xref: /openbmc/linux/drivers/net/phy/sfp.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		12
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state;
261 
262 	struct delayed_work poll;
263 	struct delayed_work timeout;
264 	struct mutex sm_mutex;			/* Protects state machine */
265 	unsigned char sm_mod_state;
266 	unsigned char sm_mod_tries_init;
267 	unsigned char sm_mod_tries;
268 	unsigned char sm_dev_state;
269 	unsigned short sm_state;
270 	unsigned char sm_fault_retries;
271 	unsigned char sm_phy_retries;
272 
273 	struct sfp_eeprom_id id;
274 	unsigned int module_power_mW;
275 	unsigned int module_t_start_up;
276 	unsigned int module_t_wait;
277 
278 	unsigned int rate_kbd;
279 	unsigned int rs_threshold_kbd;
280 	unsigned int rs_state_mask;
281 
282 	bool have_a2;
283 	bool tx_fault_ignore;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
sff_module_supported(const struct sfp_eeprom_id * id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
sfp_module_supported(const struct sfp_eeprom_id * id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
sfp_fixup_long_startup(struct sfp * sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
sfp_fixup_ignore_tx_fault(struct sfp * sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 	sfp->tx_fault_ignore = true;
351 }
352 
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359 
sfp_fixup_rollball_proto(struct sfp * sfp,unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365 
sfp_fixup_fs_10gt(struct sfp * sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 	sfp_fixup_10gbaset_30m(sfp);
369 
370 	// These SFPs need 4 seconds before the PHY can be accessed
371 	sfp_fixup_rollball_proto(sfp, 4);
372 }
373 
sfp_fixup_halny_gsfp(struct sfp * sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 	/* Ignore the TX_FAULT and LOS signals on this module.
377 	 * these are possibly used for other purposes on this
378 	 * module, e.g. a serial port.
379 	 */
380 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382 
sfp_fixup_rollball(struct sfp * sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 	// Rollball SFPs need 25 seconds before the PHY can be accessed
386 	sfp_fixup_rollball_proto(sfp, 25);
387 }
388 
sfp_fixup_rollball_cc(struct sfp * sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 	sfp_fixup_rollball(sfp);
392 
393 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
394 	 * burned in EEPROM. For PHY probing we need the correct one.
395 	 */
396 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398 
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 				unsigned long *modes,
401 				unsigned long *interfaces)
402 {
403 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406 
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 				      unsigned long *modes,
409 				      unsigned long *interfaces)
410 {
411 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413 
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 			       unsigned long *modes,
416 			       unsigned long *interfaces)
417 {
418 	/* Copper 2.5G SFP */
419 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 	sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423 
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 				      unsigned long *modes,
426 				      unsigned long *interfaces)
427 {
428 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 	 * types including 10G Ethernet which is not truth. So clear all claimed
430 	 * modes and set only one mode which module supports: 1000baseX_Full.
431 	 */
432 	linkmode_zero(modes);
433 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435 
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440 
441 static const struct sfp_quirk sfp_quirks[] = {
442 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 	// report 2500MBd NRZ in their EEPROM
444 	SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
445 		  sfp_fixup_ignore_tx_fault),
446 
447 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
448 	// NRZ in their EEPROM
449 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
450 		  sfp_fixup_long_startup),
451 
452 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
453 	// Rollball protocol to talk to the PHY.
454 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
455 
456 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
457 	// NRZ in their EEPROM
458 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
459 		  sfp_fixup_ignore_tx_fault),
460 
461 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
462 
463 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
464 	// 2600MBd in their EERPOM
465 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
466 
467 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
468 	// their EEPROM
469 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
470 		  sfp_fixup_ignore_tx_fault),
471 
472 	// FS 2.5G Base-T
473 	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
474 
475 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
476 	// 2500MBd NRZ in their EEPROM
477 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
478 
479 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
480 
481 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
482 	// Rollball protocol to talk to the PHY.
483 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
484 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
485 
486 	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
487 	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
488 
489 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
490 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
491 	SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex),
492 	SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex),
493 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
494 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
495 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
496 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
497 };
498 
sfp_strlen(const char * str,size_t maxlen)499 static size_t sfp_strlen(const char *str, size_t maxlen)
500 {
501 	size_t size, i;
502 
503 	/* Trailing characters should be filled with space chars, but
504 	 * some manufacturers can't read SFF-8472 and use NUL.
505 	 */
506 	for (i = 0, size = 0; i < maxlen; i++)
507 		if (str[i] != ' ' && str[i] != '\0')
508 			size = i + 1;
509 
510 	return size;
511 }
512 
sfp_match(const char * qs,const char * str,size_t len)513 static bool sfp_match(const char *qs, const char *str, size_t len)
514 {
515 	if (!qs)
516 		return true;
517 	if (strlen(qs) != len)
518 		return false;
519 	return !strncmp(qs, str, len);
520 }
521 
sfp_lookup_quirk(const struct sfp_eeprom_id * id)522 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
523 {
524 	const struct sfp_quirk *q;
525 	unsigned int i;
526 	size_t vs, ps;
527 
528 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
529 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
530 
531 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
532 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
533 		    sfp_match(q->part, id->base.vendor_pn, ps))
534 			return q;
535 
536 	return NULL;
537 }
538 
539 static unsigned long poll_jiffies;
540 
sfp_gpio_get_state(struct sfp * sfp)541 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
542 {
543 	unsigned int i, state, v;
544 
545 	for (i = state = 0; i < GPIO_MAX; i++) {
546 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
547 			continue;
548 
549 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
550 		if (v)
551 			state |= BIT(i);
552 	}
553 
554 	return state;
555 }
556 
sff_gpio_get_state(struct sfp * sfp)557 static unsigned int sff_gpio_get_state(struct sfp *sfp)
558 {
559 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
560 }
561 
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)562 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
563 {
564 	unsigned int drive;
565 
566 	if (state & SFP_F_PRESENT)
567 		/* If the module is present, drive the requested signals */
568 		drive = sfp->state_hw_drive;
569 	else
570 		/* Otherwise, let them float to the pull-ups */
571 		drive = 0;
572 
573 	if (sfp->gpio[GPIO_TX_DISABLE]) {
574 		if (drive & SFP_F_TX_DISABLE)
575 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
576 					       state & SFP_F_TX_DISABLE);
577 		else
578 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
579 	}
580 
581 	if (sfp->gpio[GPIO_RS0]) {
582 		if (drive & SFP_F_RS0)
583 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
584 					       state & SFP_F_RS0);
585 		else
586 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
587 	}
588 
589 	if (sfp->gpio[GPIO_RS1]) {
590 		if (drive & SFP_F_RS1)
591 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
592 					       state & SFP_F_RS1);
593 		else
594 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
595 	}
596 }
597 
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)598 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
599 			size_t len)
600 {
601 	struct i2c_msg msgs[2];
602 	u8 bus_addr = a2 ? 0x51 : 0x50;
603 	size_t block_size = sfp->i2c_block_size;
604 	size_t this_len;
605 	int ret;
606 
607 	msgs[0].addr = bus_addr;
608 	msgs[0].flags = 0;
609 	msgs[0].len = 1;
610 	msgs[0].buf = &dev_addr;
611 	msgs[1].addr = bus_addr;
612 	msgs[1].flags = I2C_M_RD;
613 	msgs[1].len = len;
614 	msgs[1].buf = buf;
615 
616 	while (len) {
617 		this_len = len;
618 		if (this_len > block_size)
619 			this_len = block_size;
620 
621 		msgs[1].len = this_len;
622 
623 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
624 		if (ret < 0)
625 			return ret;
626 
627 		if (ret != ARRAY_SIZE(msgs))
628 			break;
629 
630 		msgs[1].buf += this_len;
631 		dev_addr += this_len;
632 		len -= this_len;
633 	}
634 
635 	return msgs[1].buf - (u8 *)buf;
636 }
637 
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)638 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
639 	size_t len)
640 {
641 	struct i2c_msg msgs[1];
642 	u8 bus_addr = a2 ? 0x51 : 0x50;
643 	int ret;
644 
645 	msgs[0].addr = bus_addr;
646 	msgs[0].flags = 0;
647 	msgs[0].len = 1 + len;
648 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
649 	if (!msgs[0].buf)
650 		return -ENOMEM;
651 
652 	msgs[0].buf[0] = dev_addr;
653 	memcpy(&msgs[0].buf[1], buf, len);
654 
655 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
656 
657 	kfree(msgs[0].buf);
658 
659 	if (ret < 0)
660 		return ret;
661 
662 	return ret == ARRAY_SIZE(msgs) ? len : 0;
663 }
664 
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)665 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
666 {
667 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
668 		return -EINVAL;
669 
670 	sfp->i2c = i2c;
671 	sfp->read = sfp_i2c_read;
672 	sfp->write = sfp_i2c_write;
673 
674 	return 0;
675 }
676 
sfp_i2c_mdiobus_create(struct sfp * sfp)677 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
678 {
679 	struct mii_bus *i2c_mii;
680 	int ret;
681 
682 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
683 	if (IS_ERR(i2c_mii))
684 		return PTR_ERR(i2c_mii);
685 
686 	i2c_mii->name = "SFP I2C Bus";
687 	i2c_mii->phy_mask = ~0;
688 
689 	ret = mdiobus_register(i2c_mii);
690 	if (ret < 0) {
691 		mdiobus_free(i2c_mii);
692 		return ret;
693 	}
694 
695 	sfp->i2c_mii = i2c_mii;
696 
697 	return 0;
698 }
699 
sfp_i2c_mdiobus_destroy(struct sfp * sfp)700 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
701 {
702 	mdiobus_unregister(sfp->i2c_mii);
703 	sfp->i2c_mii = NULL;
704 }
705 
706 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)707 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
708 {
709 	return sfp->read(sfp, a2, addr, buf, len);
710 }
711 
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)712 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
713 {
714 	return sfp->write(sfp, a2, addr, buf, len);
715 }
716 
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)717 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
718 {
719 	int ret;
720 	u8 old, v;
721 
