xref: /openbmc/qemu/hw/ssi/allwinner-a10-spi.c (revision f774a677507966222624a9b2859f06ede7608100)
1  /*
2   *  Allwinner SPI Bus Serial Interface Emulation
3   *
4   *  Copyright (C) 2024 Strahinja Jankovic <strahinja.p.jankovic@gmail.com>
5   *
6   *  This program is free software; you can redistribute it and/or modify it
7   *  under the terms of the GNU General Public License as published by the
8   *  Free Software Foundation; either version 2 of the License, or
9   *  (at your option) any later version.
10   *
11   *  This program is distributed in the hope that it will be useful, but WITHOUT
12   *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14   *  for more details.
15   *
16   *  You should have received a copy of the GNU General Public License along
17   *  with this program; if not, see <http://www.gnu.org/licenses/>.
18   *
19   * SPDX-License-Identifier: GPL-2.0-or-later
20   */
21  
22  #include "qemu/osdep.h"
23  #include "hw/irq.h"
24  #include "hw/ssi/allwinner-a10-spi.h"
25  #include "migration/vmstate.h"
26  #include "qemu/log.h"
27  #include "qemu/module.h"
28  #include "trace.h"
29  
30  /* Allwinner SPI memory map */
31  #define SPI_RXDATA_REG   0x00 /* receive data register */
32  #define SPI_TXDATA_REG   0x04 /* transmit data register */
33  #define SPI_CTL_REG      0x08 /* control register */
34  #define SPI_INTCTL_REG   0x0c /* interrupt control register */
35  #define SPI_INT_STA_REG  0x10 /* interrupt status register */
36  #define SPI_DMACTL_REG   0x14 /* DMA control register */
37  #define SPI_WAIT_REG     0x18 /* wait clock counter register */
38  #define SPI_CCTL_REG     0x1c /* clock rate control register */
39  #define SPI_BC_REG       0x20 /* burst control register */
40  #define SPI_TC_REG       0x24 /* transmit counter register */
41  #define SPI_FIFO_STA_REG 0x28 /* FIFO status register */
42  
43  /* Data register */
44  #define SPI_DATA_RESET 0
45  
46  /* Control register */
47  #define SPI_CTL_SDC      (1 << 19)
48  #define SPI_CTL_TP_EN    (1 << 18)
49  #define SPI_CTL_SS_LEVEL (1 << 17)
50  #define SPI_CTL_SS_CTRL  (1 << 16)
51  #define SPI_CTL_DHB      (1 << 15)
52  #define SPI_CTL_DDB      (1 << 14)
53  #define SPI_CTL_SS       (3 << 12)
54  #define SPI_CTL_SS_SHIFT 12
55  #define SPI_CTL_RPSM     (1 << 11)
56  #define SPI_CTL_XCH      (1 << 10)
57  #define SPI_CTL_RF_RST   (1 << 9)
58  #define SPI_CTL_TF_RST   (1 << 8)
59  #define SPI_CTL_SSCTL    (1 << 7)
60  #define SPI_CTL_LMTF     (1 << 6)
61  #define SPI_CTL_DMAMC    (1 << 5)
62  #define SPI_CTL_SSPOL    (1 << 4)
63  #define SPI_CTL_POL      (1 << 3)
64  #define SPI_CTL_PHA      (1 << 2)
65  #define SPI_CTL_MODE     (1 << 1)
66  #define SPI_CTL_EN       (1 << 0)
67  #define SPI_CTL_MASK     0xFFFFFu
68  #define SPI_CTL_RESET    0x0002001Cu
69  
70  /* Interrupt control register */
71  #define SPI_INTCTL_SS_INT_EN          (1 << 17)
72  #define SPI_INTCTL_TX_INT_EN          (1 << 16)
73  #define SPI_INTCTL_TF_UR_INT_EN       (1 << 14)
74  #define SPI_INTCTL_TF_OF_INT_EN       (1 << 13)
75  #define SPI_INTCTL_TF_E34_INT_EN      (1 << 12)
76  #define SPI_INTCTL_TF_E14_INT_EN      (1 << 11)
77  #define SPI_INTCTL_TF_FL_INT_EN       (1 << 10)
78  #define SPI_INTCTL_TF_HALF_EMP_INT_EN (1 << 9)
79  #define SPI_INTCTL_TF_EMP_INT_EN      (1 << 8)
80  #define SPI_INTCTL_RF_UR_INT_EN       (1 << 6)
81  #define SPI_INTCTL_RF_OF_INT_EN       (1 << 5)
82  #define SPI_INTCTL_RF_E34_INT_EN      (1 << 4)
83  #define SPI_INTCTL_RF_E14_INT_EN      (1 << 3)
84  #define SPI_INTCTL_RF_FU_INT_EN       (1 << 2)
85  #define SPI_INTCTL_RF_HALF_FU_INT_EN  (1 << 1)
86  #define SPI_INTCTL_RF_RDY_INT_EN      (1 << 0)
