xref: /openbmc/linux/drivers/mtd/spi-nor/spansion.c (revision 71c8f9cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/device.h>
9 #include <linux/errno.h>
10 #include <linux/mtd/spi-nor.h>
11 
12 #include "core.h"
13 
14 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
15 #define USE_CLSR	BIT(0)
16 #define USE_CLPEF	BIT(1)
17 
18 #define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
19 #define SPINOR_OP_CLPEF		0x82	/* Clear program/erase failure flags */
20 #define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
21 #define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
22 #define SPINOR_REG_CYPRESS_VREG			0x00800000
23 #define SPINOR_REG_CYPRESS_STR1			0x0
24 #define SPINOR_REG_CYPRESS_STR1V					\
25 	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
26 #define SPINOR_REG_CYPRESS_CFR1			0x2
27 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN		BIT(1)	/* Quad Enable */
28 #define SPINOR_REG_CYPRESS_CFR2			0x3
29 #define SPINOR_REG_CYPRESS_CFR2V					\
30 	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
31 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK	GENMASK(3, 0)
32 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24	0xb
33 #define SPINOR_REG_CYPRESS_CFR2_ADRBYT		BIT(7)
34 #define SPINOR_REG_CYPRESS_CFR3			0x4
35 #define SPINOR_REG_CYPRESS_CFR3_PGSZ		BIT(4) /* Page size. */
36 #define SPINOR_REG_CYPRESS_CFR5			0x6
37 #define SPINOR_REG_CYPRESS_CFR5_BIT6		BIT(6)
38 #define SPINOR_REG_CYPRESS_CFR5_DDR		BIT(1)
39 #define SPINOR_REG_CYPRESS_CFR5_OPI		BIT(0)
40 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN				\
41 	(SPINOR_REG_CYPRESS_CFR5_BIT6 |	SPINOR_REG_CYPRESS_CFR5_DDR |	\
42 	 SPINOR_REG_CYPRESS_CFR5_OPI)
43 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS	SPINOR_REG_CYPRESS_CFR5_BIT6
44 #define SPINOR_OP_CYPRESS_RD_FAST		0xee
45 #define SPINOR_REG_CYPRESS_ARCFN		0x00000006
46 
47 /* Cypress SPI NOR flash operations. */
48 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
49 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0),		\
50 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
51 		   SPI_MEM_OP_NO_DUMMY,					\
52 		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
53 
54 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf)		\
55 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),		\
56 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
57 		   SPI_MEM_OP_DUMMY(ndummy, 0),				\
58 		   SPI_MEM_OP_DATA_IN(1, buf, 0))
59 
60 #define SPANSION_OP(opcode)						\
61 	SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),				\
62 		   SPI_MEM_OP_NO_ADDR,					\
63 		   SPI_MEM_OP_NO_DUMMY,					\
64 		   SPI_MEM_OP_NO_DATA)
65 
66 /**
67  * struct spansion_nor_params - Spansion private parameters.
68  * @clsr:	Clear Status Register or Clear Program and Erase Failure Flag
69  *		opcode.
70  */
71 struct spansion_nor_params {
72 	u8 clsr;
73 };
74 
75 /**
76  * spansion_nor_clear_sr() - Clear the Status Register.
77  * @nor:	pointer to 'struct spi_nor'.
