xref: /openbmc/qemu/target/arm/cpu.h (revision ab37d6bd8917da6130a22a11c5d6e32b31f7d5d4)
1  /*
2   * ARM virtual CPU header
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #ifndef ARM_CPU_H
21  #define ARM_CPU_H
22  
23  #include "kvm-consts.h"
24  #include "qemu/cpu-float.h"
25  #include "hw/registerfields.h"
26  #include "cpu-qom.h"
27  #include "exec/cpu-defs.h"
28  #include "exec/gdbstub.h"
29  #include "exec/page-protection.h"
30  #include "qapi/qapi-types-common.h"
31  #include "target/arm/multiprocessing.h"
32  #include "target/arm/gtimer.h"
33  
34  #ifdef TARGET_AARCH64
35  #define KVM_HAVE_MCE_INJECTION 1
36  #endif
37  
38  #define EXCP_UDEF            1   /* undefined instruction */
39  #define EXCP_SWI             2   /* software interrupt */
40  #define EXCP_PREFETCH_ABORT  3
41  #define EXCP_DATA_ABORT      4
42  #define EXCP_IRQ             5
43  #define EXCP_FIQ             6
44  #define EXCP_BKPT            7
45  #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46  #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47  #define EXCP_HVC            11   /* HyperVisor Call */
48  #define EXCP_HYP_TRAP       12
49  #define EXCP_SMC            13   /* Secure Monitor Call */
50  #define EXCP_VIRQ           14
51  #define EXCP_VFIQ           15
52  #define EXCP_SEMIHOST       16   /* semihosting call */
53  #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54  #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55  #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56  #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57  #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58  #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59  #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60  #define EXCP_VSERR          24
61  #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62  #define EXCP_NMI            26
63  #define EXCP_VINMI          27
64  #define EXCP_VFNMI          28
65  #define EXCP_MON_TRAP       29   /* AArch32 trap to Monitor mode */
66  /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
67  
68  #define ARMV7M_EXCP_RESET   1
69  #define ARMV7M_EXCP_NMI     2
70  #define ARMV7M_EXCP_HARD    3
71  #define ARMV7M_EXCP_MEM     4
72  #define ARMV7M_EXCP_BUS     5
73  #define ARMV7M_EXCP_USAGE   6
74  #define ARMV7M_EXCP_SECURE  7
75  #define ARMV7M_EXCP_SVC     11
76  #define ARMV7M_EXCP_DEBUG   12
77  #define ARMV7M_EXCP_PENDSV  14
78  #define ARMV7M_EXCP_SYSTICK 15
79  
80  /* ARM-specific interrupt pending bits.  */
81  #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
82  #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
83  #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
84  #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
85  #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
86  #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
87  #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
88  
89  /* The usual mapping for an AArch64 system register to its AArch32
90   * counterpart is for the 32 bit world to have access to the lower
91   * half only (with writes leaving the upper half untouched). It's
92   * therefore useful to be able to pass TCG the offset of the least
93   * significant half of a uint64_t struct member.
94   */
95  #if HOST_BIG_ENDIAN
96  #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
97  #define offsetofhigh32(S, M) offsetof(S, M)
98  #else
99  #define offsetoflow32(S, M) offsetof(S, M)
100  #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101  #endif
102  
103  /* ARM-specific extra insn start words:
104   * 1: Conditional execution bits
105   * 2: Partial exception syndrome for data aborts
106   */
107  #define TARGET_INSN_START_EXTRA_WORDS 2
108  
109  /* The 2nd extra word holding syndrome info for data aborts does not use
110   * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
111   * help the sleb128 encoder do a better job.
112   * When restoring the CPU state, we shift it back up.
113   */
114  #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
115  #define ARM_INSN_START_WORD2_SHIFT 13
116  
117  /* We currently assume float and double are IEEE single and double
118     precision respectively.
119     Doing runtime conversions is tricky because VFP registers may contain
120     integer values (eg. as the result of a FTOSI instruction).
121     s<2n> maps to the least significant half of d<n>
122     s<2n+1> maps to the most significant half of d<n>
123   */
124  
125  /**
126   * DynamicGDBFeatureInfo:
127   * @desc: Contains the feature descriptions.
128   * @data: A union with data specific to the set of registers
129   *    @cpregs_keys: Array that contains the corresponding Key of
130   *                  a given cpreg with the same order of the cpreg
131   *                  in the XML description.
132   */
133  typedef struct DynamicGDBFeatureInfo {
134      GDBFeature desc;
135      union {
136          struct {
137              uint32_t *keys;
138          } cpregs;
139      } data;
140  } DynamicGDBFeatureInfo;
141  
142  /* CPU state for each instance of a generic timer (in cp15 c14) */
143  typedef struct ARMGenericTimer {
144      uint64_t cval; /* Timer CompareValue register */
145      uint64_t ctl; /* Timer Control register */
146  } ARMGenericTimer;
147  
148  /* Define a maximum sized vector register.
149   * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
150   * For 64-bit, this is a 2048-bit SVE register.
151   *
152   * Note that the mapping between S, D, and Q views of the register bank
153   * differs between AArch64 and AArch32.
154   * In AArch32:
155   *  Qn = regs[n].d[1]:regs[n].d[0]
156   *  Dn = regs[n / 2].d[n & 1]
157   *  Sn = regs[n / 4].d[n % 4 / 2],
158   *       bits 31..0 for even n, and bits 63..32 for odd n
159   *       (and regs[16] to regs[31] are inaccessible)
160   * In AArch64:
161   *  Zn = regs[n].d[*]
162   *  Qn = regs[n].d[1]:regs[n].d[0]
163   *  Dn = regs[n].d[0]
164   *  Sn = regs[n].d[0] bits 31..0
165   *  Hn = regs[n].d[0] bits 15..0
166   *
167   * This corresponds to the architecturally defined mapping between
168   * the two execution states, and means we do not need to explicitly
169   * map these registers when changing states.
170   *
171   * Align the data for use with TCG host vector operations.
172   */
173  
174  #ifdef TARGET_AARCH64
175  # define ARM_MAX_VQ    16
176  #else
177  # define ARM_MAX_VQ    1
178  #endif
179  
180  typedef struct ARMVectorReg {
181      uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
182  } ARMVectorReg;
183  
184  #ifdef TARGET_AARCH64
185  /* In AArch32 mode, predicate registers do not exist at all.  */
186  typedef struct ARMPredicateReg {
187      uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
188  } ARMPredicateReg;
189  
190  /* In AArch32 mode, PAC keys do not exist at all.  */
191  typedef struct ARMPACKey {
192      uint64_t lo, hi;
193  } ARMPACKey;
194  #endif
195  
196  /* See the commentary above the TBFLAG field definitions.  */
197  typedef struct CPUARMTBFlags {
198      uint32_t flags;
199      target_ulong flags2;
200  } CPUARMTBFlags;
201  
202  typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
203  
204  typedef struct NVICState NVICState;
205  
206  typedef struct CPUArchState {
207      /* Regs for current mode.  */
208      uint32_t regs[16];
209  
210      /* 32/64 switch only happens when taking and returning from
211       * exceptions so the overlap semantics are taken care of then
212       * instead of having a complicated union.
213       */
214      /* Regs for A64 mode.  */
215      uint64_t xregs[32];
216      uint64_t pc;
217      /* PSTATE isn't an architectural register for ARMv8. However, it is
218       * convenient for us to assemble the underlying state into a 32 bit format
219       * identical to the architectural format used for the SPSR. (This is also
220       * what the Linux kernel's 'pstate' field in signal handlers and KVM's
221       * 'pstate' register are.) Of the PSTATE bits:
222       *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
223       *    semantics as for AArch32, as described in the comments on each field)
224       *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
225       *  DAIF (exception masks) are kept in env->daif
226       *  BTYPE is kept in env->btype
227       *  SM and ZA are kept in env->svcr
228       *  all other bits are stored in their correct places in env->pstate
229       */
230      uint32_t pstate;
231      bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
232      bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
233  
234      /* Cached TBFLAGS state.  See below for which bits are included.  */
235      CPUARMTBFlags hflags;
236  
237      /* Frequently accessed CPSR bits are stored separately for efficiency.
238         This contains all the other bits.  Use cpsr_{read,write} to access
239         the whole CPSR.  */
240      uint32_t uncached_cpsr;
241      uint32_t spsr;
242  
243      /* Banked registers.  */
244      uint64_t banked_spsr[8];
245      uint32_t banked_r13[8];
246      uint32_t banked_r14[8];
247  
248      /* These hold r8-r12.  */
249      uint32_t usr_regs[5];
250      uint32_t fiq_regs[5];
251  
252      /* cpsr flag cache for faster execution */
253      uint32_t CF; /* 0 or 1 */
254      uint32_t VF; /* V is the bit 31. All other bits are undefined */
255      uint32_t NF; /* N is bit 31. All other bits are undefined.  */
256      uint32_t ZF; /* Z set if zero.  */
257      uint32_t QF; /* 0 or 1 */
258      uint32_t GE; /* cpsr[19:16] */
259      uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
260      uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
261      uint64_t daif; /* exception masks, in the bits they are in PSTATE */
262      uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
263  
264      uint64_t elr_el[4]; /* AArch64 exception link regs  */
265      uint64_t sp_el[4]; /* AArch64 banked stack pointers */
266  
267      /* System control coprocessor (cp15) */
268      struct {
269          uint32_t c0_cpuid;
270          union { /* Cache size selection */
271              struct {
272                  uint64_t _unused_csselr0;
273                  uint64_t csselr_ns;
274                  uint64_t _unused_csselr1;
275                  uint64_t csselr_s;
276              };
277              uint64_t csselr_el[4];
278          };
279          union { /* System control register. */
280              struct {
281                  uint64_t _unused_sctlr;
282                  uint64_t sctlr_ns;
283                  uint64_t hsctlr;
284                  uint64_t sctlr_s;
285              };
286              uint64_t sctlr_el[4];
287          };
288          uint64_t vsctlr; /* Virtualization System control register. */
289          uint64_t cpacr_el1; /* Architectural feature access control register */
290          uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
291          uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
292          uint64_t sder; /* Secure debug enable register. */
293          uint32_t nsacr; /* Non-secure access control register. */
294          union { /* MMU translation table base 0. */
295              struct {
296                  uint64_t _unused_ttbr0_0;
297                  uint64_t ttbr0_ns;
298                  uint64_t _unused_ttbr0_1;
299                  uint64_t ttbr0_s;
300              };
301              uint64_t ttbr0_el[4];
302          };
303          union { /* MMU translation table base 1. */
304              struct {
305                  uint64_t _unused_ttbr1_0;
306                  uint64_t ttbr1_ns;
307                  uint64_t _unused_ttbr1_1;
308                  uint64_t ttbr1_s;
309              };
310              uint64_t ttbr1_el[4];
311          };
312          uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
313          uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
314          /* MMU translation table base control. */
315          uint64_t tcr_el[4];
316          uint64_t vtcr_el2; /* Virtualization Translation Control.  */
317          uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
318          uint32_t c2_data; /* MPU data cacheable bits.  */
319          uint32_t c2_insn; /* MPU instruction cacheable bits.  */
320          union { /* MMU domain access control register
321                   * MPU write buffer control.