87  #define SPI_INTCTL_MASK               0x37F7Fu
88  #define SPI_INTCTL_RESET              0
89  
90  /* Interrupt status register */
91  #define SPI_INT_STA_INT_CBF (1 << 31)
92  #define SPI_INT_STA_SSI     (1 << 17)
93  #define SPI_INT_STA_TC      (1 << 16)
94  #define SPI_INT_STA_TU      (1 << 14)
95  #define SPI_INT_STA_TO      (1 << 13)
96  #define SPI_INT_STA_TE34    (1 << 12)
97  #define SPI_INT_STA_TE14    (1 << 11)
98  #define SPI_INT_STA_TF      (1 << 10)
99  #define SPI_INT_STA_THE     (1 << 9)
100  #define SPI_INT_STA_TE      (1 << 8)
101  #define SPI_INT_STA_RU      (1 << 6)
102  #define SPI_INT_STA_RO      (1 << 5)
103  #define SPI_INT_STA_RF34    (1 << 4)
104  #define SPI_INT_STA_RF14    (1 << 3)
105  #define SPI_INT_STA_RF      (1 << 2)
106  #define SPI_INT_STA_RHF     (1 << 1)
107  #define SPI_INT_STA_RR      (1 << 0)
108  #define SPI_INT_STA_MASK    0x80037F7Fu
109  #define SPI_INT_STA_RESET   0x00001B00u
110  
111  /* DMA control register - not implemented */
112  #define SPI_DMACTL_RESET 0
113  
114  /* Wait clock register */
115  #define SPI_WAIT_REG_WCC_MASK 0xFFFFu
116  #define SPI_WAIT_RESET        0
117  
118  /* Clock control register - not implemented */
119  #define SPI_CCTL_RESET 2
120  
121  /* Burst count register */
122  #define SPI_BC_BC_MASK 0xFFFFFFu
123  #define SPI_BC_RESET   0
124  
125  /* Transmi counter register */
126  #define SPI_TC_WTC_MASK 0xFFFFFFu
127  #define SPI_TC_RESET    0
128  
129  /* FIFO status register */
130  #define SPI_FIFO_STA_CNT_MASK     0x7F
131  #define SPI_FIFO_STA_TF_CNT_SHIFT 16
132  #define SPI_FIFO_STA_RF_CNT_SHIFT 0
133  #define SPI_FIFO_STA_RESET        0
134  
135  #define REG_INDEX(offset)         (offset / sizeof(uint32_t))
136  
137  
allwinner_a10_spi_get_regname(unsigned offset)138  static const char *allwinner_a10_spi_get_regname(unsigned offset)
139  {
140      switch (offset) {
141      case SPI_RXDATA_REG:
142          return "RXDATA";
143      case SPI_TXDATA_REG:
144          return "TXDATA";
145      case SPI_CTL_REG:
146          return "CTL";
147      case SPI_INTCTL_REG:
148          return "INTCTL";
149      case SPI_INT_STA_REG:
150          return "INT_STA";
151      case SPI_DMACTL_REG:
152          return "DMACTL";
153      case SPI_WAIT_REG:
154          return "WAIT";
155      case SPI_CCTL_REG:
156          return "CCTL";
157      case SPI_BC_REG:
158          return "BC";
159      case SPI_TC_REG:
160          return "TC";
161      case SPI_FIFO_STA_REG:
162          return "FIFO_STA";
163      default:
164          return "[?]";
165      }
166  }
167  
allwinner_a10_spi_is_enabled(AWA10SPIState * s)168  static bool allwinner_a10_spi_is_enabled(AWA10SPIState *s)
169  {
170      return s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_EN;
171  }
172  
allwinner_a10_spi_txfifo_reset(AWA10SPIState * s)173  static void allwinner_a10_spi_txfifo_reset(AWA10SPIState *s)
174  {
175      fifo8_reset(&s->tx_fifo);
176      s->regs[REG_INDEX(SPI_INT_STA_REG)] |= (SPI_INT_STA_TE | SPI_INT_STA_TE14 |
177                                              SPI_INT_STA_THE | SPI_INT_STA_TE34);
178      s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~(SPI_INT_STA_TU | SPI_INT_STA_TO);
179  }
180  
allwinner_a10_spi_rxfifo_reset(AWA10SPIState * s)181  static void allwinner_a10_spi_rxfifo_reset(AWA10SPIState *s)
182  {
183      fifo8_reset(&s->rx_fifo);
184      s->regs[REG_INDEX(SPI_INT_STA_REG)] &=
185          ~(SPI_INT_STA_RU | SPI_INT_STA_RO | SPI_INT_STA_RF | SPI_INT_STA_RR |
186            SPI_INT_STA_RHF | SPI_INT_STA_RF14 | SPI_INT_STA_RF34);
187  }
188  