78  */
spansion_nor_clear_sr(struct spi_nor * nor)79 static void spansion_nor_clear_sr(struct spi_nor *nor)
80 {
81 	const struct spansion_nor_params *priv_params = nor->params->priv;
82 	int ret;
83 
84 	if (nor->spimem) {
85 		struct spi_mem_op op = SPANSION_OP(priv_params->clsr);
86 
87 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
88 
89 		ret = spi_mem_exec_op(nor->spimem, &op);
90 	} else {
91 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
92 						       NULL, 0);
93 	}
94 
95 	if (ret)
96 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
97 }
98 
cypress_nor_sr_ready_and_clear_reg(struct spi_nor * nor,u64 addr)99 static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
100 {
101 	struct spi_nor_flash_parameter *params = nor->params;
102 	struct spi_mem_op op =
103 		CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr,
104 					  0, nor->bouncebuf);
105 	int ret;
106 
107 	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
108 		op.dummy.nbytes = params->rdsr_dummy;
109 		op.data.nbytes = 2;
110 	}
111 
112 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
113 	if (ret)
114 		return ret;
115 
116 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
117 		if (nor->bouncebuf[0] & SR_E_ERR)
118 			dev_err(nor->dev, "Erase Error occurred\n");
119 		else
120 			dev_err(nor->dev, "Programming Error occurred\n");
121 
122 		spansion_nor_clear_sr(nor);
123 
124 		ret = spi_nor_write_disable(nor);
125 		if (ret)
126 			return ret;
127 
128 		return -EIO;
129 	}
130 
131 	return !(nor->bouncebuf[0] & SR_WIP);
132 }
133 /**
134  * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
135  * using Read Any Register command to see if the whole flash is ready for new
136  * commands and clear it if there are any errors.
137  * @nor:	pointer to 'struct spi_nor'.
138  *
139  * Return: 1 if ready, 0 if not ready, -errno on errors.
140  */
cypress_nor_sr_ready_and_clear(struct spi_nor * nor)141 static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
142 {
143 	struct spi_nor_flash_parameter *params = nor->params;
144 	u64 addr;
145 	int ret;
146 	u8 i;
147 
148 	for (i = 0; i < params->n_dice; i++) {
149 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
150 		ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
151 		if (ret < 0)
152 			return ret;
153 		else if (ret == 0)
154 			return 0;
155 	}
156 
157 	return 1;
158 }
159 
cypress_nor_set_memlat(struct spi_nor * nor,u64 addr)160 static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr)
161 {
162 	struct spi_mem_op op;
163 	u8 *buf = nor->bouncebuf;
164 	int ret;
165 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
166 
167 	op = (struct spi_mem_op)
168 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf);
169 
170 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
171 	if (ret)
172 		return ret;
173 
174 	/* Use 24 dummy cycles for memory array reads. */
175 	*buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
176 	*buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK,
177 			   SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24);
178 	op = (struct spi_mem_op)
179 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf);
180 
181 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
182 	if (ret)
183 		return ret;
184 
185 	nor->read_dummy = 24;
186 
187 	return 0;
188 }
189 
cypress_nor_set_octal_dtr_bits(struct spi_nor * nor,u64 addr)190 static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr)
191 {
192 	struct spi_mem_op op;
193 	u8 *buf = nor->bouncebuf;
194 
195 	/* Set the octal and DTR enable bits. */
196 	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
197 	op = (struct spi_mem_op)
198 		CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes,
199 					  addr, 1, buf);
200 
201 	return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
202 }
203 
cypress_nor_octal_dtr_en(struct spi_nor * nor)204 static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
205 {
206 	const struct spi_nor_flash_parameter *params = nor->params;
207 	u8 *buf = nor->bouncebuf;
208 	u64 addr;
209 	int i, ret;
210 
211 	for (i = 0; i < params->n_dice; i++) {
212 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2;
213 		ret = cypress_nor_set_memlat(nor, addr);
214 		if (ret)
215 			return ret;
216 
217 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
218 		ret = cypress_nor_set_octal_dtr_bits(nor, addr);
219 		if (ret)
220 			return ret;
221 	}
222 
223 	/* Read flash ID to make sure the switch was successful. */
224 	ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
225 			      SNOR_PROTO_8_8_8_DTR);
226 	if (ret) {
227 		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
228 		return ret;
229 	}
230 
231 	if (memcmp(buf, nor->info->id, nor->info->id_len))
232 		return -EINVAL;
233 
234 	return 0;
235 }
236 
cypress_nor_set_single_spi_bits(struct spi_nor * nor,u64 addr)237 static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr)
238 {
239 	struct spi_mem_op op;
240 	u8 *buf = nor->bouncebuf;
241 
242 	/*
243 	 * The register is 1-byte wide, but 1-byte transactions are not allowed
244 	 * in 8D-8D-8D mode. Since there is no register at the next location,
245 	 * just initialize the value to 0 and let the transaction go on.
