1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2004 PathScale, Inc
6 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
7 */
8
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <stdbool.h>
12 #include <errno.h>
13 #include <signal.h>
14 #include <string.h>
15 #include <strings.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
18 #include <os.h>
19 #include <sysdep/mcontext.h>
20 #include <um_malloc.h>
21 #include <sys/ucontext.h>
22 #include <timetravel.h>
23
24 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
25 [SIGTRAP] = relay_signal,
26 [SIGFPE] = relay_signal,
27 [SIGILL] = relay_signal,
28 [SIGWINCH] = winch,
29 [SIGBUS] = bus_handler,
30 [SIGSEGV] = segv_handler,
31 [SIGIO] = sigio_handler,
32 };
33
sig_handler_common(int sig,struct siginfo * si,mcontext_t * mc)34 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
35 {
36 struct uml_pt_regs r;
37 int save_errno = errno;
38
39 r.is_user = 0;
40 if (sig == SIGSEGV) {
41 /* For segfaults, we want the data from the sigcontext. */
42 get_regs_from_mc(&r, mc);
43 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
44 }
45
46 /* enable signals if sig isn't IRQ signal */
47 if ((sig != SIGIO) && (sig != SIGWINCH))
48 unblock_signals_trace();
49
50 (*sig_info[sig])(sig, si, &r);
51
52 errno = save_errno;
53 }
54
55 /*
56 * These are the asynchronous signals. SIGPROF is excluded because we want to
57 * be able to profile all of UML, not just the non-critical sections. If
58 * profiling is not thread-safe, then that is not my problem. We can disable
59 * profiling when SMP is enabled in that case.
60 */
61 #define SIGIO_BIT 0
62 #define SIGIO_MASK (1 << SIGIO_BIT)
63
64 #define SIGALRM_BIT 1
65 #define SIGALRM_MASK (1 << SIGALRM_BIT)
66
67 int signals_enabled;
68 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
69 static int signals_blocked, signals_blocked_pending;
70 #endif
71 static unsigned int signals_pending;
72 static unsigned int signals_active = 0;
73
sig_handler(int sig,struct siginfo * si,mcontext_t * mc)74 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
75 {
76 int enabled = signals_enabled;
77
78 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
79 if ((signals_blocked ||
80 __atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) &&
81 (sig == SIGIO)) {
82 /* increment so unblock will do another round */
83 __atomic_add_fetch(&signals_blocked_pending, 1,
84 __ATOMIC_SEQ_CST);
85 return;
86 }
87 #endif
88
89 if (!enabled && (sig == SIGIO)) {
90 /*
91 * In TT_MODE_EXTERNAL, need to still call time-travel
92 * handlers. This will mark signals_pending by itself
93 * (only if necessary.)
94 * Note we won't get here if signals are hard-blocked
95 * (which is handled above), in that case the hard-
96 * unblock will handle things.
97 */
98 if (time_travel_mode == TT_MODE_EXTERNAL)
99 sigio_run_timetravel_handlers();
100 else
101 signals_pending |= SIGIO_MASK;
102 return;
103 }
104
105 block_signals_trace();
106
107 sig_handler_common(sig, si, mc);
108
109 um_set_signals_trace(enabled);
110 }
111
timer_real_alarm_handler(mcontext_t * mc)112 static void timer_real_alarm_handler(mcontext_t *mc)
113 {
114 struct uml_pt_regs regs;
115
116 if (mc != NULL)
117 get_regs_from_mc(®s, mc);
118 else
119 memset(®s, 0, sizeof(regs));
120 timer_handler(SIGALRM, NULL, ®s);
121 }
122
timer_alarm_handler(int sig,struct siginfo * unused_si,mcontext_t * mc)123 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
124 {
125 int enabled;
126
127 enabled = signals_enabled;
128 if (!signals_enabled) {
129 signals_pending |= SIGALRM_MASK;
130 return;
131 }
132
133 block_signals_trace();
134
135 signals_active |= SIGALRM_MASK;
136
137 timer_real_alarm_handler(mc);
138
139 signals_active &= ~SIGALRM_MASK;
140
141 um_set_signals_trace(enabled);
142 }
143
deliver_alarm(void)144 void deliver_alarm(void) {
145 timer_alarm_handler(SIGALRM, NULL, NULL);
146 }
147
timer_set_signal_handler(void)148 void timer_set_signal_handler(void)
149 {
150 set_handler(SIGALRM);
151 }
152
set_sigstack(void * sig_stack,int size)153 void set_sigstack(void *sig_stack, int size)
154 {
155 stack_t stack = {
156 .ss_flags = 0,
157 .ss_sp = sig_stack,
158 .ss_size = size
159 };
160
161 if (sigaltstack(&stack, NULL) != 0)
162 panic("enabling signal stack failed, errno = %d\n", errno);
163 }
164
sigusr1_handler(int sig,struct siginfo * unused_si,mcontext_t * mc)165 static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
166 {
167 uml_pm_wake();
168 }
169
register_pm_wake_signal(void)170 void register_pm_wake_signal(void)
171 {
172 set_handler(SIGUSR1);
173 }
174
175 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
176 [SIGSEGV] = sig_handler,
177 [SIGBUS] = sig_handler,
178 [SIGILL] = sig_handler,
179 [SIGFPE] = sig_handler,
180 [SIGTRAP] = sig_handler,
181
182 [SIGIO] = sig_handler,
183 [SIGWINCH] = sig_handler,
184 [SIGALRM] = timer_alarm_handler,
185
186 [SIGUSR1] = sigusr1_handler,
187 };
188
hard_handler(int sig,siginfo_t * si,void * p)189 static void hard_handler(int sig, siginfo_t *si, void *p)
190 {
191 ucontext_t *uc = p;
192 mcontext_t *mc = &uc->uc_mcontext;
193 unsigned long pending = 1UL << sig;
194
195 do {
196 int nested, bail;
197
198 /*
199 * pending comes back with one bit set for each
200 * interrupt that arrived while setting up the stack,
201 * plus a bit for this interrupt, plus the zero bit is
202 * set if this is a nested interrupt.