322                   */
323              struct {
324                  uint64_t dacr_ns;
325                  uint64_t dacr_s;
326              };
327              struct {
328                  uint64_t dacr32_el2;
329              };
330          };
331          uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
332          uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
333          uint64_t hcr_el2; /* Hypervisor configuration register */
334          uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
335          uint64_t scr_el3; /* Secure configuration register.  */
336          union { /* Fault status registers.  */
337              struct {
338                  uint64_t ifsr_ns;
339                  uint64_t ifsr_s;
340              };
341              struct {
342                  uint64_t ifsr32_el2;
343              };
344          };
345          union {
346              struct {
347                  uint64_t _unused_dfsr;
348                  uint64_t dfsr_ns;
349                  uint64_t hsr;
350                  uint64_t dfsr_s;
351              };
352              uint64_t esr_el[4];
353          };
354          uint32_t c6_region[8]; /* MPU base/size registers.  */
355          union { /* Fault address registers. */
356              struct {
357                  uint64_t _unused_far0;
358  #if HOST_BIG_ENDIAN
359                  uint32_t ifar_ns;
360                  uint32_t dfar_ns;
361                  uint32_t ifar_s;
362                  uint32_t dfar_s;
363  #else
364                  uint32_t dfar_ns;
365                  uint32_t ifar_ns;
366                  uint32_t dfar_s;
367                  uint32_t ifar_s;
368  #endif
369                  uint64_t _unused_far3;
370              };
371              uint64_t far_el[4];
372          };
373          uint64_t hpfar_el2;
374          uint64_t hstr_el2;
375          union { /* Translation result. */
376              struct {
377                  uint64_t _unused_par_0;
378                  uint64_t par_ns;
379                  uint64_t _unused_par_1;
380                  uint64_t par_s;
381              };
382              uint64_t par_el[4];
383          };
384  
385          uint32_t c9_insn; /* Cache lockdown registers.  */
386          uint32_t c9_data;
387          uint64_t c9_pmcr; /* performance monitor control register */
388          uint64_t c9_pmcnten; /* perf monitor counter enables */
389          uint64_t c9_pmovsr; /* perf monitor overflow status */
390          uint64_t c9_pmuserenr; /* perf monitor user enable */
391          uint64_t c9_pmselr; /* perf monitor counter selection register */
392          uint64_t c9_pminten; /* perf monitor interrupt enables */
393          union { /* Memory attribute redirection */
394              struct {
395  #if HOST_BIG_ENDIAN
396                  uint64_t _unused_mair_0;
397                  uint32_t mair1_ns;
398                  uint32_t mair0_ns;
399                  uint64_t _unused_mair_1;
400                  uint32_t mair1_s;
401                  uint32_t mair0_s;
402  #else
403                  uint64_t _unused_mair_0;
404                  uint32_t mair0_ns;
405                  uint32_t mair1_ns;
406                  uint64_t _unused_mair_1;
407                  uint32_t mair0_s;
408                  uint32_t mair1_s;
409  #endif
410              };
411              uint64_t mair_el[4];
412          };
413          union { /* vector base address register */
414              struct {
415                  uint64_t _unused_vbar;
416                  uint64_t vbar_ns;
417                  uint64_t hvbar;
418                  uint64_t vbar_s;
419              };
420              uint64_t vbar_el[4];
421          };
422          uint32_t mvbar; /* (monitor) vector base address register */
423          uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
424          struct { /* FCSE PID. */
425              uint32_t fcseidr_ns;
426              uint32_t fcseidr_s;
427          };
428          union { /* Context ID. */
429              struct {
430                  uint64_t _unused_contextidr_0;
431                  uint64_t contextidr_ns;
432                  uint64_t _unused_contextidr_1;
433                  uint64_t contextidr_s;
434              };
435              uint64_t contextidr_el[4];
436          };
437          union { /* User RW Thread register. */
438              struct {
439                  uint64_t tpidrurw_ns;
440                  uint64_t tpidrprw_ns;
441                  uint64_t htpidr;
442                  uint64_t _tpidr_el3;
443              };
444              uint64_t tpidr_el[4];
445          };
446          uint64_t tpidr2_el0;
447          /* The secure banks of these registers don't map anywhere */
448          uint64_t tpidrurw_s;
449          uint64_t tpidrprw_s;
450          uint64_t tpidruro_s;
451  
452          union { /* User RO Thread register. */
453              uint64_t tpidruro_ns;
454              uint64_t tpidrro_el[1];
455          };
456          uint64_t c14_cntfrq; /* Counter Frequency register */
457          uint64_t c14_cntkctl; /* Timer Control register */
458          uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
459          uint64_t cntvoff_el2; /* Counter Virtual Offset register */
460          uint64_t cntpoff_el2; /* Counter Physical Offset register */
461          ARMGenericTimer c14_timer[NUM_GTIMERS];
462          uint32_t c15_cpar; /* XScale Coprocessor Access Register */
463          uint32_t c15_ticonfig; /* TI925T configuration byte.  */
464          uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
465          uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
466          uint32_t c15_threadid; /* TI debugger thread-ID.  */
467          uint32_t c15_config_base_address; /* SCU base address.  */
468          uint32_t c15_diagnostic; /* diagnostic register */
469          uint32_t c15_power_diagnostic;
470          uint32_t c15_power_control; /* power control */
471          uint64_t dbgbvr[16]; /* breakpoint value registers */
472          uint64_t dbgbcr[16]; /* breakpoint control registers */
473          uint64_t dbgwvr[16]; /* watchpoint value registers */
474          uint64_t dbgwcr[16]; /* watchpoint control registers */
475          uint64_t dbgclaim;   /* DBGCLAIM bits */
476          uint64_t mdscr_el1;
477          uint64_t oslsr_el1; /* OS Lock Status */
478          uint64_t osdlr_el1; /* OS DoubleLock status */
479          uint64_t mdcr_el2;
480          uint64_t mdcr_el3;
481          /* Stores the architectural value of the counter *the last time it was
482           * updated* by pmccntr_op_start. Accesses should always be surrounded
483           * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484           * architecturally-correct value is being read/set.
485           */
486          uint64_t c15_ccnt;
487          /* Stores the delta between the architectural value and the underlying
488           * cycle count during normal operation. It is used to update c15_ccnt
489           * to be the correct architectural value before accesses. During
490           * accesses, c15_ccnt_delta contains the underlying count being used
491           * for the access, after which it reverts to the delta value in
492           * pmccntr_op_finish.
493           */
494          uint64_t c15_ccnt_delta;
495          uint64_t c14_pmevcntr[31];
496          uint64_t c14_pmevcntr_delta[31];
497          uint64_t c14_pmevtyper[31];
498          uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
499          uint64_t vpidr_el2; /* Virtualization Processor ID Register */
500          uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
501          uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
502          uint64_t gcr_el1;
503          uint64_t rgsr_el1;
504  
505          /* Minimal RAS registers */
506          uint64_t disr_el1;
507          uint64_t vdisr_el2;
508          uint64_t vsesr_el2;
509  
510          /*
511           * Fine-Grained Trap registers. We store these as arrays so the
512           * access checking code doesn't have to manually select
513           * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
514           * FEAT_FGT2 will add more elements to these arrays.
515           */
516          uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
517          uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
518          uint64_t fgt_exec[1]; /* HFGITR */
519  
520          /* RME registers */
521          uint64_t gpccr_el3;
522          uint64_t gptbr_el3;
523          uint64_t mfar_el3;
524  
525          /* NV2 register */
526          uint64_t vncr_el2;
527      } cp15;
528  
529      struct {
530          /* M profile has up to 4 stack pointers:
531           * a Main Stack Pointer and a Process Stack Pointer for each
532           * of the Secure and Non-Secure states. (If the CPU doesn't support
533           * the security extension then it has only two SPs.)
534           * In QEMU we always store the currently active SP in regs[13],
535           * and the non-active SP for the current security state in
536           * v7m.other_sp. The stack pointers for the inactive security state
537           * are stored in other_ss_msp and other_ss_psp.
538           * switch_v7m_security_state() is responsible for rearranging them
539           * when we change security state.
540           */
541          uint32_t other_sp;
542          uint32_t other_ss_msp;
543          uint32_t other_ss_psp;
544          uint32_t vecbase[M_REG_NUM_BANKS];
545          uint32_t basepri[M_REG_NUM_BANKS];
546          uint32_t control[M_REG_NUM_BANKS];
547          uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
548          uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
549          uint32_t hfsr; /* HardFault Status */
550          uint32_t dfsr; /* Debug Fault Status Register */
551          uint32_t sfsr; /* Secure Fault Status Register */
552          uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
553          uint32_t bfar; /* BusFault Address */
554          uint32_t sfar; /* Secure Fault Address Register */
555          unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
556          int exception;
557          uint32_t primask[M_REG_NUM_BANKS];
558          uint32_t faultmask[M_REG_NUM_BANKS];
559          uint32_t aircr; /* only holds r/w state if security extn implemented */
560          uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
561          uint32_t csselr[M_REG_NUM_BANKS];
562          uint32_t scr[M_REG_NUM_BANKS];
563          uint32_t msplim[M_REG_NUM_BANKS];
564          uint32_t psplim[M_REG_NUM_BANKS];
565          uint32_t fpcar[M_REG_NUM_BANKS];
566          uint32_t fpccr[M_REG_NUM_BANKS];
567          uint32_t fpdscr[M_REG_NUM_BANKS];
568          uint32_t cpacr[M_REG_NUM_BANKS];
569          uint32_t nsacr;
570          uint32_t ltpsize;
571          uint32_t vpr;
572      } v7m;
573  
574      /* Information associated with an exception about to be taken:
575       * code which raises an exception must set cs->exception_index and
576       * the relevant parts of this structure; the cpu_do_interrupt function
577       * will then set the guest-visible registers as part of the exception
578       * entry process.
579       */
580      struct {
581          uint32_t syndrome; /* AArch64 format syndrome register */
582          uint32_t fsr; /* AArch32 format fault status register info */
583          uint64_t vaddress; /* virtual addr associated with exception, if any */
584          uint32_t target_el; /* EL the exception should be targeted for */
585          /* If we implement EL2 we will also need to store information
586           * about the intermediate physical address for stage 2 faults.
587           */
588      } exception;
589  
590      /* Information associated with an SError */
591      struct {
592          uint8_t pending;
593          uint8_t has_esr;
594          uint64_t esr;
595      } serror;
596  
597      uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
598  
599      /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
600      uint32_t irq_line_state;
601  
602      /* Thumb-2 EE state.  */
603      uint32_t teecr;
604      uint32_t teehbr;
605  
606      /* VFP coprocessor state.  */
607      struct {
608          ARMVectorReg zregs[32];
609  
610  #ifdef TARGET_AARCH64
611          /* Store FFR as pregs[16] to make it easier to treat as any other.  */
612  #define FFR_PRED_NUM 16
613          ARMPredicateReg pregs[17];
614          /* Scratch space for aa64 sve predicate temporary.  */
615          ARMPredicateReg preg_tmp;
616  #endif
617  
618          /* We store these fpcsr fields separately for convenience.  */
619          uint32_t qc[4] QEMU_ALIGNED(16);
620          int vec_len;
621          int vec_stride;
622  
623          /*
624           * Floating point status and control registers. Some bits are
625           * stored separately in other fields or in the float_status below.
626           */
627          uint64_t fpsr;
628          uint64_t fpcr;
629  
630          uint32_t xregs[16];
631  
632          /* Scratch space for aa32 neon expansion.  */
633          uint32_t scratch[8];
634  
635          /* There are a number of distinct float control structures:
636           *
637           *  fp_status: is the "normal" fp status.
638           *  fp_status_fp16: used for half-precision calculations
639           *  standard_fp_status : the ARM "Standard FPSCR Value"
640           *  standard_fp_status_fp16 : used for half-precision
641           *       calculations with the ARM "Standard FPSCR Value"
642           *
643           * Half-precision operations are governed by a separate
644           * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
645           * status structure to control this.
646           *
647           * The "Standard FPSCR", ie default-NaN, flush-to-zero,
648           * round-to-nearest and is used by any operations (generally
649           * Neon) which the architecture defines as controlled by the
650           * standard FPSCR value rather than the FPSCR.
651           *
652           * The "standard FPSCR but for fp16 ops" is needed because
653           * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
654           * using a fixed value for it.
655           *
656           * To avoid having to transfer exception bits around, we simply
657           * say that the FPSCR cumulative exception flags are the logical
658           * OR of the flags in the four fp statuses. This relies on the
659           * only thing which needs to read the exception flags being
660           * an explicit FPSCR read.
661           */
662          float_status fp_status;
663          float_status fp_status_f16;
664          float_status standard_fp_status;
665          float_status standard_fp_status_f16;
666  
667          uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
668          uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
669      } vfp;
670  
671      uint64_t exclusive_addr;
672      uint64_t exclusive_val;
673      /*
674       * Contains the 'val' for the second 64-bit register of LDXP, which comes
675       * from the higher address, not the high part of a complete 128-bit value.
676       * In some ways it might be more convenient to record the exclusive value
677       * as the low and high halves of a 128 bit data value, but the current
678       * semantics of these fields are baked into the migration format.
