1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Atmel ADC driver for SAMA5D2 devices and compatible. 4 * 5 * Copyright (C) 2015 Atmel, 6 * 2015 Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 2021 Microchip Technology, Inc. and its subsidiaries 8 * 2021 Eugen Hristev <eugen.hristev@microchip.com> 9 */ 10 11 #include <linux/bitops.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dmaengine.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/module.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/platform_device.h> 21 #include <linux/property.h> 22 #include <linux/sched.h> 23 #include <linux/units.h> 24 #include <linux/wait.h> 25 #include <linux/iio/iio.h> 26 #include <linux/iio/sysfs.h> 27 #include <linux/iio/buffer.h> 28 #include <linux/iio/trigger.h> 29 #include <linux/iio/trigger_consumer.h> 30 #include <linux/iio/triggered_buffer.h> 31 #include <linux/nvmem-consumer.h> 32 #include <linux/pinctrl/consumer.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/regulator/consumer.h> 35 36 #include <dt-bindings/iio/adc/at91-sama5d2_adc.h> 37 38 struct at91_adc_reg_layout { 39 /* Control Register */ 40 u16 CR; 41 /* Software Reset */ 42 #define AT91_SAMA5D2_CR_SWRST BIT(0) 43 /* Start Conversion */ 44 #define AT91_SAMA5D2_CR_START BIT(1) 45 /* Touchscreen Calibration */ 46 #define AT91_SAMA5D2_CR_TSCALIB BIT(2) 47 /* Comparison Restart */ 48 #define AT91_SAMA5D2_CR_CMPRST BIT(4) 49 50 /* Mode Register */ 51 u16 MR; 52 /* Trigger Selection */ 53 #define AT91_SAMA5D2_MR_TRGSEL(v) ((v) << 1) 54 /* ADTRG */ 55 #define AT91_SAMA5D2_MR_TRGSEL_TRIG0 0 56 /* TIOA0 */ 57 #define AT91_SAMA5D2_MR_TRGSEL_TRIG1 1 58 /* TIOA1 */ 59 #define AT91_SAMA5D2_MR_TRGSEL_TRIG2 2 60 /* TIOA2 */ 61 #define AT91_SAMA5D2_MR_TRGSEL_TRIG3 3 62 /* PWM event line 0 */ 63 #define AT91_SAMA5D2_MR_TRGSEL_TRIG4 4 64 /* PWM event line 1 */ 65 #define AT91_SAMA5D2_MR_TRGSEL_TRIG5 5 66 /* TIOA3 */ 67 #define AT91_SAMA5D2_MR_TRGSEL_TRIG6 6 68 /* RTCOUT0 */ 69 #define AT91_SAMA5D2_MR_TRGSEL_TRIG7 7 70 /* Sleep Mode */ 71 #define AT91_SAMA5D2_MR_SLEEP BIT(5) 72 /* Fast Wake Up */ 73 #define AT91_SAMA5D2_MR_FWUP BIT(6) 74 /* Prescaler Rate Selection */ 75 #define AT91_SAMA5D2_MR_PRESCAL(v) ((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET) 76 #define AT91_SAMA5D2_MR_PRESCAL_OFFSET 8 77 #define AT91_SAMA5D2_MR_PRESCAL_MAX 0xff 78 #define AT91_SAMA5D2_MR_PRESCAL_MASK GENMASK(15, 8) 79 /* Startup Time */ 80 #define AT91_SAMA5D2_MR_STARTUP(v) ((v) << 16) 81 #define AT91_SAMA5D2_MR_STARTUP_MASK GENMASK(19, 16) 82 /* Minimum startup time for temperature sensor */ 83 #define AT91_SAMA5D2_MR_STARTUP_TS_MIN (50) 84 /* Analog Change */ 85 #define AT91_SAMA5D2_MR_ANACH BIT(23) 86 /* Tracking Time */ 87 #define AT91_SAMA5D2_MR_TRACKTIM(v) ((v) << 24) 88 #define AT91_SAMA5D2_MR_TRACKTIM_TS 6 89 #define AT91_SAMA5D2_MR_TRACKTIM_MAX 0xf 90 /* Transfer Time */ 91 #define AT91_SAMA5D2_MR_TRANSFER(v) ((v) << 28) 92 #define AT91_SAMA5D2_MR_TRANSFER_MAX 0x3 93 /* Use Sequence Enable */ 94 #define AT91_SAMA5D2_MR_USEQ BIT(31) 95 96 /* Channel Sequence Register 1 */ 97 u16 SEQR1; 98 /* Channel Sequence Register 2 */ 99 u16 SEQR2; 100 /* Channel Enable Register */ 101 u16 CHER; 102 /* Channel Disable Register */ 103 u16 CHDR; 104 /* Channel Status Register */ 105 u16 CHSR; 106 /* Last Converted Data Register */ 107 u16 LCDR; 108 /* Interrupt Enable Register */ 109 u16 IER; 110 /* Interrupt Enable Register - TS X measurement ready */ 111 #define AT91_SAMA5D2_IER_XRDY BIT(20) 112 /* Interrupt Enable Register - TS Y measurement ready */ 113 #define AT91_SAMA5D2_IER_YRDY BIT(21) 114 /* Interrupt Enable Register - TS pressure measurement ready */ 115 #define AT91_SAMA5D2_IER_PRDY BIT(22) 116 /* Interrupt Enable Register - Data ready */ 117 #define AT91_SAMA5D2_IER_DRDY BIT(24) 118 /* Interrupt Enable Register - general overrun error */ 119 #define AT91_SAMA5D2_IER_GOVRE BIT(25) 120 /* Interrupt Enable Register - Pen detect */ 121 #define AT91_SAMA5D2_IER_PEN BIT(29) 122 /* Interrupt Enable Register - No pen detect */ 123 #define AT91_SAMA5D2_IER_NOPEN BIT(30) 124 125 /* Interrupt Disable Register */ 126 u16 IDR; 127 /* Interrupt Mask Register */ 128 u16 IMR; 129 /* Interrupt Status Register */ 130 u16 ISR; 131 /* End of Conversion Interrupt Enable Register */ 132 u16 EOC_IER; 133 /* End of Conversion Interrupt Disable Register */ 134 u16 EOC_IDR; 135 /* End of Conversion Interrupt Mask Register */ 136 u16 EOC_IMR; 137 /* End of Conversion Interrupt Status Register */ 138 u16 EOC_ISR; 139 /* Interrupt Status Register - Pen touching sense status */ 140 #define AT91_SAMA5D2_ISR_PENS BIT(31) 141 /* Last Channel Trigger Mode Register */ 142 u16 LCTMR; 143 /* Last Channel Compare Window Register */ 144 u16 LCCWR; 145 /* Overrun Status Register */ 146 u16 OVER; 147 /* Extended Mode Register */ 148 u16 EMR; 149 /* Extended Mode Register - Oversampling rate */ 150 #define AT91_SAMA5D2_EMR_OSR(V, M) (((V) << 16) & (M)) 151 #define AT91_SAMA5D2_EMR_OSR_1SAMPLES 0 152 #define AT91_SAMA5D2_EMR_OSR_4SAMPLES 1 153 #define AT91_SAMA5D2_EMR_OSR_16SAMPLES 2 154 #define AT91_SAMA5D2_EMR_OSR_64SAMPLES 3 155 #define AT91_SAMA5D2_EMR_OSR_256SAMPLES 4 156 157 /* Extended Mode Register - TRACKX */ 158 #define AT91_SAMA5D2_TRACKX_MASK GENMASK(23, 22) 159 #define AT91_SAMA5D2_TRACKX(x) (((x) << 22) & \ 160 AT91_SAMA5D2_TRACKX_MASK) 161 /* TRACKX for temperature sensor. */ 162 #define AT91_SAMA5D2_TRACKX_TS (1) 163 164 /* Extended Mode Register - Averaging on single trigger event */ 165 #define AT91_SAMA5D2_EMR_ASTE(V) ((V) << 20) 166 167 /* Compare Window Register */ 168 u16 CWR; 169 /* Channel Gain Register */ 170 u16 CGR; 171 /* Channel Offset Register */ 172 u16 COR; 173 /* Channel Offset Register differential offset - constant, not a register */ 174 u16 COR_diff_offset; 175 /* Analog Control Register */ 176 u16 ACR; 177 /* Analog Control Register - Pen detect sensitivity mask */ 178 #define AT91_SAMA5D2_ACR_PENDETSENS_MASK GENMASK(1, 0) 179 /* Analog Control Register - Source last channel */ 180 #define AT91_SAMA5D2_ACR_SRCLCH BIT(16) 181 182 /* Touchscreen Mode Register */ 183 u16 TSMR; 184 /* Touchscreen Mode Register - No touch mode */ 185 #define AT91_SAMA5D2_TSMR_TSMODE_NONE 0 186 /* Touchscreen Mode Register - 4 wire screen, no pressure measurement */ 187 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1 188 /* Touchscreen Mode Register - 4 wire screen, pressure measurement */ 189 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS 2 190 /* Touchscreen Mode Register - 5 wire screen */ 191 #define AT91_SAMA5D2_TSMR_TSMODE_5WIRE 3 192 /* Touchscreen Mode Register - Average samples mask */ 193 #define AT91_SAMA5D2_TSMR_TSAV_MASK GENMASK(5, 4) 194 /* Touchscreen Mode Register - Average samples */ 195 #define AT91_SAMA5D2_TSMR_TSAV(x) ((x) << 4) 196 /* Touchscreen Mode Register - Touch/trigger frequency ratio mask */ 197 #define AT91_SAMA5D2_TSMR_TSFREQ_MASK GENMASK(11, 8) 198 /* Touchscreen Mode Register - Touch/trigger frequency ratio */ 199 #define AT91_SAMA5D2_TSMR_TSFREQ(x) ((x) << 8) 200 /* Touchscreen Mode Register - Pen Debounce Time mask */ 201 #define AT91_SAMA5D2_TSMR_PENDBC_MASK GENMASK(31, 28) 202 /* Touchscreen Mode Register - Pen Debounce Time */ 203 #define AT91_SAMA5D2_TSMR_PENDBC(x) ((x) << 28) 204 /* Touchscreen Mode Register - No DMA for touch measurements */ 205 #define AT91_SAMA5D2_TSMR_NOTSDMA BIT(22) 206 /* Touchscreen Mode Register - Disable pen detection */ 207 #define AT91_SAMA5D2_TSMR_PENDET_DIS (0 << 24) 208 /* Touchscreen Mode Register - Enable pen detection */ 209 #define AT91_SAMA5D2_TSMR_PENDET_ENA BIT(24) 210 211 /* Touchscreen X Position Register */ 212 u16 XPOSR; 213 /* Touchscreen Y Position Register */ 214 u16 YPOSR; 215 /* Touchscreen Pressure Register */ 216 u16 PRESSR; 217 /* Trigger Register */ 218 u16 TRGR; 219 /* Mask for TRGMOD field of TRGR register */ 220 #define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0) 221 /* No trigger, only software trigger can start conversions */ 222 #define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0 223 /* Trigger Mode external trigger rising edge */ 224 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1 225 /* Trigger Mode external trigger falling edge */ 226 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2 227 /* Trigger Mode external trigger any edge */ 228 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3 229 /* Trigger Mode internal periodic */ 230 #define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5 231 /* Trigger Mode - trigger period mask */ 232 #define AT91_SAMA5D2_TRGR_TRGPER_MASK GENMASK(31, 16) 233 /* Trigger Mode - trigger period */ 234 #define AT91_SAMA5D2_TRGR_TRGPER(x) ((x) << 16) 235 236 /* Correction Select Register */ 237 u16 COSR; 238 /* Correction Value Register */ 239 u16 CVR; 240 /* Channel Error Correction Register */ 241 u16 CECR; 242 /* Write Protection Mode Register */ 243 u16 WPMR; 244 /* Write Protection Status Register */ 245 u16 WPSR; 246 /* Version Register */ 247 u16 VERSION; 248 /* Temperature Sensor Mode Register */ 249 u16 TEMPMR; 250 /* Temperature Sensor Mode - Temperature sensor on */ 251 #define AT91_SAMA5D2_TEMPMR_TEMPON BIT(0) 252 }; 253 254 static const struct at91_adc_reg_layout sama5d2_layout = { 255 .CR = 0x00, 256 .MR = 0x04, 257 .SEQR1 = 0x08, 258 .SEQR2 = 0x0c, 259 .CHER = 0x10, 260 .CHDR = 0x14, 261 .CHSR = 0x18, 262 .LCDR = 0x20, 263 .IER = 0x24, 264 .IDR = 0x28, 265 .IMR = 0x2c, 266 .ISR = 0x30, 267 .LCTMR = 0x34, 268 .LCCWR = 0x38, 269 .OVER = 0x3c, 270 .EMR = 0x40, 271 .CWR = 0x44, 272 .CGR = 0x48, 273 .COR = 0x4c, 274 .COR_diff_offset = 16, 275 .ACR = 0x94, 276 .TSMR = 0xb0, 277 .XPOSR = 0xb4, 278 .YPOSR = 0xb8, 279 .PRESSR = 0xbc, 280 .TRGR = 0xc0, 281 .COSR = 0xd0, 282 .CVR = 0xd4, 283 .CECR = 0xd8, 284 .WPMR = 0xe4, 285 .WPSR = 0xe8, 286 .VERSION = 0xfc, 287 }; 288 289 static const struct at91_adc_reg_layout sama7g5_layout = { 290 .CR = 0x00, 291 .MR = 0x04, 292 .SEQR1 = 0x08, 293 .SEQR2 = 0x0c, 294 .CHER = 0x10, 295 .CHDR = 0x14, 296 .CHSR = 0x18, 297 .LCDR = 0x20, 298 .IER = 0x24, 299 .IDR = 0x28, 300 .IMR = 0x2c, 301 .ISR = 0x30, 302 .EOC_IER = 0x34, 303 .EOC_IDR = 0x38, 304 .EOC_IMR = 0x3c, 305 .EOC_ISR = 0x40, 306 .TEMPMR = 0x44, 307 .OVER = 0x4c, 308 .EMR = 0x50, 309 .CWR = 0x54, 310 .COR = 0x5c, 311 .COR_diff_offset = 0, 312 .ACR = 0xe0, 313 .TRGR = 0x100, 314 .COSR = 0x104, 315 .CVR = 0x108, 316 .CECR = 0x10c, 317 .WPMR = 0x118, 318 .WPSR = 0x11c, 319 .VERSION = 0x130, 320 }; 321 322 #define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US 2000 /* 2ms */ 323 #define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US 200 324 325 #define AT91_SAMA5D2_XYZ_MASK GENMASK(11, 0) 326 327 #define AT91_SAMA5D2_MAX_POS_BITS 12 328 329 #define AT91_HWFIFO_MAX_SIZE_STR "128" 330 #define AT91_HWFIFO_MAX_SIZE 128 331 332 #define AT91_SAMA_CHAN_SINGLE(index, num, addr, rbits) \ 333 { \ 334 .type = IIO_VOLTAGE, \ 