203 * If bail is true, then we interrupted another
204 * handler setting up the stack. In this case, we
205 * have to return, and the upper handler will deal
206 * with this interrupt.
207 */
208 bail = to_irq_stack(&pending);
209 if (bail)
210 return;
211
212 nested = pending & 1;
213 pending &= ~1;
214
215 while ((sig = ffs(pending)) != 0){
216 sig--;
217 pending &= ~(1 << sig);
218 (*handlers[sig])(sig, (struct siginfo *)si, mc);
219 }
220
221 /*
222 * Again, pending comes back with a mask of signals
223 * that arrived while tearing down the stack. If this
224 * is non-zero, we just go back, set up the stack
225 * again, and handle the new interrupts.
226 */
227 if (!nested)
228 pending = from_irq_stack(nested);
229 } while (pending);
230 }
231
set_handler(int sig)232 void set_handler(int sig)
233 {
234 struct sigaction action;
235 int flags = SA_SIGINFO | SA_ONSTACK;
236 sigset_t sig_mask;
237
238 action.sa_sigaction = hard_handler;
239
240 /* block irq ones */
241 sigemptyset(&action.sa_mask);
242 sigaddset(&action.sa_mask, SIGIO);
243 sigaddset(&action.sa_mask, SIGWINCH);
244 sigaddset(&action.sa_mask, SIGALRM);
245
246 if (sig == SIGSEGV)
247 flags |= SA_NODEFER;
248
249 if (sigismember(&action.sa_mask, sig))
250 flags |= SA_RESTART; /* if it's an irq signal */
251
252 action.sa_flags = flags;
253 action.sa_restorer = NULL;
254 if (sigaction(sig, &action, NULL) < 0)
255 panic("sigaction failed - errno = %d\n", errno);
256
257 sigemptyset(&sig_mask);
258 sigaddset(&sig_mask, sig);
259 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
260 panic("sigprocmask failed - errno = %d\n", errno);
261 }
262
send_sigio_to_self(void)263 void send_sigio_to_self(void)
264 {
265 kill(os_getpid(), SIGIO);
266 }
267
change_sig(int signal,int on)268 int change_sig(int signal, int on)
269 {
270 sigset_t sigset;
271
272 sigemptyset(&sigset);
273 sigaddset(&sigset, signal);
274 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
275 return -errno;
276
277 return 0;
278 }
279
block_signals(void)280 void block_signals(void)
281 {
282 signals_enabled = 0;
283 /*
284 * This must return with signals disabled, so this barrier
285 * ensures that writes are flushed out before the return.
286 * This might matter if gcc figures out how to inline this and
287 * decides to shuffle this code into the caller.
288 */
289 barrier();
290 }
291
unblock_signals(void)292 void unblock_signals(void)
293 {
294 int save_pending;
295
296 if (signals_enabled == 1)
297 return;
298
299 signals_enabled = 1;
300 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
301 deliver_time_travel_irqs();
302 #endif
303
304 /*
305 * We loop because the IRQ handler returns with interrupts off. So,
306 * interrupts may have arrived and we need to re-enable them and
307 * recheck signals_pending.
308 */
309 while (1) {
310 /*
311 * Save and reset save_pending after enabling signals. This
312 * way, signals_pending won't be changed while we're reading it.
313 *
314 * Setting signals_enabled and reading signals_pending must
315 * happen in this order, so have the barrier here.
316 */
317 barrier();
318
319 save_pending = signals_pending;
320 if (save_pending == 0)
321 return;
322
323 signals_pending = 0;
324
325 /*
326 * We have pending interrupts, so disable signals, as the
327 * handlers expect them off when they are called. They will
328 * be enabled again above. We need to trace this, as we're
329 * expected to be enabling interrupts already, but any more
330 * tracing that happens inside the handlers we call for the
331 * pending signals will mess up the tracing state.
