1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60 #define SEC_SQE_LEN_RATE_MASK 0x3
61
62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR 128
64 #define SEC_CIPHER_AUTH 0xfe
65 #define SEC_AUTH_CIPHER 0x1
66 #define SEC_MAX_MAC_LEN 64
67 #define SEC_MAX_AAD_LEN 65535
68 #define SEC_MAX_CCM_AAD_LEN 65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71 #define SEC_PBUF_SZ 512
72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
75 SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
81 SEC_PBUF_LEFT_SZ(depth))
82
83 #define SEC_SQE_LEN_RATE 4
84 #define SEC_SQE_CFLAG 2
85 #define SEC_SQE_AEAD_FLAG 3
86 #define SEC_SQE_DONE 0x1
87 #define SEC_ICV_ERR 0x2
88 #define MIN_MAC_LEN 4
89 #define MAC_LEN_MASK 0x1U
90 #define MAX_INPUT_DATA_LEN 0xFFFE00
91 #define BITS_MASK 0xFF
92 #define BYTE_BITS 0x8
93 #define SEC_XTS_NAME_SZ 0x3
94 #define IV_CM_CAL_NUM 2
95 #define IV_CL_MASK 0x7
96 #define IV_CL_MIN 2
97 #define IV_CL_MID 4
98 #define IV_CL_MAX 8
99 #define IV_FLAGS_OFFSET 0x6
100 #define IV_CM_OFFSET 0x3
101 #define IV_LAST_BYTE1 1
102 #define IV_LAST_BYTE2 2
103 #define IV_LAST_BYTE_MASK 0xFF
104 #define IV_CTR_INIT 0x1
105 #define IV_BYTE_OFFSET 0x8
106
107 struct sec_skcipher {
108 u64 alg_msk;
109 struct skcipher_alg alg;
110 };
111
112 struct sec_aead {
113 u64 alg_msk;
114 struct aead_alg alg;
115 };
116
117 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)118 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 {
120 if (req->c_req.encrypt)
121 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
122 ctx->hlf_q_num;
123
124 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
125 ctx->hlf_q_num;
126 }
127
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)128 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
129 {
130 if (req->c_req.encrypt)
131 atomic_dec(&ctx->enc_qcyclic);
132 else
133 atomic_dec(&ctx->dec_qcyclic);
134 }
135
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)136 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
137 {
138 int req_id;
139
140 spin_lock_bh(&qp_ctx->req_lock);
141 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
142 spin_unlock_bh(&qp_ctx->req_lock);
143 if (unlikely(req_id < 0)) {
144 dev_err(req->ctx->dev, "alloc req id fail!\n");
145 return req_id;
146 }
147
148 req->qp_ctx = qp_ctx;
149 qp_ctx->req_list[req_id] = req;
150
151 return req_id;
152 }
153
sec_free_req_id(struct sec_req * req)154 static void sec_free_req_id(struct sec_req *req)
155 {
156 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
157 int req_id = req->req_id;
158
159 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
160 dev_err(req->ctx->dev, "free request id invalid!\n");
161 return;
162 }
163
164 qp_ctx->req_list[req_id] = NULL;
165 req->qp_ctx = NULL;
166
167 spin_lock_bh(&qp_ctx->req_lock);
168 idr_remove(&qp_ctx->req_idr, req_id);
169 spin_unlock_bh(&qp_ctx->req_lock);
170 }
171
pre_parse_finished_bd(struct bd_status * status,void * resp)172 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
173 {
174 struct sec_sqe *bd = resp;
175
176 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
177 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
178 status->flag = (le16_to_cpu(bd->type2.done_flag) &
179 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
180 status->tag = le16_to_cpu(bd->type2.tag);
181 status->err_type = bd->type2.error_type;
182
183 return bd->type_cipher_auth & SEC_TYPE_MASK;
184 }
185
pre_parse_finished_bd3(struct bd_status * status,void * resp)186 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
187 {
188 struct sec_sqe3 *bd3 = resp;
189
190 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
191 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
192 status->flag = (le16_to_cpu(bd3->done_flag) &
193 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
194 status->tag = le64_to_cpu(bd3->tag);
195 status->err_type = bd3->error_type;
196
197 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
198 }
199
sec_cb_status_check(struct sec_req * req,struct bd_status * status)200 static int sec_cb_status_check(struct sec_req *req,
201 struct bd_status *status)
202 {
203 struct sec_ctx *ctx = req->ctx;
204
205 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
206 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
207 req->err_type, status->done);
208 return -EIO;
209 }
210
211 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
212 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
213 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
214 status->flag);
215 return -EIO;
216 }
217 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
218 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
219 status->icv == SEC_ICV_ERR)) {
220 dev_err_ratelimited(ctx->dev,
221 "flag[%u], icv[%u]\n",
222 status->flag, status->icv);
223 return -EBADMSG;
224 }
225 }
226
227 return 0;
228 }
229
sec_req_cb(struct hisi_qp * qp,void * resp)230 static void sec_req_cb(struct hisi_qp *qp, void *resp)
231 {
232 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
233 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
234 u8 type_supported = qp_ctx->ctx->type_supported;
235 struct bd_status status;
236 struct sec_ctx *ctx;
237 struct sec_req *req;
238 int err;
239 u8 type;
240
241 if (type_supported == SEC_BD_TYPE2) {
242 type = pre_parse_finished_bd(&status, resp);
243 req = qp_ctx->req_list[status.tag];
244 } else {
245 type = pre_parse_finished_bd3(&status, resp);
246 req = (void *)(uintptr_t)status.tag;
247 }
248
249 if (unlikely(type != type_supported)) {
250 atomic64_inc(&dfx->err_bd_cnt);
251 pr_err("err bd type [%u]\n", type);
252 return;
253 }
254
255 if (unlikely(!req)) {
256 atomic64_inc(&dfx->invalid_req_cnt);
257 atomic_inc(&qp->qp_status.used);
258 return;
259 }
260
261 req->err_type = status.err_type;
262 ctx = req->ctx;
263 err = sec_cb_status_check(req, &status);
264 if (err)
265 atomic64_inc(&dfx->done_flag_cnt);
266
267 atomic64_inc(&dfx->recv_cnt);
268
269 ctx->req_op->buf_unmap(ctx, req);
270
271 ctx->req_op->callback(ctx, req, err);
272 }
273
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)274 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
275 {
276 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
277 int ret;
278
279 if (ctx->fake_req_limit <=
280 atomic_read(&qp_ctx->qp->qp_status.used) &&
281 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
282 return -EBUSY;
283
284 spin_lock_bh(&qp_ctx->req_lock);
285 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
286 if (ctx->fake_req_limit <=
287 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
288 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
289 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
290 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
291 spin_unlock_bh(&qp_ctx->req_lock);
292 return -EBUSY;
293 }
294 spin_unlock_bh(&qp_ctx->req_lock);
295
296 if (unlikely(ret == -EBUSY))
297 return -ENOBUFS;
298
299 if (likely(!ret)) {
300 ret = -EINPROGRESS;
301 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
302 }
303
304 return ret;
305 }
306
307 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)308 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
309 {
310 u16 q_depth = res->depth;
311 int i;
312
313 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
314 &res->c_ivin_dma, GFP_KERNEL);
315 if (!res->c_ivin)
316 return -ENOMEM;
317
318 for (i = 1; i < q_depth; i++) {
319 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
320 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
321 }
322
323 return 0;
324 }
325
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)326 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
327 {
328 if (res->c_ivin)
329 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
330 res->c_ivin, res->c_ivin_dma);
331 }
332
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)333 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
334 {
335 u16 q_depth = res->depth;
336 int i;
337
338 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
339 &res->a_ivin_dma, GFP_KERNEL);
340 if (!res->a_ivin)
341 return -ENOMEM;
342
343 for (i = 1; i < q_depth; i++) {
344 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
345 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
346 }
347
348 return 0;
349 }
350
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)351 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
352 {
353 if (res->a_ivin)
354 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
355 res->a_ivin, res->a_ivin_dma);
356 }
357
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)358 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
359 {
360 u16 q_depth = res->depth;
361 int i;
362
363 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
364 &res->out_mac_dma, GFP_KERNEL);
365 if (!res->out_mac)
366 return -ENOMEM;
367
368 for (i = 1; i < q_depth; i++) {
369 res[i].out_mac_dma = res->out_mac_dma +
370 i * (SEC_MAX_MAC_LEN << 1);
371 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
372 }
373
374 return 0;
375 }
376
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)377 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
378 {
379 if (res->out_mac)
380 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
381 res->out_mac, res->out_mac_dma);
382 }
383
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)384 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
385 {
386 if (res->pbuf)
387 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
388 res->pbuf, res->pbuf_dma);
389 }
390
391 /*
392 * To improve performance, pbuffer is used for
393 * small packets (< 512Bytes) as IOMMU translation using.