246 	 */
247 	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
248 	buf[1] = 0;
249 	op = (struct spi_mem_op)
250 		CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf);
251 	return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
252 }
253 
cypress_nor_octal_dtr_dis(struct spi_nor * nor)254 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
255 {
256 	const struct spi_nor_flash_parameter *params = nor->params;
257 	u8 *buf = nor->bouncebuf;
258 	u64 addr;
259 	int i, ret;
260 
261 	for (i = 0; i < params->n_dice; i++) {
262 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
263 		ret = cypress_nor_set_single_spi_bits(nor, addr);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	/* Read flash ID to make sure the switch was successful. */
269 	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
270 	if (ret) {
271 		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
272 		return ret;
273 	}
274 
275 	if (memcmp(buf, nor->info->id, nor->info->id_len))
276 		return -EINVAL;
277 
278 	return 0;
279 }
280 
cypress_nor_quad_enable_volatile_reg(struct spi_nor * nor,u64 addr)281 static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
282 {
283 	struct spi_mem_op op;
284 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
285 	u8 cfr1v_written;
286 	int ret;
287 
288 	op = (struct spi_mem_op)
289 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
290 					  nor->bouncebuf);
291 
292 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
293 	if (ret)
294 		return ret;
295 
296 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
297 		return 0;
298 
299 	/* Update the Quad Enable bit. */
300 	nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
301 	op = (struct spi_mem_op)
302 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
303 					  nor->bouncebuf);
304 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
305 	if (ret)
306 		return ret;
307 
308 	cfr1v_written = nor->bouncebuf[0];
309 
310 	/* Read back and check it. */
311 	op = (struct spi_mem_op)
312 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
313 					  nor->bouncebuf);
314 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
315 	if (ret)
316 		return ret;
317 
318 	if (nor->bouncebuf[0] != cfr1v_written) {
319 		dev_err(nor->dev, "CFR1: Read back test failed\n");
320 		return -EIO;
321 	}
322 
323 	return 0;
324 }
325 
326 /**
327  * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
328  *                                      register.
329  * @nor:	pointer to a 'struct spi_nor'
330  *
331  * It is recommended to update volatile registers in the field application due
332  * to a risk of the non-volatile registers corruption by power interrupt. This
333  * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
334  * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
335  * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
336  * also set during Flash power-up.
337  *
338  * Return: 0 on success, -errno otherwise.
339  */
cypress_nor_quad_enable_volatile(struct spi_nor * nor)340 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
341 {
342 	struct spi_nor_flash_parameter *params = nor->params;
343 	u64 addr;
344 	u8 i;
345 	int ret;
346 
347 	for (i = 0; i < params->n_dice; i++) {
348 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
349 		ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
350 		if (ret)
351 			return ret;
352 	}
353 
354 	return 0;
355 }
356 
357 /**
358  * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
359  *                                            (3 or 4-byte) by querying status
360  *                                            register 1 (SR1).
361  * @nor:		pointer to a 'struct spi_nor'
362  * @addr_mode:		ponter to a buffer where we return the determined
363  *			address mode.
364  *
365  * This function tries to determine current address mode by comparing SR1 value
366  * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
367  *
368  * Return: 0 on success, -errno otherwise.
369  */
cypress_nor_determine_addr_mode_by_sr1(struct spi_nor * nor,u8 * addr_mode)370 static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
371 						  u8 *addr_mode)
372 {
373 	struct spi_mem_op op =
374 		CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
375 					  nor->bouncebuf);
376 	bool is3byte, is4byte;
377 	int ret;
378 
379 	ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
380 	if (ret)
381 		return ret;
382 
383 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
384 	if (ret)
385 		return ret;
386 
387 	is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
388 
389 	op = (struct spi_mem_op)
390 		CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
391 					  nor->bouncebuf);
392 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
393 	if (ret)
394 		return ret;
395 
396 	is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
397 
398 	if (is3byte == is4byte)
399 		return -EIO;
400 	if (is3byte)
401 		*addr_mode = 3;
402 	else
403 		*addr_mode = 4;
404 
405 	return 0;
406 }
407 
408 /**
409  * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
410  *                                      current address mode.