allwinner_a10_spi_selected_channel(AWA10SPIState * s)189  static uint8_t allwinner_a10_spi_selected_channel(AWA10SPIState *s)
190  {
191      return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SS) >> SPI_CTL_SS_SHIFT;
192  }
193  
allwinner_a10_spi_reset_hold(Object * obj,ResetType type)194  static void allwinner_a10_spi_reset_hold(Object *obj, ResetType type)
195  {
196      AWA10SPIState *s = AW_A10_SPI(obj);
197  
198      s->regs[REG_INDEX(SPI_RXDATA_REG)] = SPI_DATA_RESET;
199      s->regs[REG_INDEX(SPI_TXDATA_REG)] = SPI_DATA_RESET;
200      s->regs[REG_INDEX(SPI_CTL_REG)] = SPI_CTL_RESET;
201      s->regs[REG_INDEX(SPI_INTCTL_REG)] = SPI_INTCTL_RESET;
202      s->regs[REG_INDEX(SPI_INT_STA_REG)] = SPI_INT_STA_RESET;
203      s->regs[REG_INDEX(SPI_DMACTL_REG)] = SPI_DMACTL_RESET;
204      s->regs[REG_INDEX(SPI_WAIT_REG)] = SPI_WAIT_RESET;
205      s->regs[REG_INDEX(SPI_CCTL_REG)] = SPI_CCTL_RESET;
206      s->regs[REG_INDEX(SPI_BC_REG)] = SPI_BC_RESET;
207      s->regs[REG_INDEX(SPI_TC_REG)] = SPI_TC_RESET;
208      s->regs[REG_INDEX(SPI_FIFO_STA_REG)] = SPI_FIFO_STA_RESET;
209  
210      allwinner_a10_spi_txfifo_reset(s);
211      allwinner_a10_spi_rxfifo_reset(s);
212  }
213  
allwinner_a10_spi_update_irq(AWA10SPIState * s)214  static void allwinner_a10_spi_update_irq(AWA10SPIState *s)
215  {
216      bool level;
217  
218      if (fifo8_is_empty(&s->rx_fifo)) {
219          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RR;
220      } else {
221          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RR;
222      }
223  
224      if (fifo8_num_used(&s->rx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 2)) {
225          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF14;
226      } else {
227          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF14;
228      }
229  
230      if (fifo8_num_used(&s->rx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 1)) {
231          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RHF;
232      } else {
233          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RHF;
234      }
235  
236      if (fifo8_num_free(&s->rx_fifo) <= (AW_A10_SPI_FIFO_SIZE >> 2)) {
237          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF34;
238      } else {
239          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF34;
240      }
241  
242      if (fifo8_is_full(&s->rx_fifo)) {
243          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF;
244      } else {
245          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF;
246      }
247  
248      if (fifo8_is_empty(&s->tx_fifo)) {
249          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE;
250      } else {
251          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE;
252      }
253  
254      if (fifo8_num_free(&s->tx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 2)) {
255          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE14;
256      } else {
257          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE14;
258      }
259  
260      if (fifo8_num_free(&s->tx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 1)) {
261          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_THE;
262      } else {
263          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_THE;
264      }
265  
266      if (fifo8_num_used(&s->tx_fifo) <= (AW_A10_SPI_FIFO_SIZE >> 2)) {
267          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE34;
268      } else {
269          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE34;
270      }
271  
272      if (fifo8_is_full(&s->rx_fifo)) {