335 .channel = num, \ 336 .address = addr, \ 337 .scan_index = index, \ 338 .scan_type = { \ 339 .sign = 'u', \ 340 .realbits = rbits, \ 341 .storagebits = 16, \ 342 }, \ 343 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 344 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 345 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 346 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 347 .info_mask_shared_by_all_available = \ 348 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 349 .datasheet_name = "CH"#num, \ 350 .indexed = 1, \ 351 } 352 353 #define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr) \ 354 AT91_SAMA_CHAN_SINGLE(index, num, addr, 14) 355 356 #define AT91_SAMA7G5_CHAN_SINGLE(index, num, addr) \ 357 AT91_SAMA_CHAN_SINGLE(index, num, addr, 16) 358 359 #define AT91_SAMA_CHAN_DIFF(index, num, num2, addr, rbits) \ 360 { \ 361 .type = IIO_VOLTAGE, \ 362 .differential = 1, \ 363 .channel = num, \ 364 .channel2 = num2, \ 365 .address = addr, \ 366 .scan_index = index, \ 367 .scan_type = { \ 368 .sign = 's', \ 369 .realbits = rbits, \ 370 .storagebits = 16, \ 371 }, \ 372 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 373 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 374 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 375 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 376 .info_mask_shared_by_all_available = \ 377 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 378 .datasheet_name = "CH"#num"-CH"#num2, \ 379 .indexed = 1, \ 380 } 381 382 #define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr) \ 383 AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 14) 384 385 #define AT91_SAMA7G5_CHAN_DIFF(index, num, num2, addr) \ 386 AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 16) 387 388 #define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod) \ 389 { \ 390 .type = IIO_POSITIONRELATIVE, \ 391 .modified = 1, \ 392 .channel = num, \ 393 .channel2 = mod, \ 394 .scan_index = num, \ 395 .scan_type = { \ 396 .sign = 'u', \ 397 .realbits = 12, \ 398 .storagebits = 16, \ 399 }, \ 400 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 401 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 402 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 403 .info_mask_shared_by_all_available = \ 404 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 405 .datasheet_name = name, \ 406 } 407 #define AT91_SAMA5D2_CHAN_PRESSURE(num, name) \ 408 { \ 409 .type = IIO_PRESSURE, \ 410 .channel = num, \ 411 .scan_index = num, \ 412 .scan_type = { \ 413 .sign = 'u', \ 414 .realbits = 12, \ 415 .storagebits = 16, \ 416 }, \ 417 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 418 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 419 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 420 .info_mask_shared_by_all_available = \ 421 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 422 .datasheet_name = name, \ 423 } 424 425 #define AT91_SAMA5D2_CHAN_TEMP(num, name, addr) \ 426 { \ 427 .type = IIO_TEMP, \ 428 .channel = num, \ 429 .address = addr, \ 430 .scan_index = num, \ 431 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 432 .info_mask_shared_by_all = \ 433 BIT(IIO_CHAN_INFO_PROCESSED) | \ 434 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 435 .info_mask_shared_by_all_available = \ 436 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 437 .datasheet_name = name, \ 438 } 439 440 #define at91_adc_readl(st, reg) \ 441 readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg) 442 #define at91_adc_read_chan(st, reg) \ 443 readl_relaxed((st)->base + reg) 444 #define at91_adc_writel(st, reg, val) \ 445 writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg) 446 447 /** 448 * struct at91_adc_platform - at91-sama5d2 platform information struct 449 * @layout: pointer to the reg layout struct 450 * @adc_channels: pointer to an array of channels for registering in 451 * the iio subsystem 452 * @nr_channels: number of physical channels available 453 * @touch_chan_x: index of the touchscreen X channel 454 * @touch_chan_y: index of the touchscreen Y channel 455 * @touch_chan_p: index of the touchscreen P channel 456 * @max_channels: number of total channels 457 * @max_index: highest channel index (highest index may be higher 458 * than the total channel number) 459 * @hw_trig_cnt: number of possible hardware triggers 460 * @osr_mask: oversampling ratio bitmask on EMR register 461 * @oversampling_avail: available oversampling values 462 * @oversampling_avail_no: number of available oversampling values 463 * @chan_realbits: realbits for registered channels 464 * @temp_chan: temperature channel index 465 * @temp_sensor: temperature sensor supported 466 */ 467 struct at91_adc_platform { 468 const struct at91_adc_reg_layout *layout; 469 const struct iio_chan_spec (*adc_channels)[]; 470 unsigned int nr_channels; 471 unsigned int touch_chan_x; 472 unsigned int touch_chan_y; 473 unsigned int touch_chan_p; 474 unsigned int max_channels; 475 unsigned int max_index; 476 unsigned int hw_trig_cnt; 477 unsigned int osr_mask; 478 unsigned int oversampling_avail[5]; 479 unsigned int oversampling_avail_no; 480 unsigned int chan_realbits; 481 unsigned int temp_chan; 482 bool temp_sensor; 483 }; 484 485 /** 486 * struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor 487 * calibration data structure 488 * @p1: P1 calibration temperature 489 * @p4: P4 calibration voltage 490 * @p6: P6 calibration voltage 491 */ 492 struct at91_adc_temp_sensor_clb { 493 u32 p1; 494 u32 p4; 495 u32 p6; 496 }; 497 498 /** 499 * enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer 500 * @AT91_ADC_TS_CLB_IDX_P1: index for P1 501 * @AT91_ADC_TS_CLB_IDX_P4: index for P4 502 * @AT91_ADC_TS_CLB_IDX_P6: index for P6 503 * @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP 504 */ 505 enum at91_adc_ts_clb_idx { 506 AT91_ADC_TS_CLB_IDX_P1 = 2, 507 AT91_ADC_TS_CLB_IDX_P4 = 5, 508 AT91_ADC_TS_CLB_IDX_P6 = 7, 509 AT91_ADC_TS_CLB_IDX_MAX = 19, 510 }; 511 512 /* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */ 513 #define AT91_ADC_TS_VTEMP_DT (2080U) 514 515 /** 516 * struct at91_adc_soc_info - at91-sama5d2 soc information struct 517 * @startup_time: device startup time 518 * @min_sample_rate: minimum sample rate in Hz 519 * @max_sample_rate: maximum sample rate in Hz 520 * @platform: pointer to the platform structure 521 * @temp_sensor_clb: temperature sensor calibration data structure 522 */ 523 struct at91_adc_soc_info { 524 unsigned startup_time; 525 unsigned min_sample_rate; 526 unsigned max_sample_rate; 527 const struct at91_adc_platform *platform; 528 struct at91_adc_temp_sensor_clb temp_sensor_clb; 529 }; 530 531 struct at91_adc_trigger { 532 char *name; 533 unsigned int trgmod_value; 534 unsigned int edge_type; 535 bool hw_trig; 536 }; 537 538 /** 539 * struct at91_adc_dma - at91-sama5d2 dma information struct 540 * @dma_chan: the dma channel acquired 541 * @rx_buf: dma coherent allocated area 542 * @rx_dma_buf: dma handler for the buffer 543 * @phys_addr: physical address of the ADC base register 544 * @buf_idx: index inside the dma buffer where reading was last done 545 * @rx_buf_sz: size of buffer used by DMA operation 546 * @watermark: number of conversions to copy before DMA triggers irq 547 * @dma_ts: hold the start timestamp of dma operation 548 */ 549 struct at91_adc_dma { 550 struct dma_chan *dma_chan; 551 u8 *rx_buf; 552 dma_addr_t rx_dma_buf; 553 phys_addr_t phys_addr; 554 int buf_idx; 555 int rx_buf_sz; 556 int watermark; 557 s64 dma_ts; 558 }; 559 560 /** 561 * struct at91_adc_touch - at91-sama5d2 touchscreen information struct 562 * @sample_period_val: the value for periodic trigger interval 563 * @touching: is the pen touching the screen or not 564 * @x_pos: temporary placeholder for pressure computation 565 * @channels_bitmask: bitmask with the touchscreen channels enabled 566 * @workq: workqueue for buffer data pushing 567 */ 568 struct at91_adc_touch { 569 u16 sample_period_val; 570 bool touching; 571 u16 x_pos; 572 unsigned long channels_bitmask; 573 struct work_struct workq; 574 }; 575 576 /** 577 * struct at91_adc_temp - at91-sama5d2 temperature information structure 578 * @sample_period_val: sample period value 579 * @saved_sample_rate: saved sample rate 580 * @saved_oversampling: saved oversampling 581 */ 582 struct at91_adc_temp { 583 u16 sample_period_val; 584 u16 saved_sample_rate; 585 u16 saved_oversampling; 586 }; 587 588 /* 589 * Buffer size requirements: 590 * No channels * bytes_per_channel(2) + timestamp bytes (8) 591 * Divided by 2 because we need half words. 592 * We assume 32 channels for now, has to be increased if needed. 593 * Nobody minds a buffer being too big. 594 */ 595 #define AT91_BUFFER_MAX_HWORDS ((32 * 2 + 8) / 2) 596 597 struct at91_adc_state { 598 void __iomem *base; 599 int irq; 600 struct clk *per_clk; 601 struct regulator *reg; 602 struct regulator *vref; 603 int vref_uv; 604 unsigned int current_sample_rate; 605 struct iio_trigger *trig; 606 const struct at91_adc_trigger *selected_trig; 607 const struct iio_chan_spec *chan; 608 bool conversion_done; 609 u32 conversion_value; 610 unsigned int oversampling_ratio; 611 struct at91_adc_soc_info soc_info; 612 wait_queue_head_t wq_data_available; 613 struct at91_adc_dma dma_st; 614 struct at91_adc_touch touch_st; 615 struct at91_adc_temp temp_st; 616 struct iio_dev *indio_dev; 617 struct device *dev; 618 /* Ensure naturally aligned timestamp */ 619 u16 buffer[AT91_BUFFER_MAX_HWORDS] __aligned(8); 620 /* 621 * lock to prevent concurrent 'single conversion' requests through 622 * sysfs. 