679       */
680      uint64_t exclusive_high;
681  
682      /* iwMMXt coprocessor state.  */
683      struct {
684          uint64_t regs[16];
685          uint64_t val;
686  
687          uint32_t cregs[16];
688      } iwmmxt;
689  
690  #ifdef TARGET_AARCH64
691      struct {
692          ARMPACKey apia;
693          ARMPACKey apib;
694          ARMPACKey apda;
695          ARMPACKey apdb;
696          ARMPACKey apga;
697      } keys;
698  
699      uint64_t scxtnum_el[4];
700  
701      /*
702       * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
703       * as we do with vfp.zregs[].  This corresponds to the architectural ZA
704       * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
705       * When SVL is less than the architectural maximum, the accessible
706       * storage is restricted, such that if the SVL is X bytes the guest can
707       * see only the bottom X elements of zarray[], and only the least
708       * significant X bytes of each element of the array. (In other words,
709       * the observable part is always square.)
710       *
711       * The ZA storage can also be considered as a set of square tiles of
712       * elements of different sizes. The mapping from tiles to the ZA array
713       * is architecturally defined, such that for tiles of elements of esz
714       * bytes, the Nth row (or "horizontal slice") of tile T is in
715       * ZA[T + N * esz]. Note that this means that each tile is not contiguous
716       * in the ZA storage, because its rows are striped through the ZA array.
717       *
718       * Because this is so large, keep this toward the end of the reset area,
719       * to keep the offsets into the rest of the structure smaller.
720       */
721      ARMVectorReg zarray[ARM_MAX_VQ * 16];
722  #endif
723  
724      struct CPUBreakpoint *cpu_breakpoint[16];
725      struct CPUWatchpoint *cpu_watchpoint[16];
726  
727      /* Optional fault info across tlb lookup. */
728      ARMMMUFaultInfo *tlb_fi;
729  
730      /* Fields up to this point are cleared by a CPU reset */
731      struct {} end_reset_fields;
732  
733      /* Fields after this point are preserved across CPU reset. */
734  
735      /* Internal CPU feature flags.  */
736      uint64_t features;
737  
738      /* PMSAv7 MPU */
739      struct {
740          uint32_t *drbar;
741          uint32_t *drsr;
742          uint32_t *dracr;
743          uint32_t rnr[M_REG_NUM_BANKS];
744      } pmsav7;
745  
746      /* PMSAv8 MPU */
747      struct {
748          /* The PMSAv8 implementation also shares some PMSAv7 config
749           * and state:
750           *  pmsav7.rnr (region number register)
751           *  pmsav7_dregion (number of configured regions)
752           */
753          uint32_t *rbar[M_REG_NUM_BANKS];
754          uint32_t *rlar[M_REG_NUM_BANKS];
755          uint32_t *hprbar;
756          uint32_t *hprlar;
757          uint32_t mair0[M_REG_NUM_BANKS];
758          uint32_t mair1[M_REG_NUM_BANKS];
759          uint32_t hprselr;
760      } pmsav8;
761  
762      /* v8M SAU */
763      struct {
764          uint32_t *rbar;
765          uint32_t *rlar;
766          uint32_t rnr;
767          uint32_t ctrl;
768      } sau;
769  
770  #if !defined(CONFIG_USER_ONLY)
771      NVICState *nvic;
772      const struct arm_boot_info *boot_info;
773      /* Store GICv3CPUState to access from this struct */
774      void *gicv3state;
775  #else /* CONFIG_USER_ONLY */
776      /* For usermode syscall translation.  */
777      bool eabi;
778  #endif /* CONFIG_USER_ONLY */
779  
780  #ifdef TARGET_TAGGED_ADDRESSES
781      /* Linux syscall tagged address support */
782      bool tagged_addr_enable;
783  #endif
784  } CPUARMState;
785  
set_feature(CPUARMState * env,int feature)786  static inline void set_feature(CPUARMState *env, int feature)
787  {
788      env->features |= 1ULL << feature;
789  }
790  
unset_feature(CPUARMState * env,int feature)791  static inline void unset_feature(CPUARMState *env, int feature)
792  {
793      env->features &= ~(1ULL << feature);
794  }
795  
796  /**
797   * ARMELChangeHookFn:
798   * type of a function which can be registered via arm_register_el_change_hook()
799   * to get callbacks when the CPU changes its exception level or mode.
800   */
801  typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
802  typedef struct ARMELChangeHook ARMELChangeHook;
803  struct ARMELChangeHook {
804      ARMELChangeHookFn *hook;
805      void *opaque;
806      QLIST_ENTRY(ARMELChangeHook) node;
807  };
808  
809  /* These values map onto the return values for
810   * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
811  typedef enum ARMPSCIState {
812      PSCI_ON = 0,
813      PSCI_OFF = 1,
814      PSCI_ON_PENDING = 2
815  } ARMPSCIState;
816  
817  typedef struct ARMISARegisters ARMISARegisters;
818  
819  /*
820   * In map, each set bit is a supported vector length of (bit-number + 1) * 16
821   * bytes, i.e. each bit number + 1 is the vector length in quadwords.
822   *
823   * While processing properties during initialization, corresponding init bits
824   * are set for bits in sve_vq_map that have been set by properties.
825   *
826   * Bits set in supported represent valid vector lengths for the CPU type.
827   */
828  typedef struct {
829      uint32_t map, init, supported;
830  } ARMVQMap;
831  
832  /**
833   * ARMCPU:
834   * @env: #CPUARMState
835   *
836   * An ARM CPU core.
837   */
838  struct ArchCPU {
839      CPUState parent_obj;
840  
841      CPUARMState env;
842  
843      /* Coprocessor information */
844      GHashTable *cp_regs;
845      /* For marshalling (mostly coprocessor) register state between the
846       * kernel and QEMU (for KVM) and between two QEMUs (for migration),
847       * we use these arrays.
848       */
849      /* List of register indexes managed via these arrays; (full KVM style
850       * 64 bit indexes, not CPRegInfo 32 bit indexes)
851       */
852      uint64_t *cpreg_indexes;
853      /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
854      uint64_t *cpreg_values;
855      /* Length of the indexes, values, reset_values arrays */
856      int32_t cpreg_array_len;
857      /* These are used only for migration: incoming data arrives in
858       * these fields and is sanity checked in post_load before copying
859       * to the working data structures above.
860       */
861      uint64_t *cpreg_vmstate_indexes;
862      uint64_t *cpreg_vmstate_values;
863      int32_t cpreg_vmstate_array_len;
864  
865      DynamicGDBFeatureInfo dyn_sysreg_feature;
866      DynamicGDBFeatureInfo dyn_svereg_feature;
867      DynamicGDBFeatureInfo dyn_m_systemreg_feature;
868      DynamicGDBFeatureInfo dyn_m_secextreg_feature;
869  
870      /* Timers used by the generic (architected) timer */
871      QEMUTimer *gt_timer[NUM_GTIMERS];
872      /*
873       * Timer used by the PMU. Its state is restored after migration by
874       * pmu_op_finish() - it does not need other handling during migration
875       */
876      QEMUTimer *pmu_timer;
877      /* Timer used for WFxT timeouts */
878      QEMUTimer *wfxt_timer;
879  
880      /* GPIO outputs for generic timer */
881      qemu_irq gt_timer_outputs[NUM_GTIMERS];
882      /* GPIO output for GICv3 maintenance interrupt signal */
883      qemu_irq gicv3_maintenance_interrupt;
884      /* GPIO output for the PMU interrupt */
885      qemu_irq pmu_interrupt;
886  
887      /* MemoryRegion to use for secure physical accesses */
888      MemoryRegion *secure_memory;
889  
890      /* MemoryRegion to use for allocation tag accesses */
891      MemoryRegion *tag_memory;
892      MemoryRegion *secure_tag_memory;
893  
894      /* For v8M, pointer to the IDAU interface provided by board/SoC */
895      Object *idau;
896  
897      /* 'compatible' string for this CPU for Linux device trees */
898      const char *dtb_compatible;
899  
900      /* PSCI version for this CPU
901       * Bits[31:16] = Major Version
902       * Bits[15:0] = Minor Version
903       */
904      uint32_t psci_version;
905  
906      /* Current power state, access guarded by BQL */
907      ARMPSCIState power_state;
908  
909      /* CPU has virtualization extension */
910      bool has_el2;
911      /* CPU has security extension */
912      bool has_el3;
913      /* CPU has PMU (Performance Monitor Unit) */
914      bool has_pmu;
915      /* CPU has VFP */
916      bool has_vfp;
917      /* CPU has 32 VFP registers */
918      bool has_vfp_d32;
919      /* CPU has Neon */
920      bool has_neon;
921      /* CPU has M-profile DSP extension */
922      bool has_dsp;
923  
924      /* CPU has memory protection unit */
925      bool has_mpu;
926      /* CPU has MTE enabled in KVM mode */
927      bool kvm_mte;
928      /* PMSAv7 MPU number of supported regions */
929      uint32_t pmsav7_dregion;
930      /* PMSAv8 MPU number of supported hyp regions */
931      uint32_t pmsav8r_hdregion;
932      /* v8M SAU number of supported regions */
933      uint32_t sau_sregion;
934  
935      /* PSCI conduit used to invoke PSCI methods
936       * 0 - disabled, 1 - smc, 2 - hvc
937       */
938      uint32_t psci_conduit;
939  
940      /* For v8M, initial value of the Secure VTOR */
941      uint32_t init_svtor;
942      /* For v8M, initial value of the Non-secure VTOR */
943      uint32_t init_nsvtor;
944  
945      /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
946       * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
947       */
948      uint32_t kvm_target;
949  
950  #ifdef CONFIG_KVM
951      /* KVM init features for this CPU */
952      uint32_t kvm_init_features[7];
953  
954      /* KVM CPU state */
955  
956      /* KVM virtual time adjustment */
957      bool kvm_adjvtime;
958      bool kvm_vtime_dirty;
959      uint64_t kvm_vtime;
960  
961      /* KVM steal time */
962      OnOffAuto kvm_steal_time;
963  #endif /* CONFIG_KVM */
964  
965      /* Uniprocessor system with MP extensions */
966      bool mp_is_up;
967  
968      /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
969       * and the probe failed (so we need to report the error in realize)
970       */
971      bool host_cpu_probe_failed;
972  
973      /* QOM property to indicate we should use the back-compat CNTFRQ default */
974      bool backcompat_cntfrq;
975  
976      /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
977       * register.
978       */
979      int32_t core_count;
980  
981      /* The instance init functions for implementation-specific subclasses
982       * set these fields to specify the implementation-dependent values of
983       * various constant registers and reset values of non-constant
984       * registers.
985       * Some of these might become QOM properties eventually.
986       * Field names match the official register names as defined in the
987       * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
988       * is used for reset values of non-constant registers; no reset_
989       * prefix means a constant register.
990       * Some of these registers are split out into a substructure that
991       * is shared with the translators to control the ISA.
992       *
993       * Note that if you add an ID register to the ARMISARegisters struct
994       * you need to also update the 32-bit and 64-bit versions of the
995       * kvm_arm_get_host_cpu_features() function to correctly populate the
996       * field by reading the value from the KVM vCPU.
997       */
998      struct ARMISARegisters {
999          uint32_t id_isar0;
1000          uint32_t id_isar1;
1001          uint32_t id_isar2;
1002          uint32_t id_isar3;
1003          uint32_t id_isar4;
1004          uint32_t id_isar5;
1005          uint32_t id_isar6;
1006          uint32_t id_mmfr0;
1007          uint32_t id_mmfr1;
1008          uint32_t id_mmfr2;
1009          uint32_t id_mmfr3;
1010          uint32_t id_mmfr4;
1011          uint32_t id_mmfr5;
1012          uint32_t id_pfr0;
1013          uint32_t id_pfr1;
1014          uint32_t id_pfr2;
1015          uint32_t mvfr0;
1016          uint32_t mvfr1;
1017          uint32_t mvfr2;
1018          uint32_t id_dfr0;
1019          uint32_t id_dfr1;
1020          uint32_t dbgdidr;
1021          uint32_t dbgdevid;
1022          uint32_t dbgdevid1;
1023          uint64_t id_aa64isar0;
1024          uint64_t id_aa64isar1;
1025          uint64_t id_aa64isar2;
1026          uint64_t id_aa64pfr0;
1027          uint64_t id_aa64pfr1;
1028          uint64_t id_aa64mmfr0;
1029          uint64_t id_aa64mmfr1;
1030          uint64_t id_aa64mmfr2;
1031          uint64_t id_aa64mmfr3;
1032          uint64_t id_aa64dfr0;
1033          uint64_t id_aa64dfr1;
1034          uint64_t id_aa64zfr0;
1035          uint64_t id_aa64smfr0;
1036          uint64_t reset_pmcr_el0;
1037      } isar;
1038      uint64_t midr;
1039      uint32_t revidr;
1040      uint32_t reset_fpsid;
1041      uint64_t ctr;
1042      uint32_t reset_sctlr;
1043      uint64_t pmceid0;
1044      uint64_t pmceid1;
1045      uint32_t id_afr0;
1046      uint64_t id_aa64afr0;
1047      uint64_t id_aa64afr1;
1048      uint64_t clidr;
1049      uint64_t mp_affinity; /* MP ID without feature bits */
1050      /* The elements of this array are the CCSIDR values for each cache,
1051       * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1052       */
1053      uint64_t ccsidr[16];
1054      uint64_t reset_cbar;
1055      uint32_t reset_auxcr;
1056      bool reset_hivecs;
1057      uint8_t reset_l0gptsz;
1058  
1059      /*
1060       * Intermediate values used during property parsing.