273          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TF;
274      } else {
275          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TF;
276      }
277  
278      level = (s->regs[REG_INDEX(SPI_INT_STA_REG)] &
279               s->regs[REG_INDEX(SPI_INTCTL_REG)]) != 0;
280  
281      qemu_set_irq(s->irq, level);
282  
283      trace_allwinner_a10_spi_update_irq(level);
284  }
285  
allwinner_a10_spi_flush_txfifo(AWA10SPIState * s)286  static void allwinner_a10_spi_flush_txfifo(AWA10SPIState *s)
287  {
288      uint32_t burst_count = s->regs[REG_INDEX(SPI_BC_REG)];
289      uint32_t tx_burst = s->regs[REG_INDEX(SPI_TC_REG)];
290      trace_allwinner_a10_spi_burst_length(tx_burst);
291  
292      trace_allwinner_a10_spi_flush_txfifo_begin(fifo8_num_used(&s->tx_fifo),
293                                                 fifo8_num_used(&s->rx_fifo));
294  
295      while (!fifo8_is_empty(&s->tx_fifo)) {
296          uint8_t tx = fifo8_pop(&s->tx_fifo);
297          uint8_t rx = 0;
298          bool fill_rx = true;
299  
300          trace_allwinner_a10_spi_tx(tx);
301  
302          /* Write one byte at a time */
303          rx = ssi_transfer(s->bus, tx);
304  
305          trace_allwinner_a10_spi_rx(rx);
306  
307          /* Check DHB here to determine if RX bytes should be stored */
308          if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_DHB) {
309              /* Store rx bytes only after WTC transfers */
310              if (tx_burst > 0u) {
311                  fill_rx = false;
312                  tx_burst--;
313              }
314          }
315  
316          if (fill_rx) {
317              if (fifo8_is_full(&s->rx_fifo)) {
318                  s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF;
319              } else {
320                  fifo8_push(&s->rx_fifo, rx);
321              }
322          }
323  
324          allwinner_a10_spi_update_irq(s);
325  
326          burst_count--;
327  
328          if (burst_count == 0) {
329              s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TC;
330              s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_XCH;
331              break;
332          }
333      }
334  
335      if (fifo8_is_empty(&s->tx_fifo)) {
336          s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TC;
337          s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_XCH;
338      }
339  
340      trace_allwinner_a10_spi_flush_txfifo_end(fifo8_num_used(&s->tx_fifo),
341                                               fifo8_num_used(&s->rx_fifo));
342  }
343  
allwinner_a10_spi_read(void * opaque,hwaddr offset,unsigned size)344  static uint64_t allwinner_a10_spi_read(void *opaque, hwaddr offset,
345                                         unsigned size)
346  {
347      uint32_t value = 0;
348      AWA10SPIState *s = opaque;
349      uint32_t index = offset >> 2;
350  
351      if (offset > SPI_FIFO_STA_REG) {
352          qemu_log_mask(LOG_GUEST_ERROR,
353                        "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n",
354                        TYPE_AW_A10_SPI, __func__, offset);
355          return 0;
356      }
357  
358      value = s->regs[index];
359  
360      if (allwinner_a10_spi_is_enabled(s)) {
361          switch (offset) {
362          case SPI_RXDATA_REG:
363              if (fifo8_is_empty(&s->rx_fifo)) {
364                  /* value is undefined */
365                  value = 0xdeadbeef;
366              } else {
367                  /* read from the RX FIFO */
368                  value = fifo8_pop(&s->rx_fifo);
369              }
370              break;
371          case SPI_TXDATA_REG:
372              qemu_log_mask(LOG_GUEST_ERROR,
373                            "[%s]%s: Trying to read from TX FIFO\n",
374                            TYPE_AW_A10_SPI, __func__);
375  
376              /* Reading from TXDATA gives 0 */
377              break;
378          case SPI_FIFO_STA_REG:
379              /* Read current tx/rx fifo data count */
380              value = fifo8_num_used(&s->tx_fifo) << SPI_FIFO_STA_TF_CNT_SHIFT |
381                      fifo8_num_used(&s->rx_fifo) << SPI_FIFO_STA_RF_CNT_SHIFT;
382              break;
383          case SPI_CTL_REG:
384          case SPI_INTCTL_REG:
385          case SPI_INT_STA_REG:
386          case SPI_DMACTL_REG:
387          case SPI_WAIT_REG:
388          case SPI_CCTL_REG:
389          case SPI_BC_REG:
390          case SPI_TC_REG:
391              break;
392          default:
393              qemu_log_mask(LOG_GUEST_ERROR,
394                      "%s: bad offset 0x%x\n", __func__,
395                      (uint32_t)offset);
396              break;
397          }
398  
399          allwinner_a10_spi_update_irq(s);
400      }
401      trace_allwinner_a10_spi_read(allwinner_a10_spi_get_regname(offset), value);
402  
403      return value;
404  }
405  
allwinner_a10_spi_update_cs_level(AWA10SPIState * s,int cs_line_nr)406  static bool allwinner_a10_spi_update_cs_level(AWA10SPIState *s, int cs_line_nr)
407  {
408      if (cs_line_nr == allwinner_a10_spi_selected_channel(s)) {
409          return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SS_LEVEL) != 0;
410      } else {
411          return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SSPOL) != 0;
412      }
413  }
414  
allwinner_a10_spi_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)415  static void allwinner_a10_spi_write(void *opaque, hwaddr offset, uint64_t value,
416                                      unsigned size)
417  {
418      AWA10SPIState *s = opaque;
419      uint32_t index = offset >> 2;
420      int i = 0;
421  
422      if (offset > SPI_FIFO_STA_REG) {
423          qemu_log_mask(LOG_GUEST_ERROR,
424                        "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n",
425                        TYPE_AW_A10_SPI, __func__, offset);
426          return;
427      }
428  
429      trace_allwinner_a10_spi_write(allwinner_a10_spi_get_regname(offset),
430                                    (uint32_t)value);
431  
432      if (!allwinner_a10_spi_is_enabled(s)) {
433          /* Block is disabled */
434          if (offset != SPI_CTL_REG) {
435              /* Ignore access */
436              return;
437          }
438      }
439  
440      switch (offset) {
441      case SPI_RXDATA_REG:
442          qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
443                        TYPE_AW_A10_SPI, __func__);
444          break;
445      case SPI_TXDATA_REG:
446          if (fifo8_is_full(&s->tx_fifo)) {
447              /* Ignore writes if queue is full */
448              break;
449          }
450  
451          fifo8_push(&s->tx_fifo, (uint8_t)value);
452  
453          break;
454      case SPI_INT_STA_REG:
455          /* Handle W1C bits - everything except SPI_INT_STA_INT_CBF. */
456          value &= ~SPI_INT_STA_INT_CBF;
457          s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~(value & SPI_INT_STA_MASK);
458          break;
459      case SPI_CTL_REG:
460          s->regs[REG_INDEX(SPI_CTL_REG)] = value;
461  
462          for (i = 0; i < AW_A10_SPI_CS_LINES_NR; i++) {
463              qemu_set_irq(
464                  s->cs_lines[i],
465                  allwinner_a10_spi_update_cs_level(s, i));
466          }