394 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)395 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
396 {
397 u16 q_depth = res->depth;
398 int size = SEC_PBUF_PAGE_NUM(q_depth);
399 int pbuf_page_offset;
400 int i, j, k;
401
402 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
403 &res->pbuf_dma, GFP_KERNEL);
404 if (!res->pbuf)
405 return -ENOMEM;
406
407 /*
408 * SEC_PBUF_PKG contains data pbuf, iv and
409 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
410 * Every PAGE contains six SEC_PBUF_PKG
411 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
412 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
413 * for the SEC_TOTAL_PBUF_SZ
414 */
415 for (i = 0; i <= size; i++) {
416 pbuf_page_offset = PAGE_SIZE * i;
417 for (j = 0; j < SEC_PBUF_NUM; j++) {
418 k = i * SEC_PBUF_NUM + j;
419 if (k == q_depth)
420 break;
421 res[k].pbuf = res->pbuf +
422 j * SEC_PBUF_PKG + pbuf_page_offset;
423 res[k].pbuf_dma = res->pbuf_dma +
424 j * SEC_PBUF_PKG + pbuf_page_offset;
425 }
426 }
427
428 return 0;
429 }
430
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)431 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
432 struct sec_qp_ctx *qp_ctx)
433 {
434 struct sec_alg_res *res = qp_ctx->res;
435 struct device *dev = ctx->dev;
436 int ret;
437
438 ret = sec_alloc_civ_resource(dev, res);
439 if (ret)
440 return ret;
441
442 if (ctx->alg_type == SEC_AEAD) {
443 ret = sec_alloc_aiv_resource(dev, res);
444 if (ret)
445 goto alloc_aiv_fail;
446
447 ret = sec_alloc_mac_resource(dev, res);
448 if (ret)
449 goto alloc_mac_fail;
450 }
451 if (ctx->pbuf_supported) {
452 ret = sec_alloc_pbuf_resource(dev, res);
453 if (ret) {
454 dev_err(dev, "fail to alloc pbuf dma resource!\n");
455 goto alloc_pbuf_fail;
456 }
457 }
458
459 return 0;
460
461 alloc_pbuf_fail:
462 if (ctx->alg_type == SEC_AEAD)
463 sec_free_mac_resource(dev, qp_ctx->res);
464 alloc_mac_fail:
465 if (ctx->alg_type == SEC_AEAD)
466 sec_free_aiv_resource(dev, res);
467 alloc_aiv_fail:
468 sec_free_civ_resource(dev, res);
469 return ret;
470 }
471
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)472 static void sec_alg_resource_free(struct sec_ctx *ctx,
473 struct sec_qp_ctx *qp_ctx)
474 {
475 struct device *dev = ctx->dev;
476
477 sec_free_civ_resource(dev, qp_ctx->res);
478
479 if (ctx->pbuf_supported)
480 sec_free_pbuf_resource(dev, qp_ctx->res);
481 if (ctx->alg_type == SEC_AEAD) {
482 sec_free_mac_resource(dev, qp_ctx->res);
483 sec_free_aiv_resource(dev, qp_ctx->res);
484 }
485 }
486
sec_alloc_qp_ctx_resource(struct hisi_qm * qm,struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)487 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
488 struct sec_qp_ctx *qp_ctx)
489 {
490 u16 q_depth = qp_ctx->qp->sq_depth;
491 struct device *dev = ctx->dev;
492 int ret = -ENOMEM;
493
494 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
495 if (!qp_ctx->req_list)
496 return ret;
497
498 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
499 if (!qp_ctx->res)
500 goto err_free_req_list;
501 qp_ctx->res->depth = q_depth;
502
503 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
504 if (IS_ERR(qp_ctx->c_in_pool)) {
505 dev_err(dev, "fail to create sgl pool for input!\n");
506 goto err_free_res;
507 }
508
509 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
510 if (IS_ERR(qp_ctx->c_out_pool)) {
511 dev_err(dev, "fail to create sgl pool for output!\n");
512 goto err_free_c_in_pool;
513 }
514
515 ret = sec_alg_resource_alloc(ctx, qp_ctx);
516 if (ret)
517 goto err_free_c_out_pool;
518
519 return 0;
520
521 err_free_c_out_pool:
522 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
523 err_free_c_in_pool:
524 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
525 err_free_res:
526 kfree(qp_ctx->res);
527 err_free_req_list:
528 kfree(qp_ctx->req_list);
529 return ret;
530 }
531
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)532 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
533 {
534 struct device *dev = ctx->dev;
535
536 sec_alg_resource_free(ctx, qp_ctx);
537 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
538 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
539 kfree(qp_ctx->res);
540 kfree(qp_ctx->req_list);
541 }
542
sec_create_qp_ctx(struct hisi_qm * qm,struct sec_ctx * ctx,int qp_ctx_id,int alg_type)543 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
544 int qp_ctx_id, int alg_type)
545 {
546 struct sec_qp_ctx *qp_ctx;
547 struct hisi_qp *qp;
548 int ret;
549
550 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
551 qp = ctx->qps[qp_ctx_id];
552 qp->req_type = 0;
553 qp->qp_ctx = qp_ctx;
554 qp_ctx->qp = qp;
555 qp_ctx->ctx = ctx;
556
557 qp->req_cb = sec_req_cb;
558
559 spin_lock_init(&qp_ctx->req_lock);
560 idr_init(&qp_ctx->req_idr);
561 INIT_LIST_HEAD(&qp_ctx->backlog);
562
563 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
564 if (ret)
565 goto err_destroy_idr;
566
567 ret = hisi_qm_start_qp(qp, 0);
568 if (ret < 0)
569 goto err_resource_free;
570
571 return 0;
572
573 err_resource_free:
574 sec_free_qp_ctx_resource(ctx, qp_ctx);
575 err_destroy_idr:
576 idr_destroy(&qp_ctx->req_idr);
577 return ret;
578 }
579
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)580 static void sec_release_qp_ctx(struct sec_ctx *ctx,
581 struct sec_qp_ctx *qp_ctx)
582 {
583 hisi_qm_stop_qp(qp_ctx->qp);
584 sec_free_qp_ctx_resource(ctx, qp_ctx);
585 idr_destroy(&qp_ctx->req_idr);
586 }
587
sec_ctx_base_init(struct sec_ctx * ctx)588 static int sec_ctx_base_init(struct sec_ctx *ctx)
589 {
590 struct sec_dev *sec;
591 int i, ret;
592
593 ctx->qps = sec_create_qps();
594 if (!ctx->qps) {
595 pr_err("Can not create sec qps!\n");
596 return -ENODEV;
597 }
598
599 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
600 ctx->sec = sec;
601 ctx->dev = &sec->qm.pdev->dev;
602 ctx->hlf_q_num = sec->ctx_q_num >> 1;
603
604 ctx->pbuf_supported = ctx->sec->iommu_used;
605
606 /* Half of queue depth is taken as fake requests limit in the queue. */
607 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
608 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
609 GFP_KERNEL);
610 if (!ctx->qp_ctx) {
611 ret = -ENOMEM;
612 goto err_destroy_qps;
613 }
614
615 for (i = 0; i < sec->ctx_q_num; i++) {
616 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
617 if (ret)
618 goto err_sec_release_qp_ctx;
619 }
620
621 return 0;
622
623 err_sec_release_qp_ctx:
624 for (i = i - 1; i >= 0; i--)
625 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
626 kfree(ctx->qp_ctx);
627 err_destroy_qps:
628 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
629 return ret;
630 }
631
sec_ctx_base_uninit(struct sec_ctx * ctx)632 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
633 {
634 int i;
635
636 for (i = 0; i < ctx->sec->ctx_q_num; i++)
637 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
638
639 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
640 kfree(ctx->qp_ctx);
641 }
642
sec_cipher_init(struct sec_ctx * ctx)643 static int sec_cipher_init(struct sec_ctx *ctx)
644 {
645 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
646
647 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
648 &c_ctx->c_key_dma, GFP_KERNEL);
649 if (!c_ctx->c_key)
650 return -ENOMEM;
651
652 return 0;
653 }
654
sec_cipher_uninit(struct sec_ctx * ctx)655 static void sec_cipher_uninit(struct sec_ctx *ctx)
656 {
657 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
658
659 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
660 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
661 c_ctx->c_key, c_ctx->c_key_dma);
662 }
663
sec_auth_init(struct sec_ctx * ctx)664 static int sec_auth_init(struct sec_ctx *ctx)
665 {
666 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
667
668 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
669 &a_ctx->a_key_dma, GFP_KERNEL);
670 if (!a_ctx->a_key)
671 return -ENOMEM;
672
673 return 0;
674 }
675
sec_auth_uninit(struct sec_ctx * ctx)676 static void sec_auth_uninit(struct sec_ctx *ctx)
677 {
678 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
679
680 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
681 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
682 a_ctx->a_key, a_ctx->a_key_dma);
683 }
684
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)685 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
686 {
687 const char *alg = crypto_tfm_alg_name(&tfm->base);
688 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
689 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
690
691 c_ctx->fallback = false;
692
693 /* Currently, only XTS mode need fallback tfm when using 192bit key */
694 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
695 return 0;
696
697 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
698 CRYPTO_ALG_NEED_FALLBACK);
699 if (IS_ERR(c_ctx->fbtfm)) {
700 pr_err("failed to alloc xts mode fallback tfm!\n");
701 return PTR_ERR(c_ctx->fbtfm);
702 }
703
704 return 0;
705 }
706
sec_skcipher_init(struct crypto_skcipher * tfm)707 static int sec_skcipher_init(struct crypto_skcipher *tfm)
708 {
709 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
710 int ret;
711
712 ctx->alg_type = SEC_SKCIPHER;
713 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
714 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
715 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
716 pr_err("get error skcipher iv size!\n");
717 return -EINVAL;
718 }
719
720 ret = sec_ctx_base_init(ctx);
721 if (ret)
722 return ret;
723
724 ret = sec_cipher_init(ctx);
725 if (ret)
726 goto err_cipher_init;
727
728 ret = sec_skcipher_fbtfm_init(tfm);
729 if (ret)
730 goto err_fbtfm_init;