411  * @nor:		pointer to a 'struct spi_nor'
412  *
413  * Determine current address mode by reading SR1 with different methods, then
414  * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
415  * address mode.
416  *
417  * Return: 0 on success, -errno otherwise.
418  */
cypress_nor_set_addr_mode_nbytes(struct spi_nor * nor)419 static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
420 {
421 	struct spi_mem_op op;
422 	u8 addr_mode;
423 	int ret;
424 
425 	/*
426 	 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
427 	 * that sets bit-1 in SR1.
428 	 */
429 	ret = spi_nor_write_enable(nor);
430 	if (ret)
431 		return ret;
432 	ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
433 	if (ret) {
434 		ret = spi_nor_set_4byte_addr_mode(nor, true);
435 		if (ret)
436 			return ret;
437 		return spi_nor_write_disable(nor);
438 	}
439 	ret = spi_nor_write_disable(nor);
440 	if (ret)
441 		return ret;
442 
443 	/*
444 	 * Query CFR2V and make sure no contradiction between determined address
445 	 * mode and CFR2V[7].
446 	 */
447 	op = (struct spi_mem_op)
448 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
449 					  0, nor->bouncebuf);
450 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
451 	if (ret)
452 		return ret;
453 
454 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
455 		if (addr_mode != 4)
456 			return spi_nor_set_4byte_addr_mode(nor, true);
457 	} else {
458 		if (addr_mode != 3)
459 			return spi_nor_set_4byte_addr_mode(nor, true);
460 	}
461 
462 	nor->params->addr_nbytes = addr_mode;
463 	nor->params->addr_mode_nbytes = addr_mode;
464 
465 	return 0;
466 }
467 
468 /**
469  * cypress_nor_get_page_size() - Get flash page size configuration.
470  * @nor:	pointer to a 'struct spi_nor'
471  *
472  * The BFPT table advertises a 512B or 256B page size depending on part but the
473  * page size is actually configurable (with the default being 256B). Read from
474  * CFR3V[4] and set the correct size.
475  *
476  * Return: 0 on success, -errno otherwise.
477  */
cypress_nor_get_page_size(struct spi_nor * nor)478 static int cypress_nor_get_page_size(struct spi_nor *nor)
479 {
480 	struct spi_mem_op op =
481 		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
482 					  0, 0, nor->bouncebuf);
483 	struct spi_nor_flash_parameter *params = nor->params;
484 	int ret;
485 	u8 i;
486 
487 	/*
488 	 * Use the minimum common page size configuration. Programming 256-byte
489 	 * under 512-byte page size configuration is safe.
490 	 */
491 	params->page_size = 256;
492 	for (i = 0; i < params->n_dice; i++) {
493 		op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
494 
495 		ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
496 		if (ret)
497 			return ret;
498 
499 		if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
500 			return 0;
501 	}
502 
503 	params->page_size = 512;
504 
505 	return 0;
506 }
507 
cypress_nor_ecc_init(struct spi_nor * nor)508 static void cypress_nor_ecc_init(struct spi_nor *nor)
509 {
510 	/*
511 	 * Programming is supported only in 16-byte ECC data unit granularity.
512 	 * Byte-programming, bit-walking, or multiple program operations to the
513 	 * same ECC data unit without an erase are not allowed.