623 */ 624 struct mutex lock; 625 }; 626 627 static const struct at91_adc_trigger at91_adc_trigger_list[] = { 628 { 629 .name = "external_rising", 630 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE, 631 .edge_type = IRQ_TYPE_EDGE_RISING, 632 .hw_trig = true, 633 }, 634 { 635 .name = "external_falling", 636 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL, 637 .edge_type = IRQ_TYPE_EDGE_FALLING, 638 .hw_trig = true, 639 }, 640 { 641 .name = "external_any", 642 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY, 643 .edge_type = IRQ_TYPE_EDGE_BOTH, 644 .hw_trig = true, 645 }, 646 { 647 .name = "software", 648 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER, 649 .edge_type = IRQ_TYPE_NONE, 650 .hw_trig = false, 651 }, 652 }; 653 654 static const struct iio_chan_spec at91_sama5d2_adc_channels[] = { 655 AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50), 656 AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54), 657 AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58), 658 AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c), 659 AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60), 660 AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64), 661 AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68), 662 AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c), 663 AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70), 664 AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74), 665 AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78), 666 AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c), 667 /* original ABI has the differential channels with a gap in between */ 668 AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50), 669 AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58), 670 AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60), 671 AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68), 672 AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70), 673 AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78), 674 IIO_CHAN_SOFT_TIMESTAMP(23), 675 AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X), 676 AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y), 677 AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"), 678 }; 679 680 static const struct iio_chan_spec at91_sama7g5_adc_channels[] = { 681 AT91_SAMA7G5_CHAN_SINGLE(0, 0, 0x60), 682 AT91_SAMA7G5_CHAN_SINGLE(1, 1, 0x64), 683 AT91_SAMA7G5_CHAN_SINGLE(2, 2, 0x68), 684 AT91_SAMA7G5_CHAN_SINGLE(3, 3, 0x6c), 685 AT91_SAMA7G5_CHAN_SINGLE(4, 4, 0x70), 686 AT91_SAMA7G5_CHAN_SINGLE(5, 5, 0x74), 687 AT91_SAMA7G5_CHAN_SINGLE(6, 6, 0x78), 688 AT91_SAMA7G5_CHAN_SINGLE(7, 7, 0x7c), 689 AT91_SAMA7G5_CHAN_SINGLE(8, 8, 0x80), 690 AT91_SAMA7G5_CHAN_SINGLE(9, 9, 0x84), 691 AT91_SAMA7G5_CHAN_SINGLE(10, 10, 0x88), 692 AT91_SAMA7G5_CHAN_SINGLE(11, 11, 0x8c), 693 AT91_SAMA7G5_CHAN_SINGLE(12, 12, 0x90), 694 AT91_SAMA7G5_CHAN_SINGLE(13, 13, 0x94), 695 AT91_SAMA7G5_CHAN_SINGLE(14, 14, 0x98), 696 AT91_SAMA7G5_CHAN_SINGLE(15, 15, 0x9c), 697 AT91_SAMA7G5_CHAN_DIFF(16, 0, 1, 0x60), 698 AT91_SAMA7G5_CHAN_DIFF(17, 2, 3, 0x68), 699 AT91_SAMA7G5_CHAN_DIFF(18, 4, 5, 0x70), 700 AT91_SAMA7G5_CHAN_DIFF(19, 6, 7, 0x78), 701 AT91_SAMA7G5_CHAN_DIFF(20, 8, 9, 0x80), 702 AT91_SAMA7G5_CHAN_DIFF(21, 10, 11, 0x88), 703 AT91_SAMA7G5_CHAN_DIFF(22, 12, 13, 0x90), 704 AT91_SAMA7G5_CHAN_DIFF(23, 14, 15, 0x98), 705 IIO_CHAN_SOFT_TIMESTAMP(24), 706 AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc), 707 }; 708 709 static const struct at91_adc_platform sama5d2_platform = { 710 .layout = &sama5d2_layout, 711 .adc_channels = &at91_sama5d2_adc_channels, 712 #define AT91_SAMA5D2_SINGLE_CHAN_CNT 12 713 #define AT91_SAMA5D2_DIFF_CHAN_CNT 6 714 .nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT + 715 AT91_SAMA5D2_DIFF_CHAN_CNT, 716 #define AT91_SAMA5D2_TOUCH_X_CHAN_IDX (AT91_SAMA5D2_SINGLE_CHAN_CNT + \ 717 AT91_SAMA5D2_DIFF_CHAN_CNT * 2) 718 .touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX, 719 #define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX (AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1) 720 .touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX, 721 #define AT91_SAMA5D2_TOUCH_P_CHAN_IDX (AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1) 722 .touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX, 723 #define AT91_SAMA5D2_MAX_CHAN_IDX AT91_SAMA5D2_TOUCH_P_CHAN_IDX 724 .max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels), 725 .max_index = AT91_SAMA5D2_MAX_CHAN_IDX, 726 #define AT91_SAMA5D2_HW_TRIG_CNT 3 727 .hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT, 728 .osr_mask = GENMASK(17, 16), 729 .oversampling_avail = { 1, 4, 16, }, 730 .oversampling_avail_no = 3, 731 .chan_realbits = 14, 732 }; 733 734 static const struct at91_adc_platform sama7g5_platform = { 735 .layout = &sama7g5_layout, 736 .adc_channels = &at91_sama7g5_adc_channels, 737 #define AT91_SAMA7G5_SINGLE_CHAN_CNT 16 738 #define AT91_SAMA7G5_DIFF_CHAN_CNT 8 739 #define AT91_SAMA7G5_TEMP_CHAN_CNT 1 740 .nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT + 741 AT91_SAMA7G5_DIFF_CHAN_CNT + 742 AT91_SAMA7G5_TEMP_CHAN_CNT, 743 #define AT91_SAMA7G5_MAX_CHAN_IDX (AT91_SAMA7G5_SINGLE_CHAN_CNT + \ 744 AT91_SAMA7G5_DIFF_CHAN_CNT + \ 745 AT91_SAMA7G5_TEMP_CHAN_CNT) 746 .max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels), 747 .max_index = AT91_SAMA7G5_MAX_CHAN_IDX, 748 #define AT91_SAMA7G5_HW_TRIG_CNT 3 749 .hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT, 750 .osr_mask = GENMASK(18, 16), 751 .oversampling_avail = { 1, 4, 16, 64, 256, }, 752 .oversampling_avail_no = 5, 753 .chan_realbits = 16, 754 .temp_sensor = true, 755 .temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL, 756 }; 757 at91_adc_chan_xlate(struct iio_dev * indio_dev,int chan)758 static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan) 759 { 760 int i; 761 762 for (i = 0; i < indio_dev->num_channels; i++) { 763 if (indio_dev->channels[i].scan_index == chan) 764 return i; 765 } 766 return -EINVAL; 767 } 768 769 static inline struct iio_chan_spec const * at91_adc_chan_get(struct iio_dev * indio_dev,int chan)770 at91_adc_chan_get(struct iio_dev *indio_dev, int chan) 771 { 772 int index = at91_adc_chan_xlate(indio_dev, chan); 773 774 if (index < 0) 775 return NULL; 776 return indio_dev->channels + index; 777 } 778 at91_adc_fwnode_xlate(struct iio_dev * indio_dev,const struct fwnode_reference_args * iiospec)779 static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev, 780 const struct fwnode_reference_args *iiospec) 781 { 782 return at91_adc_chan_xlate(indio_dev, iiospec->args[0]); 783 } 784 at91_adc_active_scan_mask_to_reg(struct iio_dev * indio_dev)785 static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev) 786 { 787 u32 mask = 0; 788 u8 bit; 789 struct at91_adc_state *st = iio_priv(indio_dev); 790 791 for_each_set_bit(bit, indio_dev->active_scan_mask, 792 indio_dev->num_channels) { 793 struct iio_chan_spec const *chan = 794 at91_adc_chan_get(indio_dev, bit); 795 mask |= BIT(chan->channel); 796 } 797 798 return mask & GENMASK(st->soc_info.platform->nr_channels, 0); 799 } 800 at91_adc_cor(struct at91_adc_state * st,struct iio_chan_spec const * chan)801 static void at91_adc_cor(struct at91_adc_state *st, 802 struct iio_chan_spec const *chan) 803 { 804 u32 cor, cur_cor; 805 806 cor = BIT(chan->channel) | BIT(chan->channel2); 807 808 cur_cor = at91_adc_readl(st, COR); 809 cor <<= st->soc_info.platform->layout->COR_diff_offset; 810 if (chan->differential) 811 at91_adc_writel(st, COR, cur_cor | cor); 812 else 813 at91_adc_writel(st, COR, cur_cor & ~cor); 814 } 815 at91_adc_irq_status(struct at91_adc_state * st,u32 * status,u32 * eoc)816 static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status, 817 u32 *eoc) 818 { 819 *status = at91_adc_readl(st, ISR); 820 if (st->soc_info.platform->layout->EOC_ISR) 821 *eoc = at91_adc_readl(st, EOC_ISR); 822 else 823 *eoc = *status; 824 } 825 at91_adc_irq_mask(struct at91_adc_state * st,u32 * status,u32 * eoc)826 static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc) 827 { 828 *status = at91_adc_readl(st, IMR); 829 if (st->soc_info.platform->layout->EOC_IMR) 830 *eoc = at91_adc_readl(st, EOC_IMR); 831 else 832 *eoc = *status; 833 } 834 at91_adc_eoc_dis(struct at91_adc_state * st,unsigned int channel)835 static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel) 836 { 837 /* 838 * On some products having the EOC bits in a separate register, 839 * errata recommends not writing this register (EOC_IDR). 840 * On products having the EOC bits in the IDR register, it's fine to write it. 841 */ 842 if (!st->soc_info.platform->layout->EOC_IDR) 843 at91_adc_writel(st, IDR, BIT(channel)); 844 } 845 at91_adc_eoc_ena(struct at91_adc_state * st,unsigned int channel)846 static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel) 847 { 848 if (!st->soc_info.platform->layout->EOC_IDR) 849 at91_adc_writel(st, IER, BIT(channel)); 850 else 851 at91_adc_writel(st, EOC_IER, BIT(channel)); 852 } 853 at91_adc_config_emr(struct at91_adc_state * st,u32 oversampling_ratio,u32 trackx)854 static int at91_adc_config_emr(struct at91_adc_state *st, 855 u32 oversampling_ratio, u32 trackx) 856 { 857 /* configure the extended mode register */ 858 unsigned int emr, osr; 859 unsigned int osr_mask = st->soc_info.platform->osr_mask; 860 int i, ret; 861 862 /* Check against supported oversampling values. */ 863 for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) { 864 if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i]) 865 break; 866 } 867 if (i == st->soc_info.platform->oversampling_avail_no) 868 return -EINVAL; 869 870 /* select oversampling ratio from configuration */ 871 switch (oversampling_ratio) { 872 case 1: 873 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES, 874 osr_mask); 875 break; 876 case 4: 877 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES, 878 osr_mask); 879 break; 880 case 16: 881 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES, 882 osr_mask); 883 break; 884 case 64: 885 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES, 886 osr_mask); 887 break; 888 case 256: 889 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES, 890 osr_mask); 891 break; 892 } 893 894 ret = pm_runtime_resume_and_get(st->dev); 895 if (ret < 0) 896 return ret; 897 898 emr = at91_adc_readl(st, EMR); 899 /* select oversampling per single trigger event */ 900 emr |= AT91_SAMA5D2_EMR_ASTE(1); 901 /* delete leftover content if it's the case */ 902 emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK); 903 /* Update osr and trackx. */ 904 emr |= osr | AT91_SAMA5D2_TRACKX(trackx); 905 at91_adc_writel(st, EMR, emr); 906 907 pm_runtime_mark_last_busy(st->dev); 908 pm_runtime_put_autosuspend(st->dev); 909 910 st->oversampling_ratio = oversampling_ratio; 911 912 return 0; 913 } 914 at91_adc_adjust_val_osr(struct at91_adc_state * st,int * val)915 static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val) 916 { 917 int nbits, diff; 918 919 if (st->oversampling_ratio == 1) 920 nbits = 12; 921 else if (st->oversampling_ratio == 4) 922 nbits = 13; 923 else if (st->oversampling_ratio == 16) 924 nbits = 14; 925 else if (st->oversampling_ratio == 64) 926 nbits = 15; 927 else if (st->oversampling_ratio == 256) 928 nbits = 16; 929 else 930 /* Should not happen. */ 931 return -EINVAL; 932 933 /* 934 * We have nbits of real data and channel is registered as 935 * st->soc_info.platform->chan_realbits, so shift left diff bits. 936 */ 937 diff = st->soc_info.platform->chan_realbits - nbits; 938 *val <<= diff; 939 940 return IIO_VAL_INT; 941 } 942 at91_adc_adjust_val_osr_array(struct at91_adc_state * st,void * buf,int len)943 static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf, 944 int len) 945 { 946 int i = 0, val; 947 u16 *buf_u16 = (u16 *) buf; 948 949 /* 950 * We are converting each two bytes (each sample). 951 * First convert the byte based array to u16, and convert each sample 952 * separately. 953 * Each value is two bytes in an array of chars, so to not shift 954 * more than we need, save the value separately. 955 * len is in bytes, so divide by two to get number of samples. 