1061       * Once finalized, the values should be read from ID_AA64*.
1062       */
1063      bool prop_pauth;
1064      bool prop_pauth_impdef;
1065      bool prop_pauth_qarma3;
1066      bool prop_lpa2;
1067  
1068      /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1069      uint8_t dcz_blocksize;
1070      /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1071      uint8_t gm_blocksize;
1072  
1073      uint64_t rvbar_prop; /* Property/input signals.  */
1074  
1075      /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1076      int gic_num_lrs; /* number of list registers */
1077      int gic_vpribits; /* number of virtual priority bits */
1078      int gic_vprebits; /* number of virtual preemption bits */
1079      int gic_pribits; /* number of physical priority bits */
1080  
1081      /* Whether the cfgend input is high (i.e. this CPU should reset into
1082       * big-endian mode).  This setting isn't used directly: instead it modifies
1083       * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1084       * architecture version.
1085       */
1086      bool cfgend;
1087  
1088      QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1089      QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1090  
1091      int32_t node_id; /* NUMA node this CPU belongs to */
1092  
1093      /* Used to synchronize KVM and QEMU in-kernel device levels */
1094      uint8_t device_irq_level;
1095  
1096      /* Used to set the maximum vector length the cpu will support.  */
1097      uint32_t sve_max_vq;
1098  
1099  #ifdef CONFIG_USER_ONLY
1100      /* Used to set the default vector length at process start. */
1101      uint32_t sve_default_vq;
1102      uint32_t sme_default_vq;
1103  #endif
1104  
1105      ARMVQMap sve_vq;
1106      ARMVQMap sme_vq;
1107  
1108      /* Generic timer counter frequency, in Hz */
1109      uint64_t gt_cntfrq_hz;
1110  };
1111  
1112  typedef struct ARMCPUInfo {
1113      const char *name;
1114      void (*initfn)(Object *obj);
1115      void (*class_init)(ObjectClass *oc, void *data);
1116  } ARMCPUInfo;
1117  
1118  /**
1119   * ARMCPUClass:
1120   * @parent_realize: The parent class' realize handler.
1121   * @parent_phases: The parent class' reset phase handlers.
1122   *
1123   * An ARM CPU model.
1124   */
1125  struct ARMCPUClass {
1126      CPUClass parent_class;
1127  
1128      const ARMCPUInfo *info;
1129      DeviceRealize parent_realize;
1130      ResettablePhases parent_phases;
1131  };
1132  
1133  struct AArch64CPUClass {
1134      ARMCPUClass parent_class;
1135  };
1136  
1137  /* Callback functions for the generic timer's timers. */
1138  void arm_gt_ptimer_cb(void *opaque);
1139  void arm_gt_vtimer_cb(void *opaque);
1140  void arm_gt_htimer_cb(void *opaque);
1141  void arm_gt_stimer_cb(void *opaque);
1142  void arm_gt_hvtimer_cb(void *opaque);
1143  void arm_gt_sel2timer_cb(void *opaque);
1144  void arm_gt_sel2vtimer_cb(void *opaque);
1145  
1146  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1147  void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1148  
1149  void arm_cpu_post_init(Object *obj);
1150  
1151  #define ARM_AFF0_SHIFT 0
1152  #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1153  #define ARM_AFF1_SHIFT 8
1154  #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1155  #define ARM_AFF2_SHIFT 16
1156  #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1157  #define ARM_AFF3_SHIFT 32
1158  #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1159  #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1160  
1161  #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1162  #define ARM64_AFFINITY_MASK \
1163      (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1164  #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1165  
1166  uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1167  
1168  #ifndef CONFIG_USER_ONLY
1169  extern const VMStateDescription vmstate_arm_cpu;
1170  
1171  void arm_cpu_do_interrupt(CPUState *cpu);
1172  void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1173  
1174  hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1175                                           MemTxAttrs *attrs);
1176  #endif /* !CONFIG_USER_ONLY */
1177  
1178  int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1179  int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1180  
1181  int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1182                               int cpuid, DumpState *s);
1183  int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1184                               int cpuid, DumpState *s);
1185  
1186  /**
1187   * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1188   * @cpu: CPU (which must have been freshly reset)
1189   * @target_el: exception level to put the CPU into
1190   * @secure: whether to put the CPU in secure state
1191   *
1192   * When QEMU is directly running a guest kernel at a lower level than
1193   * EL3 it implicitly emulates some aspects of the guest firmware.
1194   * This includes that on reset we need to configure the parts of the
1195   * CPU corresponding to EL3 so that the real guest code can run at its
1196   * lower exception level. This function does that post-reset CPU setup,
1197   * for when we do direct boot of a guest kernel, and for when we
1198   * emulate PSCI and similar firmware interfaces starting a CPU at a
1199   * lower exception level.
1200   *
1201   * @target_el must be an EL implemented by the CPU between 1 and 3.
1202   * We do not support dropping into a Secure EL other than 3.
1203   *
1204   * It is the responsibility of the caller to call arm_rebuild_hflags().
1205   */
1206  void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1207  
1208  #ifdef TARGET_AARCH64
1209  int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1210  int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1211  void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1212  void aarch64_sve_change_el(CPUARMState *env, int old_el,
1213                             int new_el, bool el0_a64);
1214  void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1215  
1216  /*
1217   * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1218   * The byte at offset i from the start of the in-memory representation contains
1219   * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1220   * lowest offsets are stored in the lowest memory addresses, then that nearly
1221   * matches QEMU's representation, which is to use an array of host-endian
1222   * uint64_t's, where the lower offsets are at the lower indices. To complete
1223   * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1224   */
sve_bswap64(uint64_t * dst,uint64_t * src,int nr)1225  static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1226  {
1227  #if HOST_BIG_ENDIAN
1228      int i;
1229  
1230      for (i = 0; i < nr; ++i) {
1231          dst[i] = bswap64(src[i]);
1232      }
1233  
1234      return dst;
1235  #else
1236      return src;
1237  #endif
1238  }
1239  
1240  #else
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)1241  static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
aarch64_sve_change_el(CPUARMState * env,int o,int n,bool a)1242  static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1243                                           int n, bool a)
1244  { }
1245  #endif
1246  
1247  void aarch64_sync_32_to_64(CPUARMState *env);
1248  void aarch64_sync_64_to_32(CPUARMState *env);
1249  
1250  int fp_exception_el(CPUARMState *env, int cur_el);
1251  int sve_exception_el(CPUARMState *env, int cur_el);
1252  int sme_exception_el(CPUARMState *env, int cur_el);
1253  
1254  /**
1255   * sve_vqm1_for_el_sm:
1256   * @env: CPUARMState
1257   * @el: exception level
1258   * @sm: streaming mode
1259   *
1260   * Compute the current vector length for @el & @sm, in units of
1261   * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1262   * If @sm, compute for SVL, otherwise NVL.
1263   */
1264  uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1265  
1266  /* Likewise, but using @sm = PSTATE.SM. */
1267  uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1268  
is_a64(CPUARMState * env)1269  static inline bool is_a64(CPUARMState *env)
1270  {
1271      return env->aarch64;
1272  }
1273  
1274  /**
1275   * pmu_op_start/finish
1276   * @env: CPUARMState
1277   *
1278   * Convert all PMU counters between their delta form (the typical mode when
1279   * they are enabled) and the guest-visible values. These two calls must
1280   * surround any action which might affect the counters.
1281   */
1282  void pmu_op_start(CPUARMState *env);
1283  void pmu_op_finish(CPUARMState *env);
1284  
1285  /*
1286   * Called when a PMU counter is due to overflow
1287   */
1288  void arm_pmu_timer_cb(void *opaque);
1289  
1290  /**
1291   * Functions to register as EL change hooks for PMU mode filtering
1292   */
1293  void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1294  void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1295  
1296  /*
1297   * pmu_init
1298   * @cpu: ARMCPU
1299   *
1300   * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1301   * for the current configuration
1302   */
1303  void pmu_init(ARMCPU *cpu);
1304  
1305  /* SCTLR bit meanings. Several bits have been reused in newer
1306   * versions of the architecture; in that case we define constants
1307   * for both old and new bit meanings. Code which tests against those
1308   * bits should probably check or otherwise arrange that the CPU
1309   * is the architectural version it expects.
1310   */
1311  #define SCTLR_M       (1U << 0)
1312  #define SCTLR_A       (1U << 1)
1313  #define SCTLR_C       (1U << 2)
1314  #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1315  #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1316  #define SCTLR_SA      (1U << 3) /* AArch64 only */
1317  #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1318  #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1319  #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1320  #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1321  #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1322  #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1323  #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1324  #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1325  #define SCTLR_ITD     (1U << 7) /* v8 onward */
1326  #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1327  #define SCTLR_SED     (1U << 8) /* v8 onward */
1328  #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1329  #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1330  #define SCTLR_F       (1U << 10) /* up to v6 */
1331  #define SCTLR_SW      (1U << 10) /* v7 */
1332  #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1333  #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1334  #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1335  #define SCTLR_I       (1U << 12)
1336  #define SCTLR_V       (1U << 13) /* AArch32 only */
1337  #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1338  #define SCTLR_RR      (1U << 14) /* up to v7 */
1339  #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1340  #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1341  #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1342  #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1343  #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1344  #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1345  #define SCTLR_BR      (1U << 17) /* PMSA only */
1346  #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1347  #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1348  #define SCTLR_WXN     (1U << 19)
1349  #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1350  #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1351  #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1352  #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1353  #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1354  #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1355  #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1356  #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1357  #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1358  #define SCTLR_VE      (1U << 24) /* up to v7 */
1359  #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1360  #define SCTLR_EE      (1U << 25)
1361  #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1362  #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1363  #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1364  #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1365  #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1366  #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1367  #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1368  #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1369  #define SCTLR_TE      (1U << 30) /* AArch32 only */
1370  #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1371  #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1372  #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1373  #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1374  #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1375  #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1376  #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1377  #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1378  #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1379  #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1380  #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1381  #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1382  #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1383  #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1384  #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1385  #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1386  #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1387  #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1388  #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1389  #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1390  #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1391  #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1392  #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1393  #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1394  #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1395  #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1396  #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1397  
1398  #define CPSR_M (0x1fU)
1399  #define CPSR_T (1U << 5)
1400  #define CPSR_F (1U << 6)
1401  #define CPSR_I (1U << 7)
1402  #define CPSR_A (1U << 8)
1403  #define CPSR_E (1U << 9)
1404  #define CPSR_IT_2_7 (0xfc00U)
1405  #define CPSR_GE (0xfU << 16)
1406  #define CPSR_IL (1U << 20)
1407  #define CPSR_DIT (1U << 21)
1408  #define CPSR_PAN (1U << 22)
1409  #define CPSR_SSBS (1U << 23)
1410  #define CPSR_J (1U << 24)
1411  #define CPSR_IT_0_1 (3U << 25)
1412  #define CPSR_Q (1U << 27)
1413  #define CPSR_V (1U << 28)
1414  #define CPSR_C (1U << 29)
1415  #define CPSR_Z (1U << 30)
1416  #define CPSR_N (1U << 31)
1417  #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1418  #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1419  #define ISR_FS (1U << 9)
1420  #define ISR_IS (1U << 10)
1421  
1422  #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1423  #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1424      | CPSR_NZCV)
1425  /* Bits writable in user mode.  */
1426  #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1427  /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1428  #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1429  
1430  /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1431  #define XPSR_EXCP 0x1ffU
1432  #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1433  #define XPSR_IT_2_7 CPSR_IT_2_7
1434  #define XPSR_GE CPSR_GE
1435  #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1436  #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1437  #define XPSR_IT_0_1 CPSR_IT_0_1
1438  #define XPSR_Q CPSR_Q
1439  #define XPSR_V CPSR_V
1440  #define XPSR_C CPSR_C
1441  #define XPSR_Z CPSR_Z
1442  #define XPSR_N CPSR_N
1443  #define XPSR_NZCV CPSR_NZCV
1444  #define XPSR_IT CPSR_IT
1445  
1446  /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1447   * Only these are valid when in AArch64 mode; in
1448   * AArch32 mode SPSRs are basically CPSR-format.