332 */
333 signals_enabled = 0;
334 um_trace_signals_off();
335
336 /*
337 * Deal with SIGIO first because the alarm handler might
338 * schedule, leaving the pending SIGIO stranded until we come
339 * back here.
340 *
341 * SIGIO's handler doesn't use siginfo or mcontext,
342 * so they can be NULL.
343 */
344 if (save_pending & SIGIO_MASK)
345 sig_handler_common(SIGIO, NULL, NULL);
346
347 /* Do not reenter the handler */
348
349 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
350 timer_real_alarm_handler(NULL);
351
352 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
353
354 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
355 return;
356
357 /* Re-enable signals and trace that we're doing so. */
358 um_trace_signals_on();
359 signals_enabled = 1;
360 }
361 }
362
um_set_signals(int enable)363 int um_set_signals(int enable)
364 {
365 int ret;
366 if (signals_enabled == enable)
367 return enable;
368
369 ret = signals_enabled;
370 if (enable)
371 unblock_signals();
372 else block_signals();
373
374 return ret;
375 }
376
um_set_signals_trace(int enable)377 int um_set_signals_trace(int enable)
378 {
379 int ret;
380 if (signals_enabled == enable)
381 return enable;
382
383 ret = signals_enabled;
384 if (enable)
385 unblock_signals_trace();
386 else
387 block_signals_trace();
388
389 return ret;
390 }
391
392 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
mark_sigio_pending(void)393 void mark_sigio_pending(void)
394 {
395 /*
396 * It would seem that this should be atomic so
397 * it isn't a read-modify-write with a signal
398 * that could happen in the middle, losing the
399 * value set by the signal.
400 *
401 * However, this function is only called when in
402 * time-travel=ext simulation mode, in which case
403 * the only signal ever pending is SIGIO, which
404 * is blocked while this can be called, and the
405 * timer signal (SIGALRM) cannot happen.
406 */
407 signals_pending |= SIGIO_MASK;
408 }
409
block_signals_hard(void)410 void block_signals_hard(void)
411 {
412 signals_blocked++;
413 barrier();
414 }
415
unblock_signals_hard(void)416 void unblock_signals_hard(void)
417 {
418 static bool unblocking;
419
420 if (!signals_blocked)
421 panic("unblocking signals while not blocked");
422
423 if (--signals_blocked)
424 return;
425 /*
426 * Must be set to 0 before we check pending so the
427 * SIGIO handler will run as normal unless we're still
428 * going to process signals_blocked_pending.
429 */
430 barrier();
431
432 /*
433 * Note that block_signals_hard()/unblock_signals_hard() can be called
434 * within the unblock_signals()/sigio_run_timetravel_handlers() below.
435 * This would still be prone to race conditions since it's actually a
436 * call _within_ e.g. vu_req_read_message(), where we observed this
437 * issue, which loops. Thus, if the inner call handles the recorded
438 * pending signals, we can get out of the inner call with the real
439 * signal hander no longer blocked, and still have a race. Thus don't
440 * handle unblocking in the inner call, if it happens, but only in
441 * the outermost call - 'unblocking' serves as an ownership for the
442 * signals_blocked_pending decrement.
443 */
444 if (unblocking)
445 return;
446 unblocking = true;
447
448 while (__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) {
449 if (signals_enabled) {
450 /* signals are enabled so we can touch this */
451 signals_pending |= SIGIO_MASK;
452 /*
453 * this is a bit inefficient, but that's
454 * not really important
455 */
456 block_signals();
457 unblock_signals();
458 } else {
459 /*
460 * we need to run time-travel handlers even
461 * if not enabled
462 */
463 sigio_run_timetravel_handlers();
464 }
465
466 /*
467 * The decrement of signals_blocked_pending must be atomic so
468 * that the signal handler will either happen before or after
469 * the decrement, not during a read-modify-write:
470 * - If it happens before, it can increment it and we'll
471 * decrement it and do another round in the loop.
472 * - If it happens after it'll see 0 for both signals_blocked
473 * and signals_blocked_pending and thus run the handler as
474 * usual (subject to signals_enabled, but that's unrelated.)
475 *
476 * Note that a call to unblock_signals_hard() within the calls
477 * to unblock_signals() or sigio_run_timetravel_handlers() above
478 * will do nothing due to the 'unblocking' state, so this cannot
479 * underflow as the only one decrementing will be the outermost
480 * one.
481 */
482 if (__atomic_sub_fetch(&signals_blocked_pending, 1,
483 __ATOMIC_SEQ_CST) < 0)
484 panic("signals_blocked_pending underflow");
485 }
486
487 unblocking = false;
488 }
489 #endif
490
os_is_signal_stack(void)491 int os_is_signal_stack(void)
492 {
493 stack_t ss;
494 sigaltstack(NULL, &ss);
495
496 return ss.ss_flags & SS_ONSTACK;
497 }
498