731
732 return 0;
733
734 err_fbtfm_init:
735 sec_cipher_uninit(ctx);
736 err_cipher_init:
737 sec_ctx_base_uninit(ctx);
738 return ret;
739 }
740
sec_skcipher_uninit(struct crypto_skcipher * tfm)741 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
742 {
743 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
744
745 if (ctx->c_ctx.fbtfm)
746 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
747
748 sec_cipher_uninit(ctx);
749 sec_ctx_base_uninit(ctx);
750 }
751
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_cmode c_mode)752 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
753 const u32 keylen,
754 const enum sec_cmode c_mode)
755 {
756 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
757 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
758 int ret;
759
760 ret = verify_skcipher_des3_key(tfm, key);
761 if (ret)
762 return ret;
763
764 switch (keylen) {
765 case SEC_DES3_2KEY_SIZE:
766 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
767 break;
768 case SEC_DES3_3KEY_SIZE:
769 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
770 break;
771 default:
772 return -EINVAL;
773 }
774
775 return 0;
776 }
777
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)778 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
779 const u32 keylen,
780 const enum sec_cmode c_mode)
781 {
782 if (c_mode == SEC_CMODE_XTS) {
783 switch (keylen) {
784 case SEC_XTS_MIN_KEY_SIZE:
785 c_ctx->c_key_len = SEC_CKEY_128BIT;
786 break;
787 case SEC_XTS_MID_KEY_SIZE:
788 c_ctx->fallback = true;
789 break;
790 case SEC_XTS_MAX_KEY_SIZE:
791 c_ctx->c_key_len = SEC_CKEY_256BIT;
792 break;
793 default:
794 pr_err("hisi_sec2: xts mode key error!\n");
795 return -EINVAL;
796 }
797 } else {
798 if (c_ctx->c_alg == SEC_CALG_SM4 &&
799 keylen != AES_KEYSIZE_128) {
800 pr_err("hisi_sec2: sm4 key error!\n");
801 return -EINVAL;
802 } else {
803 switch (keylen) {
804 case AES_KEYSIZE_128:
805 c_ctx->c_key_len = SEC_CKEY_128BIT;
806 break;
807 case AES_KEYSIZE_192:
808 c_ctx->c_key_len = SEC_CKEY_192BIT;
809 break;
810 case AES_KEYSIZE_256:
811 c_ctx->c_key_len = SEC_CKEY_256BIT;
812 break;
813 default:
814 pr_err("hisi_sec2: aes key error!\n");
815 return -EINVAL;
816 }
817 }
818 }
819
820 return 0;
821 }
822
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)823 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
824 const u32 keylen, const enum sec_calg c_alg,
825 const enum sec_cmode c_mode)
826 {
827 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
828 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
829 struct device *dev = ctx->dev;
830 int ret;
831
832 if (c_mode == SEC_CMODE_XTS) {
833 ret = xts_verify_key(tfm, key, keylen);
834 if (ret) {
835 dev_err(dev, "xts mode key err!\n");
836 return ret;
837 }
838 }
839
840 c_ctx->c_alg = c_alg;
841 c_ctx->c_mode = c_mode;
842
843 switch (c_alg) {
844 case SEC_CALG_3DES:
845 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
846 break;
847 case SEC_CALG_AES:
848 case SEC_CALG_SM4:
849 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
850 break;
851 default:
852 dev_err(dev, "sec c_alg err!\n");
853 return -EINVAL;
854 }
855
856 if (ret) {
857 dev_err(dev, "set sec key err!\n");
858 return ret;
859 }
860
861 memcpy(c_ctx->c_key, key, keylen);
862 if (c_ctx->fallback && c_ctx->fbtfm) {
863 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
864 if (ret) {
865 dev_err(dev, "failed to set fallback skcipher key!\n");
866 return ret;
867 }
868 }
869 return 0;
870 }
871
872 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
873 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
874 u32 keylen) \
875 { \
876 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
877 }
878
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)879 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
880 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
881 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
882 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
883 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
884 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
885 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
886 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
887 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
888 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
889 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
890 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
891 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
892
893 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
894 struct scatterlist *src)
895 {
896 struct sec_aead_req *a_req = &req->aead_req;
897 struct aead_request *aead_req = a_req->aead_req;
898 struct sec_cipher_req *c_req = &req->c_req;
899 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
900 struct device *dev = ctx->dev;
901 int copy_size, pbuf_length;
902 int req_id = req->req_id;
903 struct crypto_aead *tfm;
904 size_t authsize;
905 u8 *mac_offset;
906
907 if (ctx->alg_type == SEC_AEAD)
908 copy_size = aead_req->cryptlen + aead_req->assoclen;
909 else
910 copy_size = c_req->c_len;
911
912 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
913 qp_ctx->res[req_id].pbuf, copy_size);
914 if (unlikely(pbuf_length != copy_size)) {
915 dev_err(dev, "copy src data to pbuf error!\n");
916 return -EINVAL;
917 }
918 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
919 tfm = crypto_aead_reqtfm(aead_req);
920 authsize = crypto_aead_authsize(tfm);
921 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
922 memcpy(a_req->out_mac, mac_offset, authsize);
923 }
924
925 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
926 c_req->c_out_dma = req->in_dma;
927
928 return 0;
929 }
930
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)931 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
932 struct scatterlist *dst)
933 {
934 struct aead_request *aead_req = req->aead_req.aead_req;
935 struct sec_cipher_req *c_req = &req->c_req;
936 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
937 int copy_size, pbuf_length;
938 int req_id = req->req_id;
939
940 if (ctx->alg_type == SEC_AEAD)
941 copy_size = c_req->c_len + aead_req->assoclen;
942 else
943 copy_size = c_req->c_len;
944
945 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
946 qp_ctx->res[req_id].pbuf, copy_size);
947 if (unlikely(pbuf_length != copy_size))
948 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
949 }
950
sec_aead_mac_init(struct sec_aead_req * req)951 static int sec_aead_mac_init(struct sec_aead_req *req)
952 {
953 struct aead_request *aead_req = req->aead_req;
954 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
955 size_t authsize = crypto_aead_authsize(tfm);
956 struct scatterlist *sgl = aead_req->src;
957 u8 *mac_out = req->out_mac;
958 size_t copy_size;
959 off_t skip_size;
960
961 /* Copy input mac */
962 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
963 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, authsize, skip_size);
964 if (unlikely(copy_size != authsize))
965 return -EINVAL;
966
967 return 0;
968 }
969
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)970 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
971 struct scatterlist *src, struct scatterlist *dst)
972 {
973 struct sec_cipher_req *c_req = &req->c_req;
974 struct sec_aead_req *a_req = &req->aead_req;
975 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
976 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
977 struct device *dev = ctx->dev;
978 int ret;
979
980 if (req->use_pbuf) {
981 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
982 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
983 if (ctx->alg_type == SEC_AEAD) {
984 a_req->a_ivin = res->a_ivin;
985 a_req->a_ivin_dma = res->a_ivin_dma;
986 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
987 a_req->out_mac_dma = res->pbuf_dma +
988 SEC_PBUF_MAC_OFFSET;
989 }
990 ret = sec_cipher_pbuf_map(ctx, req, src);
991
992 return ret;
993 }
994 c_req->c_ivin = res->c_ivin;
995 c_req->c_ivin_dma = res->c_ivin_dma;
996 if (ctx->alg_type == SEC_AEAD) {
997 a_req->a_ivin = res->a_ivin;
998 a_req->a_ivin_dma = res->a_ivin_dma;
999 a_req->out_mac = res->out_mac;
1000 a_req->out_mac_dma = res->out_mac_dma;
1001 }
1002
1003 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1004 qp_ctx->c_in_pool,
1005 req->req_id,
1006 &req->in_dma);
1007 if (IS_ERR(req->in)) {
1008 dev_err(dev, "fail to dma map input sgl buffers!\n");
1009 return PTR_ERR(req->in);
1010 }
1011
1012 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1013 ret = sec_aead_mac_init(a_req);
1014 if (unlikely(ret)) {
1015 dev_err(dev, "fail to init mac data for ICV!\n");
1016 return ret;
1017 }
1018 }
1019
1020 if (dst == src) {
1021 c_req->c_out = req->in;
1022 c_req->c_out_dma = req->in_dma;
1023 } else {
1024 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1025 qp_ctx->c_out_pool,
1026 req->req_id,
1027 &c_req->c_out_dma);
1028
1029 if (IS_ERR(c_req->c_out)) {
1030 dev_err(dev, "fail to dma map output sgl buffers!\n");
1031 hisi_acc_sg_buf_unmap(dev, src, req->in);
1032 return PTR_ERR(c_req->c_out);
1033 }
1034 }
1035
1036 return 0;
1037 }
1038
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1039 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1040 struct scatterlist *src, struct scatterlist *dst)
1041 {
1042 struct sec_cipher_req *c_req = &req->c_req;
1043 struct device *dev = ctx->dev;
1044
1045 if (req->use_pbuf) {
1046 sec_cipher_pbuf_unmap(ctx, req, dst);
1047 } else {
1048 if (dst != src)
1049 hisi_acc_sg_buf_unmap(dev, src, req->in);
1050
1051 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1052 }
