1412     void *area;
1413 
1414     block->page_size = qemu_fd_getpagesize(fd);
1415     if (block->mr->align % block->page_size) {
1416         error_setg(errp, "alignment 0x%" PRIx64
1417                    " must be multiples of page size 0x%zx",
1418                    block->mr->align, block->page_size);
1419         return NULL;
1420     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1421         error_setg(errp, "alignment 0x%" PRIx64
1422                    " must be a power of two", block->mr->align);
1423         return NULL;
1424     } else if (offset % block->page_size) {
1425         error_setg(errp, "offset 0x%" PRIx64
1426                    " must be multiples of page size 0x%zx",
1427                    offset, block->page_size);
1428         return NULL;
1429     }
1430     block->mr->align = MAX(block->page_size, block->mr->align);
1431 #if defined(__s390x__)
1432     if (kvm_enabled()) {
1433         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1434     }
1435 #endif
1436 
1437     if (memory < block->page_size) {
1438         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1439                    "or larger than page size 0x%zx",
1440                    memory, block->page_size);
1441         return NULL;
1442     }
1443 
1444     memory = ROUND_UP(memory, block->page_size);
1445 
1446     /*
1447      * ftruncate is not supported by hugetlbfs in older
1448      * hosts, so don't bother bailing out on errors.
1449      * If anything goes wrong with it under other filesystems,
1450      * mmap will fail.
1451      *
1452      * Do not truncate the non-empty backend file to avoid corrupting
1453      * the existing data in the file. Disabling shrinking is not
1454      * enough. For example, the current vNVDIMM implementation stores
1455      * the guest NVDIMM labels at the end of the backend file. If the
1456      * backend file is later extended, QEMU will not be able to find
1457      * those labels. Therefore, extending the non-empty backend file
1458      * is disabled as well.
1459      */
1460     if (truncate && ftruncate(fd, offset + memory)) {
1461         perror("ftruncate");
1462     }
1463 
1464     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1465     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1466     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1467     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1468     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1469     if (area == MAP_FAILED) {
1470         error_setg_errno(errp, errno,
1471                          "unable to map backing store for guest RAM");
1472         return NULL;
1473     }
1474 
1475     block->fd = fd;
1476     block->fd_offset = offset;
1477     return area;
1478 }
1479 #endif
1480 
1481 /* Allocate space within the ram_addr_t space that governs the
1482  * dirty bitmaps.
1483  * Called with the ramlist lock held.
1484  */
find_ram_offset(ram_addr_t size)1485 static ram_addr_t find_ram_offset(ram_addr_t size)
1486 {
1487     RAMBlock *block, *next_block;
1488     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1489 
1490     assert(size != 0); /* it would hand out same offset multiple times */
1491 
1492     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1493         return 0;
1494     }
1495 
1496     RAMBLOCK_FOREACH(block) {
1497         ram_addr_t candidate, next = RAM_ADDR_MAX;
1498 
1499         /* Align blocks to start on a 'long' in the bitmap
1500          * which makes the bitmap sync'ing take the fast path.
1501          */
1502         candidate = block->offset + block->max_length;
1503         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1504 
1505         /* Search for the closest following block
1506          * and find the gap.
1507          */
1508         RAMBLOCK_FOREACH(next_block) {
1509             if (next_block->offset >= candidate) {
1510                 next = MIN(next, next_block->offset);
1511             }
1512         }
1513 
1514         /* If it fits remember our place and remember the size
1515          * of gap, but keep going so that we might find a smaller
1516          * gap to fill so avoiding fragmentation.
1517          */
1518         if (next - candidate >= size && next - candidate < mingap) {
1519             offset = candidate;
1520             mingap = next - candidate;
1521         }
1522 
1523         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1524     }
1525 
1526     if (offset == RAM_ADDR_MAX) {
1527         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1528                 (uint64_t)size);
1529         abort();
1530     }
1531 
1532     trace_find_ram_offset(size, offset);
1533 
1534     return offset;
1535 }
1536 
qemu_ram_setup_dump(void * addr,ram_addr_t size)1537 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1538 {
1539     int ret;
1540 
1541     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1542     if (!machine_dump_guest_core(current_machine)) {
1543         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1544         if (ret) {
1545             perror("qemu_madvise");
1546             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1547                             "but dump-guest-core=off specified\n");
1548         }
1549     }
1550 }
1551 
qemu_ram_get_idstr(RAMBlock * rb)1552 const char *qemu_ram_get_idstr(RAMBlock *rb)
1553 {
1554     return rb->idstr;
1555 }
1556 
qemu_ram_get_host_addr(RAMBlock * rb)1557 void *qemu_ram_get_host_addr(RAMBlock *rb)
1558 {
1559     return rb->host;
1560 }
1561 
qemu_ram_get_offset(RAMBlock * rb)1562 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1563 {
1564     return rb->offset;
1565 }
1566 
qemu_ram_get_used_length(RAMBlock * rb)1567 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1568 {
1569     return rb->used_length;
1570 }
1571 
qemu_ram_get_max_length(RAMBlock * rb)1572 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1573 {
1574     return rb->max_length;
1575 }
1576 
qemu_ram_is_shared(RAMBlock * rb)1577 bool qemu_ram_is_shared(RAMBlock *rb)
1578 {
1579     return rb->flags & RAM_SHARED;
1580 }
1581 
qemu_ram_is_noreserve(RAMBlock * rb)1582 bool qemu_ram_is_noreserve(RAMBlock *rb)
1583 {
1584     return rb->flags & RAM_NORESERVE;
1585 }
1586 
1587 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1588 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1589 {
1590     return rb->flags & RAM_UF_ZEROPAGE;
1591 }
1592 
qemu_ram_set_uf_zeroable(RAMBlock * rb)1593 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1594 {
1595     rb->flags |= RAM_UF_ZEROPAGE;
1596 }
1597 
qemu_ram_is_migratable(RAMBlock * rb)1598 bool qemu_ram_is_migratable(RAMBlock *rb)
1599 {
1600     return rb->flags & RAM_MIGRATABLE;
1601 }
1602 
qemu_ram_set_migratable(RAMBlock * rb)1603 void qemu_ram_set_migratable(RAMBlock *rb)
1604 {
1605     rb->flags |= RAM_MIGRATABLE;
1606 }
1607 
qemu_ram_unset_migratable(RAMBlock * rb)1608 void qemu_ram_unset_migratable(RAMBlock *rb)
1609 {
1610     rb->flags &= ~RAM_MIGRATABLE;
1611 }
1612 
qemu_ram_is_named_file(RAMBlock * rb)1613 bool qemu_ram_is_named_file(RAMBlock *rb)
1614 {
1615     return rb->flags & RAM_NAMED_FILE;
1616 }
1617 
qemu_ram_get_fd(RAMBlock * rb)1618 int qemu_ram_get_fd(RAMBlock *rb)
1619 {
1620     return rb->fd;
1621 }
1622 
1623 /* Called with the BQL held.  */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1624 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1625 {
1626     RAMBlock *block;
1627 
1628     assert(new_block);
1629     assert(!new_block->idstr[0]);
1630 
1631     if (dev) {
1632         char *id = qdev_get_dev_path(dev);
1633         if (id) {
1634             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1635             g_free(id);
1636         }
1637     }
1638     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1639 
1640     RCU_READ_LOCK_GUARD();
1641     RAMBLOCK_FOREACH(block) {
1642         if (block != new_block &&
1643             !strcmp(block->idstr, new_block->idstr)) {
1644             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1645                     new_block->idstr);
1646             abort();
1647         }
1648     }
1649 }
1650 
1651 /* Called with the BQL held.  */
qemu_ram_unset_idstr(RAMBlock * block)1652 void qemu_ram_unset_idstr(RAMBlock *block)
1653 {
1654     /* FIXME: arch_init.c assumes that this is not called throughout
1655      * migration.  Ignore the problem since hot-unplug during migration
1656      * does not work anyway.
1657      */
1658     if (block) {
1659         memset(block->idstr, 0, sizeof(block->idstr));
1660     }
1661 }
1662 
qemu_ram_pagesize(RAMBlock * rb)1663 size_t qemu_ram_pagesize(RAMBlock *rb)
1664 {
1665     return rb->page_size;
1666 }
1667 
1668 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1669 size_t qemu_ram_pagesize_largest(void)
1670 {
1671     RAMBlock *block;
1672     size_t largest = 0;
1673 
1674     RAMBLOCK_FOREACH(block) {
1675         largest = MAX(largest, qemu_ram_pagesize(block));
1676     }
1677 
1678     return largest;
1679 }
1680 
memory_try_enable_merging(void * addr,size_t len)1681 static int memory_try_enable_merging(void *addr, size_t len)
1682 {
1683     if (!machine_mem_merge(current_machine)) {
1684         /* disabled by the user */
1685         return 0;
1686     }
1687 
1688     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1689 }
1690 
1691 /*
1692  * Resizing RAM while migrating can result in the migration being canceled.
1693  * Care has to be taken if the guest might have already detected the memory.
1694  *
1695  * As memory core doesn't know how is memory accessed, it is up to
1696  * resize callback to update device state and/or add assertions to detect
1697  * misuse, if necessary.
1698  */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1699 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1700 {
1701     const ram_addr_t oldsize = block->used_length;
1702     const ram_addr_t unaligned_size = newsize;
1703 
1704     assert(block);
1705 
1706     newsize = TARGET_PAGE_ALIGN(newsize);
1707     newsize = REAL_HOST_PAGE_ALIGN(newsize);
1708 
1709     if (block->used_length == newsize) {
1710         /*
1711          * We don't have to resize the ram block (which only knows aligned
1712          * sizes), however, we have to notify if the unaligned size changed.