1449   */
1450  #define PSTATE_SP (1U)
1451  #define PSTATE_M (0xFU)
1452  #define PSTATE_nRW (1U << 4)
1453  #define PSTATE_F (1U << 6)
1454  #define PSTATE_I (1U << 7)
1455  #define PSTATE_A (1U << 8)
1456  #define PSTATE_D (1U << 9)
1457  #define PSTATE_BTYPE (3U << 10)
1458  #define PSTATE_SSBS (1U << 12)
1459  #define PSTATE_ALLINT (1U << 13)
1460  #define PSTATE_IL (1U << 20)
1461  #define PSTATE_SS (1U << 21)
1462  #define PSTATE_PAN (1U << 22)
1463  #define PSTATE_UAO (1U << 23)
1464  #define PSTATE_DIT (1U << 24)
1465  #define PSTATE_TCO (1U << 25)
1466  #define PSTATE_V (1U << 28)
1467  #define PSTATE_C (1U << 29)
1468  #define PSTATE_Z (1U << 30)
1469  #define PSTATE_N (1U << 31)
1470  #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1471  #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1472  #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1473  /* Mode values for AArch64 */
1474  #define PSTATE_MODE_EL3h 13
1475  #define PSTATE_MODE_EL3t 12
1476  #define PSTATE_MODE_EL2h 9
1477  #define PSTATE_MODE_EL2t 8
1478  #define PSTATE_MODE_EL1h 5
1479  #define PSTATE_MODE_EL1t 4
1480  #define PSTATE_MODE_EL0t 0
1481  
1482  /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1483  FIELD(SVCR, SM, 0, 1)
1484  FIELD(SVCR, ZA, 1, 1)
1485  
1486  /* Fields for SMCR_ELx. */
1487  FIELD(SMCR, LEN, 0, 4)
1488  FIELD(SMCR, FA64, 31, 1)
1489  
1490  /* Write a new value to v7m.exception, thus transitioning into or out
1491   * of Handler mode; this may result in a change of active stack pointer.
1492   */
1493  void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1494  
1495  /* Map EL and handler into a PSTATE_MODE.  */
aarch64_pstate_mode(unsigned int el,bool handler)1496  static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1497  {
1498      return (el << 2) | handler;
1499  }
1500  
1501  /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1502   * interprocessing, so we don't attempt to sync with the cpsr state used by
1503   * the 32 bit decoder.
1504   */
pstate_read(CPUARMState * env)1505  static inline uint32_t pstate_read(CPUARMState *env)
1506  {
1507      int ZF;
1508  
1509      ZF = (env->ZF == 0);
1510      return (env->NF & 0x80000000) | (ZF << 30)
1511          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1512          | env->pstate | env->daif | (env->btype << 10);
1513  }
1514  
pstate_write(CPUARMState * env,uint32_t val)1515  static inline void pstate_write(CPUARMState *env, uint32_t val)
1516  {
1517      env->ZF = (~val) & PSTATE_Z;
1518      env->NF = val;
1519      env->CF = (val >> 29) & 1;
1520      env->VF = (val << 3) & 0x80000000;
1521      env->daif = val & PSTATE_DAIF;
1522      env->btype = (val >> 10) & 3;
1523      env->pstate = val & ~CACHED_PSTATE_BITS;
1524  }
1525  
1526  /* Return the current CPSR value.  */
1527  uint32_t cpsr_read(CPUARMState *env);
1528  
1529  typedef enum CPSRWriteType {
1530      CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1531      CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1532      CPSRWriteRaw = 2,
1533          /* trust values, no reg bank switch, no hflags rebuild */
1534      CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1535  } CPSRWriteType;
1536  
1537  /*
1538   * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1539   * This will do an arm_rebuild_hflags() if any of the bits in @mask
1540   * correspond to TB flags bits cached in the hflags, unless @write_type
1541   * is CPSRWriteRaw.
1542   */
1543  void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1544                  CPSRWriteType write_type);
1545  
1546  /* Return the current xPSR value.  */
xpsr_read(CPUARMState * env)1547  static inline uint32_t xpsr_read(CPUARMState *env)
1548  {
1549      int ZF;
1550      ZF = (env->ZF == 0);
1551      return (env->NF & 0x80000000) | (ZF << 30)
1552          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1553          | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1554          | ((env->condexec_bits & 0xfc) << 8)
1555          | (env->GE << 16)
1556          | env->v7m.exception;
1557  }
1558  
1559  /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)1560  static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1561  {
1562      if (mask & XPSR_NZCV) {
1563          env->ZF = (~val) & XPSR_Z;
1564          env->NF = val;
1565          env->CF = (val >> 29) & 1;
1566          env->VF = (val << 3) & 0x80000000;
1567      }
1568      if (mask & XPSR_Q) {
1569          env->QF = ((val & XPSR_Q) != 0);
1570      }
1571      if (mask & XPSR_GE) {
1572          env->GE = (val & XPSR_GE) >> 16;
1573      }
1574  #ifndef CONFIG_USER_ONLY
1575      if (mask & XPSR_T) {
1576          env->thumb = ((val & XPSR_T) != 0);
1577      }
1578      if (mask & XPSR_IT_0_1) {
1579          env->condexec_bits &= ~3;
1580          env->condexec_bits |= (val >> 25) & 3;
1581      }
1582      if (mask & XPSR_IT_2_7) {
1583          env->condexec_bits &= 3;
1584          env->condexec_bits |= (val >> 8) & 0xfc;
1585      }
1586      if (mask & XPSR_EXCP) {
1587          /* Note that this only happens on exception exit */
1588          write_v7m_exception(env, val & XPSR_EXCP);
1589      }
1590  #endif
1591  }
1592  
1593  #define HCR_VM        (1ULL << 0)
1594  #define HCR_SWIO      (1ULL << 1)
1595  #define HCR_PTW       (1ULL << 2)
1596  #define HCR_FMO       (1ULL << 3)
1597  #define HCR_IMO       (1ULL << 4)
1598  #define HCR_AMO       (1ULL << 5)
1599  #define HCR_VF        (1ULL << 6)
1600  #define HCR_VI        (1ULL << 7)
1601  #define HCR_VSE       (1ULL << 8)
1602  #define HCR_FB        (1ULL << 9)
1603  #define HCR_BSU_MASK  (3ULL << 10)
1604  #define HCR_DC        (1ULL << 12)
1605  #define HCR_TWI       (1ULL << 13)
1606  #define HCR_TWE       (1ULL << 14)
1607  #define HCR_TID0      (1ULL << 15)
1608  #define HCR_TID1      (1ULL << 16)
1609  #define HCR_TID2      (1ULL << 17)
1610  #define HCR_TID3      (1ULL << 18)
1611  #define HCR_TSC       (1ULL << 19)
1612  #define HCR_TIDCP     (1ULL << 20)
1613  #define HCR_TACR      (1ULL << 21)
1614  #define HCR_TSW       (1ULL << 22)
1615  #define HCR_TPCP      (1ULL << 23)
1616  #define HCR_TPU       (1ULL << 24)
1617  #define HCR_TTLB      (1ULL << 25)
1618  #define HCR_TVM       (1ULL << 26)
1619  #define HCR_TGE       (1ULL << 27)
1620  #define HCR_TDZ       (1ULL << 28)
1621  #define HCR_HCD       (1ULL << 29)
1622  #define HCR_TRVM      (1ULL << 30)
1623  #define HCR_RW        (1ULL << 31)
1624  #define HCR_CD        (1ULL << 32)
1625  #define HCR_ID        (1ULL << 33)
1626  #define HCR_E2H       (1ULL << 34)
1627  #define HCR_TLOR      (1ULL << 35)
1628  #define HCR_TERR      (1ULL << 36)
1629  #define HCR_TEA       (1ULL << 37)
1630  #define HCR_MIOCNCE   (1ULL << 38)
1631  #define HCR_TME       (1ULL << 39)
1632  #define HCR_APK       (1ULL << 40)
1633  #define HCR_API       (1ULL << 41)
1634  #define HCR_NV        (1ULL << 42)
1635  #define HCR_NV1       (1ULL << 43)
1636  #define HCR_AT        (1ULL << 44)
1637  #define HCR_NV2       (1ULL << 45)
1638  #define HCR_FWB       (1ULL << 46)
1639  #define HCR_FIEN      (1ULL << 47)
1640  #define HCR_GPF       (1ULL << 48)
1641  #define HCR_TID4      (1ULL << 49)
1642  #define HCR_TICAB     (1ULL << 50)
1643  #define HCR_AMVOFFEN  (1ULL << 51)
1644  #define HCR_TOCU      (1ULL << 52)
1645  #define HCR_ENSCXT    (1ULL << 53)
1646  #define HCR_TTLBIS    (1ULL << 54)
1647  #define HCR_TTLBOS    (1ULL << 55)
1648  #define HCR_ATA       (1ULL << 56)
1649  #define HCR_DCT       (1ULL << 57)
1650  #define HCR_TID5      (1ULL << 58)
1651  #define HCR_TWEDEN    (1ULL << 59)
1652  #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1653  
1654  #define SCR_NS                (1ULL << 0)
1655  #define SCR_IRQ               (1ULL << 1)
1656  #define SCR_FIQ               (1ULL << 2)
1657  #define SCR_EA                (1ULL << 3)
1658  #define SCR_FW                (1ULL << 4)
1659  #define SCR_AW                (1ULL << 5)
1660  #define SCR_NET               (1ULL << 6)
1661  #define SCR_SMD               (1ULL << 7)
1662  #define SCR_HCE               (1ULL << 8)
1663  #define SCR_SIF               (1ULL << 9)
1664  #define SCR_RW                (1ULL << 10)
1665  #define SCR_ST                (1ULL << 11)
1666  #define SCR_TWI               (1ULL << 12)
1667  #define SCR_TWE               (1ULL << 13)
1668  #define SCR_TLOR              (1ULL << 14)
1669  #define SCR_TERR              (1ULL << 15)
1670  #define SCR_APK               (1ULL << 16)
1671  #define SCR_API               (1ULL << 17)
1672  #define SCR_EEL2              (1ULL << 18)
1673  #define SCR_EASE              (1ULL << 19)
1674  #define SCR_NMEA              (1ULL << 20)
1675  #define SCR_FIEN              (1ULL << 21)
1676  #define SCR_ENSCXT            (1ULL << 25)
1677  #define SCR_ATA               (1ULL << 26)
1678  #define SCR_FGTEN             (1ULL << 27)
1679  #define SCR_ECVEN             (1ULL << 28)
1680  #define SCR_TWEDEN            (1ULL << 29)
1681  #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1682  #define SCR_TME               (1ULL << 34)
1683  #define SCR_AMVOFFEN          (1ULL << 35)
1684  #define SCR_ENAS0             (1ULL << 36)
1685  #define SCR_ADEN              (1ULL << 37)
1686  #define SCR_HXEN              (1ULL << 38)
1687  #define SCR_TRNDR             (1ULL << 40)
1688  #define SCR_ENTP2             (1ULL << 41)
1689  #define SCR_GPF               (1ULL << 48)
1690  #define SCR_NSE               (1ULL << 62)
1691  
1692  /* Return the current FPSCR value.  */
1693  uint32_t vfp_get_fpscr(CPUARMState *env);
1694  void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1695  
1696  /*
1697   * FPCR, Floating Point Control Register
1698   * FPSR, Floating Point Status Register
1699   *
1700   * For A64 floating point control and status bits are stored in
1701   * two logically distinct registers, FPCR and FPSR. We store these
1702   * in QEMU in vfp.fpcr and vfp.fpsr.
