1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver
4 *
5 * The Arm FFA specification[1] describes a software architecture to
6 * leverages the virtualization extension to isolate software images
7 * provided by an ecosystem of vendors from each other and describes
8 * interfaces that standardize communication between the various software
9 * images including communication between images in the Secure world and
10 * Normal world. Any Hypervisor could use the FFA interfaces to enable
11 * communication between VMs it manages.
12 *
13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign
14 * system resources(Memory regions, Devices, CPU cycles) to the partitions
15 * and manage isolation amongst them.
16 *
17 * [1] https://developer.arm.com/docs/den0077/latest
18 *
19 * Copyright (C) 2021 ARM Ltd.
20 */
21
22 #define DRIVER_NAME "ARM FF-A"
23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
24
25 #include <linux/arm_ffa.h>
26 #include <linux/bitfield.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/slab.h>
34 #include <linux/uuid.h>
35
36 #include "common.h"
37
38 #define FFA_DRIVER_VERSION FFA_VERSION_1_0
39 #define FFA_MIN_VERSION FFA_VERSION_1_0
40
41 #define SENDER_ID_MASK GENMASK(31, 16)
42 #define RECEIVER_ID_MASK GENMASK(15, 0)
43 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
44 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
45 #define PACK_TARGET_INFO(s, r) \
46 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
47
48 /*
49 * Keeping RX TX buffer size as 4K for now
50 * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
51 */
52 #define RXTX_BUFFER_SIZE SZ_4K
53
54 static ffa_fn *invoke_ffa_fn;
55
56 static const int ffa_linux_errmap[] = {
57 /* better than switch case as long as return value is continuous */
58 0, /* FFA_RET_SUCCESS */
59 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
60 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */
61 -ENOMEM, /* FFA_RET_NO_MEMORY */
62 -EBUSY, /* FFA_RET_BUSY */
63 -EINTR, /* FFA_RET_INTERRUPTED */
64 -EACCES, /* FFA_RET_DENIED */
65 -EAGAIN, /* FFA_RET_RETRY */
66 -ECANCELED, /* FFA_RET_ABORTED */
67 };
68
ffa_to_linux_errno(int errno)69 static inline int ffa_to_linux_errno(int errno)
70 {
71 int err_idx = -errno;
72
73 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
74 return ffa_linux_errmap[err_idx];
75 return -EINVAL;
76 }
77
78 struct ffa_drv_info {
79 u32 version;
80 u16 vm_id;
81 struct mutex rx_lock; /* lock to protect Rx buffer */
82 struct mutex tx_lock; /* lock to protect Tx buffer */
83 void *rx_buffer;
84 void *tx_buffer;
85 bool mem_ops_native;
86 };
87
88 static struct ffa_drv_info *drv_info;
89
90 /*
91 * The driver must be able to support all the versions from the earliest
92 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
93 * The specification states that if firmware supports a FFA implementation
94 * that is incompatible with and at a greater version number than specified
95 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
96 * it must return the NOT_SUPPORTED error code.