1713          */
1714         if (unaligned_size != memory_region_size(block->mr)) {
1715             memory_region_set_size(block->mr, unaligned_size);
1716             if (block->resized) {
1717                 block->resized(block->idstr, unaligned_size, block->host);
1718             }
1719         }
1720         return 0;
1721     }
1722 
1723     if (!(block->flags & RAM_RESIZEABLE)) {
1724         error_setg_errno(errp, EINVAL,
1725                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1726                          " != 0x" RAM_ADDR_FMT, block->idstr,
1727                          newsize, block->used_length);
1728         return -EINVAL;
1729     }
1730 
1731     if (block->max_length < newsize) {
1732         error_setg_errno(errp, EINVAL,
1733                          "Size too large: %s: 0x" RAM_ADDR_FMT
1734                          " > 0x" RAM_ADDR_FMT, block->idstr,
1735                          newsize, block->max_length);
1736         return -EINVAL;
1737     }
1738 
1739     /* Notify before modifying the ram block and touching the bitmaps. */
1740     if (block->host) {
1741         ram_block_notify_resize(block->host, oldsize, newsize);
1742     }
1743 
1744     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1745     block->used_length = newsize;
1746     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1747                                         DIRTY_CLIENTS_ALL);
1748     memory_region_set_size(block->mr, unaligned_size);
1749     if (block->resized) {
1750         block->resized(block->idstr, unaligned_size, block->host);
1751     }
1752     return 0;
1753 }
1754 
1755 /*
1756  * Trigger sync on the given ram block for range [start, start + length]
1757  * with the backing store if one is available.
1758  * Otherwise no-op.
1759  * @Note: this is supposed to be a synchronous op.
1760  */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1761 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1762 {
1763     /* The requested range should fit in within the block range */
1764     g_assert((start + length) <= block->used_length);
1765 
1766 #ifdef CONFIG_LIBPMEM
1767     /* The lack of support for pmem should not block the sync */
1768     if (ramblock_is_pmem(block)) {
1769         void *addr = ramblock_ptr(block, start);
1770         pmem_persist(addr, length);
1771         return;
1772     }
1773 #endif
1774     if (block->fd >= 0) {
1775         /**
1776          * Case there is no support for PMEM or the memory has not been
1777          * specified as persistent (or is not one) - use the msync.
1778          * Less optimal but still achieves the same goal
1779          */
1780         void *addr = ramblock_ptr(block, start);
1781         if (qemu_msync(addr, length, block->fd)) {
1782             warn_report("%s: failed to sync memory range: start: "
1783                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1784                     __func__, start, length);
1785         }
1786     }
1787 }
1788 
1789 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1790 static void dirty_memory_extend(ram_addr_t new_ram_size)
1791 {
1792     unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1793     unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1794                                                DIRTY_MEMORY_BLOCK_SIZE);
1795     int i;
1796 
1797     /* Only need to extend if block count increased */
1798     if (new_num_blocks <= old_num_blocks) {
1799         return;
1800     }
1801 
1802     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1803         DirtyMemoryBlocks *old_blocks;
1804         DirtyMemoryBlocks *new_blocks;
1805         int j;
1806 
1807         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1808         new_blocks = g_malloc(sizeof(*new_blocks) +
1809                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1810 
1811         if (old_num_blocks) {
1812             memcpy(new_blocks->blocks, old_blocks->blocks,
1813                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1814         }
1815 
1816         for (j = old_num_blocks; j < new_num_blocks; j++) {
1817             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1818         }
1819 
1820         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1821 
1822         if (old_blocks) {
1823             g_free_rcu(old_blocks, rcu);
1824         }
1825     }
1826 
1827     ram_list.num_dirty_blocks = new_num_blocks;
1828 }
1829 
ram_block_add(RAMBlock * new_block,Error ** errp)1830 static void ram_block_add(RAMBlock *new_block, Error **errp)
1831 {
1832     const bool noreserve = qemu_ram_is_noreserve(new_block);
1833     const bool shared = qemu_ram_is_shared(new_block);
1834     RAMBlock *block;
1835     RAMBlock *last_block = NULL;
1836     bool free_on_error = false;
1837     ram_addr_t ram_size;
1838     Error *err = NULL;
1839 
1840     qemu_mutex_lock_ramlist();
1841     new_block->offset = find_ram_offset(new_block->max_length);
1842 
1843     if (!new_block->host) {
1844         if (xen_enabled()) {
1845             xen_ram_alloc(new_block->offset, new_block->max_length,
1846                           new_block->mr, &err);
1847             if (err) {
1848                 error_propagate(errp, err);
1849                 qemu_mutex_unlock_ramlist();
1850                 return;
1851             }
1852         } else {
1853             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1854                                                   &new_block->mr->align,
1855                                                   shared, noreserve);
1856             if (!new_block->host) {
1857                 error_setg_errno(errp, errno,
1858                                  "cannot set up guest memory '%s'",
1859                                  memory_region_name(new_block->mr));
1860                 qemu_mutex_unlock_ramlist();
1861                 return;
1862             }
1863             memory_try_enable_merging(new_block->host, new_block->max_length);
1864             free_on_error = true;
1865         }
1866     }
1867 
1868     if (new_block->flags & RAM_GUEST_MEMFD) {
1869         int ret;
1870 
1871         assert(kvm_enabled());
1872         assert(new_block->guest_memfd < 0);
1873 
1874         ret = ram_block_discard_require(true);
1875         if (ret < 0) {
1876             error_setg_errno(errp, -ret,
1877                              "cannot set up private guest memory: discard currently blocked");
1878             error_append_hint(errp, "Are you using assigned devices?\n");
1879             goto out_free;
1880         }
1881 
1882         new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1883                                                         0, errp);
1884         if (new_block->guest_memfd < 0) {
1885             qemu_mutex_unlock_ramlist();
1886             goto out_free;
1887         }
1888     }
1889 
1890     ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1891     dirty_memory_extend(ram_size);
1892     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1893      * QLIST (which has an RCU-friendly variant) does not have insertion at
1894      * tail, so save the last element in last_block.
1895      */
1896     RAMBLOCK_FOREACH(block) {
1897         last_block = block;
1898         if (block->max_length < new_block->max_length) {
1899             break;
1900         }
1901     }
1902     if (block) {
1903         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1904     } else if (last_block) {
1905         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1906     } else { /* list is empty */
1907         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1908     }
1909     ram_list.mru_block = NULL;
1910 
1911     /* Write list before version */
1912     smp_wmb();
1913     ram_list.version++;
1914     qemu_mutex_unlock_ramlist();
1915 
1916     cpu_physical_memory_set_dirty_range(new_block->offset,
1917                                         new_block->used_length,
1918                                         DIRTY_CLIENTS_ALL);
1919 
1920     if (new_block->host) {
1921         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1922         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1923         /*
1924          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1925          * Configure it unless the machine is a qtest server, in which case
1926          * KVM is not used and it may be forked (eg for fuzzing purposes).
1927          */
1928         if (!qtest_enabled()) {
1929             qemu_madvise(new_block->host, new_block->max_length,
1930                          QEMU_MADV_DONTFORK);
1931         }
1932         ram_block_notify_add(new_block->host, new_block->used_length,
1933                              new_block->max_length);
1934     }
1935     return;
1936 
1937 out_free:
1938     if (free_on_error) {
1939         qemu_anon_ram_free(new_block->host, new_block->max_length);
1940         new_block->host = NULL;
1941     }
1942 }
1943 
1944 #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,Error ** errp)1945 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1946                                  uint32_t ram_flags, int fd, off_t offset,
1947                                  Error **errp)
1948 {
1949     RAMBlock *new_block;
1950     Error *local_err = NULL;
1951     int64_t file_size, file_align;
1952 
1953     /* Just support these ram flags by now. */
1954     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1955                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1956                           RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1957 
1958     if (xen_enabled()) {
1959         error_setg(errp, "-mem-path not supported with Xen");
1960         return NULL;
1961     }
1962 
1963     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1964         error_setg(errp,
1965                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1966         return NULL;
1967     }
1968 
1969     size = TARGET_PAGE_ALIGN(size);
1970     size = REAL_HOST_PAGE_ALIGN(size);
1971 
1972     file_size = get_file_size(fd);
1973     if (file_size && file_size < offset + size) {
1974         error_setg(errp, "%s backing store size 0x%" PRIx64
1975                    " is too small for 'size' option 0x" RAM_ADDR_FMT
1976                    " plus 'offset' option 0x%" PRIx64,
1977                    memory_region_name(mr), file_size, size,
1978                    (uint64_t)offset);
1979         return NULL;
1980     }
1981 
1982     file_align = get_file_align(fd);
1983     if (file_align > 0 && file_align > mr->align) {
1984         error_setg(errp, "backing store align 0x%" PRIx64
1985                    " is larger than 'align' option 0x%" PRIx64,
1986                    file_align, mr->align);
1987         return NULL;
1988     }
1989 
1990     new_block = g_malloc0(sizeof(*new_block));
1991     new_block->mr = mr;
1992     new_block->used_length = size;
1993     new_block->max_length = size;
1994     new_block->flags = ram_flags;
1995     new_block->guest_memfd = -1;
1996     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1997                                      errp);
1998     if (!new_block->host) {
1999         g_free(new_block);
2000         return NULL;
2001     }
2002 
2003     ram_block_add(new_block, &local_err);
2004     if (local_err) {
2005         g_free(new_block);
2006         error_propagate(errp, local_err);
2007         return NULL;
2008     }
2009     return new_block;
2010 
2011 }
2012 
2013 
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2014 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2015                                    uint32_t ram_flags, const char *mem_path,
2016                                    off_t offset, Error **errp)
2017 {
2018     int fd;
2019     bool created;
2020     RAMBlock *block;
2021 
2022     fd = file_ram_open(mem_path, memory_region_name(mr),
2023                        !!(ram_flags & RAM_READONLY_FD), &created);
2024     if (fd < 0) {
2025         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2026                          mem_path);
2027         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2028             fd == -EACCES) {
2029             /*
2030              * If we can open the file R/O (note: will never create a new file)
2031              * and we are dealing with a private mapping, there are still ways
2032              * to consume such files and get RAM instead of ROM.