722 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
723 	if (ret != sizeof(old))
724 		return ret;
725 
726 	v = (old & ~mask) | (val & mask);
727 	if (v == old)
728 		return sizeof(v);
729 
730 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
731 }
732 
sfp_soft_get_state(struct sfp * sfp)733 static unsigned int sfp_soft_get_state(struct sfp *sfp)
734 {
735 	unsigned int state = 0;
736 	u8 status;
737 	int ret;
738 
739 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
740 	if (ret == sizeof(status)) {
741 		if (status & SFP_STATUS_RX_LOS)
742 			state |= SFP_F_LOS;
743 		if (status & SFP_STATUS_TX_FAULT)
744 			state |= SFP_F_TX_FAULT;
745 	} else {
746 		dev_err_ratelimited(sfp->dev,
747 				    "failed to read SFP soft status: %pe\n",
748 				    ERR_PTR(ret));
749 		/* Preserve the current state */
750 		state = sfp->state;
751 	}
752 
753 	return state & sfp->state_soft_mask;
754 }
755 
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)756 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
757 			       unsigned int soft)
758 {
759 	u8 mask = 0;
760 	u8 val = 0;
761 
762 	if (soft & SFP_F_TX_DISABLE)
763 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
764 	if (state & SFP_F_TX_DISABLE)
765 		val |= SFP_STATUS_TX_DISABLE_FORCE;
766 
767 	if (soft & SFP_F_RS0)
768 		mask |= SFP_STATUS_RS0_SELECT;
769 	if (state & SFP_F_RS0)
770 		val |= SFP_STATUS_RS0_SELECT;
771 
772 	if (mask)
773 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
774 
775 	val = mask = 0;
776 	if (soft & SFP_F_RS1)
777 		mask |= SFP_EXT_STATUS_RS1_SELECT;
778 	if (state & SFP_F_RS1)
779 		val |= SFP_EXT_STATUS_RS1_SELECT;
780 
781 	if (mask)
782 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
783 }
784 
sfp_soft_start_poll(struct sfp * sfp)785 static void sfp_soft_start_poll(struct sfp *sfp)
786 {
787 	const struct sfp_eeprom_id *id = &sfp->id;
788 	unsigned int mask = 0;
789 
790 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
791 		mask |= SFP_F_TX_DISABLE;
792 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
793 		mask |= SFP_F_TX_FAULT;
794 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
795 		mask |= SFP_F_LOS;
796 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
797 		mask |= sfp->rs_state_mask;
798 
799 	mutex_lock(&sfp->st_mutex);
800 	// Poll the soft state for hardware pins we want to ignore
801 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
802 
803 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
804 	    !sfp->need_poll)
805 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
806 	mutex_unlock(&sfp->st_mutex);
807 }
808 
sfp_soft_stop_poll(struct sfp * sfp)809 static void sfp_soft_stop_poll(struct sfp *sfp)
810 {
811 	mutex_lock(&sfp->st_mutex);
812 	sfp->state_soft_mask = 0;
813 	mutex_unlock(&sfp->st_mutex);
814 }
815 
816 /* sfp_get_state() - must be called with st_mutex held, or in the
817  * initialisation path.
818  */
sfp_get_state(struct sfp * sfp)819 static unsigned int sfp_get_state(struct sfp *sfp)
820 {
821 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
822 	unsigned int state;
823 
824 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
825 	if (state & SFP_F_PRESENT && soft)
826 		state |= sfp_soft_get_state(sfp);
827 
828 	return state;
829 }
830 
831 /* sfp_set_state() - must be called with st_mutex held, or in the
832  * initialisation path.
833  */
sfp_set_state(struct sfp * sfp,unsigned int state)834 static void sfp_set_state(struct sfp *sfp, unsigned int state)
835 {
836 	unsigned int soft;
837 
838 	sfp->set_state(sfp, state);
839 
840 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
841 	if (state & SFP_F_PRESENT && soft)
842 		sfp_soft_set_state(sfp, state, soft);
843 }
844 
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)845 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
846 {
847 	mutex_lock(&sfp->st_mutex);
848 	sfp->state = (sfp->state & ~mask) | set;
849 	sfp_set_state(sfp, sfp->state);
850 	mutex_unlock(&sfp->st_mutex);
851 }
852 
sfp_check(void * buf,size_t len)853 static unsigned int sfp_check(void *buf, size_t len)
854 {
855 	u8 *p, check;
856 
857 	for (p = buf, check = 0; len; p++, len--)
858 		check += *p;
859 
860 	return check;
861 }
862 
863 /* hwmon */
864 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)865 static umode_t sfp_hwmon_is_visible(const void *data,
866 				    enum hwmon_sensor_types type,
867 				    u32 attr, int channel)
868 {
869 	const struct sfp *sfp = data;
870 
871 	switch (type) {
872 	case hwmon_temp:
873 		switch (attr) {
874 		case hwmon_temp_min_alarm:
875 		case hwmon_temp_max_alarm:
876 		case hwmon_temp_lcrit_alarm:
877 		case hwmon_temp_crit_alarm:
878 		case hwmon_temp_min:
879 		case hwmon_temp_max:
880 		case hwmon_temp_lcrit:
881 		case hwmon_temp_crit:
882 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
883 				return 0;
884 			fallthrough;
885 		case hwmon_temp_input:
886 		case hwmon_temp_label:
887 			return 0444;
888 		default:
889 			return 0;
890 		}
891 	case hwmon_in:
892 		switch (attr) {
893 		case hwmon_in_min_alarm:
894 		case hwmon_in_max_alarm:
895 		case hwmon_in_lcrit_alarm:
896 		case hwmon_in_crit_alarm:
897 		case hwmon_in_min:
898 		case hwmon_in_max:
899 		case hwmon_in_lcrit:
900 		case hwmon_in_crit:
901 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
902 				return 0;
903 			fallthrough;
904 		case hwmon_in_input:
905 		case hwmon_in_label:
906 			return 0444;
907 		default:
908 			return 0;
909 		}
910 	case hwmon_curr:
911 		switch (attr) {
912 		case hwmon_curr_min_alarm:
913 		case hwmon_curr_max_alarm:
914 		case hwmon_curr_lcrit_alarm:
915 		case hwmon_curr_crit_alarm:
916 		case hwmon_curr_min:
917 		case hwmon_curr_max:
918 		case hwmon_curr_lcrit:
919 		case hwmon_curr_crit:
920 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
921 				return 0;
922 			fallthrough;
923 		case hwmon_curr_input:
924 		case hwmon_curr_label:
925 			return 0444;
926 		default:
927 			return 0;
928 		}
929 	case hwmon_power:
930 		/* External calibration of receive power requires
931 		 * floating point arithmetic. Doing that in the kernel
932 		 * is not easy, so just skip it. If the module does
933 		 * not require external calibration, we can however
934 		 * show receiver power, since FP is then not needed.
935 		 */
936 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
937 		    channel == 1)
938 			return 0;
939 		switch (attr) {
940 		case hwmon_power_min_alarm:
941 		case hwmon_power_max_alarm:
942 		case hwmon_power_lcrit_alarm:
943 		case hwmon_power_crit_alarm:
944 		case hwmon_power_min:
945 		case hwmon_power_max:
946 		case hwmon_power_lcrit:
947 		case hwmon_power_crit:
948 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
949 				return 0;
950 			fallthrough;
951 		case hwmon_power_input:
952 		case hwmon_power_label:
953 			return 0444;
954 		default:
955 			return 0;
956 		}
957 	default:
958 		return 0;
959 	}
960 }
961 
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)962 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
963 {
964 	__be16 val;
965 	int err;
966 
967 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
968 	if (err < 0)
969 		return err;
970 
971 	*value = be16_to_cpu(val);
972 
973 	return 0;
974 }
975 
sfp_hwmon_to_rx_power(long * value)976 static void sfp_hwmon_to_rx_power(long *value)
977 {
978 	*value = DIV_ROUND_CLOSEST(*value, 10);
979 }
980 
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)981 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
982 				long *value)
983 {
984 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
985 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
986 }
987 
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)988 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
989 {
990 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
991 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
992 
993 	if (*value >= 0x8000)
994 		*value -= 0x10000;
995 
996 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
997 }
998 
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)999 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1000 {
1001 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1002 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1003 
1004 	*value = DIV_ROUND_CLOSEST(*value, 10);
1005 }
1006 
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1007 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1008 {
1009 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1010 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1011 
1012 	*value = DIV_ROUND_CLOSEST(*value, 500);
1013 }
1014 
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1015 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1016 {
1017 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1018 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1019 
1020 	*value = DIV_ROUND_CLOSEST(*value, 10);
1021 }
1022 
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1023 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1024 {
1025 	int err;
1026 
1027 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1028 	if (err < 0)
1029 		return err;
1030 
1031 	sfp_hwmon_calibrate_temp(sfp, value);
1032 
1033 	return 0;
1034 }
1035 
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1036 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1037 {
1038 	int err;
1039 
1040 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1041 	if (err < 0)
1042 		return err;
1043 
1044 	sfp_hwmon_calibrate_vcc(sfp, value);
1045 
1046 	return 0;
1047 }
1048 
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1049 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1050 {
1051 	int err;
1052 
1053 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1054 	if (err < 0)
1055 		return err;
1056 
1057 	sfp_hwmon_calibrate_bias(sfp, value);
1058 
1059 	return 0;
1060 }
1061 
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1062 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1063 {
1064 	int err;
1065 
1066 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1067 	if (err < 0)
1068 		return err;
1069 
1070 	sfp_hwmon_calibrate_tx_power(sfp, value);
1071 
1072 	return 0;
1073 }
1074 
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1075 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1076 {
1077 	int err;
1078 
1079 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1080 	if (err < 0)
1081 		return err;
1082 
1083 	sfp_hwmon_to_rx_power(value);
1084 
1085 	return 0;
1086 }
1087 
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1088 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1089 {
1090 	u8 status;
1091 	int err;
1092 
1093 	switch (attr) {
1094 	case hwmon_temp_input:
1095 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1096 
1097 	case hwmon_temp_lcrit:
1098 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1099 		sfp_hwmon_calibrate_temp(sfp, value);
1100 		return 0;
1101 
1102 	case hwmon_temp_min:
1103 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1104 		sfp_hwmon_calibrate_temp(sfp, value);
1105 		return 0;
1106 	case hwmon_temp_max:
1107 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1108 		sfp_hwmon_calibrate_temp(sfp, value);
1109 		return 0;
1110 
1111 	case hwmon_temp_crit:
1112 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1113 		sfp_hwmon_calibrate_temp(sfp, value);
1114 		return 0;
1115 
1116 	case hwmon_temp_lcrit_alarm:
1117 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1118 		if (err < 0)
1119 			return err;
1120 
1121 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1122 		return 0;
1123 
1124 	case hwmon_temp_min_alarm:
1125 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1126 		if (err < 0)
1127 			return err;
1128 
1129 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1130 		return 0;
1131 
1132 	case hwmon_temp_max_alarm:
1133 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1134 		if (err < 0)
1135 			return err;
1136 
1137 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1138 		return 0;
1139 
1140 	case hwmon_temp_crit_alarm:
1141 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1142 		if (err < 0)
1143 			return err;
1144 
1145 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1146 		return 0;
1147 	default:
1148 		return -EOPNOTSUPP;
1149 	}
1150 
1151 	return -EOPNOTSUPP;
1152 }
1153 
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1154 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1155 {
1156 	u8 status;
1157 	int err;
1158 
1159 	switch (attr) {
1160 	case hwmon_in_input:
1161 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1162 
1163 	case hwmon_in_lcrit:
1164 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1165 		sfp_hwmon_calibrate_vcc(sfp, value);
1166 		return 0;
1167 
1168 	case hwmon_in_min:
1169 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1170 		sfp_hwmon_calibrate_vcc(sfp, value);
1171 		return 0;
1172 
1173 	case hwmon_in_max:
1174 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1175 		sfp_hwmon_calibrate_vcc(sfp, value);
1176 		return 0;
1177 
1178 	case hwmon_in_crit:
1179 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1180 		sfp_hwmon_calibrate_vcc(sfp, value);
1181 		return 0;
1182 
1183 	case hwmon_in_lcrit_alarm:
1184 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1185 		if (err < 0)
1186 			return err;
1187 
1188 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1189 		return 0;
1190 
1191 	case hwmon_in_min_alarm:
1192 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1193 		if (err < 0)
1194 			return err;
1195 
1196 		*value = !!(status & SFP_WARN0_VCC_LOW);
1197 		return 0;
1198 
1199 	case hwmon_in_max_alarm:
1200 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1201 		if (err < 0)
1202 			return err;
1203 
1204 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1205 		return 0;
1206 
1207 	case hwmon_in_crit_alarm:
1208 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1209 		if (err < 0)
1210 			return err;
1211 
1212 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1213 		return 0;
1214 	default:
1215 		return -EOPNOTSUPP;
1216 	}
1217 
1218 	return -EOPNOTSUPP;
1219 }
1220 
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1221 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1222 {
1223 	u8 status;
1224 	int err;
1225 
1226 	switch (attr) {
1227 	case hwmon_curr_input:
1228 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1229 
1230 	case hwmon_curr_lcrit:
1231 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1232 		sfp_hwmon_calibrate_bias(sfp, value);
1233 		return 0;
1234 
1235 	case hwmon_curr_min:
1236 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1237 		sfp_hwmon_calibrate_bias(sfp, value);
1238 		return 0;
1239 
1240 	case hwmon_curr_max:
1241 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1242 		sfp_hwmon_calibrate_bias(sfp, value);
1243 		return 0;
1244 
1245 	case hwmon_curr_crit:
1246 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1247 		sfp_hwmon_calibrate_bias(sfp, value);
1248 		return 0;
1249 
1250 	case hwmon_curr_lcrit_alarm:
1251 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1252 		if (err < 0)
1253 			return err;
1254 
1255 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1256 		return 0;
1257 
1258 	case hwmon_curr_min_alarm:
1259 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1260 		if (err < 0)
1261 			return err;
1262 
1263 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1264 		return 0;
1265 
1266 	case hwmon_curr_max_alarm:
1267 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1268 		if (err < 0)
1269 			return err;
1270 
1271 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1272 		return 0;
1273 
1274 	case hwmon_curr_crit_alarm:
1275 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1276 		if (err < 0)
1277 			return err;
1278 
1279 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1280 		return 0;
1281 	default:
1282 		return -EOPNOTSUPP;
1283 	}
1284 
1285 	return -EOPNOTSUPP;
1286 }
1287 
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1288 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1289 {
1290 	u8 status;
1291 	int err;
1292 
1293 	switch (attr) {
1294 	case hwmon_power_input:
1295 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1296 
1297 	case hwmon_power_lcrit:
1298 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1299 		sfp_hwmon_calibrate_tx_power(sfp, value);
1300 		return 0;
1301 
1302 	case hwmon_power_min:
1303 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1304 		sfp_hwmon_calibrate_tx_power(sfp, value);
1305 		return 0;
1306 
1307 	case hwmon_power_max:
1308 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1309 		sfp_hwmon_calibrate_tx_power(sfp, value);
1310 		return 0;
1311 
1312 	case hwmon_power_crit:
1313 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1314 		sfp_hwmon_calibrate_tx_power(sfp, value);
1315 		return 0;
1316 
1317 	case hwmon_power_lcrit_alarm:
1318 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1319 		if (err < 0)
1320 			return err;
1321 
1322 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1323 		return 0;
1324 
1325 	case hwmon_power_min_alarm:
1326 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1327 		if (err < 0)
1328 			return err;
1329 
1330 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1331 		return 0;
1332 
1333 	case hwmon_power_max_alarm:
1334 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1335 		if (err < 0)
1336 			return err;
1337 
1338 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1339 		return 0;
1340 
1341 	case hwmon_power_crit_alarm:
1342 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1343 		if (err < 0)
1344 			return err;
1345 
1346 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1347 		return 0;
1348 	default:
1349 		return -EOPNOTSUPP;
1350 	}
1351 
1352 	return -EOPNOTSUPP;
1353 }
1354 
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1355 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1356 {
1357 	u8 status;
1358 	int err;
1359 
1360 	switch (attr) {
1361 	case hwmon_power_input:
1362 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1363 
1364 	case hwmon_power_lcrit:
1365 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1366 		sfp_hwmon_to_rx_power(value);
1367 		return 0;
1368 
1369 	case hwmon_power_min:
1370 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1371 		sfp_hwmon_to_rx_power(value);
1372 		return 0;
1373 
1374 	case hwmon_power_max:
1375 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1376 		sfp_hwmon_to_rx_power(value);
1377 		return 0;
1378 
1379 	case hwmon_power_crit:
1380 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1381 		sfp_hwmon_to_rx_power(value);
1382 		return 0;
1383 
1384 	case hwmon_power_lcrit_alarm:
1385 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1386 		if (err < 0)
1387 			return err;
1388 
1389 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1390 		return 0;
1391 
1392 	case hwmon_power_min_alarm:
1393 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1394 		if (err < 0)
1395 			return err;
1396 
1397 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1398 		return 0;
1399 
1400 	case hwmon_power_max_alarm:
1401 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1402 		if (err < 0)
1403 			return err;
1404 
1405 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1406 		return 0;
1407 
1408 	case hwmon_power_crit_alarm:
1409 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1410 		if (err < 0)
1411 			return err;
1412 
1413 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1414 		return 0;
1415 	default:
1416 		return -EOPNOTSUPP;
1417 	}
1418 
1419 	return -EOPNOTSUPP;
1420 }
1421 
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1422 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1423 			  u32 attr, int channel, long *value)
1424 {
1425 	struct sfp *sfp = dev_get_drvdata(dev);
1426 
1427 	switch (type) {
1428 	case hwmon_temp:
1429 		return sfp_hwmon_temp(sfp, attr, value);
1430 	case hwmon_in:
1431 		return sfp_hwmon_vcc(sfp, attr, value);
1432 	case hwmon_curr:
1433 		return sfp_hwmon_bias(sfp, attr, value);
1434 	case hwmon_power:
1435 		switch (channel) {
1436 		case 0:
1437 			return sfp_hwmon_tx_power(sfp, attr, value);
1438 		case 1:
1439 			return sfp_hwmon_rx_power(sfp, attr, value);
1440 		default:
1441 			return -EOPNOTSUPP;
1442 		}
1443 	default:
1444 		return -EOPNOTSUPP;
1445 	}
1446 }
1447 
1448 static const char *const sfp_hwmon_power_labels[] = {
1449 	"TX_power",
1450 	"RX_power",
1451 };
1452 
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1453 static int sfp_hwmon_read_string(struct device *dev,
1454 				 enum hwmon_sensor_types type,
1455 				 u32 attr, int channel, const char **str)
1456 {
1457 	switch (type) {
1458 	case hwmon_curr:
1459 		switch (attr) {
1460 		case hwmon_curr_label:
1461 			*str = "bias";
1462 			return 0;
1463 		default:
1464 			return -EOPNOTSUPP;
1465 		}
1466 		break;
1467 	case hwmon_temp:
1468 		switch (attr) {
1469 		case hwmon_temp_label:
1470 			*str = "temperature";
1471 			return 0;
1472 		default:
1473 			return -EOPNOTSUPP;
1474 		}
1475 		break;
1476 	case hwmon_in:
1477 		switch (attr) {
1478 		case hwmon_in_label:
1479 			*str = "VCC";
1480 			return 0;
1481 		default:
1482 			return -EOPNOTSUPP;
1483 		}
1484 		break;
1485 	case hwmon_power:
1486 		switch (attr) {
1487 		case hwmon_power_label:
1488 			*str = sfp_hwmon_power_labels[channel];
1489 			return 0;
1490 		default:
1491 			return -EOPNOTSUPP;
1492 		}
1493 		break;
1494 	default:
1495 		return -EOPNOTSUPP;
1496 	}
1497 
1498 	return -EOPNOTSUPP;
1499 }
1500 
1501 static const struct hwmon_ops sfp_hwmon_ops = {
1502 	.is_visible = sfp_hwmon_is_visible,
1503 	.read = sfp_hwmon_read,
1504 	.read_string = sfp_hwmon_read_string,
1505 };
1506 
1507 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1508 	HWMON_CHANNEL_INFO(chip,
1509 			   HWMON_C_REGISTER_TZ),
1510 	HWMON_CHANNEL_INFO(in,
1511 			   HWMON_I_INPUT |
1512 			   HWMON_I_MAX | HWMON_I_MIN |
1513 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1514 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1515 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1516 			   HWMON_I_LABEL),
1517 	HWMON_CHANNEL_INFO(temp,
1518 			   HWMON_T_INPUT |
1519 			   HWMON_T_MAX | HWMON_T_MIN |
1520 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1521 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1522 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1523 			   HWMON_T_LABEL),
1524 	HWMON_CHANNEL_INFO(curr,
1525 			   HWMON_C_INPUT |
1526 			   HWMON_C_MAX | HWMON_C_MIN |
1527 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1528 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1529 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1530 			   HWMON_C_LABEL),
1531 	HWMON_CHANNEL_INFO(power,
1532 			   /* Transmit power */
1533 			   HWMON_P_INPUT |
1534 			   HWMON_P_MAX | HWMON_P_MIN |
1535 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1536 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1537 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1538 			   HWMON_P_LABEL,
1539 			   /* Receive power */
1540 			   HWMON_P_INPUT |
1541 			   HWMON_P_MAX | HWMON_P_MIN |
1542 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1543 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1544 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1545 			   HWMON_P_LABEL),
1546 	NULL,
1547 };
1548 
1549 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1550 	.ops = &sfp_hwmon_ops,
1551 	.info = sfp_hwmon_info,
1552 };
1553 
sfp_hwmon_probe(struct work_struct * work)1554 static void sfp_hwmon_probe(struct work_struct *work)
1555 {
1556 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1557 	int err;
1558 
1559 	/* hwmon interface needs to access 16bit registers in atomic way to
1560 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1561 	 * possible to guarantee coherency because EEPROM is broken in such way
1562 	 * that does not support atomic 16bit read operation then we have to
1563 	 * skip registration of hwmon device.