514 	 */
515 	nor->params->writesize = 16;
516 	nor->flags |= SNOR_F_ECC;
517 }
518 
519 static int
s25fs256t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)520 s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
521 			  const struct sfdp_parameter_header *bfpt_header,
522 			  const struct sfdp_bfpt *bfpt)
523 {
524 	struct spi_mem_op op;
525 	int ret;
526 
527 	ret = cypress_nor_set_addr_mode_nbytes(nor);
528 	if (ret)
529 		return ret;
530 
531 	/* Read Architecture Configuration Register (ARCFN) */
532 	op = (struct spi_mem_op)
533 		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
534 					  SPINOR_REG_CYPRESS_ARCFN, 1,
535 					  nor->bouncebuf);
536 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
537 	if (ret)
538 		return ret;
539 
540 	/* ARCFN value must be 0 if uniform sector is selected  */
541 	if (nor->bouncebuf[0])
542 		return -ENODEV;
543 
544 	return 0;
545 }
546 
s25fs256t_post_sfdp_fixup(struct spi_nor * nor)547 static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
548 {
549 	struct spi_nor_flash_parameter *params = nor->params;
550 
551 	/*
552 	 * S25FS256T does not define the SCCR map, but we would like to use the
553 	 * same code base for both single and multi chip package devices, thus
554 	 * set the vreg_offset and n_dice to be able to do so.
555 	 */
556 	params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL);
557 	if (!params->vreg_offset)
558 		return -ENOMEM;
559 
560 	params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG;
561 	params->n_dice = 1;
562 
563 	/* PP_1_1_4_4B is supported but missing in 4BAIT. */
564 	params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
565 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
566 				SPINOR_OP_PP_1_1_4_4B,
567 				SNOR_PROTO_1_1_4);
568 
569 	return cypress_nor_get_page_size(nor);
570 }
571 
s25fs256t_late_init(struct spi_nor * nor)572 static int s25fs256t_late_init(struct spi_nor *nor)
573 {
574 	cypress_nor_ecc_init(nor);
575 
576 	return 0;
577 }
578 
579 static struct spi_nor_fixups s25fs256t_fixups = {
580 	.post_bfpt = s25fs256t_post_bfpt_fixup,
581 	.post_sfdp = s25fs256t_post_sfdp_fixup,
582 	.late_init = s25fs256t_late_init,
583 };
584 
585 static int
s25hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)586 s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
587 			const struct sfdp_parameter_header *bfpt_header,
588 			const struct sfdp_bfpt *bfpt)
589 {
590 	int ret;
591 
592 	ret = cypress_nor_set_addr_mode_nbytes(nor);
593 	if (ret)
594 		return ret;
595 
596 	/* Replace Quad Enable with volatile version */
597 	nor->params->quad_enable = cypress_nor_quad_enable_volatile;
598 
599 	return 0;
600 }
601 
s25hx_t_post_sfdp_fixup(struct spi_nor * nor)602 static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
603 {
604 	struct spi_nor_flash_parameter *params = nor->params;
605 	struct spi_nor_erase_type *erase_type = params->erase_map.erase_type;
606 	unsigned int i;
607 
608 	if (!params->n_dice || !params->vreg_offset) {
609 		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
610 			__func__);
611 		return -EOPNOTSUPP;
612 	}
613 
614 	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
615 	if (params->size == SZ_256M)
616 		params->n_dice = 2;
617 
618 	/*
619 	 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
620 	 * Convert them to 4byte erase opcodes.
621 	 */
622 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
623 		switch (erase_type[i].opcode) {
624 		case SPINOR_OP_SE:
625 			erase_type[i].opcode = SPINOR_OP_SE_4B;
626 			break;
627 		case SPINOR_OP_BE_4K:
628 			erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
629 			break;
630 		default:
631 			break;
632 		}
633 	}
634 
635 	return cypress_nor_get_page_size(nor);
636 }
637 
s25hx_t_late_init(struct spi_nor * nor)638 static int s25hx_t_late_init(struct spi_nor *nor)
639 {
640 	struct spi_nor_flash_parameter *params = nor->params;
641 
642 	/* Fast Read 4B requires mode cycles */
643 	params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
644 	params->ready = cypress_nor_sr_ready_and_clear;
645 	cypress_nor_ecc_init(nor);
646 
647 	return 0;
648 }
649 
650 static struct spi_nor_fixups s25hx_t_fixups = {
651 	.post_bfpt = s25hx_t_post_bfpt_fixup,
652 	.post_sfdp = s25hx_t_post_sfdp_fixup,
653 	.late_init = s25hx_t_late_init,
654 };
655 
656 /**
657  * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes.