2033              */
2034             fd = file_ram_open(mem_path, memory_region_name(mr), true,
2035                                &created);
2036             if (fd < 0) {
2037                 return NULL;
2038             }
2039             assert(!created);
2040             close(fd);
2041             error_append_hint(errp, "Consider opening the backing store"
2042                 " read-only but still creating writable RAM using"
2043                 " '-object memory-backend-file,readonly=on,rom=off...'"
2044                 " (see \"VM templating\" documentation)\n");
2045         }
2046         return NULL;
2047     }
2048 
2049     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2050     if (!block) {
2051         if (created) {
2052             unlink(mem_path);
2053         }
2054         close(fd);
2055         return NULL;
2056     }
2057 
2058     return block;
2059 }
2060 #endif
2061 
2062 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,void (* resized)(const char *,uint64_t length,void * host),void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2063 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2064                                   void (*resized)(const char*,
2065                                                   uint64_t length,
2066                                                   void *host),
2067                                   void *host, uint32_t ram_flags,
2068                                   MemoryRegion *mr, Error **errp)
2069 {
2070     RAMBlock *new_block;
2071     Error *local_err = NULL;
2072     int align;
2073 
2074     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2075                           RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2076     assert(!host ^ (ram_flags & RAM_PREALLOC));
2077 
2078     align = qemu_real_host_page_size();
2079     align = MAX(align, TARGET_PAGE_SIZE);
2080     size = ROUND_UP(size, align);
2081     max_size = ROUND_UP(max_size, align);
2082 
2083     new_block = g_malloc0(sizeof(*new_block));
2084     new_block->mr = mr;
2085     new_block->resized = resized;
2086     new_block->used_length = size;
2087     new_block->max_length = max_size;
2088     assert(max_size >= size);
2089     new_block->fd = -1;
2090     new_block->guest_memfd = -1;
2091     new_block->page_size = qemu_real_host_page_size();
2092     new_block->host = host;
2093     new_block->flags = ram_flags;
2094     ram_block_add(new_block, &local_err);
2095     if (local_err) {
2096         g_free(new_block);
2097         error_propagate(errp, local_err);
2098         return NULL;
2099     }
2100     return new_block;
2101 }
2102 
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2103 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2104                                    MemoryRegion *mr, Error **errp)
2105 {
2106     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2107                                    errp);
2108 }
2109 
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2110 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2111                          MemoryRegion *mr, Error **errp)
2112 {
2113     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2114     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2115 }
2116 
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,void (* resized)(const char *,uint64_t length,void * host),MemoryRegion * mr,Error ** errp)2117 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2118                                      void (*resized)(const char*,
2119                                                      uint64_t length,
2120                                                      void *host),
2121                                      MemoryRegion *mr, Error **errp)
2122 {
2123     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2124                                    RAM_RESIZEABLE, mr, errp);
2125 }
2126 
reclaim_ramblock(RAMBlock * block)2127 static void reclaim_ramblock(RAMBlock *block)
2128 {
2129     if (block->flags & RAM_PREALLOC) {
2130         ;
2131     } else if (xen_enabled()) {
2132         xen_invalidate_map_cache_entry(block->host);
2133 #ifndef _WIN32
2134     } else if (block->fd >= 0) {
2135         qemu_ram_munmap(block->fd, block->host, block->max_length);
2136         close(block->fd);
2137 #endif
2138     } else {
2139         qemu_anon_ram_free(block->host, block->max_length);
2140     }
2141 
2142     if (block->guest_memfd >= 0) {
2143         close(block->guest_memfd);
2144         ram_block_discard_require(false);
2145     }
2146 
2147     g_free(block);
2148 }
2149 
qemu_ram_free(RAMBlock * block)2150 void qemu_ram_free(RAMBlock *block)
2151 {
2152     if (!block) {
2153         return;
2154     }
2155 
2156     if (block->host) {
2157         ram_block_notify_remove(block->host, block->used_length,
2158                                 block->max_length);
2159     }
2160 
2161     qemu_mutex_lock_ramlist();
2162     QLIST_REMOVE_RCU(block, next);
2163     ram_list.mru_block = NULL;
2164     /* Write list before version */
2165     smp_wmb();
2166     ram_list.version++;
2167     call_rcu(block, reclaim_ramblock, rcu);
2168     qemu_mutex_unlock_ramlist();
2169 }
2170 
2171 #ifndef _WIN32
qemu_ram_remap(ram_addr_t addr,ram_addr_t length)2172 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2173 {
2174     RAMBlock *block;
2175     ram_addr_t offset;
2176     int flags;
2177     void *area, *vaddr;
2178     int prot;
2179 
2180     RAMBLOCK_FOREACH(block) {
2181         offset = addr - block->offset;
2182         if (offset < block->max_length) {
2183             vaddr = ramblock_ptr(block, offset);
2184             if (block->flags & RAM_PREALLOC) {
2185                 ;
2186             } else if (xen_enabled()) {
2187                 abort();
2188             } else {
2189                 flags = MAP_FIXED;
2190                 flags |= block->flags & RAM_SHARED ?
2191                          MAP_SHARED : MAP_PRIVATE;
2192                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2193                 prot = PROT_READ;
2194                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2195                 if (block->fd >= 0) {
2196                     area = mmap(vaddr, length, prot, flags, block->fd,
2197                                 offset + block->fd_offset);
2198                 } else {
2199                     flags |= MAP_ANONYMOUS;
2200                     area = mmap(vaddr, length, prot, flags, -1, 0);
2201                 }
2202                 if (area != vaddr) {
2203                     error_report("Could not remap addr: "
2204                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2205                                  length, addr);
2206                     exit(1);
2207                 }
2208                 memory_try_enable_merging(vaddr, length);
2209                 qemu_ram_setup_dump(vaddr, length);
2210             }
2211         }
2212     }
2213 }
2214 #endif /* !_WIN32 */
2215 
2216 /*
2217  * Return a host pointer to guest's ram.
2218  * For Xen, foreign mappings get created if they don't already exist.
2219  *
2220  * @block: block for the RAM to lookup (optional and may be NULL).
2221  * @addr: address within the memory region.
2222  * @size: pointer to requested size (optional and may be NULL).
2223  *        size may get modified and return a value smaller than
2224  *        what was requested.
2225  * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2226  * @is_write: hint wether to map RW or RO in the xen-mapcache.
2227  *            (optional and may always be set to true).
2228  *
2229  * Called within RCU critical section.
2230  */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2231 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2232                                  hwaddr *size, bool lock,
2233                                  bool is_write)
2234 {
2235     hwaddr len = 0;
2236 
2237     if (size && *size == 0) {
2238         return NULL;
2239     }
2240 
2241     if (block == NULL) {
2242         block = qemu_get_ram_block(addr);
2243         addr -= block->offset;
2244     }
2245     if (size) {
2246         *size = MIN(*size, block->max_length - addr);
2247         len = *size;
2248     }
2249 
2250     if (xen_enabled() && block->host == NULL) {
2251         /* We need to check if the requested address is in the RAM
2252          * because we don't want to map the entire memory in QEMU.
2253          * In that case just map the requested area.
2254          */
2255         if (xen_mr_is_memory(block->mr)) {
2256             return xen_map_cache(block->mr, block->offset + addr,
2257                                  len, block->offset,
2258                                  lock, lock, is_write);
2259         }
2260 
2261         block->host = xen_map_cache(block->mr, block->offset,
2262                                     block->max_length,
2263                                     block->offset,
2264                                     1, lock, is_write);
2265     }
2266 
2267     return ramblock_ptr(block, addr);
2268 }
2269 
2270 /*
2271  * Return a host pointer to ram allocated with qemu_ram_alloc.
2272  * This should not be used for general purpose DMA.  Use address_space_map
2273  * or address_space_rw instead. For local memory (e.g. video ram) that the
2274  * device owns, use memory_region_get_ram_ptr.
2275  *
2276  * Called within RCU critical section.
2277  */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2278 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2279 {
2280     return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2281 }
2282 
2283 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2284 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2285 {
2286     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2287     assert((uintptr_t)host >= (uintptr_t)rb->host);
2288     assert(res < rb->max_length);
2289 
2290     return res;
2291 }
2292 
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2293 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2294                                    ram_addr_t *offset)
2295 {
2296     RAMBlock *block;
2297     uint8_t *host = ptr;
2298 
2299     if (xen_enabled()) {
2300         ram_addr_t ram_addr;
2301         RCU_READ_LOCK_GUARD();
2302         ram_addr = xen_ram_addr_from_mapcache(ptr);
2303         if (ram_addr == RAM_ADDR_INVALID) {
2304             return NULL;
2305         }
2306 
2307         block = qemu_get_ram_block(ram_addr);
2308         if (block) {
2309             *offset = ram_addr - block->offset;
2310         }
2311         return block;
2312     }
2313 
2314     RCU_READ_LOCK_GUARD();
2315     block = qatomic_rcu_read(&ram_list.mru_block);
2316     if (block && block->host && host - block->host < block->max_length) {
2317         goto found;
2318     }
2319 
2320     RAMBLOCK_FOREACH(block) {
2321         /* This case append when the block is not mapped. */
2322         if (block->host == NULL) {
2323             continue;
2324         }
2325         if (host - block->host < block->max_length) {
2326             goto found;
2327         }
2328     }
2329 
2330     return NULL;
2331 
2332 found:
2333     *offset = (host - block->host);
2334     if (round_offset) {
2335         *offset &= TARGET_PAGE_MASK;
2336     }
2337     return block;
2338 }
2339 
2340 /*
2341  * Finds the named RAMBlock
2342  *
2343  * name: The name of RAMBlock to find
2344  *
2345  * Returns: RAMBlock (or NULL if not found)
2346  */
qemu_ram_block_by_name(const char * name)2347 RAMBlock *qemu_ram_block_by_name(const char *name)
2348 {
2349     RAMBlock *block;
2350 
2351     RAMBLOCK_FOREACH(block) {
2352         if (!strcmp(name, block->idstr)) {
2353             return block;
2354         }
2355     }
2356 
2357     return NULL;
2358 }
2359 
2360 /*
2361  * Some of the system routines need to translate from a host pointer
2362  * (typically a TLB entry) back to a ram offset.