97 */
ffa_compatible_version_find(u32 version)98 static u32 ffa_compatible_version_find(u32 version)
99 {
100 u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
101 u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
102 u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
103
104 if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
105 return version;
106
107 pr_info("Firmware version higher than driver version, downgrading\n");
108 return FFA_DRIVER_VERSION;
109 }
110
ffa_version_check(u32 * version)111 static int ffa_version_check(u32 *version)
112 {
113 ffa_value_t ver;
114
115 invoke_ffa_fn((ffa_value_t){
116 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
117 }, &ver);
118
119 if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
120 pr_info("FFA_VERSION returned not supported\n");
121 return -EOPNOTSUPP;
122 }
123
124 if (ver.a0 < FFA_MIN_VERSION) {
125 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
126 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
127 FFA_MAJOR_VERSION(FFA_MIN_VERSION),
128 FFA_MINOR_VERSION(FFA_MIN_VERSION));
129 return -EINVAL;
130 }
131
132 pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
133 FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
134 pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
135 FFA_MINOR_VERSION(ver.a0));
136 *version = ffa_compatible_version_find(ver.a0);
137
138 return 0;
139 }
140
ffa_rx_release(void)141 static int ffa_rx_release(void)
142 {
143 ffa_value_t ret;
144
145 invoke_ffa_fn((ffa_value_t){
146 .a0 = FFA_RX_RELEASE,
147 }, &ret);
148
149 if (ret.a0 == FFA_ERROR)
150 return ffa_to_linux_errno((int)ret.a2);
151
152 /* check for ret.a0 == FFA_RX_RELEASE ? */
153
154 return 0;
155 }
156
ffa_rxtx_map(phys_addr_t tx_buf,phys_addr_t rx_buf,u32 pg_cnt)157 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
158 {
159 ffa_value_t ret;
160
161 invoke_ffa_fn((ffa_value_t){
162 .a0 = FFA_FN_NATIVE(RXTX_MAP),
163 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
164 }, &ret);
165
166 if (ret.a0 == FFA_ERROR)
167 return ffa_to_linux_errno((int)ret.a2);
168
169 return 0;
170 }
171
ffa_rxtx_unmap(u16 vm_id)172 static int ffa_rxtx_unmap(u16 vm_id)
173 {
174 ffa_value_t ret;
175
176 invoke_ffa_fn((ffa_value_t){
177 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
178 }, &ret);
179
180 if (ret.a0 == FFA_ERROR)
181 return ffa_to_linux_errno((int)ret.a2);
182
183 return 0;
184 }
185
186 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
187
188 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
189 static int
__ffa_partition_info_get(u32 uuid0,u32 uuid1,u32 uuid2,u32 uuid3,struct ffa_partition_info * buffer,int num_partitions)190 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
191 struct ffa_partition_info *buffer, int num_partitions)
192 {
193 int idx, count, flags = 0, sz, buf_sz;
194 ffa_value_t partition_info;
195
196 if (drv_info->version > FFA_VERSION_1_0 &&
197 (!buffer || !num_partitions)) /* Just get the count for now */
198 flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
199
200 mutex_lock(&drv_info->rx_lock);
201 invoke_ffa_fn((ffa_value_t){
202 .a0 = FFA_PARTITION_INFO_GET,
203 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
204 .a5 = flags,
205 }, &partition_info);
206
207 if (partition_info.a0 == FFA_ERROR) {
208 mutex_unlock(&drv_info->rx_lock);
209 return ffa_to_linux_errno((int)partition_info.a2);
210 }
211
212 count = partition_info.a2;
213
214 if (drv_info->version > FFA_VERSION_1_0) {
215 buf_sz = sz = partition_info.a3;
216 if (sz > sizeof(*buffer))
217 buf_sz = sizeof(*buffer);
218 } else {
219 /* FFA_VERSION_1_0 lacks size in the response */
220 buf_sz = sz = 8;
221 }
222
223 if (buffer && count <= num_partitions)
224 for (idx = 0; idx < count; idx++)
225 memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
226 buf_sz);
227
228 ffa_rx_release();
229
230 mutex_unlock(&drv_info->rx_lock);
231
232 return count;
233 }
234
235 /* buffer is allocated and caller must free the same if returned count > 0 */
236 static int