956 */ 957 while (i < len / 2) { 958 val = buf_u16[i]; 959 at91_adc_adjust_val_osr(st, &val); 960 buf_u16[i] = val; 961 i++; 962 } 963 } 964 at91_adc_configure_touch(struct at91_adc_state * st,bool state)965 static int at91_adc_configure_touch(struct at91_adc_state *st, bool state) 966 { 967 u32 clk_khz = st->current_sample_rate / 1000; 968 int i = 0, ret; 969 u16 pendbc; 970 u32 tsmr, acr; 971 972 if (state) { 973 ret = pm_runtime_resume_and_get(st->dev); 974 if (ret < 0) 975 return ret; 976 } else { 977 /* disabling touch IRQs and setting mode to no touch enabled */ 978 at91_adc_writel(st, IDR, 979 AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN); 980 at91_adc_writel(st, TSMR, 0); 981 982 pm_runtime_mark_last_busy(st->dev); 983 pm_runtime_put_autosuspend(st->dev); 984 return 0; 985 } 986 /* 987 * debounce time is in microseconds, we need it in milliseconds to 988 * multiply with kilohertz, so, divide by 1000, but after the multiply. 989 * round up to make sure pendbc is at least 1 990 */ 991 pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US * 992 clk_khz / 1000, 1); 993 994 /* get the required exponent */ 995 while (pendbc >> i++) 996 ; 997 998 pendbc = i; 999 1000 tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS; 1001 1002 tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK; 1003 tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) & 1004 AT91_SAMA5D2_TSMR_PENDBC_MASK; 1005 tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA; 1006 tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA; 1007 tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK; 1008 1009 at91_adc_writel(st, TSMR, tsmr); 1010 1011 acr = at91_adc_readl(st, ACR); 1012 acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK; 1013 acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK; 1014 at91_adc_writel(st, ACR, acr); 1015 1016 /* Sample Period Time = (TRGPER + 1) / ADCClock */ 1017 st->touch_st.sample_period_val = 1018 round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US * 1019 clk_khz / 1000) - 1, 1); 1020 /* enable pen detect IRQ */ 1021 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN); 1022 1023 return 0; 1024 } 1025 at91_adc_touch_pos(struct at91_adc_state * st,int reg)1026 static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg) 1027 { 1028 u32 val = 0; 1029 u32 scale, result, pos; 1030 1031 /* 1032 * to obtain the actual position we must divide by scale 1033 * and multiply with max, where 1034 * max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1 1035 */ 1036 /* first half of register is the x or y, second half is the scale */ 1037 if (reg == st->soc_info.platform->layout->XPOSR) 1038 val = at91_adc_readl(st, XPOSR); 1039 else if (reg == st->soc_info.platform->layout->YPOSR) 1040 val = at91_adc_readl(st, YPOSR); 1041 1042 if (!val) 1043 dev_dbg(&st->indio_dev->dev, "pos is 0\n"); 1044 1045 pos = val & AT91_SAMA5D2_XYZ_MASK; 1046 result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos; 1047 scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK; 1048 if (scale == 0) { 1049 dev_err(&st->indio_dev->dev, "scale is 0\n"); 1050 return 0; 1051 } 1052 result /= scale; 1053 1054 return result; 1055 } 1056 at91_adc_touch_x_pos(struct at91_adc_state * st)1057 static u16 at91_adc_touch_x_pos(struct at91_adc_state *st) 1058 { 1059 st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR); 1060 return st->touch_st.x_pos; 1061 } 1062 at91_adc_touch_y_pos(struct at91_adc_state * st)1063 static u16 at91_adc_touch_y_pos(struct at91_adc_state *st) 1064 { 1065 return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR); 1066 } 1067 at91_adc_touch_pressure(struct at91_adc_state * st)1068 static u16 at91_adc_touch_pressure(struct at91_adc_state *st) 1069 { 1070 u32 val; 1071 u32 z1, z2; 1072 u32 pres; 1073 u32 rxp = 1; 1074 u32 factor = 1000; 1075 1076 /* calculate the pressure */ 1077 val = at91_adc_readl(st, PRESSR); 1078 z1 = val & AT91_SAMA5D2_XYZ_MASK; 1079 z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK; 1080 1081 if (z1 != 0) 1082 pres = rxp * (st->touch_st.x_pos * factor / 1024) * 1083 (z2 * factor / z1 - factor) / 1084 factor; 1085 else 1086 pres = 0xFFFF; /* no pen contact */ 1087 1088 /* 1089 * The pressure from device grows down, minimum is 0xFFFF, maximum 0x0. 1090 * We compute it this way, but let's return it in the expected way, 1091 * growing from 0 to 0xFFFF. 1092 */ 1093 return 0xFFFF - pres; 1094 } 1095 at91_adc_read_position(struct at91_adc_state * st,int chan,u16 * val)1096 static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val) 1097 { 1098 *val = 0; 1099 if (!st->touch_st.touching) 1100 return -ENODATA; 1101 if (chan == st->soc_info.platform->touch_chan_x) 1102 *val = at91_adc_touch_x_pos(st); 1103 else if (chan == st->soc_info.platform->touch_chan_y) 1104 *val = at91_adc_touch_y_pos(st); 1105 else 1106 return -ENODATA; 1107 1108 return IIO_VAL_INT; 1109 } 1110 at91_adc_read_pressure(struct at91_adc_state * st,int chan,u16 * val)1111 static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val) 1112 { 1113 *val = 0; 1114 if (!st->touch_st.touching) 1115 return -ENODATA; 1116 if (chan == st->soc_info.platform->touch_chan_p) 1117 *val = at91_adc_touch_pressure(st); 1118 else 1119 return -ENODATA; 1120 1121 return IIO_VAL_INT; 1122 } 1123 at91_adc_configure_trigger_registers(struct at91_adc_state * st,bool state)1124 static void at91_adc_configure_trigger_registers(struct at91_adc_state *st, 1125 bool state) 1126 { 1127 u32 status = at91_adc_readl(st, TRGR); 1128 1129 /* clear TRGMOD */ 1130 status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK; 1131 1132 if (state) 1133 status |= st->selected_trig->trgmod_value; 1134 1135 /* set/unset hw trigger */ 1136 at91_adc_writel(st, TRGR, status); 1137 } 1138 at91_adc_configure_trigger(struct iio_trigger * trig,bool state)1139 static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state) 1140 { 1141 struct iio_dev *indio = iio_trigger_get_drvdata(trig); 1142 struct at91_adc_state *st = iio_priv(indio); 1143 int ret; 1144 1145 if (state) { 1146 ret = pm_runtime_resume_and_get(st->dev); 1147 if (ret < 0) 1148 return ret; 1149 } 1150 1151 at91_adc_configure_trigger_registers(st, state); 1152 1153 if (!state) { 1154 pm_runtime_mark_last_busy(st->dev); 1155 pm_runtime_put_autosuspend(st->dev); 1156 } 1157 1158 return 0; 1159 } 1160 at91_adc_reenable_trigger(struct iio_trigger * trig)1161 static void at91_adc_reenable_trigger(struct iio_trigger *trig) 1162 { 1163 struct iio_dev *indio = iio_trigger_get_drvdata(trig); 1164 struct at91_adc_state *st = iio_priv(indio); 1165 1166 /* if we are using DMA, we must not reenable irq after each trigger */ 1167 if (st->dma_st.dma_chan) 1168 return; 1169 1170 enable_irq(st->irq); 1171 1172 /* Needed to ACK the DRDY interruption */ 1173 at91_adc_readl(st, LCDR); 1174 } 1175 1176 static const struct iio_trigger_ops at91_adc_trigger_ops = { 1177 .set_trigger_state = &at91_adc_configure_trigger, 1178 .reenable = &at91_adc_reenable_trigger, 1179 .validate_device = iio_trigger_validate_own_device, 1180 }; 1181 at91_adc_dma_size_done(struct at91_adc_state * st)1182 static int at91_adc_dma_size_done(struct at91_adc_state *st) 1183 { 1184 struct dma_tx_state state; 1185 enum dma_status status; 1186 int i, size; 1187 1188 status = dmaengine_tx_status(st->dma_st.dma_chan, 1189 st->dma_st.dma_chan->cookie, 1190 &state); 1191 if (status != DMA_IN_PROGRESS) 1192 return 0; 1193 1194 /* Transferred length is size in bytes from end of buffer */ 1195 i = st->dma_st.rx_buf_sz - state.residue; 1196 1197 /* Return available bytes */ 1198 if (i >= st->dma_st.buf_idx) 1199 size = i - st->dma_st.buf_idx; 1200 else 1201 size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx; 1202 return size; 1203 } 1204 at91_dma_buffer_done(void * data)1205 static void at91_dma_buffer_done(void *data) 1206 { 1207 struct iio_dev *indio_dev = data; 1208 1209 iio_trigger_poll_nested(indio_dev->trig); 1210 } 1211 at91_adc_dma_start(struct iio_dev * indio_dev)1212 static int at91_adc_dma_start(struct iio_dev *indio_dev) 1213 { 1214 struct at91_adc_state *st = iio_priv(indio_dev); 1215 struct dma_async_tx_descriptor *desc; 1216 dma_cookie_t cookie; 1217 int ret; 1218 u8 bit; 1219 1220 if (!st->dma_st.dma_chan) 1221 return 0; 1222 1223 /* we start a new DMA, so set buffer index to start */ 1224 st->dma_st.buf_idx = 0; 1225 1226 /* 1227 * compute buffer size w.r.t. watermark and enabled channels. 1228 * scan_bytes is aligned so we need an exact size for DMA 1229 */ 1230 st->dma_st.rx_buf_sz = 0; 1231 1232 for_each_set_bit(bit, indio_dev->active_scan_mask, 1233 indio_dev->num_channels) { 1234 struct iio_chan_spec const *chan = 1235 at91_adc_chan_get(indio_dev, bit); 1236 1237 if (!chan) 1238 continue; 1239 1240 st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8; 1241 } 1242 st->dma_st.rx_buf_sz *= st->dma_st.watermark; 1243 1244 /* Prepare a DMA cyclic transaction */ 1245 desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan, 1246 st->dma_st.rx_dma_buf, 1247 st->dma_st.rx_buf_sz, 1248 st->dma_st.rx_buf_sz / 2, 1249 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1250 1251 if (!desc) { 1252 dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n"); 1253 return -EBUSY; 1254 } 1255 1256 desc->callback = at91_dma_buffer_done; 1257 desc->callback_param = indio_dev; 1258 1259 cookie = dmaengine_submit(desc); 1260 ret = dma_submit_error(cookie); 1261 if (ret) { 1262 dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n"); 1263 dmaengine_terminate_async(st->dma_st.dma_chan); 1264 return ret; 1265 } 1266 1267 /* enable general overrun error signaling */ 1268 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE); 1269 /* Issue pending DMA requests */ 1270 dma_async_issue_pending(st->dma_st.dma_chan); 1271 1272 /* consider current time as DMA start time for timestamps */ 1273 st->dma_st.dma_ts = iio_get_time_ns(indio_dev); 1274 1275 dev_dbg(&indio_dev->dev, "DMA cyclic started\n"); 1276 1277 return 0; 1278 } 1279 at91_adc_buffer_check_use_irq(struct iio_dev * indio,struct at91_adc_state * st)1280 static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio, 1281 struct at91_adc_state *st) 1282 { 1283 /* if using DMA, we do not use our own IRQ (we use DMA-controller) */ 1284 if (st->dma_st.dma_chan) 1285 return false; 1286 /* if the trigger is not ours, then it has its own IRQ */ 1287 if (iio_trigger_validate_own_device(indio->trig, indio)) 1288 return false; 1289 return true; 1290 } 1291 at91_adc_current_chan_is_touch(struct iio_dev * indio_dev)1292 static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev) 1293 { 1294 struct at91_adc_state *st = iio_priv(indio_dev); 1295 1296 return !!bitmap_subset(indio_dev->active_scan_mask, 1297 &st->touch_st.channels_bitmask, 1298 st->soc_info.platform->max_index + 1); 1299 } 1300 at91_adc_buffer_prepare(struct iio_dev * indio_dev)1301 static int at91_adc_buffer_prepare(struct iio_dev *indio_dev) 1302 { 1303 int ret; 1304 u8 bit; 1305 struct at91_adc_state *st = iio_priv(indio_dev); 1306 1307 /* check if we are enabling triggered buffer or the touchscreen */ 1308 if (at91_adc_current_chan_is_touch(indio_dev)) 1309 return at91_adc_configure_touch(st, true); 1310 1311 /* if we are not in triggered mode, we cannot enable the buffer. */ 1312 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES)) 1313 return -EINVAL; 1314 1315 ret = pm_runtime_resume_and_get(st->dev); 1316 if (ret < 0) 1317 return ret; 1318 1319 /* we continue with the triggered buffer */ 1320 ret = at91_adc_dma_start(indio_dev); 1321 if (ret) { 1322 dev_err(&indio_dev->dev, "buffer prepare failed\n"); 1323 goto pm_runtime_put; 1324 } 1325 1326 for_each_set_bit(bit, indio_dev->active_scan_mask, 1327 indio_dev->num_channels) { 1328 struct iio_chan_spec const *chan = 1329 at91_adc_chan_get(indio_dev, bit); 1330 if (!chan) 1331 continue; 1332 /* these channel types cannot be handled by this trigger */ 1333 if (chan->type == IIO_POSITIONRELATIVE || 1334 chan->type == IIO_PRESSURE || 1335 chan->type == IIO_TEMP) 1336 continue; 1337 1338 at91_adc_cor(st, chan); 1339 1340 at91_adc_writel(st, CHER, BIT(chan->channel)); 1341 } 1342 1343 if (at91_adc_buffer_check_use_irq(indio_dev, st)) 1344 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY); 1345 1346 pm_runtime_put: 1347 pm_runtime_mark_last_busy(st->dev); 1348 pm_runtime_put_autosuspend(st->dev); 1349 return ret; 1350 } 1351 at91_adc_buffer_postdisable(struct iio_dev * indio_dev)1352 static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev) 1353 { 1354 struct at91_adc_state *st = iio_priv(indio_dev); 1355 int ret; 1356 u8 bit; 1357 1358 /* check if we are disabling triggered buffer or the touchscreen */ 1359 if (at91_adc_current_chan_is_touch(indio_dev)) 1360 return at91_adc_configure_touch(st, false); 1361 1362 /* if we are not in triggered mode, nothing to do here */ 1363 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES)) 1364 return -EINVAL; 1365 1366 ret = pm_runtime_resume_and_get(st->dev); 1367 if (ret < 0) 1368 return ret; 1369 1370 /* 1371 * For each enable channel we must disable it in hardware. 1372 * In the case of DMA, we must read the last converted value 1373 * to clear EOC status and not get a possible interrupt later. 1374 * This value is being read by DMA from LCDR anyway, so it's not lost. 1375 */ 1376 for_each_set_bit(bit, indio_dev->active_scan_mask, 1377 indio_dev->num_channels) { 1378 struct iio_chan_spec const *chan = 1379 at91_adc_chan_get(indio_dev, bit); 1380 1381 if (!chan) 1382 continue; 1383 /* these channel types are virtual, no need to do anything */ 1384 if (chan->type == IIO_POSITIONRELATIVE || 1385 chan->type == IIO_PRESSURE || 1386 chan->type == IIO_TEMP) 1387 continue; 1388 1389 at91_adc_writel(st, CHDR, BIT(chan->channel)); 1390 1391 if (st->dma_st.dma_chan) 1392 at91_adc_read_chan(st, chan->address); 1393 } 1394 1395 if (at91_adc_buffer_check_use_irq(indio_dev, st)) 1396 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY); 1397 1398 /* read overflow register to clear possible overflow status */ 1399 at91_adc_readl(st, OVER); 1400 1401 /* if we are using DMA we must clear registers and end DMA */ 1402 if (st->dma_st.dma_chan) 1403 dmaengine_terminate_sync(st->dma_st.dma_chan); 1404 1405 pm_runtime_mark_last_busy(st->dev); 1406 pm_runtime_put_autosuspend(st->dev); 1407 1408 return 0; 1409 } 1410 1411 static const struct iio_buffer_setup_ops at91_buffer_setup_ops = { 1412 .postdisable = &at91_adc_buffer_postdisable, 1413 }; 1414 at91_adc_allocate_trigger(struct iio_dev * indio,char * trigger_name)1415 static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio, 1416 char *trigger_name) 1417 { 1418 struct iio_trigger *trig; 1419 int ret; 1420 1421 trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name, 1422 iio_device_id(indio), trigger_name); 1423 if (!trig) 1424 return ERR_PTR(-ENOMEM); 1425 1426 trig->dev.parent = indio->dev.parent; 1427 iio_trigger_set_drvdata(trig, indio); 1428 trig->ops = &at91_adc_trigger_ops; 1429 1430 ret = devm_iio_trigger_register(&indio->dev, trig); 1431 if (ret) 1432 return ERR_PTR(ret); 1433 1434 return trig; 1435 } 1436 at91_adc_trigger_handler_nodma(struct iio_dev * indio_dev,struct iio_poll_func * pf)1437 static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev, 1438 struct iio_poll_func *pf) 1439 { 1440 struct at91_adc_state *st = iio_priv(indio_dev); 1441 int i = 0; 1442 int val; 1443 u8 bit; 1444 u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev); 1445 unsigned int timeout = 50; 1446 u32 status, imr, eoc = 0, eoc_imr; 1447 1448 /* 1449 * Check if the conversion is ready. If not, wait a little bit, and 1450 * in case of timeout exit with an error. 1451 */ 1452 while (((eoc & mask) != mask) && timeout) { 1453 at91_adc_irq_status(st, &status, &eoc); 1454 at91_adc_irq_mask(st, &imr, &eoc_imr); 1455 usleep_range(50, 100); 1456 timeout--; 1457 } 1458 1459 /* Cannot read data, not ready. Continue without reporting data */ 1460 if (!timeout) 1461 return; 1462 1463 for_each_set_bit(bit, indio_dev->active_scan_mask, 1464 indio_dev->num_channels) { 1465 struct iio_chan_spec const *chan = 1466 at91_adc_chan_get(indio_dev, bit); 1467 1468 if (!chan) 1469 continue; 1470 /* 1471 * Our external trigger only supports the voltage channels. 1472 * In case someone requested a different type of channel 1473 * just put zeroes to buffer. 1474 * This should not happen because we check the scan mode 1475 * and scan mask when we enable the buffer, and we don't allow 1476 * the buffer to start with a mixed mask (voltage and something 1477 * else). 1478 * Thus, emit a warning. 1479 */ 1480 if (chan->type == IIO_VOLTAGE) { 1481 val = at91_adc_read_chan(st, chan->address); 1482 at91_adc_adjust_val_osr(st, &val); 1483 st->buffer[i] = val; 1484 } else { 1485 st->buffer[i] = 0; 1486 WARN(true, "This trigger cannot handle this type of channel"); 1487 } 1488 i++; 1489 } 1490 iio_push_to_buffers_with_timestamp(indio_dev, st->buffer, 1491 pf->timestamp); 1492 } 1493 at91_adc_trigger_handler_dma(struct iio_dev * indio_dev)1494 static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev) 1495 { 1496 struct at91_adc_state *st = iio_priv(indio_dev); 1497 int transferred_len = at91_adc_dma_size_done(st); 1498 s64 ns = iio_get_time_ns(indio_dev); 1499 s64 interval; 1500 int sample_index = 0, sample_count, sample_size; 1501 1502 u32 status = at91_adc_readl(st, ISR); 1503 /* if we reached this point, we cannot sample faster */ 1504 if (status & AT91_SAMA5D2_IER_GOVRE) 1505 pr_info_ratelimited("%s: conversion overrun detected\n", 1506 indio_dev->name); 1507 1508 sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark); 1509 1510 sample_count = div_s64(transferred_len, sample_size); 1511 1512 /* 1513 * interval between samples is total time since last transfer handling 1514 * divided by the number of samples (total size divided by sample size) 1515 */ 1516 interval = div_s64((ns - st->dma_st.dma_ts), sample_count); 1517 1518 while (transferred_len >= sample_size) { 1519 /* 1520 * for all the values in the current sample, 1521 * adjust the values inside the buffer for oversampling 1522 */ 1523 at91_adc_adjust_val_osr_array(st, 1524 &st->dma_st.rx_buf[st->dma_st.buf_idx], 1525 sample_size); 1526 1527 iio_push_to_buffers_with_timestamp(indio_dev, 1528 (st->dma_st.rx_buf + st->dma_st.buf_idx), 1529 (st->dma_st.dma_ts + interval * sample_index)); 1530 /* adjust remaining length */ 1531 transferred_len -= sample_size; 1532 /* adjust buffer index */ 1533 st->dma_st.buf_idx += sample_size; 1534 /* in case of reaching end of buffer, reset index */ 1535 if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz) 1536 st->dma_st.buf_idx = 0; 1537 sample_index++; 1538 } 1539 /* adjust saved time for next transfer handling */ 1540 st->dma_st.dma_ts = iio_get_time_ns(indio_dev); 1541 } 1542 at91_adc_trigger_handler(int irq,void * p)1543 static irqreturn_t at91_adc_trigger_handler(int irq, void *p) 1544 { 1545 struct iio_poll_func *pf = p; 1546 struct iio_dev *indio_dev = pf->indio_dev; 1547 struct at91_adc_state *st = iio_priv(indio_dev); 1548 1549 /* 1550 * If it's not our trigger, start a conversion now, as we are 1551 * actually polling the trigger now. 1552 */ 1553 if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev)) 1554 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START); 1555 1556 if (st->dma_st.dma_chan) 1557 at91_adc_trigger_handler_dma(indio_dev); 1558 else 1559 at91_adc_trigger_handler_nodma(indio_dev, pf); 1560 1561 iio_trigger_notify_done(indio_dev->trig); 1562 1563 return IRQ_HANDLED; 1564 } 1565 at91_adc_startup_time(unsigned startup_time_min,unsigned adc_clk_khz)1566 static unsigned at91_adc_startup_time(unsigned startup_time_min, 1567 unsigned adc_clk_khz) 1568 { 1569 static const unsigned int startup_lookup[] = { 1570 0, 8, 16, 24, 1571 64, 80, 96, 112, 1572 512, 576, 640, 704, 1573 768, 832, 896, 960 1574 }; 1575 unsigned ticks_min, i; 1576 1577 /* 1578 * Since the adc frequency is checked before, there is no reason 1579 * to not meet the startup time constraint. 1580 */ 1581 1582 ticks_min = startup_time_min * adc_clk_khz / 1000; 1583 for (i = 0; i < ARRAY_SIZE(startup_lookup); i++) 1584 if (startup_lookup[i] > ticks_min) 1585 break; 1586 1587 return i; 1588 } 1589 at91_adc_setup_samp_freq(struct iio_dev * indio_dev,unsigned freq,unsigned int startup_time,unsigned int tracktim)1590 static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq, 1591 unsigned int startup_time, 1592 unsigned int tracktim) 1593 { 1594 struct at91_adc_state *st = iio_priv(indio_dev); 1595 unsigned f_per, prescal, startup, mr; 1596 int ret; 1597 1598 f_per = clk_get_rate(st->per_clk); 1599 prescal = (f_per / (2 * freq)) - 1; 1600 1601 startup = at91_adc_startup_time(startup_time, freq / 1000); 1602 1603 ret = pm_runtime_resume_and_get(st->dev); 1604 if (ret < 0) 1605 return; 1606 1607 mr = at91_adc_readl(st, MR); 1608 mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK); 1609 mr |= AT91_SAMA5D2_MR_STARTUP(startup); 1610 mr |= AT91_SAMA5D2_MR_PRESCAL(prescal); 1611 mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim); 1612 at91_adc_writel(st, MR, mr); 1613 1614 pm_runtime_mark_last_busy(st->dev); 1615 pm_runtime_put_autosuspend(st->dev); 1616 1617 dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n", 1618 freq, startup, prescal, tracktim); 1619 st->current_sample_rate = freq; 1620 } 1621 at91_adc_get_sample_freq(struct at91_adc_state * st)1622 static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st) 1623 { 1624 return st->current_sample_rate; 1625 } 1626 at91_adc_touch_data_handler(struct iio_dev * indio_dev)1627 static void at91_adc_touch_data_handler(struct iio_dev *indio_dev) 1628 { 1629 struct at91_adc_state *st = iio_priv(indio_dev); 1630 u8 bit; 1631 u16 val; 1632 int i = 0; 1633 1634 for_each_set_bit(bit, indio_dev->active_scan_mask, 1635 st->soc_info.platform->max_index + 1) { 1636 struct iio_chan_spec const *chan = 1637 at91_adc_chan_get(indio_dev, bit); 1638 1639 if (chan->type == IIO_POSITIONRELATIVE) 1640 at91_adc_read_position(st, chan->channel, &val); 1641 else if (chan->type == IIO_PRESSURE) 1642 at91_adc_read_pressure(st, chan->channel, &val); 1643 else 1644 continue; 1645 st->buffer[i] = val; 1646 i++; 1647 } 1648 /* 1649 * Schedule work to push to buffers. 