1564 	 */
1565 	if (sfp->i2c_block_size < 2) {
1566 		dev_info(sfp->dev,
1567 			 "skipping hwmon device registration due to broken EEPROM\n");
1568 		dev_info(sfp->dev,
1569 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1570 		return;
1571 	}
1572 
1573 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1574 	if (err < 0) {
1575 		if (sfp->hwmon_tries--) {
1576 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1577 					 T_PROBE_RETRY_SLOW);
1578 		} else {
1579 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1580 				 ERR_PTR(err));
1581 		}
1582 		return;
1583 	}
1584 
1585 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1586 	if (IS_ERR(sfp->hwmon_name)) {
1587 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1588 		return;
1589 	}
1590 
1591 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1592 							 sfp->hwmon_name, sfp,
1593 							 &sfp_hwmon_chip_info,
1594 							 NULL);
1595 	if (IS_ERR(sfp->hwmon_dev))
1596 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1597 			PTR_ERR(sfp->hwmon_dev));
1598 }
1599 
sfp_hwmon_insert(struct sfp * sfp)1600 static int sfp_hwmon_insert(struct sfp *sfp)
1601 {
1602 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1603 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1604 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
sfp_hwmon_remove(struct sfp * sfp)1610 static void sfp_hwmon_remove(struct sfp *sfp)
1611 {
1612 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1613 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1614 		hwmon_device_unregister(sfp->hwmon_dev);
1615 		sfp->hwmon_dev = NULL;
1616 		kfree(sfp->hwmon_name);
1617 	}
1618 }
1619 
sfp_hwmon_init(struct sfp * sfp)1620 static int sfp_hwmon_init(struct sfp *sfp)
1621 {
1622 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1623 
1624 	return 0;
1625 }
1626 
sfp_hwmon_exit(struct sfp * sfp)1627 static void sfp_hwmon_exit(struct sfp *sfp)
1628 {
1629 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1630 }
1631 #else
sfp_hwmon_insert(struct sfp * sfp)1632 static int sfp_hwmon_insert(struct sfp *sfp)
1633 {
1634 	return 0;
1635 }
1636 
sfp_hwmon_remove(struct sfp * sfp)1637 static void sfp_hwmon_remove(struct sfp *sfp)
1638 {
1639 }
1640 
sfp_hwmon_init(struct sfp * sfp)1641 static int sfp_hwmon_init(struct sfp *sfp)
1642 {
1643 	return 0;
1644 }
1645 
sfp_hwmon_exit(struct sfp * sfp)1646 static void sfp_hwmon_exit(struct sfp *sfp)
1647 {
1648 }
1649 #endif
1650 
1651 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1652 static void sfp_module_tx_disable(struct sfp *sfp)
1653 {
1654 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1655 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1656 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1657 }
1658 
sfp_module_tx_enable(struct sfp * sfp)1659 static void sfp_module_tx_enable(struct sfp *sfp)
1660 {
1661 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1662 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1663 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1664 }
1665 
1666 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1667 static int sfp_debug_state_show(struct seq_file *s, void *data)
1668 {
1669 	struct sfp *sfp = s->private;
1670 
1671 	seq_printf(s, "Module state: %s\n",
1672 		   mod_state_to_str(sfp->sm_mod_state));
1673 	seq_printf(s, "Module probe attempts: %d %d\n",
1674 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1675 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1676 	seq_printf(s, "Device state: %s\n",
1677 		   dev_state_to_str(sfp->sm_dev_state));
1678 	seq_printf(s, "Main state: %s\n",
1679 		   sm_state_to_str(sfp->sm_state));
1680 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1681 		   sfp->sm_fault_retries);
1682 	seq_printf(s, "PHY probe remaining retries: %d\n",
1683 		   sfp->sm_phy_retries);
1684 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1685 	seq_printf(s, "Rate select threshold: %u kBd\n",
1686 		   sfp->rs_threshold_kbd);
1687 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1688 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1689 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1690 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1691 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1692 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1693 	return 0;
1694 }
1695 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1696 
sfp_debugfs_init(struct sfp * sfp)1697 static void sfp_debugfs_init(struct sfp *sfp)
1698 {
1699 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1700 
1701 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1702 			    &sfp_debug_state_fops);
1703 }
1704 
sfp_debugfs_exit(struct sfp * sfp)1705 static void sfp_debugfs_exit(struct sfp *sfp)
1706 {
1707 	debugfs_remove_recursive(sfp->debugfs_dir);
1708 }
1709 #else
sfp_debugfs_init(struct sfp * sfp)1710 static void sfp_debugfs_init(struct sfp *sfp)
1711 {
1712 }
1713 
sfp_debugfs_exit(struct sfp * sfp)1714 static void sfp_debugfs_exit(struct sfp *sfp)
1715 {
1716 }
1717 #endif
1718 
sfp_module_tx_fault_reset(struct sfp * sfp)1719 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1720 {
1721 	unsigned int state;
1722 
1723 	mutex_lock(&sfp->st_mutex);
1724 	state = sfp->state;
1725 	if (!(state & SFP_F_TX_DISABLE)) {
1726 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1727 
1728 		udelay(T_RESET_US);
1729 
1730 		sfp_set_state(sfp, state);
1731 	}
1732 	mutex_unlock(&sfp->st_mutex);
1733 }
1734 
1735 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1736 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1737 {
1738 	if (timeout)
1739 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1740 				 timeout);
1741 	else
1742 		cancel_delayed_work(&sfp->timeout);
1743 }
1744 
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1745 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1746 			unsigned int timeout)
1747 {
1748 	sfp->sm_state = state;
1749 	sfp_sm_set_timer(sfp, timeout);
1750 }
1751 
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1752 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1753 			    unsigned int timeout)
1754 {
1755 	sfp->sm_mod_state = state;
1756 	sfp_sm_set_timer(sfp, timeout);
1757 }
1758 
sfp_sm_phy_detach(struct sfp * sfp)1759 static void sfp_sm_phy_detach(struct sfp *sfp)
1760 {
1761 	sfp_remove_phy(sfp->sfp_bus);
1762 	phy_device_remove(sfp->mod_phy);
1763 	phy_device_free(sfp->mod_phy);
1764 	sfp->mod_phy = NULL;
1765 }
1766 
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1767 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1768 {
1769 	struct phy_device *phy;
1770 	int err;
1771 
1772 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1773 	if (phy == ERR_PTR(-ENODEV))
1774 		return PTR_ERR(phy);
1775 	if (IS_ERR(phy)) {
1776 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1777 		return PTR_ERR(phy);
1778 	}
1779 
1780 	/* Mark this PHY as being on a SFP module */
1781 	phy->is_on_sfp_module = true;
1782 
1783 	err = phy_device_register(phy);
1784 	if (err) {
1785 		phy_device_free(phy);
1786 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1787 			ERR_PTR(err));
1788 		return err;
1789 	}
1790 
1791 	err = sfp_add_phy(sfp->sfp_bus, phy);
1792 	if (err) {
1793 		phy_device_remove(phy);
1794 		phy_device_free(phy);
1795 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1796 		return err;
1797 	}
1798 
1799 	sfp->mod_phy = phy;
1800 
1801 	return 0;
1802 }
1803 
sfp_sm_link_up(struct sfp * sfp)1804 static void sfp_sm_link_up(struct sfp *sfp)
1805 {
1806 	sfp_link_up(sfp->sfp_bus);
1807 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1808 }
1809 
sfp_sm_link_down(struct sfp * sfp)1810 static void sfp_sm_link_down(struct sfp *sfp)
1811 {
1812 	sfp_link_down(sfp->sfp_bus);
1813 }
1814 
sfp_sm_link_check_los(struct sfp * sfp)1815 static void sfp_sm_link_check_los(struct sfp *sfp)
1816 {
1817 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1818 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1819 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1820 	bool los = false;
1821 
1822 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1823 	 * are set, we assume that no LOS signal is available. If both are
1824 	 * set, we assume LOS is not implemented (and is meaningless.)