1703   * For A32 there was only one register, FPSCR. The bits are arranged
1704   * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1705   * so we can use appropriate masking to handle FPSCR reads and writes.
1706   * Note that the FPCR has some bits which are not visible in the
1707   * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1708   */
1709  
1710  /* FPCR bits */
1711  #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1712  #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1713  #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1714  #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1715  #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1716  #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1717  #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1718  #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1719  #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1720  #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1721  #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1722  #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1723  #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1724  #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1725  
1726  #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1727  #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1728  #define FPCR_LTPSIZE_LENGTH 3
1729  
1730  /* Cumulative exception trap enable bits */
1731  #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1732  
1733  /* FPSR bits */
1734  #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1735  #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1736  #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1737  #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1738  #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1739  #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1740  #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1741  #define FPSR_V      (1 << 28)   /* FP overflow flag */
1742  #define FPSR_C      (1 << 29)   /* FP carry flag */
1743  #define FPSR_Z      (1 << 30)   /* FP zero flag */
1744  #define FPSR_N      (1 << 31)   /* FP negative flag */
1745  
1746  /* Cumulative exception status bits */
1747  #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1748  
1749  #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1750  #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1751  
1752  /* A32 FPSCR bits which architecturally map to FPSR bits */
1753  #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1754  /* A32 FPSCR bits which architecturally map to FPCR bits */
1755  #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1756                           FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1757                           FPCR_FZ | FPCR_DN | FPCR_AHP)
1758  /* These masks don't overlap: each bit lives in only one place */
1759  QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1760  
1761  /**
1762   * vfp_get_fpsr: read the AArch64 FPSR
1763   * @env: CPU context
1764   *
1765   * Return the current AArch64 FPSR value
1766   */
1767  uint32_t vfp_get_fpsr(CPUARMState *env);
1768  
1769  /**
1770   * vfp_get_fpcr: read the AArch64 FPCR
1771   * @env: CPU context
1772   *
1773   * Return the current AArch64 FPCR value
1774   */
1775  uint32_t vfp_get_fpcr(CPUARMState *env);
1776  
1777  /**
1778   * vfp_set_fpsr: write the AArch64 FPSR
1779   * @env: CPU context
1780   * @value: new value
1781   */
1782  void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1783  
1784  /**
1785   * vfp_set_fpcr: write the AArch64 FPCR
1786   * @env: CPU context
1787   * @value: new value
1788   */
1789  void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1790  
1791  enum arm_cpu_mode {
1792    ARM_CPU_MODE_USR = 0x10,
1793    ARM_CPU_MODE_FIQ = 0x11,
1794    ARM_CPU_MODE_IRQ = 0x12,
1795    ARM_CPU_MODE_SVC = 0x13,
1796    ARM_CPU_MODE_MON = 0x16,
1797    ARM_CPU_MODE_ABT = 0x17,
1798    ARM_CPU_MODE_HYP = 0x1a,
1799    ARM_CPU_MODE_UND = 0x1b,
1800    ARM_CPU_MODE_SYS = 0x1f
1801  };
1802  
1803  /* VFP system registers.  */
1804  #define ARM_VFP_FPSID   0
1805  #define ARM_VFP_FPSCR   1
1806  #define ARM_VFP_MVFR2   5
1807  #define ARM_VFP_MVFR1   6
1808  #define ARM_VFP_MVFR0   7
1809  #define ARM_VFP_FPEXC   8
1810  #define ARM_VFP_FPINST  9
1811  #define ARM_VFP_FPINST2 10
1812  /* These ones are M-profile only */
1813  #define ARM_VFP_FPSCR_NZCVQC 2
1814  #define ARM_VFP_VPR 12
1815  #define ARM_VFP_P0 13
1816  #define ARM_VFP_FPCXT_NS 14
1817  #define ARM_VFP_FPCXT_S 15
1818  
1819  /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1820  #define QEMU_VFP_FPSCR_NZCV 0xffff
1821  
1822  /* iwMMXt coprocessor control registers.  */
1823  #define ARM_IWMMXT_wCID  0
1824  #define ARM_IWMMXT_wCon  1
1825  #define ARM_IWMMXT_wCSSF 2
1826  #define ARM_IWMMXT_wCASF 3
1827  #define ARM_IWMMXT_wCGR0 8
1828  #define ARM_IWMMXT_wCGR1 9
1829  #define ARM_IWMMXT_wCGR2 10
1830  #define ARM_IWMMXT_wCGR3 11
1831  
1832  /* V7M CCR bits */
1833  FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1834  FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1835  FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1836  FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1837  FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1838  FIELD(V7M_CCR, STKALIGN, 9, 1)
1839  FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1840  FIELD(V7M_CCR, DC, 16, 1)
1841  FIELD(V7M_CCR, IC, 17, 1)
1842  FIELD(V7M_CCR, BP, 18, 1)
1843  FIELD(V7M_CCR, LOB, 19, 1)
1844  FIELD(V7M_CCR, TRD, 20, 1)
1845  
1846  /* V7M SCR bits */
1847  FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1848  FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1849  FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1850  FIELD(V7M_SCR, SEVONPEND, 4, 1)
1851  
1852  /* V7M AIRCR bits */
1853  FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1854  FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1855  FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1856  FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1857  FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1858  FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1859  FIELD(V7M_AIRCR, PRIS, 14, 1)
1860  FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1861  FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1862  
1863  /* V7M CFSR bits for MMFSR */
1864  FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1865  FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1866  FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1867  FIELD(V7M_CFSR, MSTKERR, 4, 1)
1868  FIELD(V7M_CFSR, MLSPERR, 5, 1)
1869  FIELD(V7M_CFSR, MMARVALID, 7, 1)
1870  
1871  /* V7M CFSR bits for BFSR */
1872  FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1873  FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1874  FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1875  FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1876  FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1877  FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1878  FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1879  
1880  /* V7M CFSR bits for UFSR */
1881  FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1882  FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1883  FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1884  FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1885  FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1886  FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1887  FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1888  
1889  /* V7M CFSR bit masks covering all of the subregister bits */
1890  FIELD(V7M_CFSR, MMFSR, 0, 8)
1891  FIELD(V7M_CFSR, BFSR, 8, 8)
1892  FIELD(V7M_CFSR, UFSR, 16, 16)
1893  
1894  /* V7M HFSR bits */
1895  FIELD(V7M_HFSR, VECTTBL, 1, 1)
1896  FIELD(V7M_HFSR, FORCED, 30, 1)
1897  FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1898  
1899  /* V7M DFSR bits */
1900  FIELD(V7M_DFSR, HALTED, 0, 1)
1901  FIELD(V7M_DFSR, BKPT, 1, 1)
1902  FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1903  FIELD(V7M_DFSR, VCATCH, 3, 1)
1904  FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1905  
1906  /* V7M SFSR bits */
1907  FIELD(V7M_SFSR, INVEP, 0, 1)
1908  FIELD(V7M_SFSR, INVIS, 1, 1)
1909  FIELD(V7M_SFSR, INVER, 2, 1)
1910  FIELD(V7M_SFSR, AUVIOL, 3, 1)
1911  FIELD(V7M_SFSR, INVTRAN, 4, 1)
1912  FIELD(V7M_SFSR, LSPERR, 5, 1)
1913  FIELD(V7M_SFSR, SFARVALID, 6, 1)
1914  FIELD(V7M_SFSR, LSERR, 7, 1)
1915  
1916  /* v7M MPU_CTRL bits */
1917  FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1918  FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1919  FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1920  
1921  /* v7M CLIDR bits */
1922  FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1923  FIELD(V7M_CLIDR, LOUIS, 21, 3)
1924  FIELD(V7M_CLIDR, LOC, 24, 3)
1925  FIELD(V7M_CLIDR, LOUU, 27, 3)
1926  FIELD(V7M_CLIDR, ICB, 30, 2)
1927  
1928  FIELD(V7M_CSSELR, IND, 0, 1)
1929  FIELD(V7M_CSSELR, LEVEL, 1, 3)
1930  /* We use the combination of InD and Level to index into cpu->ccsidr[];
1931   * define a mask for this and check that it doesn't permit running off
1932   * the end of the array.
1933   */
1934  FIELD(V7M_CSSELR, INDEX, 0, 4)
1935  
1936  /* v7M FPCCR bits */
1937  FIELD(V7M_FPCCR, LSPACT, 0, 1)
1938  FIELD(V7M_FPCCR, USER, 1, 1)
1939  FIELD(V7M_FPCCR, S, 2, 1)
1940  FIELD(V7M_FPCCR, THREAD, 3, 1)
1941  FIELD(V7M_FPCCR, HFRDY, 4, 1)
1942  FIELD(V7M_FPCCR, MMRDY, 5, 1)
1943  FIELD(V7M_FPCCR, BFRDY, 6, 1)
1944  FIELD(V7M_FPCCR, SFRDY, 7, 1)
1945  FIELD(V7M_FPCCR, MONRDY, 8, 1)
1946  FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1947  FIELD(V7M_FPCCR, UFRDY, 10, 1)
1948  FIELD(V7M_FPCCR, RES0, 11, 15)
1949  FIELD(V7M_FPCCR, TS, 26, 1)
1950  FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1951  FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1952  FIELD(V7M_FPCCR, LSPENS, 29, 1)
1953  FIELD(V7M_FPCCR, LSPEN, 30, 1)
1954  FIELD(V7M_FPCCR, ASPEN, 31, 1)
1955  /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1956  #define R_V7M_FPCCR_BANKED_MASK                 \
1957      (R_V7M_FPCCR_LSPACT_MASK |                  \
1958       R_V7M_FPCCR_USER_MASK |                    \
1959       R_V7M_FPCCR_THREAD_MASK |                  \
1960       R_V7M_FPCCR_MMRDY_MASK |                   \
1961       R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1962       R_V7M_FPCCR_UFRDY_MASK |                   \
1963       R_V7M_FPCCR_ASPEN_MASK)
1964  
1965  /* v7M VPR bits */
1966  FIELD(V7M_VPR, P0, 0, 16)
1967  FIELD(V7M_VPR, MASK01, 16, 4)
1968  FIELD(V7M_VPR, MASK23, 20, 4)
1969  
1970  /*
1971   * System register ID fields.