1650 * This is intended to push to the callback buffer that another driver 1651 * registered. We are still in a handler from our IRQ. If we push 1652 * directly, it means the other driver has it's callback called 1653 * from our IRQ context. Which is something we better avoid. 1654 * Let's schedule it after our IRQ is completed. 1655 */ 1656 schedule_work(&st->touch_st.workq); 1657 } 1658 at91_adc_pen_detect_interrupt(struct at91_adc_state * st)1659 static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st) 1660 { 1661 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN); 1662 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN | 1663 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY | 1664 AT91_SAMA5D2_IER_PRDY); 1665 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC | 1666 AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val)); 1667 st->touch_st.touching = true; 1668 } 1669 at91_adc_no_pen_detect_interrupt(struct iio_dev * indio_dev)1670 static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev) 1671 { 1672 struct at91_adc_state *st = iio_priv(indio_dev); 1673 1674 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER); 1675 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN | 1676 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY | 1677 AT91_SAMA5D2_IER_PRDY); 1678 st->touch_st.touching = false; 1679 1680 at91_adc_touch_data_handler(indio_dev); 1681 1682 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN); 1683 } 1684 at91_adc_workq_handler(struct work_struct * workq)1685 static void at91_adc_workq_handler(struct work_struct *workq) 1686 { 1687 struct at91_adc_touch *touch_st = container_of(workq, 1688 struct at91_adc_touch, workq); 1689 struct at91_adc_state *st = container_of(touch_st, 1690 struct at91_adc_state, touch_st); 1691 struct iio_dev *indio_dev = st->indio_dev; 1692 1693 iio_push_to_buffers(indio_dev, st->buffer); 1694 } 1695 at91_adc_interrupt(int irq,void * private)1696 static irqreturn_t at91_adc_interrupt(int irq, void *private) 1697 { 1698 struct iio_dev *indio = private; 1699 struct at91_adc_state *st = iio_priv(indio); 1700 u32 status, eoc, imr, eoc_imr; 1701 u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY | 1702 AT91_SAMA5D2_IER_PRDY; 1703 1704 at91_adc_irq_status(st, &status, &eoc); 1705 at91_adc_irq_mask(st, &imr, &eoc_imr); 1706 1707 if (!(status & imr) && !(eoc & eoc_imr)) 1708 return IRQ_NONE; 1709 if (status & AT91_SAMA5D2_IER_PEN) { 1710 /* pen detected IRQ */ 1711 at91_adc_pen_detect_interrupt(st); 1712 } else if ((status & AT91_SAMA5D2_IER_NOPEN)) { 1713 /* nopen detected IRQ */ 1714 at91_adc_no_pen_detect_interrupt(indio); 1715 } else if ((status & AT91_SAMA5D2_ISR_PENS) && 1716 ((status & rdy_mask) == rdy_mask)) { 1717 /* periodic trigger IRQ - during pen sense */ 1718 at91_adc_touch_data_handler(indio); 1719 } else if (status & AT91_SAMA5D2_ISR_PENS) { 1720 /* 1721 * touching, but the measurements are not ready yet. 1722 * read and ignore. 1723 */ 1724 status = at91_adc_readl(st, XPOSR); 1725 status = at91_adc_readl(st, YPOSR); 1726 status = at91_adc_readl(st, PRESSR); 1727 } else if (iio_buffer_enabled(indio) && 1728 (status & AT91_SAMA5D2_IER_DRDY)) { 1729 /* triggered buffer without DMA */ 1730 disable_irq_nosync(irq); 1731 iio_trigger_poll(indio->trig); 1732 } else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) { 1733 /* triggered buffer with DMA - should not happen */ 1734 disable_irq_nosync(irq); 1735 WARN(true, "Unexpected irq occurred\n"); 1736 } else if (!iio_buffer_enabled(indio)) { 1737 /* software requested conversion */ 1738 st->conversion_value = at91_adc_read_chan(st, st->chan->address); 1739 st->conversion_done = true; 1740 wake_up_interruptible(&st->wq_data_available); 1741 } 1742 return IRQ_HANDLED; 1743 } 1744 1745 /* This needs to be called with direct mode claimed and st->lock locked. */ at91_adc_read_info_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1746 static int at91_adc_read_info_raw(struct iio_dev *indio_dev, 1747 struct iio_chan_spec const *chan, int *val) 1748 { 1749 struct at91_adc_state *st = iio_priv(indio_dev); 1750 u16 tmp_val; 1751 int ret; 1752 1753 ret = pm_runtime_resume_and_get(st->dev); 1754 if (ret < 0) 1755 return ret; 1756 1757 /* 1758 * Keep in mind that we cannot use software trigger or touchscreen 1759 * if external trigger is enabled 1760 */ 1761 if (chan->type == IIO_POSITIONRELATIVE) { 1762 ret = at91_adc_read_position(st, chan->channel, 1763 &tmp_val); 1764 *val = tmp_val; 1765 if (ret > 0) 1766 ret = at91_adc_adjust_val_osr(st, val); 1767 1768 goto pm_runtime_put; 1769 } 1770 if (chan->type == IIO_PRESSURE) { 1771 ret = at91_adc_read_pressure(st, chan->channel, 1772 &tmp_val); 1773 *val = tmp_val; 1774 if (ret > 0) 1775 ret = at91_adc_adjust_val_osr(st, val); 1776 1777 goto pm_runtime_put; 1778 } 1779 1780 /* in this case we have a voltage or temperature channel */ 1781 1782 st->chan = chan; 1783 1784 at91_adc_cor(st, chan); 1785 at91_adc_writel(st, CHER, BIT(chan->channel)); 1786 /* 1787 * TEMPMR.TEMPON needs to update after CHER otherwise if none 1788 * of the channels are enabled and TEMPMR.TEMPON = 1 will 1789 * trigger DRDY interruption while preparing for temperature read. 1790 */ 1791 if (chan->type == IIO_TEMP) 1792 at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON); 1793 at91_adc_eoc_ena(st, chan->channel); 1794 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START); 1795 1796 ret = wait_event_interruptible_timeout(st->wq_data_available, 1797 st->conversion_done, 1798 msecs_to_jiffies(1000)); 1799 if (ret == 0) 1800 ret = -ETIMEDOUT; 1801 1802 if (ret > 0) { 1803 *val = st->conversion_value; 1804 ret = at91_adc_adjust_val_osr(st, val); 1805 if (chan->scan_type.sign == 's') 1806 *val = sign_extend32(*val, 1807 chan->scan_type.realbits - 1); 1808 st->conversion_done = false; 1809 } 1810 1811 at91_adc_eoc_dis(st, st->chan->channel); 1812 if (chan->type == IIO_TEMP) 1813 at91_adc_writel(st, TEMPMR, 0U); 1814 at91_adc_writel(st, CHDR, BIT(chan->channel)); 1815 1816 /* Needed to ACK the DRDY interruption */ 1817 at91_adc_readl(st, LCDR); 1818 1819 pm_runtime_put: 1820 pm_runtime_mark_last_busy(st->dev); 1821 pm_runtime_put_autosuspend(st->dev); 1822 return ret; 1823 } 1824 at91_adc_read_info_locked(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1825 static int at91_adc_read_info_locked(struct iio_dev *indio_dev, 1826 struct iio_chan_spec const *chan, int *val) 1827 { 1828 struct at91_adc_state *st = iio_priv(indio_dev); 1829 int ret; 1830 1831 ret = iio_device_claim_direct_mode(indio_dev); 1832 if (ret) 1833 return ret; 1834 1835 mutex_lock(&st->lock); 1836 ret = at91_adc_read_info_raw(indio_dev, chan, val); 1837 mutex_unlock(&st->lock); 1838 1839 iio_device_release_direct_mode(indio_dev); 1840 1841 return ret; 1842 } 1843 at91_adc_temp_sensor_configure(struct at91_adc_state * st,bool start)1844 static void at91_adc_temp_sensor_configure(struct at91_adc_state *st, 1845 bool start) 1846 { 1847 u32 sample_rate, oversampling_ratio; 1848 u32 startup_time, tracktim, trackx; 1849 1850 if (start) { 1851 /* 1852 * Configure the sensor for best accuracy: 10MHz frequency, 1853 * oversampling rate of 256, tracktim=0xf and trackx=1. 1854 */ 1855 sample_rate = 10 * MEGA; 1856 oversampling_ratio = 256; 1857 startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN; 1858 tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS; 1859 trackx = AT91_SAMA5D2_TRACKX_TS; 1860 1861 st->temp_st.saved_sample_rate = st->current_sample_rate; 1862 st->temp_st.saved_oversampling = st->oversampling_ratio; 1863 } else { 1864 /* Go back to previous settings. */ 1865 sample_rate = st->temp_st.saved_sample_rate; 1866 oversampling_ratio = st->temp_st.saved_oversampling; 1867 startup_time = st->soc_info.startup_time; 1868 tracktim = 0; 1869 trackx = 0; 1870 } 1871 1872 at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time, 1873 tracktim); 1874 at91_adc_config_emr(st, oversampling_ratio, trackx); 1875 } 1876 at91_adc_read_temp(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1877 static int at91_adc_read_temp(struct iio_dev *indio_dev, 1878 struct iio_chan_spec const *chan, int *val) 1879 { 1880 struct at91_adc_state *st = iio_priv(indio_dev); 1881 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb; 1882 u64 div1, div2; 1883 u32 tmp; 1884 int ret, vbg, vtemp; 1885 1886 ret = iio_device_claim_direct_mode(indio_dev); 1887 if (ret) 1888 return ret; 1889 mutex_lock(&st->lock); 1890 1891 ret = pm_runtime_resume_and_get(st->dev); 1892 if (ret < 0) 1893 goto unlock; 1894 1895 at91_adc_temp_sensor_configure(st, true); 1896 1897 /* Read VBG. */ 1898 tmp = at91_adc_readl(st, ACR); 1899 tmp |= AT91_SAMA5D2_ACR_SRCLCH; 1900 at91_adc_writel(st, ACR, tmp); 1901 ret = at91_adc_read_info_raw(indio_dev, chan, &vbg); 1902 if (ret < 0) 1903 goto restore_config; 1904 1905 /* Read VTEMP. */ 1906 tmp &= ~AT91_SAMA5D2_ACR_SRCLCH; 1907 at91_adc_writel(st, ACR, tmp); 1908 ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp); 1909 1910 restore_config: 1911 /* Revert previous settings. */ 1912 at91_adc_temp_sensor_configure(st, false); 1913 pm_runtime_mark_last_busy(st->dev); 1914 pm_runtime_put_autosuspend(st->dev); 1915 unlock: 1916 mutex_unlock(&st->lock); 1917 iio_device_release_direct_mode(indio_dev); 1918 if (ret < 0) 1919 return ret; 1920 1921 /* 1922 * Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/ 1923 * (vbg * AT91_ADC_TS_VTEMP_DT) 1924 */ 1925 div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg); 1926 div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT); 1927 div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT); 1928 div2 *= 1000; 1929 *val = clb->p1 + (int)div1 - (int)div2; 1930 1931 return ret; 1932 } 1933 at91_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1934 static int at91_adc_read_raw(struct iio_dev *indio_dev, 1935 struct iio_chan_spec const *chan, 1936 int *val, int *val2, long mask) 1937 { 1938 struct at91_adc_state *st = iio_priv(indio_dev); 1939 1940 switch (mask) { 1941 case IIO_CHAN_INFO_RAW: 1942 return at91_adc_read_info_locked(indio_dev, chan, val); 1943 1944 case IIO_CHAN_INFO_SCALE: 1945 *val = st->vref_uv / 1000; 1946 if (chan->differential) 1947 *val *= 2; 1948 *val2 = chan->scan_type.realbits; 1949 return IIO_VAL_FRACTIONAL_LOG2; 1950 1951 case IIO_CHAN_INFO_PROCESSED: 1952 if (chan->type != IIO_TEMP) 1953 return -EINVAL; 1954 return at91_adc_read_temp(indio_dev, chan, val); 1955 1956 case IIO_CHAN_INFO_SAMP_FREQ: 1957 *val = at91_adc_get_sample_freq(st); 1958 