1053 }
1054
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1055 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1056 {
1057 struct skcipher_request *sq = req->c_req.sk_req;
1058
1059 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1060 }
1061
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1062 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1063 {
1064 struct skcipher_request *sq = req->c_req.sk_req;
1065
1066 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1067 }
1068
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1069 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1070 struct crypto_authenc_keys *keys)
1071 {
1072 switch (keys->enckeylen) {
1073 case AES_KEYSIZE_128:
1074 c_ctx->c_key_len = SEC_CKEY_128BIT;
1075 break;
1076 case AES_KEYSIZE_192:
1077 c_ctx->c_key_len = SEC_CKEY_192BIT;
1078 break;
1079 case AES_KEYSIZE_256:
1080 c_ctx->c_key_len = SEC_CKEY_256BIT;
1081 break;
1082 default:
1083 pr_err("hisi_sec2: aead aes key error!\n");
1084 return -EINVAL;
1085 }
1086 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1087
1088 return 0;
1089 }
1090
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1091 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1092 struct crypto_authenc_keys *keys)
1093 {
1094 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1095 int blocksize, digestsize, ret;
1096
1097 if (!keys->authkeylen) {
1098 pr_err("hisi_sec2: aead auth key error!\n");
1099 return -EINVAL;
1100 }
1101
1102 blocksize = crypto_shash_blocksize(hash_tfm);
1103 digestsize = crypto_shash_digestsize(hash_tfm);
1104 if (keys->authkeylen > blocksize) {
1105 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1106 keys->authkeylen, ctx->a_key);
1107 if (ret) {
1108 pr_err("hisi_sec2: aead auth digest error!\n");
1109 return -EINVAL;
1110 }
1111 ctx->a_key_len = digestsize;
1112 } else {
1113 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1114 ctx->a_key_len = keys->authkeylen;
1115 }
1116
1117 return 0;
1118 }
1119
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1120 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1121 {
1122 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1123 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1124 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1125
1126 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1127 }
1128
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1129 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1130 struct crypto_aead *tfm, const u8 *key,
1131 unsigned int keylen)
1132 {
1133 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1134 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1135 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1136 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1137 }
1138
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_cmode c_mode)1139 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1140 const u32 keylen, const enum sec_hash_alg a_alg,
1141 const enum sec_calg c_alg,
1142 const enum sec_cmode c_mode)
1143 {
1144 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1145 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1146 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1147 struct device *dev = ctx->dev;
1148 struct crypto_authenc_keys keys;
1149 int ret;
1150
1151 ctx->a_ctx.a_alg = a_alg;
1152 ctx->c_ctx.c_alg = c_alg;
1153 c_ctx->c_mode = c_mode;
1154
1155 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1156 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1157 if (ret) {
1158 dev_err(dev, "set sec aes ccm cipher key err!\n");
1159 return ret;
1160 }
1161 memcpy(c_ctx->c_key, key, keylen);
1162
1163 return sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1164 }
1165
1166 ret = crypto_authenc_extractkeys(&keys, key, keylen);
1167 if (ret)
1168 goto bad_key;
1169
1170 ret = sec_aead_aes_set_key(c_ctx, &keys);
1171 if (ret) {
1172 dev_err(dev, "set sec cipher key err!\n");
1173 goto bad_key;
1174 }
1175
1176 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1177 if (ret) {
1178 dev_err(dev, "set sec auth key err!\n");
1179 goto bad_key;
1180 }
1181
1182 if (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK) {
1183 ret = -EINVAL;
1184 dev_err(dev, "AUTH key length error!\n");
1185 goto bad_key;
1186 }
1187
1188 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1189 if (ret) {
1190 dev_err(dev, "set sec fallback key err!\n");
1191 goto bad_key;
1192 }
1193
1194 return 0;
1195
1196 bad_key:
1197 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1198 return ret;
1199 }
1200
1201
1202 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, cmode) \
1203 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, u32 keylen) \
1204 { \
1205 return sec_aead_setkey(tfm, key, keylen, aalg, calg, cmode); \
1206 }
1207
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_CMODE_CBC)1208 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, SEC_CALG_AES, SEC_CMODE_CBC)
1209 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, SEC_CALG_AES, SEC_CMODE_CBC)
1210 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, SEC_CALG_AES, SEC_CMODE_CBC)
1211 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, SEC_CMODE_CCM)
1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, SEC_CMODE_GCM)
1213 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, SEC_CMODE_CCM)
1214 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, SEC_CMODE_GCM)
1215
1216 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1217 {
1218 struct aead_request *aq = req->aead_req.aead_req;
1219
1220 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1221 }
1222
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1223 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1224 {
1225 struct aead_request *aq = req->aead_req.aead_req;
1226
1227 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1228 }
1229
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1230 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1231 {
1232 int ret;
1233
1234 ret = ctx->req_op->buf_map(ctx, req);
1235 if (unlikely(ret))
1236 return ret;
1237
1238 ctx->req_op->do_transfer(ctx, req);
1239
1240 ret = ctx->req_op->bd_fill(ctx, req);
1241 if (unlikely(ret))
1242 goto unmap_req_buf;
1243
1244 return ret;
1245
1246 unmap_req_buf:
1247 ctx->req_op->buf_unmap(ctx, req);
1248 return ret;
1249 }
1250
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1251 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1252 {
1253 ctx->req_op->buf_unmap(ctx, req);
1254 }
1255
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1256 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1257 {
1258 struct skcipher_request *sk_req = req->c_req.sk_req;
1259 struct sec_cipher_req *c_req = &req->c_req;
1260
1261 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1262 }
1263
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1264 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1265 {
1266 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1267 struct sec_cipher_req *c_req = &req->c_req;
1268 struct sec_sqe *sec_sqe = &req->sec_sqe;
1269 u8 scene, sa_type, da_type;
1270 u8 bd_type, cipher;
1271 u8 de = 0;
1272
1273 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1274
1275 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1276 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1277 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1278 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1279
1280 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1281 SEC_CMODE_OFFSET);
1282 sec_sqe->type2.c_alg = c_ctx->c_alg;
1283 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1284 SEC_CKEY_OFFSET);
1285
1286 bd_type = SEC_BD_TYPE2;
1287 if (c_req->encrypt)
1288 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1289 else
1290 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1291 sec_sqe->type_cipher_auth = bd_type | cipher;
1292
1293 /* Set destination and source address type */
1294 if (req->use_pbuf) {
1295 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1296 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1297 } else {
1298 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1299 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1300 }
1301
1302 sec_sqe->sdm_addr_type |= da_type;
1303 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1304 if (req->in_dma != c_req->c_out_dma)
1305 de = 0x1 << SEC_DE_OFFSET;
1306
1307 sec_sqe->sds_sa_type = (de | scene | sa_type);
1308
1309 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1310 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1311
1312 return 0;
1313 }
1314
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1315 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1316 {
1317 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1318 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1319 struct sec_cipher_req *c_req = &req->c_req;
1320 u32 bd_param = 0;
1321 u16 cipher;
1322
1323 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1324
1325 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1326 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1327 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1328 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1329
1330 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1331 c_ctx->c_mode;
1332 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1333 SEC_CKEY_OFFSET_V3);
1334
1335 if (c_req->encrypt)
1336 cipher = SEC_CIPHER_ENC;
1337 else
1338 cipher = SEC_CIPHER_DEC;
1339 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1340