ffa_partition_probe(const uuid_t * uuid,struct ffa_partition_info ** buffer)237 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
238 {
239 int count;
240 u32 uuid0_4[4];
241 struct ffa_partition_info *pbuf;
242
243 export_uuid((u8 *)uuid0_4, uuid);
244 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
245 uuid0_4[3], NULL, 0);
246 if (count <= 0)
247 return count;
248
249 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
250 if (!pbuf)
251 return -ENOMEM;
252
253 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
254 uuid0_4[3], pbuf, count);
255 if (count <= 0)
256 kfree(pbuf);
257 else
258 *buffer = pbuf;
259
260 return count;
261 }
262
263 #define VM_ID_MASK GENMASK(15, 0)
ffa_id_get(u16 * vm_id)264 static int ffa_id_get(u16 *vm_id)
265 {
266 ffa_value_t id;
267
268 invoke_ffa_fn((ffa_value_t){
269 .a0 = FFA_ID_GET,
270 }, &id);
271
272 if (id.a0 == FFA_ERROR)
273 return ffa_to_linux_errno((int)id.a2);
274
275 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
276
277 return 0;
278 }
279
ffa_msg_send_direct_req(u16 src_id,u16 dst_id,bool mode_32bit,struct ffa_send_direct_data * data)280 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
281 struct ffa_send_direct_data *data)
282 {
283 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
284 ffa_value_t ret;
285
286 if (mode_32bit) {
287 req_id = FFA_MSG_SEND_DIRECT_REQ;
288 resp_id = FFA_MSG_SEND_DIRECT_RESP;
289 } else {
290 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
291 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
292 }
293
294 invoke_ffa_fn((ffa_value_t){
295 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
296 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
297 .a6 = data->data3, .a7 = data->data4,
298 }, &ret);
299
300 while (ret.a0 == FFA_INTERRUPT)
301 invoke_ffa_fn((ffa_value_t){
302 .a0 = FFA_RUN, .a1 = ret.a1,
303 }, &ret);
304
305 if (ret.a0 == FFA_ERROR)
306 return ffa_to_linux_errno((int)ret.a2);
307
308 if (ret.a0 == resp_id) {
309 data->data0 = ret.a3;
310 data->data1 = ret.a4;
311 data->data2 = ret.a5;
312 data->data3 = ret.a6;
313 data->data4 = ret.a7;
314 return 0;
315 }
316
317 return -EINVAL;
318 }
319
ffa_mem_first_frag(u32 func_id,phys_addr_t buf,u32 buf_sz,u32 frag_len,u32 len,u64 * handle)320 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
321 u32 frag_len, u32 len, u64 *handle)
322 {
323 ffa_value_t ret;
324
325 invoke_ffa_fn((ffa_value_t){
326 .a0 = func_id, .a1 = len, .a2 = frag_len,
327 .a3 = buf, .a4 = buf_sz,
328 }, &ret);
329
330 while (ret.a0 == FFA_MEM_OP_PAUSE)
331 invoke_ffa_fn((ffa_value_t){
332 .a0 = FFA_MEM_OP_RESUME,
333 .a1 = ret.a1, .a2 = ret.a2,
334 }, &ret);
335
336 if (ret.a0 == FFA_ERROR)
337 return ffa_to_linux_errno((int)ret.a2);
338
339 if (ret.a0 == FFA_SUCCESS) {
340 if (handle)
341 *handle = PACK_HANDLE(ret.a2, ret.a3);
342 } else if (ret.a0 == FFA_MEM_FRAG_RX) {
343 if (handle)
344 *handle = PACK_HANDLE(ret.a1, ret.a2);
345 } else {
346 return -EOPNOTSUPP;
347 }
348
349 return frag_len;
350 }
351
ffa_mem_next_frag(u64 handle,u32 frag_len)352 static int ffa_mem_next_frag(u64 handle, u32 frag_len)
353 {
354 ffa_value_t ret;
355
356 invoke_ffa_fn((ffa_value_t){
357 .a0 = FFA_MEM_FRAG_TX,
358 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
359 .a3 = frag_len,
360 }, &ret);
361
362 while (ret.a0 == FFA_MEM_OP_PAUSE)
363 invoke_ffa_fn((ffa_value_t){
364 .a0 = FFA_MEM_OP_RESUME,
365 .a1 = ret.a1, .a2 = ret.a2,
366 }, &ret);
367
368 if (ret.a0 == FFA_ERROR)
369 return ffa_to_linux_errno((int)ret.a2);
370
371 if (ret.a0 == FFA_MEM_FRAG_RX)
372 return ret.a3;
373 else if (ret.a0 == FFA_SUCCESS)
374 return 0;
375
376 return -EOPNOTSUPP;
377 }
378
379 static int
ffa_transmit_fragment(u32 func_id,phys_addr_t buf,u32 buf_sz,u32 frag_len,u32 len,u64 * handle,bool first)380 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
381 u32 len, u64 *handle, bool first)
382 {
383 if (!first)
384 return ffa_mem_next_frag(*handle, frag_len);
385
386 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
387 }
388
ffa_get_num_pages_sg(struct scatterlist * sg)389 static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
390 {
391 u32 num_pages = 0;