658  * @nor:		pointer to a 'struct spi_nor'
659  * @enable:              whether to enable or disable Octal DTR
660  *
661  * This also sets the memory access latency cycles to 24 to allow the flash to
662  * run at up to 200MHz.
663  *
664  * Return: 0 on success, -errno otherwise.
665  */
cypress_nor_set_octal_dtr(struct spi_nor * nor,bool enable)666 static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
667 {
668 	return enable ? cypress_nor_octal_dtr_en(nor) :
669 			cypress_nor_octal_dtr_dis(nor);
670 }
671 
s28hx_t_post_sfdp_fixup(struct spi_nor * nor)672 static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
673 {
674 	struct spi_nor_flash_parameter *params = nor->params;
675 
676 	if (!params->n_dice || !params->vreg_offset) {
677 		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
678 			__func__);
679 		return -EOPNOTSUPP;
680 	}
681 
682 	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
683 	if (params->size == SZ_256M)
684 		params->n_dice = 2;
685 
686 	/*
687 	 * On older versions of the flash the xSPI Profile 1.0 table has the
688 	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
689 	 */
690 	if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
691 		params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
692 			SPINOR_OP_CYPRESS_RD_FAST;
693 
694 	/* This flash is also missing the 4-byte Page Program opcode bit. */
695 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
696 				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
697 	/*
698 	 * Since xSPI Page Program opcode is backward compatible with
699 	 * Legacy SPI, use Legacy SPI opcode there as well.
700 	 */
701 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
702 				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
703 
704 	/*
705 	 * The xSPI Profile 1.0 table advertises the number of additional
706 	 * address bytes needed for Read Status Register command as 0 but the
707 	 * actual value for that is 4.
708 	 */
709 	params->rdsr_addr_nbytes = 4;
710 
711 	return cypress_nor_get_page_size(nor);
712 }
713 
s28hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)714 static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
715 				   const struct sfdp_parameter_header *bfpt_header,
716 				   const struct sfdp_bfpt *bfpt)
717 {
718 	return cypress_nor_set_addr_mode_nbytes(nor);
719 }
720 
s28hx_t_late_init(struct spi_nor * nor)721 static int s28hx_t_late_init(struct spi_nor *nor)
722 {
723 	struct spi_nor_flash_parameter *params = nor->params;
724 
725 	params->set_octal_dtr = cypress_nor_set_octal_dtr;
726 	params->ready = cypress_nor_sr_ready_and_clear;
727 	cypress_nor_ecc_init(nor);
728 
729 	return 0;
730 }
731 
732 static const struct spi_nor_fixups s28hx_t_fixups = {
733 	.post_sfdp = s28hx_t_post_sfdp_fixup,
734 	.post_bfpt = s28hx_t_post_bfpt_fixup,
735 	.late_init = s28hx_t_late_init,
736 };
737 
738 static int
s25fs_s_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)739 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
740 			     const struct sfdp_parameter_header *bfpt_header,
741 			     const struct sfdp_bfpt *bfpt)
742 {
743 	/*
744 	 * The S25FS-S chip family reports 512-byte pages in BFPT but
745 	 * in reality the write buffer still wraps at the safe default
746 	 * of 256 bytes.  Overwrite the page size advertised by BFPT
747 	 * to get the writes working.
748 	 */
749 	nor->params->page_size = 256;
750 
751 	return 0;
752 }
753 
754 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
755 	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
756 };
757 
758 static const struct flash_info spansion_nor_parts[] = {
759 	/* Spansion/Cypress -- single (large) sector size only, at least
760 	 * for the chips listed here (without boot sectors).