1341 /* Set the CTR counter mode is 128bit rollover */
1342 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1343 SEC_CTR_CNT_OFFSET);
1344
1345 if (req->use_pbuf) {
1346 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1347 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1348 } else {
1349 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1350 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1351 }
1352
1353 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1354 if (req->in_dma != c_req->c_out_dma)
1355 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1356
1357 bd_param |= SEC_BD_TYPE3;
1358 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1359
1360 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1361 sec_sqe3->tag = cpu_to_le64(req);
1362
1363 return 0;
1364 }
1365
1366 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1367 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1368 {
1369 do {
1370 --bits;
1371 nums += counter[bits];
1372 counter[bits] = nums & BITS_MASK;
1373 nums >>= BYTE_BITS;
1374 } while (bits && nums);
1375 }
1376
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1377 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1378 {
1379 struct aead_request *aead_req = req->aead_req.aead_req;
1380 struct skcipher_request *sk_req = req->c_req.sk_req;
1381 u32 iv_size = req->ctx->c_ctx.ivsize;
1382 struct scatterlist *sgl;
1383 unsigned int cryptlen;
1384 size_t sz;
1385 u8 *iv;
1386
1387 if (req->c_req.encrypt)
1388 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1389 else
1390 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1391
1392 if (alg_type == SEC_SKCIPHER) {
1393 iv = sk_req->iv;
1394 cryptlen = sk_req->cryptlen;
1395 } else {
1396 iv = aead_req->iv;
1397 cryptlen = aead_req->cryptlen;
1398 }
1399
1400 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1401 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1402 cryptlen - iv_size);
1403 if (unlikely(sz != iv_size))
1404 dev_err(req->ctx->dev, "copy output iv error!\n");
1405 } else {
1406 sz = cryptlen / iv_size;
1407 if (cryptlen % iv_size)
1408 sz += 1;
1409 ctr_iv_inc(iv, iv_size, sz);
1410 }
1411 }
1412
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1413 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1414 struct sec_qp_ctx *qp_ctx)
1415 {
1416 struct sec_req *backlog_req = NULL;
1417
1418 spin_lock_bh(&qp_ctx->req_lock);
1419 if (ctx->fake_req_limit >=
1420 atomic_read(&qp_ctx->qp->qp_status.used) &&
1421 !list_empty(&qp_ctx->backlog)) {
1422 backlog_req = list_first_entry(&qp_ctx->backlog,
1423 typeof(*backlog_req), backlog_head);
1424 list_del(&backlog_req->backlog_head);
1425 }
1426 spin_unlock_bh(&qp_ctx->req_lock);
1427
1428 return backlog_req;
1429 }
1430
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1431 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1432 int err)
1433 {
1434 struct skcipher_request *sk_req = req->c_req.sk_req;
1435 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1436 struct skcipher_request *backlog_sk_req;
1437 struct sec_req *backlog_req;
1438
1439 sec_free_req_id(req);
1440
1441 /* IV output at encrypto of CBC/CTR mode */
1442 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1443 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1444 sec_update_iv(req, SEC_SKCIPHER);
1445
1446 while (1) {
1447 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1448 if (!backlog_req)
1449 break;
1450
1451 backlog_sk_req = backlog_req->c_req.sk_req;
1452 skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1453 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1454 }
1455
1456 skcipher_request_complete(sk_req, err);
1457 }
1458
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1459 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1460 {
1461 struct aead_request *aead_req = req->aead_req.aead_req;
1462 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1463 size_t authsize = crypto_aead_authsize(tfm);
1464 struct sec_aead_req *a_req = &req->aead_req;
1465 struct sec_cipher_req *c_req = &req->c_req;
1466 u32 data_size = aead_req->cryptlen;
1467 u8 flage = 0;
1468 u8 cm, cl;
1469
1470 /* the specification has been checked in aead_iv_demension_check() */
1471 cl = c_req->c_ivin[0] + 1;
1472 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1473 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1474 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1475
1476 /* the last 3bit is L' */
1477 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1478
1479 /* the M' is bit3~bit5, the Flags is bit6 */
1480 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1481 flage |= cm << IV_CM_OFFSET;
1482 if (aead_req->assoclen)
1483 flage |= 0x01 << IV_FLAGS_OFFSET;
1484
1485 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1486 a_req->a_ivin[0] = flage;
1487
1488 /*
1489 * the last 32bit is counter's initial number,
1490 * but the nonce uses the first 16bit
1491 * the tail 16bit fill with the cipher length
1492 */
1493 if (!c_req->encrypt)
1494 data_size = aead_req->cryptlen - authsize;
1495
1496 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1497 data_size & IV_LAST_BYTE_MASK;
1498 data_size >>= IV_BYTE_OFFSET;
1499 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1500 data_size & IV_LAST_BYTE_MASK;
1501 }
1502
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1503 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1504 {
1505 struct aead_request *aead_req = req->aead_req.aead_req;
1506 struct sec_aead_req *a_req = &req->aead_req;
1507 struct sec_cipher_req *c_req = &req->c_req;
1508
1509 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1510
1511 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1512 /*
1513 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1514 * the counter must set to 0x01
1515 * CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length}
1516 */
1517 set_aead_auth_iv(ctx, req);
1518 } else if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1519 /* GCM 12Byte Cipher_IV == Auth_IV */
1520 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1521 }
1522 }
1523
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1524 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1525 struct sec_req *req, struct sec_sqe *sec_sqe)
1526 {
1527 struct sec_aead_req *a_req = &req->aead_req;
1528 struct aead_request *aq = a_req->aead_req;
1529 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1530 size_t authsize = crypto_aead_authsize(tfm);
1531
1532 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1533 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)authsize);
1534
1535 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1536 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1537 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1538 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1539
1540 if (dir)
1541 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1542 else
1543 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1544
1545 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1546 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1547 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1548
1549 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1550 }
1551
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1552 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1553 struct sec_req *req, struct sec_sqe3 *sqe3)
1554 {
1555 struct sec_aead_req *a_req = &req->aead_req;
1556 struct aead_request *aq = a_req->aead_req;
1557 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1558 size_t authsize = crypto_aead_authsize(tfm);
1559
1560 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1561 sqe3->c_icv_key |= cpu_to_le16((u16)authsize << SEC_MAC_OFFSET_V3);
1562
1563 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1564 sqe3->a_key_addr = sqe3->c_key_addr;
1565 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1566 sqe3->auth_mac_key |= SEC_NO_AUTH;
1567
1568 if (dir)
1569 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1570 else
1571 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1572
1573 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1574 sqe3->auth_src_offset = cpu_to_le16(0x0);
1575 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1576 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1577 }
1578
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1579 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1580 struct sec_req *req, struct sec_sqe *sec_sqe)
1581 {
1582 struct sec_aead_req *a_req = &req->aead_req;
1583 struct sec_cipher_req *c_req = &req->c_req;
1584 struct aead_request *aq = a_req->aead_req;
1585 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1586 size_t authsize = crypto_aead_authsize(tfm);
1587
1588 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1589
1590 sec_sqe->type2.mac_key_alg = cpu_to_le32(authsize / SEC_SQE_LEN_RATE);
1591
1592 sec_sqe->type2.mac_key_alg |=
1593 cpu_to_le32((u32)((ctx->a_key_len) /
1594 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1595
1596 sec_sqe->type2.mac_key_alg |=
1597 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1598
1599 if (dir) {
1600 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1601 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1602 } else {
1603 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1604 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1605 }
1606 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1607
1608 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1609
1610 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1611 }
1612