1825 	 */
1826 	if (los_options == los_inverted)
1827 		los = !(sfp->state & SFP_F_LOS);
1828 	else if (los_options == los_normal)
1829 		los = !!(sfp->state & SFP_F_LOS);
1830 
1831 	if (los)
1832 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1833 	else
1834 		sfp_sm_link_up(sfp);
1835 }
1836 
sfp_los_event_active(struct sfp * sfp,unsigned int event)1837 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1838 {
1839 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1840 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1841 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1842 
1843 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1844 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1845 }
1846 
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1847 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1848 {
1849 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1850 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1851 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1852 
1853 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1854 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1855 }
1856 
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1857 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1858 {
1859 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1860 		dev_err(sfp->dev,
1861 			"module persistently indicates fault, disabling\n");
1862 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1863 	} else {
1864 		if (warn)
1865 			dev_err(sfp->dev, "module transmit fault indicated\n");
1866 
1867 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1868 	}
1869 }
1870 
sfp_sm_add_mdio_bus(struct sfp * sfp)1871 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1872 {
1873 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1874 		return sfp_i2c_mdiobus_create(sfp);
1875 
1876 	return 0;
1877 }
1878 
1879 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1880  * normally sits at I2C bus address 0x56, and may either be a clause 22
1881  * or clause 45 PHY.
1882  *
1883  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1884  * negotiation enabled, but some may be in 1000base-X - which is for the
1885  * PHY driver to determine.
1886  *
1887  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1888  * mode according to the negotiated line speed.
1889  */
sfp_sm_probe_for_phy(struct sfp * sfp)1890 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1891 {
1892 	int err = 0;
1893 
1894 	switch (sfp->mdio_protocol) {
1895 	case MDIO_I2C_NONE:
1896 		break;
1897 
1898 	case MDIO_I2C_MARVELL_C22:
1899 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1900 		break;
1901 
1902 	case MDIO_I2C_C45:
1903 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1904 		break;
1905 
1906 	case MDIO_I2C_ROLLBALL:
1907 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1908 		break;
1909 	}
1910 
1911 	return err;
1912 }
1913 
sfp_module_parse_power(struct sfp * sfp)1914 static int sfp_module_parse_power(struct sfp *sfp)
1915 {
1916 	u32 power_mW = 1000;
1917 	bool supports_a2;
1918 
1919 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1920 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1921 		power_mW = 1500;
1922 	/* Added in Rev 11.9, but there is no compliance code for this */
1923 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1924 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1925 		power_mW = 2000;
1926 
1927 	/* Power level 1 modules (max. 1W) are always supported. */
1928 	if (power_mW <= 1000) {
1929 		sfp->module_power_mW = power_mW;
1930 		return 0;
1931 	}
1932 
1933 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1934 				SFP_SFF8472_COMPLIANCE_NONE ||
1935 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1936 
1937 	if (power_mW > sfp->max_power_mW) {
1938 		/* Module power specification exceeds the allowed maximum. */
1939 		if (!supports_a2) {
1940 			/* The module appears not to implement bus address
1941 			 * 0xa2, so assume that the module powers up in the
1942 			 * indicated mode.
1943 			 */
1944 			dev_err(sfp->dev,
1945 				"Host does not support %u.%uW modules\n",
1946 				power_mW / 1000, (power_mW / 100) % 10);
1947 			return -EINVAL;
1948 		} else {
1949 			dev_warn(sfp->dev,
1950 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1951 				 power_mW / 1000, (power_mW / 100) % 10);
1952 			return 0;
1953 		}
1954 	}
1955 
1956 	if (!supports_a2) {
1957 		/* The module power level is below the host maximum and the
1958 		 * module appears not to implement bus address 0xa2, so assume
1959 		 * that the module powers up in the indicated mode.
1960 		 */
1961 		return 0;
1962 	}
1963 
1964 	/* If the module requires a higher power mode, but also requires
1965 	 * an address change sequence, warn the user that the module may
1966 	 * not be functional.
1967 	 */
1968 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1969 		dev_warn(sfp->dev,
1970 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1971 			 power_mW / 1000, (power_mW / 100) % 10);
1972 		return 0;
1973 	}
1974 
1975 	sfp->module_power_mW = power_mW;
1976 
1977 	return 0;
1978 }
1979 
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1980 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1981 {
1982 	int err;
1983 
1984 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1985 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1986 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1987 	if (err != sizeof(u8)) {
1988 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1989 			enable ? "en" : "dis", ERR_PTR(err));
1990 		return -EAGAIN;
1991 	}
1992 
1993 	if (enable)
1994 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1995 			 sfp->module_power_mW / 1000,
1996 			 (sfp->module_power_mW / 100) % 10);
1997 
1998 	return 0;
1999 }
2000 
sfp_module_parse_rate_select(struct sfp * sfp)2001 static void sfp_module_parse_rate_select(struct sfp *sfp)
2002 {
2003 	u8 rate_id;
2004 
2005 	sfp->rs_threshold_kbd = 0;
2006 	sfp->rs_state_mask = 0;
2007 
2008 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2009 		/* No support for RateSelect */
2010 		return;
2011 
2012 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2013 	 * rate is not well specified, so always select "Full Bandwidth", but
2014 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2015 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2016 	 * This method exists prior to SFF-8472.
2017 	 */
2018 	sfp->rs_state_mask = SFP_F_RS0;
2019 	sfp->rs_threshold_kbd = 1594;
2020 
2021 	/* Parse the rate identifier, which is complicated due to history:
2022 	 * SFF-8472 rev 9.5 marks this field as reserved.
2023 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2024 	 *  compliance is not required.
2025 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2026 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2027 	 * and even values.
2028 	 */
2029 	rate_id = sfp->id.base.rate_id;
2030 	if (rate_id == 0)
2031 		/* Unspecified */
2032 		return;
2033 
2034 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2035 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2036 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2037 	 */
2038 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2039 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2040 	    rate_id == 3)
2041 		rate_id = SFF_RID_8431;
2042 
2043 	if (rate_id & SFF_RID_8079) {
2044 		/* SFF-8079 RateSelect / Application Select in conjunction with
2045 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2046 		 * with only bit 0 used, which takes precedence over SFF-8472.
2047 		 */
2048 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2049 			/* SFF-8079 Part 1 - rate selection between Fibre
2050 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2051 			 * is high for 2125, so we have to subtract 1 to
2052 			 * include it.
2053 			 */
2054 			sfp->rs_threshold_kbd = 2125 - 1;
2055 			sfp->rs_state_mask = SFP_F_RS0;
2056 		}
2057 		return;
2058 	}
2059 
2060 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2061 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2062 		return;
2063 
2064 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2065 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2066 	 */
2067 	switch (rate_id) {
2068 	case SFF_RID_8431_RX_ONLY:
2069 		sfp->rs_threshold_kbd = 4250;
2070 		sfp->rs_state_mask = SFP_F_RS0;
2071 		break;
2072 
2073 	case SFF_RID_8431_TX_ONLY:
2074 		sfp->rs_threshold_kbd = 4250;
2075 		sfp->rs_state_mask = SFP_F_RS1;
2076 		break;
2077 
2078 	case SFF_RID_8431:
2079 		sfp->rs_threshold_kbd = 4250;
2080 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2081 		break;
2082 
2083 	case SFF_RID_10G8G:
2084 		sfp->rs_threshold_kbd = 9000;
2085 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2086 		break;
2087 	}
2088 }
2089 
2090 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2091  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2092  * not support multibyte reads from the EEPROM. Each multi-byte read
2093  * operation returns just one byte of EEPROM followed by zeros. There is
2094  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2095  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2096  * name and vendor id into EEPROM, so there is even no way to detect if
2097  * module is V-SOL V2801F. Therefore check for those zeros in the read
2098  * data and then based on check switch to reading EEPROM to one byte
2099  * at a time.
2100  */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2101 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2102 {
2103 	size_t i, block_size = sfp->i2c_block_size;
2104 
2105 	/* Already using byte IO */
2106 	if (block_size == 1)
2107 		return false;
2108 
2109 	for (i = 1; i < len; i += block_size) {
2110 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2111 			return false;
2112 	}
2113 	return true;
2114 }
2115 
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2116 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2117 {
2118 	u8 check;
2119 	int err;
2120 
2121 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2122 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2123 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2124 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2125 		id->base.phys_id = SFF8024_ID_SFF_8472;
2126 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2127 		id->base.connector = SFF8024_CONNECTOR_LC;
2128 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2129 		if (err != 3) {
2130 			dev_err(sfp->dev,
2131 				"Failed to rewrite module EEPROM: %pe\n",
2132 				ERR_PTR(err));
2133 			return err;
2134 		}
2135 
2136 		/* Cotsworks modules have been found to require a delay between write operations. */
2137 		mdelay(50);
2138 
2139 		/* Update base structure checksum */
2140 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2141 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2142 		if (err != 1) {
2143 			dev_err(sfp->dev,
2144 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2145 				ERR_PTR(err));
2146 			return err;
2147 		}
2148 	}
2149 	return 0;
2150 }
2151 
sfp_module_parse_sff8472(struct sfp * sfp)2152 static int sfp_module_parse_sff8472(struct sfp *sfp)
2153 {
2154 	/* If the module requires address swap mode, warn about it */
2155 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2156 		dev_warn(sfp->dev,
2157 			 "module address swap to access page 0xA2 is not supported.\n");
2158 	else
2159 		sfp->have_a2 = true;
2160 
2161 	return 0;
2162 }
2163 
sfp_sm_mod_probe(struct sfp * sfp,bool report)2164 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2165 {
2166 	/* SFP module inserted - read I2C data */
2167 	struct sfp_eeprom_id id;
2168 	bool cotsworks_sfbg;
2169 	unsigned int mask;
2170 	bool cotsworks;
2171 	u8 check;
2172 	int ret;
2173 
2174 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2175 
2176 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2177 	if (ret < 0) {
2178 		if (report)
2179 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2180 				ERR_PTR(ret));
2181 		return -EAGAIN;
2182 	}
2183 
2184 	if (ret != sizeof(id.base)) {
2185 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2186 		return -EAGAIN;
2187 	}
2188 
2189 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2190 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2191 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2192 	 * fields, so do not switch to one byte reading at a time unless it
2193 	 * is really required and we have no other option.