2363  */
qemu_ram_addr_from_host(void * ptr)2364 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2365 {
2366     RAMBlock *block;
2367     ram_addr_t offset;
2368 
2369     block = qemu_ram_block_from_host(ptr, false, &offset);
2370     if (!block) {
2371         return RAM_ADDR_INVALID;
2372     }
2373 
2374     return block->offset + offset;
2375 }
2376 
qemu_ram_addr_from_host_nofail(void * ptr)2377 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2378 {
2379     ram_addr_t ram_addr;
2380 
2381     ram_addr = qemu_ram_addr_from_host(ptr);
2382     if (ram_addr == RAM_ADDR_INVALID) {
2383         error_report("Bad ram pointer %p", ptr);
2384         abort();
2385     }
2386     return ram_addr;
2387 }
2388 
2389 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2390                                  MemTxAttrs attrs, void *buf, hwaddr len);
2391 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2392                                   const void *buf, hwaddr len);
2393 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2394                                   bool is_write, MemTxAttrs attrs);
2395 
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2396 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2397                                 unsigned len, MemTxAttrs attrs)
2398 {
2399     subpage_t *subpage = opaque;
2400     uint8_t buf[8];
2401     MemTxResult res;
2402 
2403 #if defined(DEBUG_SUBPAGE)
2404     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2405            subpage, len, addr);
2406 #endif
2407     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2408     if (res) {
2409         return res;
2410     }
2411     *data = ldn_p(buf, len);
2412     return MEMTX_OK;
2413 }
2414 
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2415 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2416                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2417 {
2418     subpage_t *subpage = opaque;
2419     uint8_t buf[8];
2420 
2421 #if defined(DEBUG_SUBPAGE)
2422     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2423            " value %"PRIx64"\n",
2424            __func__, subpage, len, addr, value);
2425 #endif
2426     stn_p(buf, len, value);
2427     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2428 }
2429 
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2430 static bool subpage_accepts(void *opaque, hwaddr addr,
2431                             unsigned len, bool is_write,
2432                             MemTxAttrs attrs)
2433 {
2434     subpage_t *subpage = opaque;
2435 #if defined(DEBUG_SUBPAGE)
2436     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2437            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2438 #endif
2439 
2440     return flatview_access_valid(subpage->fv, addr + subpage->base,
2441                                  len, is_write, attrs);
2442 }
2443 
2444 static const MemoryRegionOps subpage_ops = {
2445     .read_with_attrs = subpage_read,
2446     .write_with_attrs = subpage_write,
2447     .impl.min_access_size = 1,
2448     .impl.max_access_size = 8,
2449     .valid.min_access_size = 1,
2450     .valid.max_access_size = 8,
2451     .valid.accepts = subpage_accepts,
2452     .endianness = DEVICE_NATIVE_ENDIAN,
2453 };
2454 
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2455 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2456                             uint16_t section)
2457 {
2458     int idx, eidx;
2459 
2460     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2461         return -1;
2462     idx = SUBPAGE_IDX(start);
2463     eidx = SUBPAGE_IDX(end);
2464 #if defined(DEBUG_SUBPAGE)
2465     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2466            __func__, mmio, start, end, idx, eidx, section);
2467 #endif
2468     for (; idx <= eidx; idx++) {
2469         mmio->sub_section[idx] = section;
2470     }
2471 
2472     return 0;
2473 }
2474 
subpage_init(FlatView * fv,hwaddr base)2475 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2476 {
2477     subpage_t *mmio;
2478 
2479     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2480     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2481     mmio->fv = fv;
2482     mmio->base = base;
2483     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2484                           NULL, TARGET_PAGE_SIZE);
2485     mmio->iomem.subpage = true;
2486 #if defined(DEBUG_SUBPAGE)
2487     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2488            mmio, base, TARGET_PAGE_SIZE);
2489 #endif
2490 
2491     return mmio;
2492 }
2493 
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2494 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2495 {
2496     assert(fv);
2497     MemoryRegionSection section = {
2498         .fv = fv,
2499         .mr = mr,
2500         .offset_within_address_space = 0,
2501         .offset_within_region = 0,
2502         .size = int128_2_64(),
2503     };
2504 
2505     return phys_section_add(map, &section);
2506 }
2507 
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2508 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2509                                       hwaddr index, MemTxAttrs attrs)
2510 {
2511     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2512     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2513     AddressSpaceDispatch *d = cpuas->memory_dispatch;
2514     int section_index = index & ~TARGET_PAGE_MASK;
2515     MemoryRegionSection *ret;
2516 
2517     assert(section_index < d->map.sections_nb);
2518     ret = d->map.sections + section_index;
2519     assert(ret->mr);
2520     assert(ret->mr->ops);
2521 
2522     return ret;
2523 }
2524 
io_mem_init(void)2525 static void io_mem_init(void)
2526 {
2527     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2528                           NULL, UINT64_MAX);
2529 }
2530 
address_space_dispatch_new(FlatView * fv)2531 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2532 {
2533     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2534     uint16_t n;
2535 
2536     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2537     assert(n == PHYS_SECTION_UNASSIGNED);
2538 
2539     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2540 
2541     return d;
2542 }
2543 
address_space_dispatch_free(AddressSpaceDispatch * d)2544 void address_space_dispatch_free(AddressSpaceDispatch *d)
2545 {
2546     phys_sections_free(&d->map);
2547     g_free(d);
2548 }
2549 
do_nothing(CPUState * cpu,run_on_cpu_data d)2550 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2551 {
2552 }
2553 
tcg_log_global_after_sync(MemoryListener * listener)2554 static void tcg_log_global_after_sync(MemoryListener *listener)
2555 {
2556     CPUAddressSpace *cpuas;
2557 
2558     /* Wait for the CPU to end the current TB.  This avoids the following
2559      * incorrect race:
2560      *
2561      *      vCPU                         migration
2562      *      ----------------------       -------------------------
2563      *      TLB check -> slow path
2564      *        notdirty_mem_write
2565      *          write to RAM
2566      *          mark dirty
2567      *                                   clear dirty flag
2568      *      TLB check -> fast path
2569      *                                   read memory
2570      *        write to RAM
2571      *
2572      * by pushing the migration thread's memory read after the vCPU thread has
2573      * written the memory.
2574      */
2575     if (replay_mode == REPLAY_MODE_NONE) {
2576         /*
2577          * VGA can make calls to this function while updating the screen.
2578          * In record/replay mode this causes a deadlock, because
2579          * run_on_cpu waits for rr mutex. Therefore no races are possible
2580          * in this case and no need for making run_on_cpu when
2581          * record/replay is enabled.
2582          */
2583         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2584         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2585     }
2586 }
2587 
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2588 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2589 {
2590     CPUAddressSpace *cpuas = data.host_ptr;
2591 
2592     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2593     tlb_flush(cpu);
2594 }
2595 
tcg_commit(MemoryListener * listener)2596 static void tcg_commit(MemoryListener *listener)
2597 {
2598     CPUAddressSpace *cpuas;
2599     CPUState *cpu;
2600 
2601     assert(tcg_enabled());
2602     /* since each CPU stores ram addresses in its TLB cache, we must
2603        reset the modified entries */
2604     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2605     cpu = cpuas->cpu;
2606 
2607     /*
2608      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2609      * Otherwise we race between (1) other cpu threads and (2) ongoing
2610      * i/o for the current cpu thread, with data cached by mmu_lookup().
2611      *
2612      * In addition, queueing the work function will kick the cpu back to
2613      * the main loop, which will end the RCU critical section and reclaim
2614      * the memory data structures.
2615      *
2616      * That said, the listener is also called during realize, before
2617      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2618      */
2619     if (cpu->halt_cond) {
2620         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2621     } else {
2622         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2623     }
2624 }
2625 
memory_map_init(void)2626 static void memory_map_init(void)
2627 {
2628     system_memory = g_malloc(sizeof(*system_memory));
2629 
2630     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2631     address_space_init(&address_space_memory, system_memory, "memory");
2632 
2633     system_io = g_malloc(sizeof(*system_io));
2634     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2635                           65536);
2636     address_space_init(&address_space_io, system_io, "I/O");
2637 }
2638 
get_system_memory(void)2639 MemoryRegion *get_system_memory(void)
2640 {
2641     return system_memory;
2642 }
2643 
get_system_io(void)2644 MemoryRegion *get_system_io(void)
2645 {
2646     return system_io;
2647 }
2648 
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2649 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2650                                      hwaddr length)
2651 {
2652     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2653     ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2654 
2655     /* We know we're only called for RAM MemoryRegions */
2656     assert(ramaddr != RAM_ADDR_INVALID);
2657     addr += ramaddr;
2658 
2659     /* No early return if dirty_log_mask is or becomes 0, because
2660      * cpu_physical_memory_set_dirty_range will still call
2661      * xen_modified_memory.