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1613 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1614 {
1615 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1616 struct sec_sqe *sec_sqe = &req->sec_sqe;
1617 int ret;
1618
1619 ret = sec_skcipher_bd_fill(ctx, req);
1620 if (unlikely(ret)) {
1621 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1622 return ret;
1623 }
1624
1625 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1626 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1627 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1628 else
1629 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1630
1631 return 0;
1632 }
1633
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1634 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1635 struct sec_req *req, struct sec_sqe3 *sqe3)
1636 {
1637 struct sec_aead_req *a_req = &req->aead_req;
1638 struct sec_cipher_req *c_req = &req->c_req;
1639 struct aead_request *aq = a_req->aead_req;
1640 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1641 size_t authsize = crypto_aead_authsize(tfm);
1642
1643 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1644
1645 sqe3->auth_mac_key |=
1646 cpu_to_le32((u32)(authsize /
1647 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1648
1649 sqe3->auth_mac_key |=
1650 cpu_to_le32((u32)(ctx->a_key_len /
1651 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1652
1653 sqe3->auth_mac_key |=
1654 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1655
1656 if (dir) {
1657 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1658 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1659 } else {
1660 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1661 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1662 }
1663 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1664
1665 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1666
1667 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1668 }
1669
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1670 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1671 {
1672 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1673 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1674 int ret;
1675
1676 ret = sec_skcipher_bd_fill_v3(ctx, req);
1677 if (unlikely(ret)) {
1678 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1679 return ret;
1680 }
1681
1682 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1683 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1684 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1685 req, sec_sqe3);
1686 else
1687 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1688 req, sec_sqe3);
1689
1690 return 0;
1691 }
1692
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1693 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1694 {
1695 struct aead_request *a_req = req->aead_req.aead_req;
1696 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1697 size_t authsize = crypto_aead_authsize(tfm);
1698 struct sec_aead_req *aead_req = &req->aead_req;
1699 struct sec_cipher_req *c_req = &req->c_req;
1700 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1701 struct aead_request *backlog_aead_req;
1702 struct sec_req *backlog_req;
1703 size_t sz;
1704
1705 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1706 sec_update_iv(req, SEC_AEAD);
1707
1708 /* Copy output mac */
1709 if (!err && c_req->encrypt) {
1710 struct scatterlist *sgl = a_req->dst;
1711
1712 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), aead_req->out_mac,
1713 authsize, a_req->cryptlen + a_req->assoclen);
1714 if (unlikely(sz != authsize)) {
1715 dev_err(c->dev, "copy out mac err!\n");
1716 err = -EINVAL;
1717 }
1718 }
1719
1720 sec_free_req_id(req);
1721
1722 while (1) {
1723 backlog_req = sec_back_req_clear(c, qp_ctx);
1724 if (!backlog_req)
1725 break;
1726
1727 backlog_aead_req = backlog_req->aead_req.aead_req;
1728 aead_request_complete(backlog_aead_req, -EINPROGRESS);
1729 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1730 }
1731
1732 aead_request_complete(a_req, err);
1733 }
1734
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1735 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1736 {
1737 sec_free_req_id(req);
1738 sec_free_queue_id(ctx, req);
1739 }
1740
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1741 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1742 {
1743 struct sec_qp_ctx *qp_ctx;
1744 int queue_id;
1745
1746 /* To load balance */
1747 queue_id = sec_alloc_queue_id(ctx, req);
1748 qp_ctx = &ctx->qp_ctx[queue_id];
1749
1750 req->req_id = sec_alloc_req_id(req, qp_ctx);
1751 if (unlikely(req->req_id < 0)) {
1752 sec_free_queue_id(ctx, req);
1753 return req->req_id;
1754 }
1755
1756 return 0;
1757 }
1758
sec_process(struct sec_ctx * ctx,struct sec_req * req)1759 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1760 {
1761 struct sec_cipher_req *c_req = &req->c_req;
1762 int ret;
1763
1764 ret = sec_request_init(ctx, req);
1765 if (unlikely(ret))
1766 return ret;
1767
1768 ret = sec_request_transfer(ctx, req);
1769 if (unlikely(ret))
1770 goto err_uninit_req;
1771
1772 /* Output IV as decrypto */
1773 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1774 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1775 sec_update_iv(req, ctx->alg_type);
1776
1777 ret = ctx->req_op->bd_send(ctx, req);
1778 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1779 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1780 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1781 goto err_send_req;
1782 }
1783
1784 return ret;
1785
1786 err_send_req:
1787 /* As failing, restore the IV from user */
1788 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1789 if (ctx->alg_type == SEC_SKCIPHER)
1790 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1791 ctx->c_ctx.ivsize);
1792 else
1793 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1794 ctx->c_ctx.ivsize);
1795 }
1796
1797 sec_request_untransfer(ctx, req);
1798 err_uninit_req:
1799 sec_request_uninit(ctx, req);
1800 return ret;
1801 }
1802
1803 static const struct sec_req_op sec_skcipher_req_ops = {
1804 .buf_map = sec_skcipher_sgl_map,
1805 .buf_unmap = sec_skcipher_sgl_unmap,
1806 .do_transfer = sec_skcipher_copy_iv,
1807 .bd_fill = sec_skcipher_bd_fill,
1808 .bd_send = sec_bd_send,
1809 .callback = sec_skcipher_callback,
1810 .process = sec_process,
1811 };
1812
1813 static const struct sec_req_op sec_aead_req_ops = {
1814 .buf_map = sec_aead_sgl_map,
1815 .buf_unmap = sec_aead_sgl_unmap,
1816 .do_transfer = sec_aead_set_iv,
1817 .bd_fill = sec_aead_bd_fill,
1818 .bd_send = sec_bd_send,
1819 .callback = sec_aead_callback,
1820 .process = sec_process,
1821 };
1822
1823 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1824 .buf_map = sec_skcipher_sgl_map,
1825 .buf_unmap = sec_skcipher_sgl_unmap,
1826 .do_transfer = sec_skcipher_copy_iv,
1827 .bd_fill = sec_skcipher_bd_fill_v3,
1828 .bd_send = sec_bd_send,
1829 .callback = sec_skcipher_callback,
1830 .process = sec_process,
1831 };
1832
1833 static const struct sec_req_op sec_aead_req_ops_v3 = {
1834 .buf_map = sec_aead_sgl_map,
1835 .buf_unmap = sec_aead_sgl_unmap,
1836 .do_transfer = sec_aead_set_iv,
1837 .bd_fill = sec_aead_bd_fill_v3,
1838 .bd_send = sec_bd_send,
1839 .callback = sec_aead_callback,
1840 .process = sec_process,
1841 };
1842
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1843 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1844 {
1845 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1846 int ret;
1847
1848 ret = sec_skcipher_init(tfm);
1849 if (ret)
1850 return ret;
1851
1852 if (ctx->sec->qm.ver < QM_HW_V3) {
1853 ctx->type_supported = SEC_BD_TYPE2;
1854 ctx->req_op = &sec_skcipher_req_ops;
1855 } else {
1856 ctx->type_supported = SEC_BD_TYPE3;
1857 ctx->req_op = &sec_skcipher_req_ops_v3;
1858 }
1859
1860 return ret;
1861 }
1862
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1863 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1864 {
1865 sec_skcipher_uninit(tfm);
1866 }
1867
sec_aead_init(struct crypto_aead * tfm)1868 static int sec_aead_init(struct crypto_aead *tfm)
1869 {
1870 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1871 int ret;
1872
1873 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1874 ctx->alg_type = SEC_AEAD;
1875 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1876 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1877 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1878 pr_err("get error aead iv size!\n");
1879 return -EINVAL;
1880 }
1881
1882 ret = sec_ctx_base_init(ctx);
1883 if (ret)
1884 return ret;
1885 if (ctx->sec->qm.ver < QM_HW_V3) {
1886 ctx->type_supported = SEC_BD_TYPE2;
1887 ctx->req_op = &sec_aead_req_ops;
1888 } else {
1889 ctx->type_supported = SEC_BD_TYPE3;
1890 ctx->req_op = &sec_aead_req_ops_v3;
1891 }
1892
1893 ret = sec_auth_init(ctx);
1894 if (ret)
1895 goto err_auth_init;
1896
1897 ret = sec_cipher_init(ctx);
1898 if (ret)
1899 goto err_cipher_init;
1900
1901 return ret;
1902
1903 err_cipher_init:
1904 sec_auth_uninit(ctx);
1905 err_auth_init:
1906 sec_ctx_base_uninit(ctx);
1907 return ret;
1908 }
1909
sec_aead_exit(struct crypto_aead * tfm)1910 static void sec_aead_exit(struct crypto_aead *tfm)
1911 {
1912 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1913
1914 sec_cipher_uninit(ctx);
1915 sec_auth_uninit(ctx);
1916 sec_ctx_base_uninit(ctx);
1917 }
1918
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1919 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1920 {
1921 struct aead_alg *alg = crypto_aead_alg(tfm);