761 	 */
762 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64)
763 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
764 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128)
765 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
766 	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
767 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
768 		MFR_FLAGS(USE_CLSR)
769 	},
770 	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
771 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
772 		MFR_FLAGS(USE_CLSR)
773 	},
774 	{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
775 		NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
776 			      SPI_NOR_QUAD_READ)
777 		MFR_FLAGS(USE_CLSR)
778 	},
779 	{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
780 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
781 		MFR_FLAGS(USE_CLSR)
782 	},
783 	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
784 		FLAGS(SPI_NOR_HAS_LOCK)
785 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
786 		MFR_FLAGS(USE_CLSR)
787 	},
788 	{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
789 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
790 		MFR_FLAGS(USE_CLSR)
791 		.fixups = &s25fs_s_nor_fixups, },
792 	{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
793 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
794 		MFR_FLAGS(USE_CLSR)
795 	},
796 	{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
797 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
798 		MFR_FLAGS(USE_CLSR)
799 	},
800 	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
801 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
802 		MFR_FLAGS(USE_CLSR)
803 		.fixups = &s25fs_s_nor_fixups, },
804 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64) },
805 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256) },
806 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64)
807 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
808 		MFR_FLAGS(USE_CLSR)
809 	},
810 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256)
811 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
812 		MFR_FLAGS(USE_CLSR)
813 	},
814 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8) },
815 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16) },
816 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32) },
817 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64) },
818 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128) },
819 	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8)
820 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
821 			      SPI_NOR_QUAD_READ) },
822 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16)
823 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
824 			      SPI_NOR_QUAD_READ) },
825 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32)
826 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
827 			      SPI_NOR_QUAD_READ) },
828 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128)
829 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
830 			      SPI_NOR_QUAD_READ) },
831 	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32)
832 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
833 			      SPI_NOR_QUAD_READ) },
834 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64)
835 		NO_SFDP_FLAGS(SECT_4K) },
836 	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128)
837 		NO_SFDP_FLAGS(SECT_4K) },
838 	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8)
839 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
840 	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16)
841 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
842 	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128)
843 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
844 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
845 	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256)
846 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
847 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
848 	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512)
849 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
850 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