392
393 do {
394 num_pages += sg->length / FFA_PAGE_SIZE;
395 } while ((sg = sg_next(sg)));
396
397 return num_pages;
398 }
399
ffa_memory_attributes_get(u32 func_id)400 static u8 ffa_memory_attributes_get(u32 func_id)
401 {
402 /*
403 * For the memory lend or donate operation, if the receiver is a PE or
404 * a proxy endpoint, the owner/sender must not specify the attributes
405 */
406 if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
407 func_id == FFA_MEM_LEND)
408 return 0;
409
410 return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
411 }
412
413 static int
ffa_setup_and_transmit(u32 func_id,void * buffer,u32 max_fragsize,struct ffa_mem_ops_args * args)414 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
415 struct ffa_mem_ops_args *args)
416 {
417 int rc = 0;
418 bool first = true;
419 phys_addr_t addr = 0;
420 struct ffa_composite_mem_region *composite;
421 struct ffa_mem_region_addr_range *constituents;
422 struct ffa_mem_region_attributes *ep_mem_access;
423 struct ffa_mem_region *mem_region = buffer;
424 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
425
426 mem_region->tag = args->tag;
427 mem_region->flags = args->flags;
428 mem_region->sender_id = drv_info->vm_id;
429 mem_region->attributes = ffa_memory_attributes_get(func_id);
430 ep_mem_access = &mem_region->ep_mem_access[0];
431
432 for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
433 ep_mem_access->receiver = args->attrs[idx].receiver;
434 ep_mem_access->attrs = args->attrs[idx].attrs;
435 ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs);
436 ep_mem_access->flag = 0;
437 ep_mem_access->reserved = 0;
438 }
439 mem_region->handle = 0;
440 mem_region->reserved_0 = 0;
441 mem_region->reserved_1 = 0;
442 mem_region->ep_count = args->nattrs;
443
444 composite = buffer + COMPOSITE_OFFSET(args->nattrs);
445 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
446 composite->addr_range_cnt = num_entries;
447 composite->reserved = 0;
448
449 length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries);
450 frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0);
451 if (frag_len > max_fragsize)
452 return -ENXIO;
453
454 if (!args->use_txbuf) {
455 addr = virt_to_phys(buffer);
456 buf_sz = max_fragsize / FFA_PAGE_SIZE;
457 }
458
459 constituents = buffer + frag_len;
460 idx = 0;
461 do {
462 if (frag_len == max_fragsize) {
463 rc = ffa_transmit_fragment(func_id, addr, buf_sz,
464 frag_len, length,
465 &args->g_handle, first);
466 if (rc < 0)
467 return -ENXIO;
468
469 first = false;
470 idx = 0;
471 frag_len = 0;
472 constituents = buffer;
473 }
474
475 if ((void *)constituents - buffer > max_fragsize) {
476 pr_err("Memory Region Fragment > Tx Buffer size\n");
477 return -EFAULT;
478 }
479
480 constituents->address = sg_phys(args->sg);
481 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
482 constituents->reserved = 0;
483 constituents++;
484 frag_len += sizeof(struct ffa_mem_region_addr_range);
485 } while ((args->sg = sg_next(args->sg)));
486
487 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
488 length, &args->g_handle, first);
489 }
490
ffa_memory_ops(u32 func_id,struct ffa_mem_ops_args * args)491 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
492 {
493 int ret;
494 void *buffer;
495
496 if (!args->use_txbuf) {
497 buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
498 if (!buffer)
499 return -ENOMEM;
500 } else {
501 buffer = drv_info->tx_buffer;
502 mutex_lock(&drv_info->tx_lock);
503 }
504
505 ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
506
507 if (args->use_txbuf)
508 mutex_unlock(&drv_info->tx_lock);
509 else
510 free_pages_exact(buffer, RXTX_BUFFER_SIZE);
511
512 return ret < 0 ? ret : 0;
513 }
514
ffa_memory_reclaim(u64 g_handle,u32 flags)515 static int ffa_memory_reclaim(u64 g_handle, u32 flags)
516 {
517 ffa_value_t ret;
518
519 invoke_ffa_fn((ffa_value_t){
520 .a0 = FFA_MEM_RECLAIM,
521 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
522 .a3 = flags,
523 }, &ret);
524
525 if (ret.a0 == FFA_ERROR)
526 return ffa_to_linux_errno((int)ret.a2);
527
528 return 0;
529 }