2194 	 */
2195 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2196 		dev_info(sfp->dev,
2197 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2198 		dev_info(sfp->dev,
2199 			 "Switching to reading EEPROM to one byte at a time\n");
2200 		sfp->i2c_block_size = 1;
2201 
2202 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2203 		if (ret < 0) {
2204 			if (report)
2205 				dev_err(sfp->dev,
2206 					"failed to read EEPROM: %pe\n",
2207 					ERR_PTR(ret));
2208 			return -EAGAIN;
2209 		}
2210 
2211 		if (ret != sizeof(id.base)) {
2212 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2213 				ERR_PTR(ret));
2214 			return -EAGAIN;
2215 		}
2216 	}
2217 
2218 	/* Cotsworks do not seem to update the checksums when they
2219 	 * do the final programming with the final module part number,
2220 	 * serial number and date code.
2221 	 */
2222 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2223 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2224 
2225 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2226 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2227 	 * Cotsworks PN matches and bytes are not correct.
2228 	 */
2229 	if (cotsworks && cotsworks_sfbg) {
2230 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2231 		if (ret < 0)
2232 			return ret;
2233 	}
2234 
2235 	/* Validate the checksum over the base structure */
2236 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2237 	if (check != id.base.cc_base) {
2238 		if (cotsworks) {
2239 			dev_warn(sfp->dev,
2240 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2241 				 check, id.base.cc_base);
2242 		} else {
2243 			dev_err(sfp->dev,
2244 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2245 				check, id.base.cc_base);
2246 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2247 				       16, 1, &id, sizeof(id), true);
2248 			return -EINVAL;
2249 		}
2250 	}
2251 
2252 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2253 	if (ret < 0) {
2254 		if (report)
2255 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2256 				ERR_PTR(ret));
2257 		return -EAGAIN;
2258 	}
2259 
2260 	if (ret != sizeof(id.ext)) {
2261 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2262 		return -EAGAIN;
2263 	}
2264 
2265 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2266 	if (check != id.ext.cc_ext) {
2267 		if (cotsworks) {
2268 			dev_warn(sfp->dev,
2269 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2270 				 check, id.ext.cc_ext);
2271 		} else {
2272 			dev_err(sfp->dev,
2273 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2274 				check, id.ext.cc_ext);
2275 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2276 				       16, 1, &id, sizeof(id), true);
2277 			memset(&id.ext, 0, sizeof(id.ext));
2278 		}
2279 	}
2280 
2281 	sfp->id = id;
2282 
2283 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2284 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2285 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2286 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2287 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2288 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2289 
2290 	/* Check whether we support this module */
2291 	if (!sfp->type->module_supported(&id)) {
2292 		dev_err(sfp->dev,
2293 			"module is not supported - phys id 0x%02x 0x%02x\n",
2294 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2295 		return -EINVAL;
2296 	}
2297 
2298 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2299 		ret = sfp_module_parse_sff8472(sfp);
2300 		if (ret < 0)
2301 			return ret;
2302 	}
2303 
2304 	/* Parse the module power requirement */
2305 	ret = sfp_module_parse_power(sfp);
2306 	if (ret < 0)
2307 		return ret;
2308 
2309 	sfp_module_parse_rate_select(sfp);
2310 
2311 	mask = SFP_F_PRESENT;
2312 	if (sfp->gpio[GPIO_TX_DISABLE])
2313 		mask |= SFP_F_TX_DISABLE;
2314 	if (sfp->gpio[GPIO_TX_FAULT])
2315 		mask |= SFP_F_TX_FAULT;
2316 	if (sfp->gpio[GPIO_LOS])
2317 		mask |= SFP_F_LOS;
2318 	if (sfp->gpio[GPIO_RS0])
2319 		mask |= SFP_F_RS0;
2320 	if (sfp->gpio[GPIO_RS1])
2321 		mask |= SFP_F_RS1;
2322 
2323 	sfp->module_t_start_up = T_START_UP;
2324 	sfp->module_t_wait = T_WAIT;
2325 
2326 	sfp->tx_fault_ignore = false;
2327 
2328 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2329 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2330 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2331 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2332 		sfp->mdio_protocol = MDIO_I2C_C45;
2333 	else if (sfp->id.base.e1000_base_t)
2334 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2335 	else
2336 		sfp->mdio_protocol = MDIO_I2C_NONE;
2337 
2338 	sfp->quirk = sfp_lookup_quirk(&id);
2339 
2340 	mutex_lock(&sfp->st_mutex);
2341 	/* Initialise state bits to use from hardware */
2342 	sfp->state_hw_mask = mask;
2343 
2344 	/* We want to drive the rate select pins that the module is using */
2345 	sfp->state_hw_drive |= sfp->rs_state_mask;
2346 
2347 	if (sfp->quirk && sfp->quirk->fixup)
2348 		sfp->quirk->fixup(sfp);
2349 	mutex_unlock(&sfp->st_mutex);
2350 
2351 	return 0;
2352 }
2353 
sfp_sm_mod_remove(struct sfp * sfp)2354 static void sfp_sm_mod_remove(struct sfp *sfp)
2355 {
2356 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2357 		sfp_module_remove(sfp->sfp_bus);
2358 
2359 	sfp_hwmon_remove(sfp);
2360 
2361 	memset(&sfp->id, 0, sizeof(sfp->id));
2362 	sfp->module_power_mW = 0;
2363 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2364 	sfp->have_a2 = false;
2365 
2366 	dev_info(sfp->dev, "module removed\n");
2367 }
2368 
2369 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2370 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2371 {
2372 	switch (sfp->sm_dev_state) {
2373 	default:
2374 		if (event == SFP_E_DEV_ATTACH)
2375 			sfp->sm_dev_state = SFP_DEV_DOWN;
2376 		break;
2377 
2378 	case SFP_DEV_DOWN:
2379 		if (event == SFP_E_DEV_DETACH)
2380 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2381 		else if (event == SFP_E_DEV_UP)
2382 			sfp->sm_dev_state = SFP_DEV_UP;
2383 		break;
2384 
2385 	case SFP_DEV_UP:
2386 		if (event == SFP_E_DEV_DETACH)
2387 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2388 		else if (event == SFP_E_DEV_DOWN)
2389 			sfp->sm_dev_state = SFP_DEV_DOWN;
2390 		break;
2391 	}
2392 }
2393 
2394 /* This state machine tracks the insert/remove state of the module, probes
2395  * the on-board EEPROM, and sets up the power level.
2396  */
sfp_sm_module(struct sfp * sfp,unsigned int event)2397 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2398 {
2399 	int err;
2400 
2401 	/* Handle remove event globally, it resets this state machine */
2402 	if (event == SFP_E_REMOVE) {
2403 		sfp_sm_mod_remove(sfp);
2404 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2405 		return;
2406 	}
2407 
2408 	/* Handle device detach globally */
2409 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2410 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2411 		if (sfp->module_power_mW > 1000 &&
2412 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2413 			sfp_sm_mod_hpower(sfp, false);
2414 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2415 		return;
2416 	}
2417 
2418 	switch (sfp->sm_mod_state) {
2419 	default:
2420 		if (event == SFP_E_INSERT) {
2421 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2422 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2423 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2424 		}
2425 		break;
2426 
2427 	case SFP_MOD_PROBE:
2428 		/* Wait for T_PROBE_INIT to time out */
2429 		if (event != SFP_E_TIMEOUT)
2430 			break;
2431 
2432 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2433 		if (err == -EAGAIN) {
2434 			if (sfp->sm_mod_tries_init &&
2435 			   --sfp->sm_mod_tries_init) {
2436 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2437 				break;
2438 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2439 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2440 					dev_warn(sfp->dev,
2441 						 "please wait, module slow to respond\n");
2442 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2443 				break;
2444 			}
2445 		}
2446 		if (err < 0) {
2447 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2448 			break;
2449 		}
2450 
2451 		/* Force a poll to re-read the hardware signal state after
2452 		 * sfp_sm_mod_probe() changed state_hw_mask.
2453 		 */
2454 		mod_delayed_work(system_wq, &sfp->poll, 1);
2455 
2456 		err = sfp_hwmon_insert(sfp);
2457 		if (err)
2458 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2459 				 ERR_PTR(err));
2460 
2461 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2462 		fallthrough;
2463 	case SFP_MOD_WAITDEV:
2464 		/* Ensure that the device is attached before proceeding */
2465 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2466 			break;
2467 
2468 		/* Report the module insertion to the upstream device */
2469 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2470 					sfp->quirk);
2471 		if (err < 0) {
2472 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2473 			break;
2474 		}
2475 
2476 		/* If this is a power level 1 module, we are done */
2477 		if (sfp->module_power_mW <= 1000)
2478 			goto insert;
2479 
2480 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2481 		fallthrough;
2482 	case SFP_MOD_HPOWER:
2483 		/* Enable high power mode */
2484 		err = sfp_sm_mod_hpower(sfp, true);
2485 		if (err < 0) {
2486 			if (err != -EAGAIN) {
2487 				sfp_module_remove(sfp->sfp_bus);
2488 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2489 			} else {
2490 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2491 			}
2492 			break;
2493 		}
2494 
2495 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2496 		break;
2497 
2498 	case SFP_MOD_WAITPWR:
2499 		/* Wait for T_HPOWER_LEVEL to time out */
2500 		if (event != SFP_E_TIMEOUT)
2501 			break;
2502 
2503 	insert:
2504 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2505 		break;
2506 
2507 	case SFP_MOD_PRESENT:
2508 	case SFP_MOD_ERROR:
2509 		break;
2510 	}
2511 }
2512 
sfp_sm_main(struct sfp * sfp,unsigned int event)2513 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2514 {
2515 	unsigned long timeout;
2516 	int ret;
2517 
2518 	/* Some events are global */
2519 	if (sfp->sm_state != SFP_S_DOWN &&
2520 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2521 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2522 		if (sfp->sm_state == SFP_S_LINK_UP &&
2523 		    sfp->sm_dev_state == SFP_DEV_UP)
2524 			sfp_sm_link_down(sfp);
2525 		if (sfp->sm_state > SFP_S_INIT)
2526 			sfp_module_stop(sfp->sfp_bus);
2527 		if (sfp->mod_phy)
2528 			sfp_sm_phy_detach(sfp);
2529 		if (sfp->i2c_mii)
2530 			sfp_i2c_mdiobus_destroy(sfp);
2531 		sfp_module_tx_disable(sfp);
2532 		sfp_soft_stop_poll(sfp);
2533 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2534 		return;
2535 	}
2536 
2537 	/* The main state machine */
2538 	switch (sfp->sm_state) {
2539 	case SFP_S_DOWN:
2540 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2541 		    sfp->sm_dev_state != SFP_DEV_UP)
2542 			break;
2543 
2544 		/* Only use the soft state bits if we have access to the A2h
2545 		 * memory, which implies that we have some level of SFF-8472
2546 		 * compliance.