1972   */
1973  FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1974  FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1975  FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1976  FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1977  FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1978  FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1979  FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1980  FIELD(CLIDR_EL1, LOUIS, 21, 3)
1981  FIELD(CLIDR_EL1, LOC, 24, 3)
1982  FIELD(CLIDR_EL1, LOUU, 27, 3)
1983  FIELD(CLIDR_EL1, ICB, 30, 3)
1984  
1985  /* When FEAT_CCIDX is implemented */
1986  FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1987  FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1988  FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1989  
1990  /* When FEAT_CCIDX is not implemented */
1991  FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1992  FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1993  FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1994  
1995  FIELD(CTR_EL0,  IMINLINE, 0, 4)
1996  FIELD(CTR_EL0,  L1IP, 14, 2)
1997  FIELD(CTR_EL0,  DMINLINE, 16, 4)
1998  FIELD(CTR_EL0,  ERG, 20, 4)
1999  FIELD(CTR_EL0,  CWG, 24, 4)
2000  FIELD(CTR_EL0,  IDC, 28, 1)
2001  FIELD(CTR_EL0,  DIC, 29, 1)
2002  FIELD(CTR_EL0,  TMINLINE, 32, 6)
2003  
2004  FIELD(MIDR_EL1, REVISION, 0, 4)
2005  FIELD(MIDR_EL1, PARTNUM, 4, 12)
2006  FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2007  FIELD(MIDR_EL1, VARIANT, 20, 4)
2008  FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2009  
2010  FIELD(ID_ISAR0, SWAP, 0, 4)
2011  FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2012  FIELD(ID_ISAR0, BITFIELD, 8, 4)
2013  FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2014  FIELD(ID_ISAR0, COPROC, 16, 4)
2015  FIELD(ID_ISAR0, DEBUG, 20, 4)
2016  FIELD(ID_ISAR0, DIVIDE, 24, 4)
2017  
2018  FIELD(ID_ISAR1, ENDIAN, 0, 4)
2019  FIELD(ID_ISAR1, EXCEPT, 4, 4)
2020  FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2021  FIELD(ID_ISAR1, EXTEND, 12, 4)
2022  FIELD(ID_ISAR1, IFTHEN, 16, 4)
2023  FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2024  FIELD(ID_ISAR1, INTERWORK, 24, 4)
2025  FIELD(ID_ISAR1, JAZELLE, 28, 4)
2026  
2027  FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2028  FIELD(ID_ISAR2, MEMHINT, 4, 4)
2029  FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2030  FIELD(ID_ISAR2, MULT, 12, 4)
2031  FIELD(ID_ISAR2, MULTS, 16, 4)
2032  FIELD(ID_ISAR2, MULTU, 20, 4)
2033  FIELD(ID_ISAR2, PSR_AR, 24, 4)
2034  FIELD(ID_ISAR2, REVERSAL, 28, 4)
2035  
2036  FIELD(ID_ISAR3, SATURATE, 0, 4)
2037  FIELD(ID_ISAR3, SIMD, 4, 4)
2038  FIELD(ID_ISAR3, SVC, 8, 4)
2039  FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2040  FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2041  FIELD(ID_ISAR3, T32COPY, 20, 4)
2042  FIELD(ID_ISAR3, TRUENOP, 24, 4)
2043  FIELD(ID_ISAR3, T32EE, 28, 4)
2044  
2045  FIELD(ID_ISAR4, UNPRIV, 0, 4)
2046  FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2047  FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2048  FIELD(ID_ISAR4, SMC, 12, 4)
2049  FIELD(ID_ISAR4, BARRIER, 16, 4)
2050  FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2051  FIELD(ID_ISAR4, PSR_M, 24, 4)
2052  FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2053  
2054  FIELD(ID_ISAR5, SEVL, 0, 4)
2055  FIELD(ID_ISAR5, AES, 4, 4)
2056  FIELD(ID_ISAR5, SHA1, 8, 4)
2057  FIELD(ID_ISAR5, SHA2, 12, 4)
2058  FIELD(ID_ISAR5, CRC32, 16, 4)
2059  FIELD(ID_ISAR5, RDM, 24, 4)
2060  FIELD(ID_ISAR5, VCMA, 28, 4)
2061  
2062  FIELD(ID_ISAR6, JSCVT, 0, 4)
2063  FIELD(ID_ISAR6, DP, 4, 4)
2064  FIELD(ID_ISAR6, FHM, 8, 4)
2065  FIELD(ID_ISAR6, SB, 12, 4)
2066  FIELD(ID_ISAR6, SPECRES, 16, 4)
2067  FIELD(ID_ISAR6, BF16, 20, 4)
2068  FIELD(ID_ISAR6, I8MM, 24, 4)
2069  
2070  FIELD(ID_MMFR0, VMSA, 0, 4)
2071  FIELD(ID_MMFR0, PMSA, 4, 4)
2072  FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2073  FIELD(ID_MMFR0, SHARELVL, 12, 4)
2074  FIELD(ID_MMFR0, TCM, 16, 4)
2075  FIELD(ID_MMFR0, AUXREG, 20, 4)
2076  FIELD(ID_MMFR0, FCSE, 24, 4)
2077  FIELD(ID_MMFR0, INNERSHR, 28, 4)
2078  
2079  FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2080  FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2081  FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2082  FIELD(ID_MMFR1, L1UNISW, 12, 4)
2083  FIELD(ID_MMFR1, L1HVD, 16, 4)
2084  FIELD(ID_MMFR1, L1UNI, 20, 4)
2085  FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2086  FIELD(ID_MMFR1, BPRED, 28, 4)
2087  
2088  FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2089  FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2090  FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2091  FIELD(ID_MMFR2, HVDTLB, 12, 4)
2092  FIELD(ID_MMFR2, UNITLB, 16, 4)
2093  FIELD(ID_MMFR2, MEMBARR, 20, 4)
2094  FIELD(ID_MMFR2, WFISTALL, 24, 4)
2095  FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2096  
2097  FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2098  FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2099  FIELD(ID_MMFR3, BPMAINT, 8, 4)
2100  FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2101  FIELD(ID_MMFR3, PAN, 16, 4)
2102  FIELD(ID_MMFR3, COHWALK, 20, 4)
2103  FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2104  FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2105  
2106  FIELD(ID_MMFR4, SPECSEI, 0, 4)
2107  FIELD(ID_MMFR4, AC2, 4, 4)
2108  FIELD(ID_MMFR4, XNX, 8, 4)
2109  FIELD(ID_MMFR4, CNP, 12, 4)
2110  FIELD(ID_MMFR4, HPDS, 16, 4)
2111  FIELD(ID_MMFR4, LSM, 20, 4)
2112  FIELD(ID_MMFR4, CCIDX, 24, 4)
2113  FIELD(ID_MMFR4, EVT, 28, 4)
2114  
2115  FIELD(ID_MMFR5, ETS, 0, 4)
2116  FIELD(ID_MMFR5, NTLBPA, 4, 4)
2117  
2118  FIELD(ID_PFR0, STATE0, 0, 4)
2119  FIELD(ID_PFR0, STATE1, 4, 4)
2120  FIELD(ID_PFR0, STATE2, 8, 4)
2121  FIELD(ID_PFR0, STATE3, 12, 4)
2122  FIELD(ID_PFR0, CSV2, 16, 4)
2123  FIELD(ID_PFR0, AMU, 20, 4)
2124  FIELD(ID_PFR0, DIT, 24, 4)
2125  FIELD(ID_PFR0, RAS, 28, 4)
2126  
2127  FIELD(ID_PFR1, PROGMOD, 0, 4)
2128  FIELD(ID_PFR1, SECURITY, 4, 4)
2129  FIELD(ID_PFR1, MPROGMOD, 8, 4)
2130  FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2131  FIELD(ID_PFR1, GENTIMER, 16, 4)
2132  FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2133  FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2134  FIELD(ID_PFR1, GIC, 28, 4)
2135  
2136  FIELD(ID_PFR2, CSV3, 0, 4)
2137  FIELD(ID_PFR2, SSBS, 4, 4)
2138  FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2139  
2140  FIELD(ID_AA64ISAR0, AES, 4, 4)
2141  FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2142  FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2143  FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2144  FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2145  FIELD(ID_AA64ISAR0, TME, 24, 4)
2146  FIELD(ID_AA64ISAR0, RDM, 28, 4)
2147  FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2148  FIELD(ID_AA64ISAR0, SM3, 36, 4)
2149  FIELD(ID_AA64ISAR0, SM4, 40, 4)
2150  FIELD(ID_AA64ISAR0, DP, 44, 4)
2151  FIELD(ID_AA64ISAR0, FHM, 48, 4)
2152  FIELD(ID_AA64ISAR0, TS, 52, 4)
2153  FIELD(ID_AA64ISAR0, TLB, 56, 4)
2154  FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2155  
2156  FIELD(ID_AA64ISAR1, DPB, 0, 4)
2157  FIELD(ID_AA64ISAR1, APA, 4, 4)
2158  FIELD(ID_AA64ISAR1, API, 8, 4)
2159  FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2160  FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2161  FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2162  FIELD(ID_AA64ISAR1, GPA, 24, 4)
2163  FIELD(ID_AA64ISAR1, GPI, 28, 4)
2164  FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2165  FIELD(ID_AA64ISAR1, SB, 36, 4)
2166  FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2167  FIELD(ID_AA64ISAR1, BF16, 44, 4)
2168  FIELD(ID_AA64ISAR1, DGH, 48, 4)
2169  FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2170  FIELD(ID_AA64ISAR1, XS, 56, 4)
2171  FIELD(ID_AA64ISAR1, LS64, 60, 4)
2172  
2173  FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2174  FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2175  FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2176  FIELD(ID_AA64ISAR2, APA3, 12, 4)
2177  FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2178  FIELD(ID_AA64ISAR2, BC, 20, 4)
2179  FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2180  FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2181  FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2182  FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2183  FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2184  FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2185  FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2186  FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2187  
2188  FIELD(ID_AA64PFR0, EL0, 0, 4)
2189  FIELD(ID_AA64PFR0, EL1, 4, 4)
2190  FIELD(ID_AA64PFR0, EL2, 8, 4)
2191  FIELD(ID_AA64PFR0, EL3, 12, 4)
2192  FIELD(ID_AA64PFR0, FP, 16, 4)
2193  FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2194  FIELD(ID_AA64PFR0, GIC, 24, 4)
2195  FIELD(ID_AA64PFR0, RAS, 28, 4)
2196  FIELD(ID_AA64PFR0, SVE, 32, 4)
2197  FIELD(ID_AA64PFR0, SEL2, 36, 4)
2198  FIELD(ID_AA64PFR0, MPAM, 40, 4)
2199  FIELD(ID_AA64PFR0, AMU, 44, 4)
2200  FIELD(ID_AA64PFR0, DIT, 48, 4)
2201  FIELD(ID_AA64PFR0, RME, 52, 4)
2202  FIELD(ID_AA64PFR0, CSV2, 56, 4)
2203  FIELD(ID_AA64PFR0, CSV3, 60, 4)
2204  
2205  FIELD(ID_AA64PFR1, BT, 0, 4)
2206  FIELD(ID_AA64PFR1, SSBS, 4, 4)
2207  FIELD(ID_AA64PFR1, MTE, 8, 4)
2208  FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2209  FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2210  FIELD(ID_AA64PFR1, SME, 24, 4)
2211  FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2212  FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2213  FIELD(ID_AA64PFR1, NMI, 36, 4)
2214  FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2215  FIELD(ID_AA64PFR1, GCS, 44, 4)
2216  FIELD(ID_AA64PFR1, THE, 48, 4)
2217  FIELD(ID_AA64PFR1, MTEX, 52, 4)
2218  FIELD(ID_AA64PFR1, DF2, 56, 4)
2219  FIELD(ID_AA64PFR1, PFAR, 60, 4)
2220  
2221  FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2222  FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2223  FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2224  FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2225  FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2226  FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2227  FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2228  FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2229  FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2230  FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2231  FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2232  FIELD(ID_AA64MMFR0, EXS, 44, 4)
2233  FIELD(ID_AA64MMFR0, FGT, 56, 4)
2234  FIELD(ID_AA64MMFR0, ECV, 60, 4)
2235  
2236  FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2237  FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2238  FIELD(ID_AA64MMFR1, VH, 8, 4)
2239  FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2240  FIELD(ID_AA64MMFR1, LO, 16, 4)
2241  FIELD(ID_AA64MMFR1, PAN, 20, 4)
2242  FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2243  FIELD(ID_AA64MMFR1, XNX, 28, 4)
2244  FIELD(ID_AA64MMFR1, TWED, 32, 4)
2245  FIELD(ID_AA64MMFR1, ETS, 36, 4)
2246  FIELD(ID_AA64MMFR1, HCX, 40, 4)
2247  FIELD(ID_AA64MMFR1, AFP, 44, 4)
2248  FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2249  FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2250  FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2251  FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2252  
2253  FIELD(ID_AA64MMFR2, CNP, 0, 4)
2254  FIELD(ID_AA64MMFR2, UAO, 4, 4)
2255  FIELD(ID_AA64MMFR2, LSM, 8, 4)
2256  FIELD(ID_AA64MMFR2, IESB, 12, 4)
2257  FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2258  FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2259  FIELD(ID_AA64MMFR2, NV, 24, 4)
2260  FIELD(ID_AA64MMFR2, ST, 28, 4)
2261  FIELD(ID_AA64MMFR2, AT, 32, 4)
2262  FIELD(ID_AA64MMFR2, IDS, 36, 4)
2263  FIELD(ID_AA64MMFR2, FWB, 40, 4)
2264  FIELD(ID_AA64MMFR2, TTL, 48, 4)
2265  FIELD(ID_AA64MMFR2, BBM, 52, 4)
2266  FIELD(ID_AA64MMFR2, EVT, 56, 4)
2267  FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2268  
2269  FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2270  FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2271  FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2272  FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2273  FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2274  FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2275  FIELD(ID_AA64MMFR3, AIE, 24, 4)
2276  FIELD(ID_AA64MMFR3, MEC, 28, 4)
2277  FIELD(ID_AA64MMFR3, D128, 32, 4)
2278  FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2279  FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2280  FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2281  FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2282  FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2283  FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2284  
2285  FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2286  FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2287  FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2288  FIELD(ID_AA64DFR0, BRPS, 12, 4)
2289  FIELD(ID_AA64DFR0, PMSS, 16, 4)
2290  FIELD(ID_AA64DFR0, WRPS, 20, 4)
2291  FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2292  FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2293  FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2294  FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2295  FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2296  FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2297  FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2298  FIELD(ID_AA64DFR0, BRBE, 52, 4)
2299  FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2300  FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2301  
2302  FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2303  FIELD(ID_AA64ZFR0, AES, 4, 4)
2304  FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2305  FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2306  FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2307  FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2308  FIELD(ID_AA64ZFR0, SM4, 40, 4)