530
ffa_features(u32 func_feat_id,u32 input_props,u32 * if_props_1,u32 * if_props_2)531 static int ffa_features(u32 func_feat_id, u32 input_props,
532 u32 *if_props_1, u32 *if_props_2)
533 {
534 ffa_value_t id;
535
536 if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
537 pr_err("%s: Invalid Parameters: %x, %x", __func__,
538 func_feat_id, input_props);
539 return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
540 }
541
542 invoke_ffa_fn((ffa_value_t){
543 .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
544 }, &id);
545
546 if (id.a0 == FFA_ERROR)
547 return ffa_to_linux_errno((int)id.a2);
548
549 if (if_props_1)
550 *if_props_1 = id.a2;
551 if (if_props_2)
552 *if_props_2 = id.a3;
553
554 return 0;
555 }
556
ffa_set_up_mem_ops_native_flag(void)557 static void ffa_set_up_mem_ops_native_flag(void)
558 {
559 if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
560 !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
561 drv_info->mem_ops_native = true;
562 }
563
ffa_api_version_get(void)564 static u32 ffa_api_version_get(void)
565 {
566 return drv_info->version;
567 }
568
ffa_partition_info_get(const char * uuid_str,struct ffa_partition_info * buffer)569 static int ffa_partition_info_get(const char *uuid_str,
570 struct ffa_partition_info *buffer)
571 {
572 int count;
573 uuid_t uuid;
574 struct ffa_partition_info *pbuf;
575
576 if (uuid_parse(uuid_str, &uuid)) {
577 pr_err("invalid uuid (%s)\n", uuid_str);
578 return -ENODEV;
579 }
580
581 count = ffa_partition_probe(&uuid, &pbuf);
582 if (count <= 0)
583 return -ENOENT;
584
585 memcpy(buffer, pbuf, sizeof(*pbuf) * count);
586 kfree(pbuf);
587 return 0;
588 }
589
ffa_mode_32bit_set(struct ffa_device * dev)590 static void ffa_mode_32bit_set(struct ffa_device *dev)
591 {
592 dev->mode_32bit = true;
593 }
594
ffa_sync_send_receive(struct ffa_device * dev,struct ffa_send_direct_data * data)595 static int ffa_sync_send_receive(struct ffa_device *dev,
596 struct ffa_send_direct_data *data)
597 {
598 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
599 dev->mode_32bit, data);
600 }
601
ffa_memory_share(struct ffa_mem_ops_args * args)602 static int ffa_memory_share(struct ffa_mem_ops_args *args)
603 {
604 if (drv_info->mem_ops_native)
605 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
606
607 return ffa_memory_ops(FFA_MEM_SHARE, args);
608 }
609
ffa_memory_lend(struct ffa_mem_ops_args * args)610 static int ffa_memory_lend(struct ffa_mem_ops_args *args)
611 {
612 /* Note that upon a successful MEM_LEND request the caller
613 * must ensure that the memory region specified is not accessed
614 * until a successful MEM_RECALIM call has been made.
615 * On systems with a hypervisor present this will been enforced,
616 * however on systems without a hypervisor the responsibility
617 * falls to the calling kernel driver to prevent access.
618 */
619 if (drv_info->mem_ops_native)
620 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
621
622 return ffa_memory_ops(FFA_MEM_LEND, args);
623 }
624
625 static const struct ffa_info_ops ffa_drv_info_ops = {
626 .api_version_get = ffa_api_version_get,
627 .partition_info_get = ffa_partition_info_get,
628 };
629
630 static const struct ffa_msg_ops ffa_drv_msg_ops = {
631 .mode_32bit_set = ffa_mode_32bit_set,
632 .sync_send_receive = ffa_sync_send_receive,
633 };
634
635 static const struct ffa_mem_ops ffa_drv_mem_ops = {
636 .memory_reclaim = ffa_memory_reclaim,
637 .memory_share = ffa_memory_share,
638 .memory_lend = ffa_memory_lend,
639 };
640
641 static const struct ffa_ops ffa_drv_ops = {
642 .info_ops = &ffa_drv_info_ops,
643 .msg_ops = &ffa_drv_msg_ops,
644 .mem_ops = &ffa_drv_mem_ops,
645 };
646
ffa_device_match_uuid(struct ffa_device * ffa_dev,const uuid_t * uuid)647 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
648 {
649 int count, idx;
650 struct ffa_partition_info *pbuf, *tpbuf;
651
652 /*
653 * FF-A v1.1 provides UUID for each partition as part of the discovery
654 * API, the discovered UUID must be populated in the device's UUID and
655 * there is no need to copy the same from the driver table.