2547 		 */
2548 		if (sfp->have_a2)
2549 			sfp_soft_start_poll(sfp);
2550 
2551 		sfp_module_tx_enable(sfp);
2552 
2553 		/* Initialise the fault clearance retries */
2554 		sfp->sm_fault_retries = N_FAULT_INIT;
2555 
2556 		/* We need to check the TX_FAULT state, which is not defined
2557 		 * while TX_DISABLE is asserted. The earliest we want to do
2558 		 * anything (such as probe for a PHY) is 50ms (or more on
2559 		 * specific modules).
2560 		 */
2561 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2562 		break;
2563 
2564 	case SFP_S_WAIT:
2565 		if (event != SFP_E_TIMEOUT)
2566 			break;
2567 
2568 		if (sfp->state & SFP_F_TX_FAULT) {
2569 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2570 			 * from the TX_DISABLE deassertion for the module to
2571 			 * initialise, which is indicated by TX_FAULT
2572 			 * deasserting.
2573 			 */
2574 			timeout = sfp->module_t_start_up;
2575 			if (timeout > sfp->module_t_wait)
2576 				timeout -= sfp->module_t_wait;
2577 			else
2578 				timeout = 1;
2579 
2580 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2581 		} else {
2582 			/* TX_FAULT is not asserted, assume the module has
2583 			 * finished initialising.
2584 			 */
2585 			goto init_done;
2586 		}
2587 		break;
2588 
2589 	case SFP_S_INIT:
2590 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2591 			/* TX_FAULT is still asserted after t_init
2592 			 * or t_start_up, so assume there is a fault.
2593 			 */
2594 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2595 				     sfp->sm_fault_retries == N_FAULT_INIT);
2596 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2597 	init_done:
2598 			/* Create mdiobus and start trying for PHY */
2599 			ret = sfp_sm_add_mdio_bus(sfp);
2600 			if (ret < 0) {
2601 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2602 				break;
2603 			}
2604 			sfp->sm_phy_retries = R_PHY_RETRY;
2605 			goto phy_probe;
2606 		}
2607 		break;
2608 
2609 	case SFP_S_INIT_PHY:
2610 		if (event != SFP_E_TIMEOUT)
2611 			break;
2612 	phy_probe:
2613 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2614 		 * clear.  Probe for the PHY and check the LOS state.
2615 		 */
2616 		ret = sfp_sm_probe_for_phy(sfp);
2617 		if (ret == -ENODEV) {
2618 			if (--sfp->sm_phy_retries) {
2619 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2620 				break;
2621 			} else {
2622 				dev_info(sfp->dev, "no PHY detected\n");
2623 			}
2624 		} else if (ret) {
2625 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2626 			break;
2627 		}
2628 		if (sfp_module_start(sfp->sfp_bus)) {
2629 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2630 			break;
2631 		}
2632 		sfp_sm_link_check_los(sfp);
2633 
2634 		/* Reset the fault retry count */
2635 		sfp->sm_fault_retries = N_FAULT;
2636 		break;
2637 
2638 	case SFP_S_INIT_TX_FAULT:
2639 		if (event == SFP_E_TIMEOUT) {
2640 			sfp_module_tx_fault_reset(sfp);
2641 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2642 		}
2643 		break;
2644 
2645 	case SFP_S_WAIT_LOS:
2646 		if (event == SFP_E_TX_FAULT)
2647 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2648 		else if (sfp_los_event_inactive(sfp, event))
2649 			sfp_sm_link_up(sfp);
2650 		break;
2651 
2652 	case SFP_S_LINK_UP:
2653 		if (event == SFP_E_TX_FAULT) {
2654 			sfp_sm_link_down(sfp);
2655 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2656 		} else if (sfp_los_event_active(sfp, event)) {
2657 			sfp_sm_link_down(sfp);
2658 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2659 		}
2660 		break;
2661 
2662 	case SFP_S_TX_FAULT:
2663 		if (event == SFP_E_TIMEOUT) {
2664 			sfp_module_tx_fault_reset(sfp);
2665 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2666 		}
2667 		break;
2668 
2669 	case SFP_S_REINIT:
2670 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2671 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2672 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2673 			dev_info(sfp->dev, "module transmit fault recovered\n");
2674 			sfp_sm_link_check_los(sfp);
2675 		}
2676 		break;
2677 
2678 	case SFP_S_TX_DISABLE:
2679 		break;
2680 	}
2681 }
2682 
__sfp_sm_event(struct sfp * sfp,unsigned int event)2683 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2684 {
2685 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2686 		mod_state_to_str(sfp->sm_mod_state),
2687 		dev_state_to_str(sfp->sm_dev_state),
2688 		sm_state_to_str(sfp->sm_state),
2689 		event_to_str(event));
2690 
2691 	sfp_sm_device(sfp, event);
2692 	sfp_sm_module(sfp, event);
2693 	sfp_sm_main(sfp, event);
2694 
2695 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2696 		mod_state_to_str(sfp->sm_mod_state),
2697 		dev_state_to_str(sfp->sm_dev_state),
2698 		sm_state_to_str(sfp->sm_state));
2699 }
2700 
sfp_sm_event(struct sfp * sfp,unsigned int event)2701 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2702 {
2703 	mutex_lock(&sfp->sm_mutex);
2704 	__sfp_sm_event(sfp, event);
2705 	mutex_unlock(&sfp->sm_mutex);
2706 }
2707 
sfp_attach(struct sfp * sfp)2708 static void sfp_attach(struct sfp *sfp)
2709 {
2710 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2711 }
2712 
sfp_detach(struct sfp * sfp)2713 static void sfp_detach(struct sfp *sfp)
2714 {
2715 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2716 }
2717 
sfp_start(struct sfp * sfp)2718 static void sfp_start(struct sfp *sfp)
2719 {
2720 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2721 }
2722 
sfp_stop(struct sfp * sfp)2723 static void sfp_stop(struct sfp *sfp)
2724 {
2725 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2726 }
2727 
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2728 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2729 {
2730 	unsigned int set;
2731 
2732 	sfp->rate_kbd = rate_kbd;
2733 
2734 	if (rate_kbd > sfp->rs_threshold_kbd)
2735 		set = sfp->rs_state_mask;
2736 	else
2737 		set = 0;
2738 
2739 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2740 }
2741 
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2742 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2743 {
2744 	/* locking... and check module is present */
2745 
2746 	if (sfp->id.ext.sff8472_compliance &&
2747 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2748 		modinfo->type = ETH_MODULE_SFF_8472;
2749 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2750 	} else {
2751 		modinfo->type = ETH_MODULE_SFF_8079;
2752 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2753 	}
2754 	return 0;
2755 }
2756 
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2757 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2758 			     u8 *data)
2759 {
2760 	unsigned int first, last, len;
2761 	int ret;
2762 
2763 	if (!(sfp->state & SFP_F_PRESENT))
2764 		return -ENODEV;
2765 
2766 	if (ee->len == 0)
2767 		return -EINVAL;
2768 
2769 	first = ee->offset;
2770 	last = ee->offset + ee->len;
2771 	if (first < ETH_MODULE_SFF_8079_LEN) {
2772 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2773 		len -= first;
2774 
2775 		ret = sfp_read(sfp, false, first, data, len);
2776 		if (ret < 0)
2777 			return ret;
2778 
2779 		first += len;
2780 		data += len;
2781 	}
2782 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2783 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2784 		len -= first;
2785 		first -= ETH_MODULE_SFF_8079_LEN;
2786 
2787 		ret = sfp_read(sfp, true, first, data, len);
2788 		if (ret < 0)
2789 			return ret;
2790 	}
2791 	return 0;
2792 }
2793 
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2794 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2795 				     const struct ethtool_module_eeprom *page,
2796 				     struct netlink_ext_ack *extack)
2797 {
2798 	if (!(sfp->state & SFP_F_PRESENT))
2799 		return -ENODEV;
2800 
2801 	if (page->bank) {
2802 		NL_SET_ERR_MSG(extack, "Banks not supported");
2803 		return -EOPNOTSUPP;
2804 	}
2805 
2806 	if (page->page) {
2807 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2808 		return -EOPNOTSUPP;
2809 	}
2810 
2811 	if (page->i2c_address != 0x50 &&
2812 	    page->i2c_address != 0x51) {
2813 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2814 		return -EOPNOTSUPP;
2815 	}
2816 
2817 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2818 			page->data, page->length);
2819 };
2820 
2821 static const struct sfp_socket_ops sfp_module_ops = {
2822 	.attach = sfp_attach,
2823 	.detach = sfp_detach,
2824 	.start = sfp_start,
2825 	.stop = sfp_stop,
2826 	.set_signal_rate = sfp_set_signal_rate,
2827 	.module_info = sfp_module_info,
2828 	.module_eeprom = sfp_module_eeprom,
2829 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2830 };
2831 
sfp_timeout(struct work_struct * work)2832 static void sfp_timeout(struct work_struct *work)
2833 {
2834 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2835 
2836 	rtnl_lock();
2837 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2838 	rtnl_unlock();
2839 }
2840 
sfp_check_state(struct sfp * sfp)2841 static void sfp_check_state(struct sfp *sfp)
2842 {
2843 	unsigned int state, i, changed;
2844 
2845 	rtnl_lock();
2846 	mutex_lock(&sfp->st_mutex);
2847 	state = sfp_get_state(sfp);
2848 	changed = state ^ sfp->state;
2849 	if (sfp->tx_fault_ignore)
2850 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2851 	else
2852 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2853 
2854 	for (i = 0; i < GPIO_MAX; i++)
2855 		if (changed & BIT(i))
2856 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2857 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2858 
2859 	state |= sfp->state & SFP_F_OUTPUTS;
2860 	sfp->state = state;
2861 	mutex_unlock(&sfp->st_mutex);
2862 
2863 	mutex_lock(&sfp->sm_mutex);
2864 	if (changed & SFP_F_PRESENT)
2865 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2866 				    SFP_E_INSERT : SFP_E_REMOVE);
2867 
2868 	if (changed & SFP_F_TX_FAULT)
2869 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2870 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2871 
2872 	if (changed & SFP_F_LOS)
2873 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2874 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2875 	mutex_unlock(&sfp->sm_mutex);
2876 	rtnl_unlock();
2877 }
2878 
sfp_irq(int irq,void * data)2879 static irqreturn_t sfp_irq(int irq, void *data)
2880 {
2881 	struct sfp *sfp = data;
2882 
2883 	sfp_check_state(sfp);
2884 
2885 	return IRQ_HANDLED;
2886 }
2887 
sfp_poll(struct work_struct * work)2888 static void sfp_poll(struct work_struct *work)
2889 {
2890 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2891 
2892 	sfp_check_state(sfp);
2893 
2894 	// st_mutex doesn't need to be held here for state_soft_mask,
2895 	// it's unimportant if we race while reading this.