2662      */
2663     if (dirty_log_mask) {
2664         dirty_log_mask =
2665             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2666     }
2667     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2668         assert(tcg_enabled());
2669         tb_invalidate_phys_range(addr, addr + length - 1);
2670         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2671     }
2672     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2673 }
2674 
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2675 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2676 {
2677     /*
2678      * In principle this function would work on other memory region types too,
2679      * but the ROM device use case is the only one where this operation is
2680      * necessary.  Other memory regions should use the
2681      * address_space_read/write() APIs.
2682      */
2683     assert(memory_region_is_romd(mr));
2684 
2685     invalidate_and_set_dirty(mr, addr, size);
2686 }
2687 
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2688 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2689 {
2690     unsigned access_size_max = mr->ops->valid.max_access_size;
2691 
2692     /* Regions are assumed to support 1-4 byte accesses unless
2693        otherwise specified.  */
2694     if (access_size_max == 0) {
2695         access_size_max = 4;
2696     }
2697 
2698     /* Bound the maximum access by the alignment of the address.  */
2699     if (!mr->ops->impl.unaligned) {
2700         unsigned align_size_max = addr & -addr;
2701         if (align_size_max != 0 && align_size_max < access_size_max) {
2702             access_size_max = align_size_max;
2703         }
2704     }
2705 
2706     /* Don't attempt accesses larger than the maximum.  */
2707     if (l > access_size_max) {
2708         l = access_size_max;
2709     }
2710     l = pow2floor(l);
2711 
2712     return l;
2713 }
2714 
prepare_mmio_access(MemoryRegion * mr)2715 bool prepare_mmio_access(MemoryRegion *mr)
2716 {
2717     bool release_lock = false;
2718 
2719     if (!bql_locked()) {
2720         bql_lock();
2721         release_lock = true;
2722     }
2723     if (mr->flush_coalesced_mmio) {
2724         qemu_flush_coalesced_mmio_buffer();
2725     }
2726 
2727     return release_lock;
2728 }
2729 
2730 /**
2731  * flatview_access_allowed
2732  * @mr: #MemoryRegion to be accessed
2733  * @attrs: memory transaction attributes
2734  * @addr: address within that memory region
2735  * @len: the number of bytes to access
2736  *
2737  * Check if a memory transaction is allowed.
2738  *
2739  * Returns: true if transaction is allowed, false if denied.
2740  */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2741 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2742                                     hwaddr addr, hwaddr len)
2743 {
2744     if (likely(!attrs.memory)) {
2745         return true;
2746     }
2747     if (memory_region_is_ram(mr)) {
2748         return true;
2749     }
2750     qemu_log_mask(LOG_GUEST_ERROR,
2751                   "Invalid access to non-RAM device at "
2752                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2753                   "region '%s'\n", addr, len, memory_region_name(mr));
2754     return false;
2755 }
2756 
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2757 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2758                                                 const uint8_t *buf,
2759                                                 hwaddr len, hwaddr mr_addr,
2760                                                 hwaddr *l, MemoryRegion *mr)
2761 {
2762     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2763         return MEMTX_ACCESS_ERROR;
2764     }
2765 
2766     if (!memory_access_is_direct(mr, true)) {
2767         uint64_t val;
2768         MemTxResult result;
2769         bool release_lock = prepare_mmio_access(mr);
2770 
2771         *l = memory_access_size(mr, *l, mr_addr);
2772         /*
2773          * XXX: could force current_cpu to NULL to avoid
2774          * potential bugs
2775          */
2776 
2777         /*
2778          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2779          * the buffer by following ldn_he_p().
2780          */
2781 #ifdef QEMU_STATIC_ANALYSIS
2782         assert((*l == 1 && len >= 1) ||
2783                (*l == 2 && len >= 2) ||
2784                (*l == 4 && len >= 4) ||
2785                (*l == 8 && len >= 8));
2786 #endif
2787         val = ldn_he_p(buf, *l);
2788         result = memory_region_dispatch_write(mr, mr_addr, val,
2789                                               size_memop(*l), attrs);
2790         if (release_lock) {
2791             bql_unlock();
2792         }
2793 
2794         return result;
2795     } else {
2796         /* RAM case */
2797         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2798                                                false, true);
2799 
2800         memmove(ram_ptr, buf, *l);
2801         invalidate_and_set_dirty(mr, mr_addr, *l);
2802 
2803         return MEMTX_OK;
2804     }
2805 }
2806 
2807 /* Called within RCU critical section.  */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2808 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2809                                            MemTxAttrs attrs,
2810                                            const void *ptr,
2811                                            hwaddr len, hwaddr mr_addr,
2812                                            hwaddr l, MemoryRegion *mr)
2813 {
2814     MemTxResult result = MEMTX_OK;
2815     const uint8_t *buf = ptr;
2816 
2817     for (;;) {
2818         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2819                                                mr);
2820 
2821         len -= l;
2822         buf += l;
2823         addr += l;
2824 
2825         if (!len) {
2826             break;
2827         }
2828 
2829         l = len;
2830         mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2831     }
2832 
2833     return result;
2834 }
2835 
2836 /* Called from RCU critical section.  */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2837 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2838                                   const void *buf, hwaddr len)
2839 {
2840     hwaddr l;
2841     hwaddr mr_addr;
2842     MemoryRegion *mr;
2843 
2844     l = len;
2845     mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2846     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2847         return MEMTX_ACCESS_ERROR;
2848     }
2849     return flatview_write_continue(fv, addr, attrs, buf, len,
2850                                    mr_addr, l, mr);
2851 }
2852 
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2853 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2854                                                hwaddr len, hwaddr mr_addr,
2855                                                hwaddr *l,
2856                                                MemoryRegion *mr)
2857 {
2858     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2859         return MEMTX_ACCESS_ERROR;
2860     }
2861 
2862     if (!memory_access_is_direct(mr, false)) {
2863         /* I/O case */
2864         uint64_t val;
2865         MemTxResult result;
2866         bool release_lock = prepare_mmio_access(mr);
2867 
2868         *l = memory_access_size(mr, *l, mr_addr);
2869         result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2870                                              attrs);
2871 
2872         /*
2873          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2874          * the buffer by following stn_he_p().
2875          */
2876 #ifdef QEMU_STATIC_ANALYSIS
2877         assert((*l == 1 && len >= 1) ||
2878                (*l == 2 && len >= 2) ||
2879                (*l == 4 && len >= 4) ||
2880                (*l == 8 && len >= 8));
2881 #endif
2882         stn_he_p(buf, *l, val);
2883 
2884         if (release_lock) {
2885             bql_unlock();
2886         }
2887         return result;
2888     } else {
2889         /* RAM case */
2890         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2891                                                false, false);
2892 
2893         memcpy(buf, ram_ptr, *l);
2894 
2895         return MEMTX_OK;
2896     }
2897 }
2898 
2899 /* Called within RCU critical section.  */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2900 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2901                                    MemTxAttrs attrs, void *ptr,
2902                                    hwaddr len, hwaddr mr_addr, hwaddr l,
2903                                    MemoryRegion *mr)
2904 {
2905     MemTxResult result = MEMTX_OK;
2906     uint8_t *buf = ptr;
2907 
2908     fuzz_dma_read_cb(addr, len, mr);
2909     for (;;) {
2910         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2911 
2912         len -= l;
2913         buf += l;
2914         addr += l;
2915 
2916         if (!len) {
2917             break;
2918         }
2919 
2920         l = len;
2921         mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2922     }
2923 
2924     return result;
2925 }
2926 
2927 /* Called from RCU critical section.  */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2928 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2929                                  MemTxAttrs attrs, void *buf, hwaddr len)
2930 {
2931     hwaddr l;
2932     hwaddr mr_addr;
2933     MemoryRegion *mr;
2934 
2935     l = len;
2936     mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2937     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2938         return MEMTX_ACCESS_ERROR;
2939     }
2940     return flatview_read_continue(fv, addr, attrs, buf, len,
2941                                   mr_addr, l, mr);
2942 }
2943 
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2944 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2945                                     MemTxAttrs attrs, void *buf, hwaddr len)
2946 {
2947     MemTxResult result = MEMTX_OK;
2948     FlatView *fv;
2949 
2950     if (len > 0) {
2951         RCU_READ_LOCK_GUARD();
2952         fv = address_space_to_flatview(as);
2953         result = flatview_read(fv, addr, attrs, buf, len);
2954     }
2955 
2956     return result;
2957 }
2958 
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2959 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2960                                 MemTxAttrs attrs,
2961                                 const void *buf, hwaddr len)
2962 {
2963     MemTxResult result = MEMTX_OK;
2964     FlatView *fv;
2965 
2966     if (len > 0) {
2967         RCU_READ_LOCK_GUARD();
2968         fv = address_space_to_flatview(as);
2969         result = flatview_write(fv, addr, attrs, buf, len);
2970     }
2971 
2972     return result;
2973 }
2974 
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)2975 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2976                              void *buf, hwaddr len, bool is_write)
2977 {
2978     if (is_write) {
2979         return address_space_write(as, addr, attrs, buf, len);
2980     } else {
2981         return address_space_read_full(as, addr, attrs, buf, len);
2982     }
2983 }
2984 
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)2985 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2986                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2987 {
2988 #define FILLBUF_SIZE 512
2989     uint8_t fillbuf[FILLBUF_SIZE];
2990     int l;
2991     MemTxResult error = MEMTX_OK;
2992 
2993     memset(fillbuf, c, FILLBUF_SIZE);
2994     while (len > 0) {
2995         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2996         error |= address_space_write(as, addr, attrs, fillbuf, l);
2997         len -= l;
2998         addr += l;
2999     }
3000 
3001     return error;
3002 }
3003 
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3004 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3005                             hwaddr len, bool is_write)
3006 {
3007     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3008                      buf, len, is_write);
3009 }
3010 
3011 enum write_rom_type {
3012     WRITE_DATA,
3013     FLUSH_CACHE,
3014 };
3015 
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3016 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3017                                                            hwaddr addr,
3018                                                            MemTxAttrs attrs,
3019                                                            const void *ptr,
3020                                                            hwaddr len,
3021                                                            enum write_rom_type type)
3022 {
3023     hwaddr l;
3024     uint8_t *ram_ptr;
3025     hwaddr addr1;
3026     MemoryRegion *mr;
3027     const uint8_t *buf = ptr;
3028 
3029     RCU_READ_LOCK_GUARD();
3030     while (len > 0) {
3031         l = len;
3032         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3033 
3034         if (!(memory_region_is_ram(mr) ||
3035               memory_region_is_romd(mr))) {
3036             l = memory_access_size(mr, l, addr1);
3037         } else {
3038             /* ROM/RAM case */
3039             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3040             switch (type) {
3041             case WRITE_DATA:
3042                 memcpy(ram_ptr, buf, l);
3043                 invalidate_and_set_dirty(mr, addr1, l);
3044                 break;
3045             case FLUSH_CACHE:
3046                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3047                 break;
3048             }
3049         }
3050         len -= l;
3051         buf += l;
3052         addr += l;
3053     }
3054     return MEMTX_OK;
3055 }
3056 
3057 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3058 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3059                                     MemTxAttrs attrs,
3060                                     const void *buf, hwaddr len)
3061 {
3062     return address_space_write_rom_internal(as, addr, attrs,
3063                                             buf, len, WRITE_DATA);
3064 }
3065 
cpu_flush_icache_range(hwaddr start,hwaddr len)3066 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3067 {
3068     /*
3069      * This function should do the same thing as an icache flush that was
3070      * triggered from within the guest. For TCG we are always cache coherent,
3071      * so there is no need to flush anything. For KVM / Xen we need to flush
3072      * the host's instruction cache at least.