656 */
657 if (drv_info->version > FFA_VERSION_1_0)
658 return;
659
660 count = ffa_partition_probe(uuid, &pbuf);
661 if (count <= 0)
662 return;
663
664 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
665 if (tpbuf->id == ffa_dev->vm_id)
666 uuid_copy(&ffa_dev->uuid, uuid);
667 kfree(pbuf);
668 }
669
ffa_setup_partitions(void)670 static void ffa_setup_partitions(void)
671 {
672 int count, idx;
673 uuid_t uuid;
674 struct ffa_device *ffa_dev;
675 struct ffa_partition_info *pbuf, *tpbuf;
676
677 count = ffa_partition_probe(&uuid_null, &pbuf);
678 if (count <= 0) {
679 pr_info("%s: No partitions found, error %d\n", __func__, count);
680 return;
681 }
682
683 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
684 import_uuid(&uuid, (u8 *)tpbuf->uuid);
685
686 /* Note that if the UUID will be uuid_null, that will require
687 * ffa_device_match() to find the UUID of this partition id
688 * with help of ffa_device_match_uuid(). FF-A v1.1 and above
689 * provides UUID here for each partition as part of the
690 * discovery API and the same is passed.
691 */
692 ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
693 if (!ffa_dev) {
694 pr_err("%s: failed to register partition ID 0x%x\n",
695 __func__, tpbuf->id);
696 continue;
697 }
698
699 if (drv_info->version > FFA_VERSION_1_0 &&
700 !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
701 ffa_mode_32bit_set(ffa_dev);
702 }
703 kfree(pbuf);
704 }
705
ffa_init(void)706 static int __init ffa_init(void)
707 {
708 int ret;
709
710 ret = ffa_transport_init(&invoke_ffa_fn);
711 if (ret)
712 return ret;
713
714 ret = arm_ffa_bus_init();
715 if (ret)
716 return ret;
717
718 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
719 if (!drv_info) {
720 ret = -ENOMEM;
721 goto ffa_bus_exit;
722 }
723
724 ret = ffa_version_check(&drv_info->version);
725 if (ret)
726 goto free_drv_info;
727
728 if (ffa_id_get(&drv_info->vm_id)) {
729 pr_err("failed to obtain VM id for self\n");
730 ret = -ENODEV;
731 goto free_drv_info;
732 }
733
734 drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
735 if (!drv_info->rx_buffer) {
736 ret = -ENOMEM;
737 goto free_pages;
738 }
739
740 drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
741 if (!drv_info->tx_buffer) {
742 ret = -ENOMEM;
743 goto free_pages;
744 }
745
746 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
747 virt_to_phys(drv_info->rx_buffer),
748 RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
749 if (ret) {
750 pr_err("failed to register FFA RxTx buffers\n");
751 goto free_pages;
752 }
753
754 mutex_init(&drv_info->rx_lock);
755 mutex_init(&drv_info->tx_lock);
756
757 ffa_setup_partitions();
758
759 ffa_set_up_mem_ops_native_flag();
760
761 return 0;
762 free_pages:
763 if (drv_info->tx_buffer)
764 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
765 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
766 free_drv_info:
767 kfree(drv_info);
768 ffa_bus_exit:
769 arm_ffa_bus_exit();
770 return ret;
771 }
772 subsys_initcall(ffa_init);
773
ffa_exit(void)774 static void __exit ffa_exit(void)
775 {
776 ffa_rxtx_unmap(drv_info->vm_id);
777 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
778 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
779 kfree(drv_info);
780 arm_ffa_bus_exit();
781 }
782 module_exit(ffa_exit);
783
784 MODULE_ALIAS("arm-ffa");
785 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
786 MODULE_DESCRIPTION("Arm FF-A interface driver");
787 MODULE_LICENSE("GPL v2");
788