1922 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1923 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1924 const char *aead_name = alg->base.cra_name;
1925 int ret;
1926
1927 ret = sec_aead_init(tfm);
1928 if (ret) {
1929 pr_err("hisi_sec2: aead init error!\n");
1930 return ret;
1931 }
1932
1933 a_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1934 if (IS_ERR(a_ctx->hash_tfm)) {
1935 dev_err(ctx->dev, "aead alloc shash error!\n");
1936 sec_aead_exit(tfm);
1937 return PTR_ERR(a_ctx->hash_tfm);
1938 }
1939
1940 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1941 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
1942 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1943 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1944 crypto_free_shash(ctx->a_ctx.hash_tfm);
1945 sec_aead_exit(tfm);
1946 return PTR_ERR(a_ctx->fallback_aead_tfm);
1947 }
1948
1949 return 0;
1950 }
1951
sec_aead_ctx_exit(struct crypto_aead * tfm)1952 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1953 {
1954 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1955
1956 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1957 crypto_free_shash(ctx->a_ctx.hash_tfm);
1958 sec_aead_exit(tfm);
1959 }
1960
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1961 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1962 {
1963 struct aead_alg *alg = crypto_aead_alg(tfm);
1964 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1965 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1966 const char *aead_name = alg->base.cra_name;
1967 int ret;
1968
1969 ret = sec_aead_init(tfm);
1970 if (ret) {
1971 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1972 return ret;
1973 }
1974
1975 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1976 CRYPTO_ALG_NEED_FALLBACK |
1977 CRYPTO_ALG_ASYNC);
1978 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1979 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1980 sec_aead_exit(tfm);
1981 return PTR_ERR(a_ctx->fallback_aead_tfm);
1982 }
1983
1984 return 0;
1985 }
1986
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1987 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1988 {
1989 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1990
1991 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1992 sec_aead_exit(tfm);
1993 }
1994
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1995 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1996 {
1997 return sec_aead_ctx_init(tfm, "sha1");
1998 }
1999
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)2000 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2001 {
2002 return sec_aead_ctx_init(tfm, "sha256");
2003 }
2004
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)2005 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2006 {
2007 return sec_aead_ctx_init(tfm, "sha512");
2008 }
2009
sec_skcipher_cryptlen_check(struct sec_ctx * ctx,struct sec_req * sreq)2010 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2011 struct sec_req *sreq)
2012 {
2013 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2014 struct device *dev = ctx->dev;
2015 u8 c_mode = ctx->c_ctx.c_mode;
2016 int ret = 0;
2017
2018 switch (c_mode) {
2019 case SEC_CMODE_XTS:
2020 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2021 dev_err(dev, "skcipher XTS mode input length error!\n");
2022 ret = -EINVAL;
2023 }
2024 break;
2025 case SEC_CMODE_ECB:
2026 case SEC_CMODE_CBC:
2027 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2028 dev_err(dev, "skcipher AES input length error!\n");
2029 ret = -EINVAL;
2030 }
2031 break;
2032 case SEC_CMODE_CFB:
2033 case SEC_CMODE_OFB:
2034 case SEC_CMODE_CTR:
2035 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2036 dev_err(dev, "skcipher HW version error!\n");
2037 ret = -EINVAL;
2038 }
2039 break;
2040 default:
2041 ret = -EINVAL;
2042 }
2043
2044 return ret;
2045 }
2046
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2047 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2048 {
2049 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2050 struct device *dev = ctx->dev;
2051 u8 c_alg = ctx->c_ctx.c_alg;
2052
2053 if (unlikely(!sk_req->src || !sk_req->dst ||
2054 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2055 dev_err(dev, "skcipher input param error!\n");
2056 return -EINVAL;
2057 }
2058 sreq->c_req.c_len = sk_req->cryptlen;
2059
2060 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2061 sreq->use_pbuf = true;
2062 else
2063 sreq->use_pbuf = false;
2064
2065 if (c_alg == SEC_CALG_3DES) {
2066 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2067 dev_err(dev, "skcipher 3des input length error!\n");
2068 return -EINVAL;
2069 }
2070 return 0;
2071 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2072 return sec_skcipher_cryptlen_check(ctx, sreq);
2073 }
2074
2075 dev_err(dev, "skcipher algorithm error!\n");
2076
2077 return -EINVAL;
2078 }
2079
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2080 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2081 struct skcipher_request *sreq, bool encrypt)
2082 {
2083 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2084 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2085 struct device *dev = ctx->dev;
2086 int ret;
2087
2088 if (!c_ctx->fbtfm) {
2089 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2090 return -EINVAL;
2091 }
2092
2093 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2094
2095 /* software need sync mode to do crypto */
2096 skcipher_request_set_callback(subreq, sreq->base.flags,
2097 NULL, NULL);
2098 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2099 sreq->cryptlen, sreq->iv);
2100 if (encrypt)
2101 ret = crypto_skcipher_encrypt(subreq);
2102 else
2103 ret = crypto_skcipher_decrypt(subreq);
2104
2105 skcipher_request_zero(subreq);
2106
2107 return ret;
2108 }
2109
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2110 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2111 {
2112 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2113 struct sec_req *req = skcipher_request_ctx(sk_req);
2114 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2115 int ret;
2116
2117 if (!sk_req->cryptlen) {
2118 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2119 return -EINVAL;
2120 return 0;
2121 }
2122
2123 req->flag = sk_req->base.flags;
2124 req->c_req.sk_req = sk_req;
2125 req->c_req.encrypt = encrypt;
2126 req->ctx = ctx;
2127
2128 ret = sec_skcipher_param_check(ctx, req);
2129 if (unlikely(ret))
2130 return -EINVAL;
2131
2132 if (unlikely(ctx->c_ctx.fallback))
2133 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2134
2135 return ctx->req_op->process(ctx, req);
2136 }
2137
sec_skcipher_encrypt(struct skcipher_request * sk_req)2138 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2139 {
2140 return sec_skcipher_crypto(sk_req, true);
2141 }
2142
sec_skcipher_decrypt(struct skcipher_request * sk_req)2143 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2144 {
2145 return sec_skcipher_crypto(sk_req, false);
2146 }
2147
2148 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2149 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2150 {\
2151 .base = {\
2152 .cra_name = sec_cra_name,\
2153 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2154 .cra_priority = SEC_PRIORITY,\
2155 .cra_flags = CRYPTO_ALG_ASYNC |\
2156 CRYPTO_ALG_NEED_FALLBACK,\
2157 .cra_blocksize = blk_size,\
2158 .cra_ctxsize = sizeof(struct sec_ctx),\
2159 .cra_module = THIS_MODULE,\
2160 },\
2161 .init = ctx_init,\
2162 .exit = ctx_exit,\
2163 .setkey = sec_set_key,\
2164 .decrypt = sec_skcipher_decrypt,\
2165 .encrypt = sec_skcipher_encrypt,\
2166 .min_keysize = sec_min_key_size,\
2167 .max_keysize = sec_max_key_size,\
2168 .ivsize = iv_size,\
2169 }
2170
2171 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2172 max_key_size, blk_size, iv_size) \
2173 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2174 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2175
2176 static struct sec_skcipher sec_skciphers[] = {
2177 {
2178 .alg_msk = BIT(0),
2179 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2180 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2181 },
2182 {
2183 .alg_msk = BIT(1),
2184 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2185 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2186 },
2187 {
2188 .alg_msk = BIT(2),
2189 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2190 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2191 },
2192 {
2193 .alg_msk = BIT(3),
2194 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2195 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2196 },
2197 {
2198 .alg_msk = BIT(4),
2199 .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
2200 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2201 },
2202 {
2203 .alg_msk = BIT(5),
2204 .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
2205 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2206 },
2207 {
2208 .alg_msk = BIT(12),
2209 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2210 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2211 },
2212 {
2213 .alg_msk = BIT(13),
2214 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2215 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2216 },
2217 {
2218 .alg_msk = BIT(14),
2219 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2220 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2221 },
2222 {
2223 .alg_msk = BIT(15),
2224 .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
2225 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2226 },
2227 {
2228 .alg_msk = BIT(16),
2229 .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