3073      */
3074     if (tcg_enabled()) {
3075         return;
3076     }
3077 
3078     address_space_write_rom_internal(&address_space_memory,
3079                                      start, MEMTXATTRS_UNSPECIFIED,
3080                                      NULL, len, FLUSH_CACHE);
3081 }
3082 
3083 /*
3084  * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3085  * to detect illegal pointers passed to address_space_unmap.
3086  */
3087 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3088 
3089 typedef struct {
3090     uint64_t magic;
3091     MemoryRegion *mr;
3092     hwaddr addr;
3093     size_t len;
3094     uint8_t buffer[];
3095 } BounceBuffer;
3096 
3097 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3098 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3099 {
3100     QLIST_REMOVE(client, link);
3101     g_free(client);
3102 }
3103 
address_space_notify_map_clients_locked(AddressSpace * as)3104 static void address_space_notify_map_clients_locked(AddressSpace *as)
3105 {
3106     AddressSpaceMapClient *client;
3107 
3108     while (!QLIST_EMPTY(&as->map_client_list)) {
3109         client = QLIST_FIRST(&as->map_client_list);
3110         qemu_bh_schedule(client->bh);
3111         address_space_unregister_map_client_do(client);
3112     }
3113 }
3114 
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3115 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3116 {
3117     AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3118 
3119     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3120     client->bh = bh;
3121     QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3122     /* Write map_client_list before reading bounce_buffer_size. */
3123     smp_mb();
3124     if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3125         address_space_notify_map_clients_locked(as);
3126     }
3127 }
3128 
cpu_exec_init_all(void)3129 void cpu_exec_init_all(void)
3130 {
3131     qemu_mutex_init(&ram_list.mutex);
3132     /* The data structures we set up here depend on knowing the page size,
3133      * so no more changes can be made after this point.
3134      * In an ideal world, nothing we did before we had finished the
3135      * machine setup would care about the target page size, and we could
3136      * do this much later, rather than requiring board models to state
3137      * up front what their requirements are.
3138      */
3139     finalize_target_page_bits();
3140     io_mem_init();
3141     memory_map_init();
3142 }
3143 
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3144 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3145 {
3146     AddressSpaceMapClient *client;
3147 
3148     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3149     QLIST_FOREACH(client, &as->map_client_list, link) {
3150         if (client->bh == bh) {
3151             address_space_unregister_map_client_do(client);
3152             break;
3153         }
3154     }
3155 }
3156 
address_space_notify_map_clients(AddressSpace * as)3157 static void address_space_notify_map_clients(AddressSpace *as)
3158 {
3159     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3160     address_space_notify_map_clients_locked(as);
3161 }
3162 
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3163 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3164                                   bool is_write, MemTxAttrs attrs)
3165 {
3166     MemoryRegion *mr;
3167     hwaddr l, xlat;
3168 
3169     while (len > 0) {
3170         l = len;
3171         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3172         if (!memory_access_is_direct(mr, is_write)) {
3173             l = memory_access_size(mr, l, addr);
3174             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3175                 return false;
3176             }
3177         }
3178 
3179         len -= l;
3180         addr += l;
3181     }
3182     return true;
3183 }
3184 
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3185 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3186                                 hwaddr len, bool is_write,
3187                                 MemTxAttrs attrs)
3188 {
3189     FlatView *fv;
3190 
3191     RCU_READ_LOCK_GUARD();
3192     fv = address_space_to_flatview(as);
3193     return flatview_access_valid(fv, addr, len, is_write, attrs);
3194 }
3195 
3196 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3197 flatview_extend_translation(FlatView *fv, hwaddr addr,
3198                             hwaddr target_len,
3199                             MemoryRegion *mr, hwaddr base, hwaddr len,
3200                             bool is_write, MemTxAttrs attrs)
3201 {
3202     hwaddr done = 0;
3203     hwaddr xlat;
3204     MemoryRegion *this_mr;
3205 
3206     for (;;) {
3207         target_len -= len;
3208         addr += len;
3209         done += len;
3210         if (target_len == 0) {
3211             return done;
3212         }
3213 
3214         len = target_len;
3215         this_mr = flatview_translate(fv, addr, &xlat,
3216                                      &len, is_write, attrs);
3217         if (this_mr != mr || xlat != base + done) {
3218             return done;
3219         }
3220     }
3221 }
3222 
3223 /* Map a physical memory region into a host virtual address.
3224  * May map a subset of the requested range, given by and returned in *plen.
3225  * May return NULL if resources needed to perform the mapping are exhausted.
3226  * Use only for reads OR writes - not for read-modify-write operations.
3227  * Use address_space_register_map_client() to know when retrying the map
3228  * operation is likely to succeed.
3229  */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3230 void *address_space_map(AddressSpace *as,
3231                         hwaddr addr,
3232                         hwaddr *plen,
3233                         bool is_write,
3234                         MemTxAttrs attrs)
3235 {
3236     hwaddr len = *plen;
3237     hwaddr l, xlat;
3238     MemoryRegion *mr;
3239     FlatView *fv;
3240 
3241     trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3242 
3243     if (len == 0) {
3244         return NULL;
3245     }
3246 
3247     l = len;
3248     RCU_READ_LOCK_GUARD();
3249     fv = address_space_to_flatview(as);
3250     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3251 
3252     if (!memory_access_is_direct(mr, is_write)) {
3253         size_t used = qatomic_read(&as->bounce_buffer_size);
3254         for (;;) {
3255             hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3256             size_t new_size = used + alloc;
3257             size_t actual =
3258                 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3259             if (actual == used) {
3260                 l = alloc;
3261                 break;
3262             }
3263             used = actual;
3264         }
3265 
3266         if (l == 0) {
3267             *plen = 0;
3268             return NULL;
3269         }
3270 
3271         BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3272         bounce->magic = BOUNCE_BUFFER_MAGIC;
3273         memory_region_ref(mr);
3274         bounce->mr = mr;
3275         bounce->addr = addr;
3276         bounce->len = l;
3277 
3278         if (!is_write) {
3279             flatview_read(fv, addr, attrs,
3280                           bounce->buffer, l);
3281         }
3282 
3283         *plen = l;
3284         return bounce->buffer;
3285     }
3286 
3287     memory_region_ref(mr);
3288     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3289                                         l, is_write, attrs);
3290     fuzz_dma_read_cb(addr, *plen, mr);
3291     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3292 }
3293 
3294 /* Unmaps a memory region previously mapped by address_space_map().
3295  * Will also mark the memory as dirty if is_write is true.  access_len gives
3296  * the amount of memory that was actually read or written by the caller.