return IIO_VAL_INT; 1959 1960 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 1961 *val = st->oversampling_ratio; 1962 return IIO_VAL_INT; 1963 1964 default: 1965 return -EINVAL; 1966 } 1967 } 1968 at91_adc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1969 static int at91_adc_write_raw(struct iio_dev *indio_dev, 1970 struct iio_chan_spec const *chan, 1971 int val, int val2, long mask) 1972 { 1973 struct at91_adc_state *st = iio_priv(indio_dev); 1974 int ret; 1975 1976 switch (mask) { 1977 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 1978 /* if no change, optimize out */ 1979 if (val == st->oversampling_ratio) 1980 return 0; 1981 1982 ret = iio_device_claim_direct_mode(indio_dev); 1983 if (ret) 1984 return ret; 1985 mutex_lock(&st->lock); 1986 /* update ratio */ 1987 ret = at91_adc_config_emr(st, val, 0); 1988 mutex_unlock(&st->lock); 1989 iio_device_release_direct_mode(indio_dev); 1990 return ret; 1991 case IIO_CHAN_INFO_SAMP_FREQ: 1992 if (val < st->soc_info.min_sample_rate || 1993 val > st->soc_info.max_sample_rate) 1994 return -EINVAL; 1995 1996 ret = iio_device_claim_direct_mode(indio_dev); 1997 if (ret) 1998 return ret; 1999 mutex_lock(&st->lock); 2000 at91_adc_setup_samp_freq(indio_dev, val, 2001 st->soc_info.startup_time, 0); 2002 mutex_unlock(&st->lock); 2003 iio_device_release_direct_mode(indio_dev); 2004 return 0; 2005 default: 2006 return -EINVAL; 2007 } 2008 } 2009 at91_adc_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)2010 static int at91_adc_read_avail(struct iio_dev *indio_dev, 2011 struct iio_chan_spec const *chan, 2012 const int **vals, int *type, int *length, 2013 long mask) 2014 { 2015 struct at91_adc_state *st = iio_priv(indio_dev); 2016 2017 switch (mask) { 2018 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 2019 *vals = (int *)st->soc_info.platform->oversampling_avail; 2020 *type = IIO_VAL_INT; 2021 *length = st->soc_info.platform->oversampling_avail_no; 2022 return IIO_AVAIL_LIST; 2023 default: 2024 return -EINVAL; 2025 } 2026 } 2027 at91_adc_dma_init(struct at91_adc_state * st)2028 static void at91_adc_dma_init(struct at91_adc_state *st) 2029 { 2030 struct device *dev = &st->indio_dev->dev; 2031 struct dma_slave_config config = {0}; 2032 /* we have 2 bytes for each channel */ 2033 unsigned int sample_size = st->soc_info.platform->nr_channels * 2; 2034 /* 2035 * We make the buffer double the size of the fifo, 2036 * such that DMA uses one half of the buffer (full fifo size) 2037 * and the software uses the other half to read/write. 2038 */ 2039 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE * 2040 sample_size * 2, PAGE_SIZE); 2041 2042 if (st->dma_st.dma_chan) 2043 return; 2044 2045 st->dma_st.dma_chan = dma_request_chan(dev, "rx"); 2046 if (IS_ERR(st->dma_st.dma_chan)) { 2047 dev_info(dev, "can't get DMA channel\n"); 2048 st->dma_st.dma_chan = NULL; 2049 goto dma_exit; 2050 } 2051 2052 st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev, 2053 pages * PAGE_SIZE, 2054 &st->dma_st.rx_dma_buf, 2055 GFP_KERNEL); 2056 if (!st->dma_st.rx_buf) { 2057 dev_info(dev, "can't allocate coherent DMA area\n"); 2058 goto dma_chan_disable; 2059 } 2060 2061 /* Configure DMA channel to read data register */ 2062 config.direction = DMA_DEV_TO_MEM; 2063 config.src_addr = (phys_addr_t)(st->dma_st.phys_addr 2064 + st->soc_info.platform->layout->LCDR); 2065 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 2066 config.src_maxburst = 1; 2067 config.dst_maxburst = 1; 2068 2069 if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) { 2070 dev_info(dev, "can't configure DMA slave\n"); 2071 goto dma_free_area; 2072 } 2073 2074 dev_info(dev, "using %s for rx DMA transfers\n", 2075 dma_chan_name(st->dma_st.dma_chan)); 2076 2077 return; 2078 2079 dma_free_area: 2080 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE, 2081 st->dma_st.rx_buf, st->dma_st.rx_dma_buf); 2082 dma_chan_disable: 2083 dma_release_channel(st->dma_st.dma_chan); 2084 st->dma_st.dma_chan = NULL; 2085 dma_exit: 2086 dev_info(dev, "continuing without DMA support\n"); 2087 } 2088 at91_adc_dma_disable(struct at91_adc_state * st)2089 static void at91_adc_dma_disable(struct at91_adc_state *st) 2090 { 2091 struct device *dev = &st->indio_dev->dev; 2092 /* we have 2 bytes for each channel */ 2093 unsigned int sample_size = st->soc_info.platform->nr_channels * 2; 2094 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE * 2095 sample_size * 2, PAGE_SIZE); 2096 2097 /* if we are not using DMA, just return */ 2098 if (!st->dma_st.dma_chan) 2099 return; 2100 2101 /* wait for all transactions to be terminated first*/ 2102 dmaengine_terminate_sync(st->dma_st.dma_chan); 2103 2104 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE, 2105 st->dma_st.rx_buf, st->dma_st.rx_dma_buf); 2106 dma_release_channel(st->dma_st.dma_chan); 2107 st->dma_st.dma_chan = NULL; 2108 2109 dev_info(dev, "continuing without DMA support\n"); 2110 } 2111 at91_adc_set_watermark(struct iio_dev * indio_dev,unsigned int val)2112 static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val) 2113 { 2114 struct at91_adc_state *st = iio_priv(indio_dev); 2115 int ret; 2116 2117 if (val > AT91_HWFIFO_MAX_SIZE) 2118 val = AT91_HWFIFO_MAX_SIZE; 2119 2120 if (!st->selected_trig->hw_trig) { 2121 dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n"); 2122 return 0; 2123 } 2124 2125 dev_dbg(&indio_dev->dev, "new watermark is %u\n", val); 2126 st->dma_st.watermark = val; 2127 2128 /* 2129 * The logic here is: if we have watermark 1, it means we do 2130 * each conversion with it's own IRQ, thus we don't need DMA. 2131 * If the watermark is higher, we do DMA to do all the transfers in bulk 2132 */ 2133 2134 if (val == 1) 2135 at91_adc_dma_disable(st); 2136 else if (val > 1) 2137 at91_adc_dma_init(st); 2138 2139 /* 2140 * We can start the DMA only after setting the watermark and 2141 * having the DMA initialization completed 2142 */ 2143 ret = at91_adc_buffer_prepare(indio_dev); 2144 if (ret) 2145 at91_adc_dma_disable(st); 2146 2147 return ret; 2148 } 2149 at91_adc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)2150 static int at91_adc_update_scan_mode(struct iio_dev *indio_dev, 2151 const unsigned long *scan_mask) 2152 { 2153 struct at91_adc_state *st = iio_priv(indio_dev); 2154 2155 if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask, 2156 st->soc_info.platform->max_index + 1)) 2157 return 0; 2158 /* 2159 * if the new bitmap is a combination of touchscreen and regular 2160 * channels, then we are not fine 2161 */ 2162 if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask, 2163 st->soc_info.platform->max_index + 1)) 2164 return -EINVAL; 2165 return 0; 2166 } 2167 at91_adc_hw_init(struct iio_dev * indio_dev)2168 static void at91_adc_hw_init(struct iio_dev *indio_dev) 2169 { 2170 struct at91_adc_state *st = iio_priv(indio_dev); 2171 2172 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST); 2173 if (st->soc_info.platform->layout->EOC_IDR) 2174 at91_adc_writel(st, EOC_IDR, 0xffffffff); 2175 at91_adc_writel(st, IDR, 0xffffffff); 2176 /* 2177 * Transfer field must be set to 2 according to the datasheet and 2178 * allows different analog settings for each channel. 2179 */ 2180 at91_adc_writel(st, MR, 2181 AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH); 2182 2183 at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate, 2184 st->soc_info.startup_time, 0); 2185 2186 /* configure extended mode register */ 2187 at91_adc_config_emr(st, st->oversampling_ratio, 0); 2188 } 2189 at91_adc_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)2190 static ssize_t at91_adc_get_fifo_state(struct device *dev, 2191 struct device_attribute *attr, char *buf) 2192 { 2193 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 2194 struct at91_adc_state *st = iio_priv(indio_dev); 2195 2196 return sysfs_emit(buf, "%d\n", !!st->dma_st.dma_chan); 2197 } 2198 at91_adc_get_watermark(struct device * dev,struct device_attribute * attr,char * buf)2199 static ssize_t at91_adc_get_watermark(struct device *dev, 2200 struct device_attribute *attr, char *buf) 2201 { 2202 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 2203 struct at91_adc_state *st = iio_priv(indio_dev); 2204 2205 return sysfs_emit(buf, "%d\n", st->dma_st.watermark); 2206 } 2207 2208 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444, 2209 at91_adc_get_fifo_state, NULL, 0); 2210 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444, 2211 at91_adc_get_watermark, NULL, 0); 2212 2213 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "2"); 2214 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, AT91_HWFIFO_MAX_SIZE_STR); 2215 2216 static const struct iio_dev_attr *at91_adc_fifo_attributes[] = { 2217 &iio_dev_attr_hwfifo_watermark_min, 2218 &iio_dev_attr_hwfifo_watermark_max, 2219 &iio_dev_attr_hwfifo_watermark, 2220 &iio_dev_attr_hwfifo_enabled, 2221 NULL, 2222 }; 2223 2224 static const struct iio_info at91_adc_info = { 2225 .read_avail = &at91_adc_read_avail, 2226 .read_raw = &at91_adc_read_raw, 2227 .write_raw = &at91_adc_write_raw, 2228 .update_scan_mode = &at91_adc_update_scan_mode, 2229 .fwnode_xlate = &at91_adc_fwnode_xlate, 2230 .hwfifo_set_watermark = &at91_adc_set_watermark, 2231 }; 2232 at91_adc_buffer_and_trigger_init(struct device * dev,struct iio_dev * indio)2233 static int at91_adc_buffer_and_trigger_init(struct device *dev, 2234 struct iio_dev *indio) 2235 { 2236 struct at91_adc_state *st = iio_priv(indio); 2237 const struct iio_dev_attr **fifo_attrs; 2238 int ret; 2239 2240 if (st->selected_trig->hw_trig) 2241 fifo_attrs = at91_adc_fifo_attributes; 2242 else 2243 fifo_attrs = NULL; 2244 2245 ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio, 2246 &iio_pollfunc_store_time, &at91_adc_trigger_handler, 2247 IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs); 2248 if (ret < 0) { 2249 dev_err(dev, "couldn't initialize the buffer.\n"); 2250 return ret; 2251 } 2252 2253 if (!st->selected_trig->hw_trig) 2254 return 0; 2255 2256 st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name); 2257 if (IS_ERR(st->trig)) { 2258 dev_err(dev, "could not allocate trigger\n"); 2259 return PTR_ERR(st->trig); 2260 } 2261 2262 /* 2263 * Initially the iio buffer has a length of 2 and 2264 * a watermark of 1 2265 */ 2266 st->dma_st.watermark = 1; 2267 2268 return 0; 2269 } 2270 at91_adc_temp_sensor_init(struct at91_adc_state * st,struct device * dev)2271 static int at91_adc_temp_sensor_init(struct at91_adc_state *st, 2272 struct device *dev) 2273 { 2274 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb; 2275 struct nvmem_cell *temp_calib; 2276 u32 *buf; 2277 size_t len; 2278 int ret = 0; 2279 2280 if (!st->soc_info.platform->temp_sensor) 2281 return 0; 2282 2283 /* Get the calibration data from NVMEM. */ 2284 temp_calib = devm_nvmem_cell_get(dev, "temperature_calib"); 2285 if (IS_ERR(temp_calib)) { 2286 ret = PTR_ERR(temp_calib); 2287 if (ret != -ENOENT) 2288 dev_err(dev, "Failed to get temperature_calib cell!