851 	{ "s25fs256t",  INFO6(0x342b19, 0x0f0890, 0, 0)
852 		PARSE_SFDP
853 		MFR_FLAGS(USE_CLPEF)
854 		.fixups = &s25fs256t_fixups },
855 	{ "s25hl512t",  INFO6(0x342a1a, 0x0f0390, 0, 0)
856 		PARSE_SFDP
857 		MFR_FLAGS(USE_CLPEF)
858 		.fixups = &s25hx_t_fixups },
859 	{ "s25hl01gt",  INFO6(0x342a1b, 0x0f0390, 0, 0)
860 		PARSE_SFDP
861 		MFR_FLAGS(USE_CLPEF)
862 		.fixups = &s25hx_t_fixups },
863 	{ "s25hl02gt",  INFO6(0x342a1c, 0x0f0090, 0, 0)
864 		PARSE_SFDP
865 		MFR_FLAGS(USE_CLPEF)
866 		FLAGS(NO_CHIP_ERASE)
867 		.fixups = &s25hx_t_fixups },
868 	{ "s25hs512t",  INFO6(0x342b1a, 0x0f0390, 0, 0)
869 		PARSE_SFDP
870 		MFR_FLAGS(USE_CLPEF)
871 		.fixups = &s25hx_t_fixups },
872 	{ "s25hs01gt",  INFO6(0x342b1b, 0x0f0390, 0, 0)
873 		PARSE_SFDP
874 		MFR_FLAGS(USE_CLPEF)
875 		.fixups = &s25hx_t_fixups },
876 	{ "s25hs02gt",  INFO6(0x342b1c, 0x0f0090, 0, 0)
877 		PARSE_SFDP
878 		MFR_FLAGS(USE_CLPEF)
879 		FLAGS(NO_CHIP_ERASE)
880 		.fixups = &s25hx_t_fixups },
881 	{ "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
882 		FLAGS(SPI_NOR_NO_ERASE) },
883 	{ "s28hl512t",   INFO(0x345a1a,      0, 0, 0)
884 		PARSE_SFDP
885 		MFR_FLAGS(USE_CLPEF)
886 		.fixups = &s28hx_t_fixups,
887 	},
888 	{ "s28hl01gt",   INFO(0x345a1b,      0, 0, 0)
889 		PARSE_SFDP
890 		MFR_FLAGS(USE_CLPEF)
891 		.fixups = &s28hx_t_fixups,
892 	},
893 	{ "s28hs512t",   INFO(0x345b1a,      0, 0, 0)
894 		PARSE_SFDP
895 		MFR_FLAGS(USE_CLPEF)
896 		.fixups = &s28hx_t_fixups,
897 	},
898 	{ "s28hs01gt",   INFO(0x345b1b,      0, 0, 0)
899 		PARSE_SFDP
900 		MFR_FLAGS(USE_CLPEF)
901 		.fixups = &s28hx_t_fixups,
902 	},
903 	{ "s28hs02gt",   INFO(0x345b1c,      0, 0, 0)
904 		PARSE_SFDP
905 		MFR_FLAGS(USE_CLPEF)
906 		.fixups = &s28hx_t_fixups,
907 	},
908 };
909 
910 /**
911  * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
912  * flash is ready for new commands and clear it if there are any errors.
913  * @nor:	pointer to 'struct spi_nor'.
914  *
915  * Return: 1 if ready, 0 if not ready, -errno on errors.
916  */
spansion_nor_sr_ready_and_clear(struct spi_nor * nor)917 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
918 {
919 	int ret;
920 
921 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
922 	if (ret)
923 		return ret;
924 
925 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
926 		if (nor->bouncebuf[0] & SR_E_ERR)
927 			dev_err(nor->dev, "Erase Error occurred\n");
928 		else
929 			dev_err(nor->dev, "Programming Error occurred\n");
930 
931 		spansion_nor_clear_sr(nor);
932 
933 		/*
934 		 * WEL bit remains set to one when an erase or page program
935 		 * error occurs. Issue a Write Disable command to protect
936 		 * against inadvertent writes that can possibly corrupt the
937 		 * contents of the memory.
938 		 */
939 		ret = spi_nor_write_disable(nor);
940 		if (ret)
941 			return ret;
942 
943 		return -EIO;
944 	}
945 
946 	return !(nor->bouncebuf[0] & SR_WIP);
947 }
948 
spansion_nor_late_init(struct spi_nor * nor)949 static int spansion_nor_late_init(struct spi_nor *nor)
950 {
951 	struct spi_nor_flash_parameter *params = nor->params;
952 	struct spansion_nor_params *priv_params;
953 	u8 mfr_flags = nor->info->mfr_flags;
954 
955 	if (params->size > SZ_16M) {
956 		nor->flags |= SNOR_F_4B_OPCODES;
957 		/* No small sector erase for 4-byte command set */
958 		nor->erase_opcode = SPINOR_OP_SE;
959 		nor->mtd.erasesize = nor->info->sector_size;
960 	}
961 
962 	if (mfr_flags & (USE_CLSR | USE_CLPEF)) {
963 		priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params),
964 					   GFP_KERNEL);
965 		if (!priv_params)
966 			return -ENOMEM;
967 
968 		if (mfr_flags & USE_CLSR)
969 			priv_params->clsr = SPINOR_OP_CLSR;
970 		else if (mfr_flags & USE_CLPEF)
971 			priv_params->clsr = SPINOR_OP_CLPEF;
972 
973 		params->priv = priv_params;
974 		params->ready = spansion_nor_sr_ready_and_clear;
975 	}
976 
977 	return 0;
978 }
979 
980 static const struct spi_nor_fixups spansion_nor_fixups = {
981 	.late_init = spansion_nor_late_init,
982 };
983 
984 const struct spi_nor_manufacturer spi_nor_spansion = {
985 	.name = "spansion",
986 	.parts = spansion_nor_parts,
987 	.nparts = ARRAY_SIZE(spansion_nor_parts),
988 	.fixups = &spansion_nor_fixups,
989 };
990