3297  */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3298 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3299                          bool is_write, hwaddr access_len)
3300 {
3301     MemoryRegion *mr;
3302     ram_addr_t addr1;
3303 
3304     mr = memory_region_from_host(buffer, &addr1);
3305     if (mr != NULL) {
3306         if (is_write) {
3307             invalidate_and_set_dirty(mr, addr1, access_len);
3308         }
3309         if (xen_enabled()) {
3310             xen_invalidate_map_cache_entry(buffer);
3311         }
3312         memory_region_unref(mr);
3313         return;
3314     }
3315 
3316 
3317     BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3318     assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3319 
3320     if (is_write) {
3321         address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3322                             bounce->buffer, access_len);
3323     }
3324 
3325     qatomic_sub(&as->bounce_buffer_size, bounce->len);
3326     bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3327     memory_region_unref(bounce->mr);
3328     g_free(bounce);
3329     /* Write bounce_buffer_size before reading map_client_list. */
3330     smp_mb();
3331     address_space_notify_map_clients(as);
3332 }
3333 
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3334 void *cpu_physical_memory_map(hwaddr addr,
3335                               hwaddr *plen,
3336                               bool is_write)
3337 {
3338     return address_space_map(&address_space_memory, addr, plen, is_write,
3339                              MEMTXATTRS_UNSPECIFIED);
3340 }
3341 
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3342 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3343                                bool is_write, hwaddr access_len)
3344 {
3345     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3346 }
3347 
3348 #define ARG1_DECL                AddressSpace *as
3349 #define ARG1                     as
3350 #define SUFFIX
3351 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3352 #define RCU_READ_LOCK(...)       rcu_read_lock()
3353 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3354 #include "memory_ldst.c.inc"
3355 
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3356 int64_t address_space_cache_init(MemoryRegionCache *cache,
3357                                  AddressSpace *as,
3358                                  hwaddr addr,
3359                                  hwaddr len,
3360                                  bool is_write)
3361 {
3362     AddressSpaceDispatch *d;
3363     hwaddr l;
3364     MemoryRegion *mr;
3365     Int128 diff;
3366 
3367     assert(len > 0);
3368 
3369     l = len;
3370     cache->fv = address_space_get_flatview(as);
3371     d = flatview_to_dispatch(cache->fv);
3372     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3373 
3374     /*
3375      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3376      * Take that into account to compute how many bytes are there between
3377      * cache->xlat and the end of the section.
3378      */
3379     diff = int128_sub(cache->mrs.size,
3380                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3381     l = int128_get64(int128_min(diff, int128_make64(l)));
3382 
3383     mr = cache->mrs.mr;
3384     memory_region_ref(mr);
3385     if (memory_access_is_direct(mr, is_write)) {
3386         /* We don't care about the memory attributes here as we're only
3387          * doing this if we found actual RAM, which behaves the same
3388          * regardless of attributes; so UNSPECIFIED is fine.
3389          */
3390         l = flatview_extend_translation(cache->fv, addr, len, mr,
3391                                         cache->xlat, l, is_write,
3392                                         MEMTXATTRS_UNSPECIFIED);
3393         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3394                                          is_write);
3395     } else {
3396         cache->ptr = NULL;
3397     }
3398 
3399     cache->len = l;
3400     cache->is_write = is_write;
3401     return l;
3402 }
3403 
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3404 void address_space_cache_invalidate(MemoryRegionCache *cache,
3405                                     hwaddr addr,
3406                                     hwaddr access_len)
3407 {
3408     assert(cache->is_write);
3409     if (likely(cache->ptr)) {
3410         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3411     }
3412 }
3413 
address_space_cache_destroy(MemoryRegionCache * cache)3414 void address_space_cache_destroy(MemoryRegionCache *cache)
3415 {
3416     if (!cache->mrs.mr) {
3417         return;
3418     }
3419 
3420     if (xen_enabled()) {
3421         xen_invalidate_map_cache_entry(cache->ptr);
3422     }
3423     memory_region_unref(cache->mrs.mr);
3424     flatview_unref(cache->fv);
3425     cache->mrs.mr = NULL;
3426     cache->fv = NULL;
3427 }
3428 
3429 /* Called from RCU critical section.  This function has the same
3430  * semantics as address_space_translate, but it only works on a
3431  * predefined range of a MemoryRegion that was mapped with
3432  * address_space_cache_init.
3433  */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3434 static inline MemoryRegion *address_space_translate_cached(
3435     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3436     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3437 {
3438     MemoryRegionSection section;
3439     MemoryRegion *mr;
3440     IOMMUMemoryRegion *iommu_mr;
3441     AddressSpace *target_as;
3442 
3443     assert(!cache->ptr);
3444     *xlat = addr + cache->xlat;
3445 
3446     mr = cache->mrs.mr;
3447     iommu_mr = memory_region_get_iommu(mr);
3448     if (!iommu_mr) {
3449         /* MMIO region.  */
3450         return mr;
3451     }
3452 
3453     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3454                                             NULL, is_write, true,
3455                                             &target_as, attrs);
3456     return section.mr;
3457 }
3458 
3459 /* Called within RCU critical section.  */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3460 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3461                                                        const void *ptr,
3462                                                        hwaddr len,
3463                                                        hwaddr mr_addr,
3464                                                        hwaddr l,
3465                                                        MemoryRegion *mr)
3466 {
3467     MemTxResult result = MEMTX_OK;
3468     const uint8_t *buf = ptr;
3469 
3470     for (;;) {
3471         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3472                                                mr);
3473 
3474         len -= l;
3475         buf += l;
3476         mr_addr += l;
3477 
3478         if (!len) {
3479             break;
3480         }
3481 
3482         l = len;
3483     }
3484 
3485     return result;
3486 }
3487 
3488 /* Called within RCU critical section.  */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3489 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3490                                                       void *ptr, hwaddr len,
3491                                                       hwaddr mr_addr, hwaddr l,
3492                                                       MemoryRegion *mr)
3493 {
3494     MemTxResult result = MEMTX_OK;
3495     uint8_t *buf = ptr;
3496 
3497     for (;;) {
3498         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3499         len -= l;
3500         buf += l;
3501         mr_addr += l;
3502 
3503         if (!len) {
3504             break;
3505         }
3506         l = len;
3507     }
3508 
3509     return result;
3510 }
3511 
3512 /* Called from RCU critical section. address_space_read_cached uses this
3513  * out of line function when the target is an MMIO or IOMMU region.
3514  */
3515 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3516 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3517                                    void *buf, hwaddr len)
3518 {
3519     hwaddr mr_addr, l;
3520     MemoryRegion *mr;
3521 
3522     l = len;
3523     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3524                                         MEMTXATTRS_UNSPECIFIED);
3525     return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3526                                               buf, len, mr_addr, l, mr);
3527 }
3528 
3529 /* Called from RCU critical section. address_space_write_cached uses this
3530  * out of line function when the target is an MMIO or IOMMU region.
3531  */
3532 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3533 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3534                                     const void *buf, hwaddr len)
3535 {
3536     hwaddr mr_addr, l;
3537     MemoryRegion *mr;
3538 
3539     l = len;
3540     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3541                                         MEMTXATTRS_UNSPECIFIED);
3542     return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3543                                                buf, len, mr_addr, l, mr);
3544 }
3545 
3546 #define ARG1_DECL                MemoryRegionCache *cache
3547 #define ARG1                     cache
3548 #define SUFFIX                   _cached_slow
3549 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3550 #define RCU_READ_LOCK()          ((void)0)
3551 #define RCU_READ_UNLOCK()        ((void)0)
3552 #include "memory_ldst.c.inc"
3553 
3554 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3555 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3556                         void *ptr, size_t len, bool is_write)
3557 {
3558     hwaddr phys_addr;
3559     vaddr l, page;
3560     uint8_t *buf = ptr;
3561 
3562     cpu_synchronize_state(cpu);
3563     while (len > 0) {
3564         int asidx;
3565         MemTxAttrs attrs;
3566         MemTxResult res;
3567 
3568         page = addr & TARGET_PAGE_MASK;
3569         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3570         asidx = cpu_asidx_from_attrs(cpu, attrs);
3571         /* if no physical page mapped, return an error */
3572         if (phys_addr == -1)
3573             return -1;
3574         l = (page + TARGET_PAGE_SIZE) - addr;
3575         if (l > len)
3576             l = len;
3577         phys_addr += (addr & ~TARGET_PAGE_MASK);
3578         if (is_write) {
3579             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3580                                           attrs, buf, l);
3581         } else {
3582             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3583                                      attrs, buf, l);
3584         }
3585         if (res != MEMTX_OK) {
3586             return -1;
3587         }
3588         len -= l;
3589         buf += l;
3590         addr += l;
3591     }
3592     return 0;
3593 }
3594 
cpu_physical_memory_is_io(hwaddr phys_addr)3595 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3596 {
3597     MemoryRegion*mr;
3598     hwaddr l = 1;
3599 
3600     RCU_READ_LOCK_GUARD();
3601     mr = address_space_translate(&address_space_memory,
3602                                  phys_addr, &phys_addr, &l, false,
3603                                  MEMTXATTRS_UNSPECIFIED);
3604 
3605     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3606 }
3607 
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3608 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3609 {
3610     RAMBlock *block;
3611     int ret = 0;
3612 
3613     RCU_READ_LOCK_GUARD();
3614     RAMBLOCK_FOREACH(block) {
3615         ret = func(block, opaque);
3616         if (ret) {
3617             break;
3618         }
3619     }
3620     return ret;
3621 }
3622 
3623 /*
3624  * Unmap pages of memory from start to start+length such that
3625  * they a) read as 0, b) Trigger whatever fault mechanism
3626  * the OS provides for postcopy.
3627  * The pages must be unmapped by the end of the function.
3628  * Returns: 0 on success, none-0 on failure
3629  *
3630  */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3631 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3632 {
3633     int ret = -1;
3634 
3635     uint8_t *host_startaddr = rb->host + start;
3636 
3637     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3638         error_report("%s: Unaligned start address: %p",
3639                      __func__, host_startaddr);
3640         goto err;
3641     }
3642 
3643     if ((start + length) <= rb->max_length) {
3644         bool need_madvise, need_fallocate;
3645         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3646             error_report("%s: Unaligned length: %zx", __func__, length);
3647             goto err;
3648         }
3649 
3650         errno = ENOTSUP; /* If we are missing MADVISE etc */
3651 
3652         /* The logic here is messy;
3653          *    madvise DONTNEED fails for hugepages
3654          *    fallocate works on hugepages and shmem
3655          *    shared anonymous memory requires madvise REMOVE
3656          */
3657         need_madvise = (rb->page_size == qemu_real_host_page_size());
3658         need_fallocate = rb->fd != -1;
3659         if (need_fallocate) {
3660             /* For a file, this causes the area of the file to be zero'd
3661              * if read, and for hugetlbfs also causes it to be unmapped
3662              * so a userfault will trigger.