2230 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2231 },
2232 {
2233 .alg_msk = BIT(23),
2234 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2235 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2236 },
2237 {
2238 .alg_msk = BIT(24),
2239 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2240 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2241 DES3_EDE_BLOCK_SIZE),
2242 },
2243 };
2244
aead_iv_demension_check(struct aead_request * aead_req)2245 static int aead_iv_demension_check(struct aead_request *aead_req)
2246 {
2247 u8 cl;
2248
2249 cl = aead_req->iv[0] + 1;
2250 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2251 return -EINVAL;
2252
2253 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2254 return -EOVERFLOW;
2255
2256 return 0;
2257 }
2258
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2259 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2260 {
2261 struct aead_request *req = sreq->aead_req.aead_req;
2262 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2263 size_t sz = crypto_aead_authsize(tfm);
2264 u8 c_mode = ctx->c_ctx.c_mode;
2265 struct device *dev = ctx->dev;
2266 int ret;
2267
2268 /* Hardware does not handle cases where authsize is less than 4 bytes */
2269 if (unlikely(sz < MIN_MAC_LEN)) {
2270 sreq->aead_req.fallback = true;
2271 return -EINVAL;
2272 }
2273
2274 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2275 req->assoclen > SEC_MAX_AAD_LEN)) {
2276 dev_err(dev, "aead input spec error!\n");
2277 return -EINVAL;
2278 }
2279
2280 if (c_mode == SEC_CMODE_CCM) {
2281 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2282 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2283 return -EINVAL;
2284 }
2285 ret = aead_iv_demension_check(req);
2286 if (ret) {
2287 dev_err(dev, "aead input iv param error!\n");
2288 return ret;
2289 }
2290 }
2291
2292 if (sreq->c_req.encrypt)
2293 sreq->c_req.c_len = req->cryptlen;
2294 else
2295 sreq->c_req.c_len = req->cryptlen - sz;
2296 if (c_mode == SEC_CMODE_CBC) {
2297 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2298 dev_err(dev, "aead crypto length error!\n");
2299 return -EINVAL;
2300 }
2301 }
2302
2303 return 0;
2304 }
2305
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2306 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2307 {
2308 struct aead_request *req = sreq->aead_req.aead_req;
2309 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2310 size_t authsize = crypto_aead_authsize(tfm);
2311 struct device *dev = ctx->dev;
2312 u8 c_alg = ctx->c_ctx.c_alg;
2313
2314 if (unlikely(!req->src || !req->dst)) {
2315 dev_err(dev, "aead input param error!\n");
2316 return -EINVAL;
2317 }
2318
2319 if (ctx->sec->qm.ver == QM_HW_V2) {
2320 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2321 req->cryptlen <= authsize))) {
2322 sreq->aead_req.fallback = true;
2323 return -EINVAL;
2324 }
2325 }
2326
2327 /* Support AES or SM4 */
2328 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2329 dev_err(dev, "aead crypto alg error!\n");
2330 return -EINVAL;
2331 }
2332
2333 if (unlikely(sec_aead_spec_check(ctx, sreq)))
2334 return -EINVAL;
2335
2336 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2337 SEC_PBUF_SZ)
2338 sreq->use_pbuf = true;
2339 else
2340 sreq->use_pbuf = false;
2341
2342 return 0;
2343 }
2344
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2345 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2346 struct aead_request *aead_req,
2347 bool encrypt)
2348 {
2349 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2350 struct aead_request *subreq;
2351 int ret;
2352
2353 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2354 if (!subreq)
2355 return -ENOMEM;
2356
2357 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2358 aead_request_set_callback(subreq, aead_req->base.flags,
2359 aead_req->base.complete, aead_req->base.data);
2360 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2361 aead_req->cryptlen, aead_req->iv);
2362 aead_request_set_ad(subreq, aead_req->assoclen);
2363
2364 if (encrypt)
2365 ret = crypto_aead_encrypt(subreq);
2366 else
2367 ret = crypto_aead_decrypt(subreq);
2368 aead_request_free(subreq);
2369
2370 return ret;
2371 }
2372
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2373 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2374 {
2375 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2376 struct sec_req *req = aead_request_ctx(a_req);
2377 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2378 int ret;
2379
2380 req->flag = a_req->base.flags;
2381 req->aead_req.aead_req = a_req;
2382 req->c_req.encrypt = encrypt;
2383 req->ctx = ctx;
2384 req->aead_req.fallback = false;
2385
2386 ret = sec_aead_param_check(ctx, req);
2387 if (unlikely(ret)) {
2388 if (req->aead_req.fallback)
2389 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2390 return -EINVAL;
2391 }
2392
2393 return ctx->req_op->process(ctx, req);
2394 }
2395
sec_aead_encrypt(struct aead_request * a_req)2396 static int sec_aead_encrypt(struct aead_request *a_req)
2397 {
2398 return sec_aead_crypto(a_req, true);
2399 }
2400
sec_aead_decrypt(struct aead_request * a_req)2401 static int sec_aead_decrypt(struct aead_request *a_req)
2402 {
2403 return sec_aead_crypto(a_req, false);
2404 }
2405
2406 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2407 ctx_exit, blk_size, iv_size, max_authsize)\
2408 {\
2409 .base = {\
2410 .cra_name = sec_cra_name,\
2411 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2412 .cra_priority = SEC_PRIORITY,\
2413 .cra_flags = CRYPTO_ALG_ASYNC |\
2414 CRYPTO_ALG_NEED_FALLBACK,\
2415 .cra_blocksize = blk_size,\
2416 .cra_ctxsize = sizeof(struct sec_ctx),\
2417 .cra_module = THIS_MODULE,\
2418 },\
2419 .init = ctx_init,\
2420 .exit = ctx_exit,\
2421 .setkey = sec_set_key,\
2422 .setauthsize = sec_aead_setauthsize,\
2423 .decrypt = sec_aead_decrypt,\
2424 .encrypt = sec_aead_encrypt,\
2425 .ivsize = iv_size,\
2426 .maxauthsize = max_authsize,\
2427 }
2428
2429 static struct sec_aead sec_aeads[] = {
2430 {
2431 .alg_msk = BIT(6),
2432 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2433 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2434 AES_BLOCK_SIZE),
2435 },
2436 {
2437 .alg_msk = BIT(7),
2438 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2439 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2440 AES_BLOCK_SIZE),
2441 },
2442 {
2443 .alg_msk = BIT(17),
2444 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2445 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2446 AES_BLOCK_SIZE),
2447 },
2448 {
2449 .alg_msk = BIT(18),
2450 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2451 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2452 AES_BLOCK_SIZE),
2453 },
2454 {
2455 .alg_msk = BIT(43),
2456 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2457 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2458 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2459 },
2460 {
2461 .alg_msk = BIT(44),
2462 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2463 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2464 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2465 },
2466 {
2467 .alg_msk = BIT(45),
2468 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2469 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2470 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2471 },
2472 };
2473
sec_unregister_skcipher(u64 alg_mask,int end)2474 static void sec_unregister_skcipher(u64 alg_mask, int end)
2475 {
2476 int i;
2477
2478 for (i = 0; i < end; i++)
2479 if (sec_skciphers[i].alg_msk & alg_mask)
2480 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2481 }
2482
sec_register_skcipher(u64 alg_mask)2483 static int sec_register_skcipher(u64 alg_mask)
2484 {
2485 int i, ret, count;
2486
2487 count = ARRAY_SIZE(sec_skciphers);
2488
2489 for (i = 0; i < count; i++) {
2490 if (!(sec_skciphers[i].alg_msk & alg_mask))
2491 continue;
2492
2493 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2494 if (ret)
2495 goto err;
2496 }
2497
2498 return 0;
2499
2500 err:
2501 sec_unregister_skcipher(alg_mask, i);
2502
2503 return ret;
2504 }
2505
sec_unregister_aead(u64 alg_mask,int end)2506 static void sec_unregister_aead(u64 alg_mask, int end)
2507 {
2508 int i;
2509
2510 for (i = 0; i < end; i++)
2511 if (sec_aeads[i].alg_msk & alg_mask)
2512 crypto_unregister_aead(&sec_aeads[i].alg);
2513 }
2514
sec_register_aead(u64 alg_mask)2515 static int sec_register_aead(u64 alg_mask)
2516 {
2517 int i, ret, count;
2518
2519 count = ARRAY_SIZE(sec_aeads);
2520
2521 for (i = 0; i < count; i++) {
2522 if (!(sec_aeads[i].alg_msk & alg_mask))
2523 continue;
2524
2525 ret = crypto_register_aead(&sec_aeads[i].alg);
2526 if (ret)
2527 goto err;
2528 }
2529
2530 return 0;
2531
2532 err:
2533 sec_unregister_aead(alg_mask, i);
2534
2535 return ret;
2536 }
2537
sec_register_to_crypto(struct hisi_qm * qm)2538 int sec_register_to_crypto(struct hisi_qm *qm)
2539 {
2540 u64 alg_mask;
2541 int ret = 0;
2542
2543 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2544 SEC_DRV_ALG_BITMAP_LOW_IDX);
2545
2546
2547 ret = sec_register_skcipher(alg_mask);
2548 if (ret)
2549 return ret;
2550
2551 ret = sec_register_aead(alg_mask);
2552 if (ret)
2553 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2554
2555 return ret;
2556 }
2557
sec_unregister_from_crypto(struct hisi_qm * qm)2558 void sec_unregister_from_crypto(struct hisi_qm *qm)
2559 {
2560 u64 alg_mask;
2561
2562 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2563 SEC_DRV_ALG_BITMAP_LOW_IDX);
2564
2565 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2566 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2567 }
2568