\n"); 2289 return ret; 2290 } 2291 2292 buf = nvmem_cell_read(temp_calib, &len); 2293 if (IS_ERR(buf)) { 2294 dev_err(dev, "Failed to read calibration data!\n"); 2295 return PTR_ERR(buf); 2296 } 2297 if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) { 2298 dev_err(dev, "Invalid calibration data!\n"); 2299 ret = -EINVAL; 2300 goto free_buf; 2301 } 2302 2303 /* Store calibration data for later use. */ 2304 clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1]; 2305 clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4]; 2306 clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6]; 2307 2308 /* 2309 * We prepare here the conversion to milli to avoid doing it on hotpath. 2310 */ 2311 clb->p1 = clb->p1 * 1000; 2312 2313 free_buf: 2314 kfree(buf); 2315 return ret; 2316 } 2317 at91_adc_probe(struct platform_device * pdev)2318 static int at91_adc_probe(struct platform_device *pdev) 2319 { 2320 struct device *dev = &pdev->dev; 2321 struct iio_dev *indio_dev; 2322 struct at91_adc_state *st; 2323 struct resource *res; 2324 int ret, i, num_channels; 2325 u32 edge_type = IRQ_TYPE_NONE; 2326 2327 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st)); 2328 if (!indio_dev) 2329 return -ENOMEM; 2330 2331 st = iio_priv(indio_dev); 2332 st->indio_dev = indio_dev; 2333 2334 st->soc_info.platform = device_get_match_data(dev); 2335 2336 ret = at91_adc_temp_sensor_init(st, &pdev->dev); 2337 /* Don't register temperature channel if initialization failed. */ 2338 if (ret) 2339 num_channels = st->soc_info.platform->max_channels - 1; 2340 else 2341 num_channels = st->soc_info.platform->max_channels; 2342 2343 indio_dev->name = dev_name(&pdev->dev); 2344 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 2345 indio_dev->info = &at91_adc_info; 2346 indio_dev->channels = *st->soc_info.platform->adc_channels; 2347 indio_dev->num_channels = num_channels; 2348 2349 bitmap_set(&st->touch_st.channels_bitmask, 2350 st->soc_info.platform->touch_chan_x, 1); 2351 bitmap_set(&st->touch_st.channels_bitmask, 2352 st->soc_info.platform->touch_chan_y, 1); 2353 bitmap_set(&st->touch_st.channels_bitmask, 2354 st->soc_info.platform->touch_chan_p, 1); 2355 2356 st->oversampling_ratio = 1; 2357 2358 ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz", 2359 &st->soc_info.min_sample_rate); 2360 if (ret) { 2361 dev_err(&pdev->dev, 2362 "invalid or missing value for atmel,min-sample-rate-hz\n"); 2363 return ret; 2364 } 2365 2366 ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz", 2367 &st->soc_info.max_sample_rate); 2368 if (ret) { 2369 dev_err(&pdev->dev, 2370 "invalid or missing value for atmel,max-sample-rate-hz\n"); 2371 return ret; 2372 } 2373 2374 ret = device_property_read_u32(dev, "atmel,startup-time-ms", 2375 &st->soc_info.startup_time); 2376 if (ret) { 2377 dev_err(&pdev->dev, 2378 "invalid or missing value for atmel,startup-time-ms\n"); 2379 return ret; 2380 } 2381 2382 ret = device_property_read_u32(dev, "atmel,trigger-edge-type", 2383 &edge_type); 2384 if (ret) { 2385 dev_dbg(&pdev->dev, 2386 "atmel,trigger-edge-type not specified, only software trigger available\n"); 2387 } 2388 2389 st->selected_trig = NULL; 2390 2391 /* find the right trigger, or no trigger at all */ 2392 for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++) 2393 if (at91_adc_trigger_list[i].edge_type == edge_type) { 2394 st->selected_trig = &at91_adc_trigger_list[i]; 2395 break; 2396 } 2397 2398 if (!st->selected_trig) { 2399 dev_err(&pdev->dev, "invalid external trigger edge value\n"); 2400 return -EINVAL; 2401 } 2402 2403 init_waitqueue_head(&st->wq_data_available); 2404 mutex_init(&st->lock); 2405 INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler); 2406 2407 st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2408 if (IS_ERR(st->base)) 2409 return PTR_ERR(st->base); 2410 2411 /* if we plan to use DMA, we need the physical address of the regs */ 2412 st->dma_st.phys_addr = res->start; 2413 2414 st->irq = platform_get_irq(pdev, 0); 2415 if (st->irq < 0) 2416 return st->irq; 2417 2418 st->per_clk = devm_clk_get(&pdev->dev, "adc_clk"); 2419 if (IS_ERR(st->per_clk)) 2420 return PTR_ERR(st->per_clk); 2421 2422 st->reg = devm_regulator_get(&pdev->dev, "vddana"); 2423 if (IS_ERR(st->reg)) 2424 return PTR_ERR(st->reg); 2425 2426 st->vref = devm_regulator_get(&pdev->dev, "vref"); 2427 if (IS_ERR(st->vref)) 2428 return PTR_ERR(st->vref); 2429 2430 ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0, 2431 pdev->dev.driver->name, indio_dev); 2432 if (ret) 2433 return ret; 2434 2435 ret = regulator_enable(st->reg); 2436 if (ret) 2437 return ret; 2438 2439 ret = regulator_enable(st->vref); 2440 if (ret) 2441 goto reg_disable; 2442 2443 st->vref_uv = regulator_get_voltage(st->vref); 2444 if (st->vref_uv <= 0) { 2445 ret = -EINVAL; 2446 goto vref_disable; 2447 } 2448 2449 ret = clk_prepare_enable(st->per_clk); 2450 if (ret) 2451 goto vref_disable; 2452 2453 platform_set_drvdata(pdev, indio_dev); 2454 st->dev = &pdev->dev; 2455 pm_runtime_set_autosuspend_delay(st->dev, 500); 2456 pm_runtime_use_autosuspend(st->dev); 2457 pm_runtime_set_active(st->dev); 2458 pm_runtime_enable(st->dev); 2459 pm_runtime_get_noresume(st->dev); 2460 2461 at91_adc_hw_init(indio_dev); 2462 2463 ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev); 2464 if (ret < 0) 2465 goto err_pm_disable; 2466 2467 if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32))) 2468 dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n"); 2469 2470 ret = iio_device_register(indio_dev); 2471 if (ret < 0) 2472 goto dma_disable; 2473 2474 if (st->selected_trig->hw_trig) 2475 dev_info(&pdev->dev, "setting up trigger as %s\n", 2476 st->selected_trig->name); 2477 2478 dev_info(&pdev->dev, "version: %x\n", 2479 readl_relaxed(st->base + st->soc_info.platform->layout->VERSION)); 2480 2481 pm_runtime_mark_last_busy(st->dev); 2482 pm_runtime_put_autosuspend(st->dev); 2483 2484 return 0; 2485 2486 dma_disable: 2487 at91_adc_dma_disable(st); 2488 err_pm_disable: 2489 pm_runtime_put_noidle(st->dev); 2490 pm_runtime_disable(st->dev); 2491 pm_runtime_set_suspended(st->dev); 2492 pm_runtime_dont_use_autosuspend(st->dev); 2493 clk_disable_unprepare(st->per_clk); 2494 vref_disable: 2495 regulator_disable(st->vref); 2496 reg_disable: 2497 regulator_disable(st->reg); 2498 return ret; 2499 } 2500 at91_adc_remove(struct platform_device * pdev)2501 static int at91_adc_remove(struct platform_device *pdev) 2502 { 2503 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 2504 struct at91_adc_state *st = iio_priv(indio_dev); 2505 2506 iio_device_unregister(indio_dev); 2507 2508 at91_adc_dma_disable(st); 2509 2510 pm_runtime_disable(st->dev); 2511 pm_runtime_set_suspended(st->dev); 2512 clk_disable_unprepare(st->per_clk); 2513 2514 regulator_disable(st->vref); 2515 regulator_disable(st->reg); 2516 2517 return 0; 2518 } 2519 at91_adc_suspend(struct device * dev)2520 static int at91_adc_suspend(struct device *dev) 2521 { 2522 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2523 struct at91_adc_state *st = iio_priv(indio_dev); 2524 int ret; 2525 2526 ret = pm_runtime_resume_and_get(st->dev); 2527 if (ret < 0) 2528 return ret; 2529 2530 if (iio_buffer_enabled(indio_dev)) 2531 at91_adc_buffer_postdisable(indio_dev); 2532 2533 /* 2534 * Do a sofware reset of the ADC before we go to suspend. 2535 * this will ensure that all pins are free from being muxed by the ADC 2536 * and can be used by for other devices. 2537 * Otherwise, ADC will hog them and we can't go to suspend mode. 2538 */ 2539 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST); 2540 2541 pm_runtime_mark_last_busy(st->dev); 2542 pm_runtime_put_noidle(st->dev); 2543 clk_disable_unprepare(st->per_clk); 2544 regulator_disable(st->vref); 2545 regulator_disable(st->reg); 2546 2547 return pinctrl_pm_select_sleep_state(dev); 2548 } 2549 at91_adc_resume(struct device * dev)2550 static int at91_adc_resume(struct device *dev) 2551 { 2552 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2553 struct at91_adc_state *st = iio_priv(indio_dev); 2554 int ret; 2555 2556 ret = pinctrl_pm_select_default_state(dev); 2557 if (ret) 2558 goto resume_failed; 2559 2560 ret = regulator_enable(st->reg); 2561 if (ret) 2562 goto resume_failed; 2563 2564 ret = regulator_enable(st->vref); 2565 if (ret) 2566 goto reg_disable_resume; 2567 2568 ret = clk_prepare_enable(st->per_clk); 2569 if (ret) 2570 goto vref_disable_resume; 2571 2572 pm_runtime_get_noresume(st->dev); 2573 2574 at91_adc_hw_init(indio_dev); 2575 2576 /* reconfiguring trigger hardware state */ 2577 if (iio_buffer_enabled(indio_dev)) { 2578 ret = at91_adc_buffer_prepare(indio_dev); 2579 if (ret) 2580 goto pm_runtime_put; 2581 2582 at91_adc_configure_trigger_registers(st, true); 2583 } 2584 2585 pm_runtime_mark_last_busy(st->dev); 2586 pm_runtime_put_autosuspend(st->dev); 2587 2588 return 0; 2589 2590 pm_runtime_put: 2591 pm_runtime_mark_last_busy(st->dev); 2592 pm_runtime_put_noidle(st->dev); 2593 clk_disable_unprepare(st->per_clk); 2594 vref_disable_resume: 2595 regulator_disable(st->vref); 2596 reg_disable_resume: 2597 regulator_disable(st->reg); 2598 resume_failed: 2599 dev_err(&indio_dev->dev, "failed to resume\n"); 2600 return ret; 2601 } 2602 at91_adc_runtime_suspend(struct device * dev)2603 static int at91_adc_runtime_suspend(struct device *dev) 2604 { 2605 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2606 struct at91_adc_state *st = iio_priv(indio_dev); 2607 2608 clk_disable(st->per_clk); 2609 2610 return 0; 2611 } 2612 at91_adc_runtime_resume(struct device * dev)2613 static int at91_adc_runtime_resume(struct device *dev) 2614 { 2615 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2616 struct at91_adc_state *st = iio_priv(indio_dev); 2617 2618 return clk_enable(st->per_clk); 2619 } 2620 2621 static const struct dev_pm_ops at91_adc_pm_ops = { 2622 SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume) 2623 RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume, 2624 NULL) 2625 }; 2626 2627 static const struct of_device_id at91_adc_dt_match[] = { 2628 { 2629 .compatible = "atmel,sama5d2-adc", 2630 .data = (const void *)&sama5d2_platform, 2631 }, { 2632 .compatible = "microchip,sama7g5-adc", 2633 .data = (const void *)&sama7g5_platform, 2634 }, { 2635 /* sentinel */ 2636 } 2637 }; 2638 MODULE_DEVICE_TABLE(of, at91_adc_dt_match); 2639 2640 static struct platform_driver at91_adc_driver = { 2641 .probe = at91_adc_probe, 2642 .remove = at91_adc_remove, 2643 .driver = { 2644 .name = "at91-sama5d2_adc", 2645 .of_match_table = at91_adc_dt_match, 2646 .pm = pm_ptr(&at91_adc_pm_ops), 2647 }, 2648 }; 2649 module_platform_driver(at91_adc_driver) 2650 2651 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>"); 2652 MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com"); 2653 MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC"); 2654 MODULE_LICENSE("GPL v2"); 2655