467  
468          if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_XCH) {
469              /* Request to start emitting */
470              allwinner_a10_spi_flush_txfifo(s);
471          }
472          if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_TF_RST) {
473              allwinner_a10_spi_txfifo_reset(s);
474              s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_TF_RST;
475          }
476          if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_RF_RST) {
477              allwinner_a10_spi_rxfifo_reset(s);
478              s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_RF_RST;
479          }
480          break;
481      case SPI_INTCTL_REG:
482      case SPI_DMACTL_REG:
483      case SPI_WAIT_REG:
484      case SPI_CCTL_REG:
485      case SPI_BC_REG:
486      case SPI_TC_REG:
487      case SPI_FIFO_STA_REG:
488          s->regs[index] = value;
489          break;
490      default:
491          qemu_log_mask(LOG_GUEST_ERROR,
492              "%s: bad offset 0x%x\n", __func__,
493              (uint32_t)offset);
494          break;
495      }
496  
497      allwinner_a10_spi_update_irq(s);
498  }
499  
500  static const MemoryRegionOps allwinner_a10_spi_ops = {
501      .read = allwinner_a10_spi_read,
502      .write = allwinner_a10_spi_write,
503      .valid.min_access_size = 1,
504      .valid.max_access_size = 4,
505      .endianness = DEVICE_NATIVE_ENDIAN,
506  };
507  
508  static const VMStateDescription allwinner_a10_spi_vmstate = {
509      .name = TYPE_AW_A10_SPI,
510      .version_id = 1,
511      .minimum_version_id = 1,
512      .fields = (const VMStateField[]) {
513          VMSTATE_FIFO8(tx_fifo, AWA10SPIState),
514          VMSTATE_FIFO8(rx_fifo, AWA10SPIState),
515          VMSTATE_UINT32_ARRAY(regs, AWA10SPIState, AW_A10_SPI_REGS_NUM),
516          VMSTATE_END_OF_LIST()
517      }
518  };
519  
allwinner_a10_spi_realize(DeviceState * dev,Error ** errp)520  static void allwinner_a10_spi_realize(DeviceState *dev, Error **errp)
521  {
522      AWA10SPIState *s = AW_A10_SPI(dev);
523      int i = 0;
524  
525      memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_a10_spi_ops, s,
526                            TYPE_AW_A10_SPI, AW_A10_SPI_IOSIZE);
527      sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
528      sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
529  
530      s->bus = ssi_create_bus(dev, "spi");
531      for (i = 0; i < AW_A10_SPI_CS_LINES_NR; i++) {
532          sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
533      }
534      fifo8_create(&s->tx_fifo, AW_A10_SPI_FIFO_SIZE);
535      fifo8_create(&s->rx_fifo, AW_A10_SPI_FIFO_SIZE);
536  }
537  
allwinner_a10_spi_class_init(ObjectClass * klass,void * data)538  static void allwinner_a10_spi_class_init(ObjectClass *klass, void *data)
539  {
540      DeviceClass *dc = DEVICE_CLASS(klass);
541      ResettableClass *rc = RESETTABLE_CLASS(klass);
542  
543      rc->phases.hold = allwinner_a10_spi_reset_hold;
544      dc->vmsd = &allwinner_a10_spi_vmstate;
545      dc->realize = allwinner_a10_spi_realize;
546      dc->desc = "Allwinner A10 SPI Controller";
547  }
548  
549  static const TypeInfo allwinner_a10_spi_type_info = {
550      .name = TYPE_AW_A10_SPI,
551      .parent = TYPE_SYS_BUS_DEVICE,
552      .instance_size = sizeof(AWA10SPIState),
553      .class_init = allwinner_a10_spi_class_init,
554  };
555  
allwinner_a10_spi_register_types(void)556  static void allwinner_a10_spi_register_types(void)
557  {
558      type_register_static(&allwinner_a10_spi_type_info);
559  }
560  
561  type_init(allwinner_a10_spi_register_types)
562