3663              */
3664 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3665             /*
3666              * fallocate() will fail with readonly files. Let's print a
3667              * proper error message.
3668              */
3669             if (rb->flags & RAM_READONLY_FD) {
3670                 error_report("%s: Discarding RAM with readonly files is not"
3671                              " supported", __func__);
3672                 goto err;
3673 
3674             }
3675             /*
3676              * We'll discard data from the actual file, even though we only
3677              * have a MAP_PRIVATE mapping, possibly messing with other
3678              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3679              * change that behavior whithout violating the promised
3680              * semantics of ram_block_discard_range().
3681              *
3682              * Only warn, because it works as long as nobody else uses that
3683              * file.
3684              */
3685             if (!qemu_ram_is_shared(rb)) {
3686                 warn_report_once("%s: Discarding RAM"
3687                                  " in private file mappings is possibly"
3688                                  " dangerous, because it will modify the"
3689                                  " underlying file and will affect other"
3690                                  " users of the file", __func__);
3691             }
3692 
3693             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3694                             start, length);
3695             if (ret) {
3696                 ret = -errno;
3697                 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3698                              __func__, rb->idstr, start, length, ret);
3699                 goto err;
3700             }
3701 #else
3702             ret = -ENOSYS;
3703             error_report("%s: fallocate not available/file"
3704                          "%s:%" PRIx64 " +%zx (%d)",
3705                          __func__, rb->idstr, start, length, ret);
3706             goto err;
3707 #endif
3708         }
3709         if (need_madvise) {
3710             /* For normal RAM this causes it to be unmapped,
3711              * for shared memory it causes the local mapping to disappear
3712              * and to fall back on the file contents (which we just
3713              * fallocate'd away).
3714              */
3715 #if defined(CONFIG_MADVISE)
3716             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3717                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3718             } else {
3719                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3720             }
3721             if (ret) {
3722                 ret = -errno;
3723                 error_report("%s: Failed to discard range "
3724                              "%s:%" PRIx64 " +%zx (%d)",
3725                              __func__, rb->idstr, start, length, ret);
3726                 goto err;
3727             }
3728 #else
3729             ret = -ENOSYS;
3730             error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3731                          __func__, rb->idstr, start, length, ret);
3732             goto err;
3733 #endif
3734         }
3735         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3736                                       need_madvise, need_fallocate, ret);
3737     } else {
3738         error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3739                      __func__, rb->idstr, start, length, rb->max_length);
3740     }
3741 
3742 err:
3743     return ret;
3744 }
3745 
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3746 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3747                                         size_t length)
3748 {
3749     int ret = -1;
3750 
3751 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3752     ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3753                     start, length);
3754 
3755     if (ret) {
3756         ret = -errno;
3757         error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3758                      __func__, rb->idstr, start, length, ret);
3759     }
3760 #else
3761     ret = -ENOSYS;
3762     error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3763                  __func__, rb->idstr, start, length, ret);
3764 #endif
3765 
3766     return ret;
3767 }
3768 
ramblock_is_pmem(RAMBlock * rb)3769 bool ramblock_is_pmem(RAMBlock *rb)
3770 {
3771     return rb->flags & RAM_PMEM;
3772 }
3773 
mtree_print_phys_entries(int start,int end,int skip,int ptr)3774 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3775 {
3776     if (start == end - 1) {
3777         qemu_printf("\t%3d      ", start);
3778     } else {
3779         qemu_printf("\t%3d..%-3d ", start, end - 1);
3780     }
3781     qemu_printf(" skip=%d ", skip);
3782     if (ptr == PHYS_MAP_NODE_NIL) {
3783         qemu_printf(" ptr=NIL");
3784     } else if (!skip) {
3785         qemu_printf(" ptr=#%d", ptr);
3786     } else {
3787         qemu_printf(" ptr=[%d]", ptr);
3788     }
3789     qemu_printf("\n");
3790 }
3791 
3792 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3793                            int128_sub((size), int128_one())) : 0)
3794 
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3795 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3796 {
3797     int i;
3798 
3799     qemu_printf("  Dispatch\n");
3800     qemu_printf("    Physical sections\n");
3801 
3802     for (i = 0; i < d->map.sections_nb; ++i) {
3803         MemoryRegionSection *s = d->map.sections + i;
3804         const char *names[] = { " [unassigned]", " [not dirty]",
3805                                 " [ROM]", " [watch]" };
3806 
3807         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3808                     " %s%s%s%s%s",
3809             i,
3810             s->offset_within_address_space,
3811             s->offset_within_address_space + MR_SIZE(s->size),
3812             s->mr->name ? s->mr->name : "(noname)",
3813             i < ARRAY_SIZE(names) ? names[i] : "",
3814             s->mr == root ? " [ROOT]" : "",
3815             s == d->mru_section ? " [MRU]" : "",
3816             s->mr->is_iommu ? " [iommu]" : "");
3817 
3818         if (s->mr->alias) {
3819             qemu_printf(" alias=%s", s->mr->alias->name ?
3820                     s->mr->alias->name : "noname");
3821         }
3822         qemu_printf("\n");
3823     }
3824 
3825     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3826                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3827     for (i = 0; i < d->map.nodes_nb; ++i) {
3828         int j, jprev;
3829         PhysPageEntry prev;
3830         Node *n = d->map.nodes + i;
3831 
3832         qemu_printf("      [%d]\n", i);
3833 
3834         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3835             PhysPageEntry *pe = *n + j;
3836 
3837             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3838                 continue;
3839             }
3840 
3841             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3842 
3843             jprev = j;
3844             prev = *pe;
3845         }
3846 
3847         if (jprev != ARRAY_SIZE(*n)) {
3848             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3849         }
3850     }
3851 }
3852 
3853 /* Require any discards to work. */
3854 static unsigned int ram_block_discard_required_cnt;
3855 /* Require only coordinated discards to work. */
3856 static unsigned int ram_block_coordinated_discard_required_cnt;
3857 /* Disable any discards. */
3858 static unsigned int ram_block_discard_disabled_cnt;
3859 /* Disable only uncoordinated discards. */
3860 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3861 static QemuMutex ram_block_discard_disable_mutex;
3862 
ram_block_discard_disable_mutex_lock(void)3863 static void ram_block_discard_disable_mutex_lock(void)
3864 {
3865     static gsize initialized;
3866 
3867     if (g_once_init_enter(&initialized)) {
3868         qemu_mutex_init(&ram_block_discard_disable_mutex);
3869         g_once_init_leave(&initialized, 1);
3870     }
3871     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3872 }
3873 
ram_block_discard_disable_mutex_unlock(void)3874 static void ram_block_discard_disable_mutex_unlock(void)
3875 {
3876     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3877 }
3878 
ram_block_discard_disable(bool state)3879 int ram_block_discard_disable(bool state)
3880 {
3881     int ret = 0;
3882 
3883     ram_block_discard_disable_mutex_lock();
3884     if (!state) {
3885         ram_block_discard_disabled_cnt--;
3886     } else if (ram_block_discard_required_cnt ||
3887                ram_block_coordinated_discard_required_cnt) {
3888         ret = -EBUSY;
3889     } else {
3890         ram_block_discard_disabled_cnt++;
3891     }
3892     ram_block_discard_disable_mutex_unlock();
3893     return ret;
3894 }
3895 
ram_block_uncoordinated_discard_disable(bool state)3896 int ram_block_uncoordinated_discard_disable(bool state)
3897 {
3898     int ret = 0;
3899 
3900     ram_block_discard_disable_mutex_lock();
3901     if (!state) {
3902         ram_block_uncoordinated_discard_disabled_cnt--;
3903     } else if (ram_block_discard_required_cnt) {
3904         ret = -EBUSY;
3905     } else {
3906         ram_block_uncoordinated_discard_disabled_cnt++;
3907     }
3908     ram_block_discard_disable_mutex_unlock();
3909     return ret;
3910 }
3911 
ram_block_discard_require(bool state)3912 int ram_block_discard_require(bool state)
3913 {
3914     int ret = 0;
3915 
3916     ram_block_discard_disable_mutex_lock();
3917     if (!state) {
3918         ram_block_discard_required_cnt--;
3919     } else if (ram_block_discard_disabled_cnt ||
3920                ram_block_uncoordinated_discard_disabled_cnt) {
3921         ret = -EBUSY;
3922     } else {
3923         ram_block_discard_required_cnt++;
3924     }
3925     ram_block_discard_disable_mutex_unlock();
3926     return ret;
3927 }
3928 
ram_block_coordinated_discard_require(bool state)3929 int ram_block_coordinated_discard_require(bool state)
3930 {
3931     int ret = 0;
3932 
3933     ram_block_discard_disable_mutex_lock();
3934     if (!state) {
3935         ram_block_coordinated_discard_required_cnt--;
3936     } else if (ram_block_discard_disabled_cnt) {
3937         ret = -EBUSY;
3938     } else {
3939         ram_block_coordinated_discard_required_cnt++;
3940     }
3941     ram_block_discard_disable_mutex_unlock();
3942     return ret;
3943 }
3944 
ram_block_discard_is_disabled(void)3945 bool ram_block_discard_is_disabled(void)
3946 {
3947     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3948            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3949 }
3950 
ram_block_discard_is_required(void)3951 bool ram_block_discard_is_required(void)
3952 {
3953     return qatomic_read(&ram_block_discard_required_cnt) ||
3954            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3955 }
3956