2896 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2897 	    sfp->need_poll)
2898 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2899 }
2900 
sfp_alloc(struct device * dev)2901 static struct sfp *sfp_alloc(struct device *dev)
2902 {
2903 	struct sfp *sfp;
2904 
2905 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2906 	if (!sfp)
2907 		return ERR_PTR(-ENOMEM);
2908 
2909 	sfp->dev = dev;
2910 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2911 
2912 	mutex_init(&sfp->sm_mutex);
2913 	mutex_init(&sfp->st_mutex);
2914 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2915 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2916 
2917 	sfp_hwmon_init(sfp);
2918 
2919 	return sfp;
2920 }
2921 
sfp_cleanup(void * data)2922 static void sfp_cleanup(void *data)
2923 {
2924 	struct sfp *sfp = data;
2925 
2926 	sfp_hwmon_exit(sfp);
2927 
2928 	cancel_delayed_work_sync(&sfp->poll);
2929 	cancel_delayed_work_sync(&sfp->timeout);
2930 	if (sfp->i2c_mii) {
2931 		mdiobus_unregister(sfp->i2c_mii);
2932 		mdiobus_free(sfp->i2c_mii);
2933 	}
2934 	if (sfp->i2c)
2935 		i2c_put_adapter(sfp->i2c);
2936 	kfree(sfp);
2937 }
2938 
sfp_i2c_get(struct sfp * sfp)2939 static int sfp_i2c_get(struct sfp *sfp)
2940 {
2941 	struct fwnode_handle *h;
2942 	struct i2c_adapter *i2c;
2943 	int err;
2944 
2945 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2946 	if (IS_ERR(h)) {
2947 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2948 		return -ENODEV;
2949 	}
2950 
2951 	i2c = i2c_get_adapter_by_fwnode(h);
2952 	if (!i2c) {
2953 		err = -EPROBE_DEFER;
2954 		goto put;
2955 	}
2956 
2957 	err = sfp_i2c_configure(sfp, i2c);
2958 	if (err)
2959 		i2c_put_adapter(i2c);
2960 put:
2961 	fwnode_handle_put(h);
2962 	return err;
2963 }
2964 
sfp_probe(struct platform_device * pdev)2965 static int sfp_probe(struct platform_device *pdev)
2966 {
2967 	const struct sff_data *sff;
2968 	char *sfp_irq_name;
2969 	struct sfp *sfp;
2970 	int err, i;
2971 
2972 	sfp = sfp_alloc(&pdev->dev);
2973 	if (IS_ERR(sfp))
2974 		return PTR_ERR(sfp);
2975 
2976 	platform_set_drvdata(pdev, sfp);
2977 
2978 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2979 	if (err < 0)
2980 		return err;
2981 
2982 	sff = device_get_match_data(sfp->dev);
2983 	if (!sff)
2984 		sff = &sfp_data;
2985 
2986 	sfp->type = sff;
2987 
2988 	err = sfp_i2c_get(sfp);
2989 	if (err)
2990 		return err;
2991 
2992 	for (i = 0; i < GPIO_MAX; i++)
2993 		if (sff->gpios & BIT(i)) {
2994 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2995 					   gpio_names[i], gpio_flags[i]);
2996 			if (IS_ERR(sfp->gpio[i]))
2997 				return PTR_ERR(sfp->gpio[i]);
2998 		}
2999 
3000 	sfp->state_hw_mask = SFP_F_PRESENT;
3001 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3002 
3003 	sfp->get_state = sfp_gpio_get_state;
3004 	sfp->set_state = sfp_gpio_set_state;
3005 
3006 	/* Modules that have no detect signal are always present */
3007 	if (!(sfp->gpio[GPIO_MODDEF0]))
3008 		sfp->get_state = sff_gpio_get_state;
3009 
3010 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3011 				 &sfp->max_power_mW);
3012 	if (sfp->max_power_mW < 1000) {
3013 		if (sfp->max_power_mW)
3014 			dev_warn(sfp->dev,
3015 				 "Firmware bug: host maximum power should be at least 1W\n");
3016 		sfp->max_power_mW = 1000;
3017 	}
3018 
3019 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3020 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3021 
3022 	/* Get the initial state, and always signal TX disable,
3023 	 * since the network interface will not be up.
3024 	 */
3025 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3026 
3027 	if (sfp->gpio[GPIO_RS0] &&
3028 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3029 		sfp->state |= SFP_F_RS0;
3030 	sfp_set_state(sfp, sfp->state);
3031 	sfp_module_tx_disable(sfp);
3032 	if (sfp->state & SFP_F_PRESENT) {
3033 		rtnl_lock();
3034 		sfp_sm_event(sfp, SFP_E_INSERT);
3035 		rtnl_unlock();
3036 	}
3037 
3038 	for (i = 0; i < GPIO_MAX; i++) {
3039 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3040 			continue;
3041 
3042 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3043 		if (sfp->gpio_irq[i] < 0) {
3044 			sfp->gpio_irq[i] = 0;
3045 			sfp->need_poll = true;
3046 			continue;
3047 		}
3048 
3049 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3050 					      "%s-%s", dev_name(sfp->dev),
3051 					      gpio_names[i]);
3052 
3053 		if (!sfp_irq_name)
3054 			return -ENOMEM;
3055 
3056 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3057 						NULL, sfp_irq,
3058 						IRQF_ONESHOT |
3059 						IRQF_TRIGGER_RISING |
3060 						IRQF_TRIGGER_FALLING,
3061 						sfp_irq_name, sfp);
3062 		if (err) {
3063 			sfp->gpio_irq[i] = 0;
3064 			sfp->need_poll = true;
3065 		}
3066 	}
3067 
3068 	if (sfp->need_poll)
3069 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3070 
3071 	/* We could have an issue in cases no Tx disable pin is available or
3072 	 * wired as modules using a laser as their light source will continue to
3073 	 * be active when the fiber is removed. This could be a safety issue and
3074 	 * we should at least warn the user about that.
3075 	 */
3076 	if (!sfp->gpio[GPIO_TX_DISABLE])
3077 		dev_warn(sfp->dev,
3078 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3079 
3080 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3081 	if (!sfp->sfp_bus)
3082 		return -ENOMEM;
3083 
3084 	sfp_debugfs_init(sfp);
3085 
3086 	return 0;
3087 }
3088 
sfp_remove(struct platform_device * pdev)3089 static int sfp_remove(struct platform_device *pdev)
3090 {
3091 	struct sfp *sfp = platform_get_drvdata(pdev);
3092 
3093 	sfp_debugfs_exit(sfp);
3094 	sfp_unregister_socket(sfp->sfp_bus);
3095 
3096 	rtnl_lock();
3097 	sfp_sm_event(sfp, SFP_E_REMOVE);
3098 	rtnl_unlock();
3099 
3100 	return 0;
3101 }
3102 
sfp_shutdown(struct platform_device * pdev)3103 static void sfp_shutdown(struct platform_device *pdev)
3104 {
3105 	struct sfp *sfp = platform_get_drvdata(pdev);
3106 	int i;
3107 
3108 	for (i = 0; i < GPIO_MAX; i++) {
3109 		if (!sfp->gpio_irq[i])
3110 			continue;
3111 
3112 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3113 	}
3114 
3115 	cancel_delayed_work_sync(&sfp->poll);
3116 	cancel_delayed_work_sync(&sfp->timeout);
3117 }
3118 
3119 static struct platform_driver sfp_driver = {
3120 	.probe = sfp_probe,
3121 	.remove = sfp_remove,
3122 	.shutdown = sfp_shutdown,
3123 	.driver = {
3124 		.name = "sfp",
3125 		.of_match_table = sfp_of_match,
3126 	},
3127 };
3128 
sfp_init(void)3129 static int sfp_init(void)
3130 {
3131 	poll_jiffies = msecs_to_jiffies(100);
3132 
3133 	return platform_driver_register(&sfp_driver);
3134 }
3135 module_init(sfp_init);
3136 
sfp_exit(void)3137 static void sfp_exit(void)
3138 {
3139 	platform_driver_unregister(&sfp_driver);
3140 }
3141 module_exit(sfp_exit);
3142 
3143 MODULE_ALIAS("platform:sfp");
3144 MODULE_AUTHOR("Russell King");
3145 MODULE_LICENSE("GPL v2");
3146