2309  FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2310  FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2311  FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2312  
2313  FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2314  FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2315  FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2316  FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2317  FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2318  FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2319  FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2320  FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2321  FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2322  FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2323  FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2324  FIELD(ID_AA64SMFR0, FA64, 63, 1)
2325  
2326  FIELD(ID_DFR0, COPDBG, 0, 4)
2327  FIELD(ID_DFR0, COPSDBG, 4, 4)
2328  FIELD(ID_DFR0, MMAPDBG, 8, 4)
2329  FIELD(ID_DFR0, COPTRC, 12, 4)
2330  FIELD(ID_DFR0, MMAPTRC, 16, 4)
2331  FIELD(ID_DFR0, MPROFDBG, 20, 4)
2332  FIELD(ID_DFR0, PERFMON, 24, 4)
2333  FIELD(ID_DFR0, TRACEFILT, 28, 4)
2334  
2335  FIELD(ID_DFR1, MTPMU, 0, 4)
2336  FIELD(ID_DFR1, HPMN0, 4, 4)
2337  
2338  FIELD(DBGDIDR, SE_IMP, 12, 1)
2339  FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2340  FIELD(DBGDIDR, VERSION, 16, 4)
2341  FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2342  FIELD(DBGDIDR, BRPS, 24, 4)
2343  FIELD(DBGDIDR, WRPS, 28, 4)
2344  
2345  FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2346  FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2347  FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2348  FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2349  FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2350  FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2351  FIELD(DBGDEVID, AUXREGS, 24, 4)
2352  FIELD(DBGDEVID, CIDMASK, 28, 4)
2353  
2354  FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2355  
2356  FIELD(MVFR0, SIMDREG, 0, 4)
2357  FIELD(MVFR0, FPSP, 4, 4)
2358  FIELD(MVFR0, FPDP, 8, 4)
2359  FIELD(MVFR0, FPTRAP, 12, 4)
2360  FIELD(MVFR0, FPDIVIDE, 16, 4)
2361  FIELD(MVFR0, FPSQRT, 20, 4)
2362  FIELD(MVFR0, FPSHVEC, 24, 4)
2363  FIELD(MVFR0, FPROUND, 28, 4)
2364  
2365  FIELD(MVFR1, FPFTZ, 0, 4)
2366  FIELD(MVFR1, FPDNAN, 4, 4)
2367  FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2368  FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2369  FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2370  FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2371  FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2372  FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2373  FIELD(MVFR1, FPHP, 24, 4)
2374  FIELD(MVFR1, SIMDFMAC, 28, 4)
2375  
2376  FIELD(MVFR2, SIMDMISC, 0, 4)
2377  FIELD(MVFR2, FPMISC, 4, 4)
2378  
2379  FIELD(GPCCR, PPS, 0, 3)
2380  FIELD(GPCCR, IRGN, 8, 2)
2381  FIELD(GPCCR, ORGN, 10, 2)
2382  FIELD(GPCCR, SH, 12, 2)
2383  FIELD(GPCCR, PGS, 14, 2)
2384  FIELD(GPCCR, GPC, 16, 1)
2385  FIELD(GPCCR, GPCP, 17, 1)
2386  FIELD(GPCCR, L0GPTSZ, 20, 4)
2387  
2388  FIELD(MFAR, FPA, 12, 40)
2389  FIELD(MFAR, NSE, 62, 1)
2390  FIELD(MFAR, NS, 63, 1)
2391  
2392  QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2393  
2394  /* If adding a feature bit which corresponds to a Linux ELF
2395   * HWCAP bit, remember to update the feature-bit-to-hwcap
2396   * mapping in linux-user/elfload.c:get_elf_hwcap().
2397   */
2398  enum arm_features {
2399      ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2400      ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2401      ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2402      ARM_FEATURE_V6,
2403      ARM_FEATURE_V6K,
2404      ARM_FEATURE_V7,
2405      ARM_FEATURE_THUMB2,
2406      ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2407      ARM_FEATURE_NEON,
2408      ARM_FEATURE_M, /* Microcontroller profile.  */
2409      ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2410      ARM_FEATURE_THUMB2EE,
2411      ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2412      ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2413      ARM_FEATURE_V4T,
2414      ARM_FEATURE_V5,
2415      ARM_FEATURE_STRONGARM,
2416      ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2417      ARM_FEATURE_GENERIC_TIMER,
2418      ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2419      ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2420      ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2421      ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2422      ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2423      ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2424      ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2425      ARM_FEATURE_V8,
2426      ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2427      ARM_FEATURE_CBAR, /* has cp15 CBAR */
2428      ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2429      ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2430      ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2431      ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2432      ARM_FEATURE_PMU, /* has PMU support */
2433      ARM_FEATURE_VBAR, /* has cp15 VBAR */
2434      ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2435      ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2436      ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2437      /*
2438       * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2439       * if the board doesn't set a value, instead of 1GHz. It is for backwards
2440       * compatibility and used only with CPU definitions that were already
2441       * in QEMU before we changed the default. It should not be set on any
2442       * CPU types added in future.
2443       */
2444      ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2445  };
2446  
arm_feature(CPUARMState * env,int feature)2447  static inline int arm_feature(CPUARMState *env, int feature)
2448  {
2449      return (env->features & (1ULL << feature)) != 0;
2450  }
2451  
2452  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2453  
2454  /*
2455   * ARM v9 security states.
2456   * The ordering of the enumeration corresponds to the low 2 bits
2457   * of the GPI value, and (except for Root) the concat of NSE:NS.
2458   */
2459  
2460  typedef enum ARMSecuritySpace {
2461      ARMSS_Secure     = 0,
2462      ARMSS_NonSecure  = 1,
2463      ARMSS_Root       = 2,
2464      ARMSS_Realm      = 3,
2465  } ARMSecuritySpace;
2466  
2467  /* Return true if @space is secure, in the pre-v9 sense. */
arm_space_is_secure(ARMSecuritySpace space)2468  static inline bool arm_space_is_secure(ARMSecuritySpace space)
2469  {
2470      return space == ARMSS_Secure || space == ARMSS_Root;
2471  }
2472  
2473  /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
arm_secure_to_space(bool secure)2474  static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2475  {
2476      return secure ? ARMSS_Secure : ARMSS_NonSecure;
2477  }
2478  
2479  #if !defined(CONFIG_USER_ONLY)
2480  /**
2481   * arm_security_space_below_el3:
2482   * @env: cpu context
2483   *
2484   * Return the security space of exception levels below EL3, following
2485   * an exception return to those levels.  Unlike arm_security_space,
2486   * this doesn't care about the current EL.
2487   */
2488  ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2489  
2490  /**
2491   * arm_is_secure_below_el3:
2492   * @env: cpu context
2493   *
2494   * Return true if exception levels below EL3 are in secure state,
2495   * or would be following an exception return to those levels.
2496   */
arm_is_secure_below_el3(CPUARMState * env)2497  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2498  {
2499      ARMSecuritySpace ss = arm_security_space_below_el3(env);
2500      return ss == ARMSS_Secure;
2501  }
2502  
2503  /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
arm_is_el3_or_mon(CPUARMState * env)2504  static inline bool arm_is_el3_or_mon(CPUARMState *env)
2505  {
2506      assert(!arm_feature(env, ARM_FEATURE_M));
2507      if (arm_feature(env, ARM_FEATURE_EL3)) {
2508          if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2509              /* CPU currently in AArch64 state and EL3 */
2510              return true;
2511          } else if (!is_a64(env) &&
2512                  (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2513              /* CPU currently in AArch32 state and monitor mode */
2514              return true;
2515          }
2516      }
2517      return false;
2518  }
2519  
2520  /**
2521   * arm_security_space:
2522   * @env: cpu context
2523   *
2524   * Return the current security space of the cpu.
2525   */
2526  ARMSecuritySpace arm_security_space(CPUARMState *env);
2527  
2528  /**
2529   * arm_is_secure:
2530   * @env: cpu context
2531   *
2532   * Return true if the processor is in secure state.
2533   */
arm_is_secure(CPUARMState * env)2534  static inline bool arm_is_secure(CPUARMState *env)
2535  {
2536      return arm_space_is_secure(arm_security_space(env));
2537  }
2538  
2539  /*
2540   * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2541   * This corresponds to the pseudocode EL2Enabled().
2542   */
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2543  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2544                                                 ARMSecuritySpace space)
2545  {
2546      assert(space != ARMSS_Root);
2547      return arm_feature(env, ARM_FEATURE_EL2)
2548             && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2549  }
2550  
arm_is_el2_enabled(CPUARMState * env)2551  static inline bool arm_is_el2_enabled(CPUARMState *env)
2552  {
2553      return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2554  }
2555  
2556  #else
arm_security_space_below_el3(CPUARMState * env)2557  static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2558  {
2559      return ARMSS_NonSecure;
2560  }
2561  
arm_is_secure_below_el3(CPUARMState * env)2562  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2563  {
2564      return false;
2565  }
2566  
arm_is_el3_or_mon(CPUARMState * env)2567  static inline bool arm_is_el3_or_mon(CPUARMState *env)
2568  {
2569      return false;
2570  }
2571  
arm_security_space(CPUARMState * env)2572  static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2573  {
2574      return ARMSS_NonSecure;
2575  }
2576  
arm_is_secure(CPUARMState * env)2577  static inline bool arm_is_secure(CPUARMState *env)
2578  {
2579      return false;
2580  }
2581  
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2582  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2583                                                 ARMSecuritySpace space)
2584  {
2585      return false;
2586  }
2587  
arm_is_el2_enabled(CPUARMState * env)2588  static inline bool arm_is_el2_enabled(CPUARMState *env)
2589  {
2590      return false;
2591  }
2592  #endif
2593  
2594  /**
2595   * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2596   * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2597   * "for all purposes other than a direct read or write access of HCR_EL2."
2598   * Not included here is HCR_RW.
2599   */
2600  uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2601  uint64_t arm_hcr_el2_eff(CPUARMState *env);
2602  uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2603  
2604  /* Return true if the specified exception level is running in AArch64 state. */
arm_el_is_aa64(CPUARMState * env,int el)2605  static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2606  {
2607      /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2608       * and if we're not in EL0 then the state of EL0 isn't well defined.)
2609       */
2610      assert(el >= 1 && el <= 3);
2611      bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2612  
2613      /* The highest exception level is always at the maximum supported
2614       * register width, and then lower levels have a register width controlled
2615       * by bits in the SCR or HCR registers.
2616       */
2617      if (el == 3) {
2618          return aa64;
2619      }
2620  
2621      if (arm_feature(env, ARM_FEATURE_EL3) &&
2622          ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2623          aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2624      }
2625  
2626      if (el == 2) {
2627          return aa64;
2628      }
2629  
2630      if (arm_is_el2_enabled(env)) {
2631          aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2632      }
2633  
2634      return aa64;
2635  }
2636  
2637  /* Function for determining whether guest cp register reads and writes should
2638   * access the secure or non-secure bank of a cp register.  When EL3 is
2639   * operating in AArch32 state, the NS-bit determines whether the secure
2640   * instance of a cp register should be used. When EL3 is AArch64 (or if
2641   * it doesn't exist at all) then there is no register banking, and all
2642   * accesses are to the non-secure version.
2643   */
access_secure_reg(CPUARMState * env)2644  static inline bool access_secure_reg(CPUARMState *env)
2645  {
2646      bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2647                  !arm_el_is_aa64(env, 3) &&
2648                  !(env->cp15.scr_el3 & SCR_NS));
2649  
2650      return ret;
2651  }
2652  
2653  /* Macros for accessing a specified CP register bank */
2654  #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2655      ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2656  
2657  #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2658      do {                                                \
2659          if (_secure) {                                   \
2660              (_env)->cp15._regname##_s = (_val);            \
2661          } else {                                        \
2662              (_env)->cp15._regname##_ns = (_val);           \
2663          }                                               \
2664      } while (0)
2665  
2666  /* Macros for automatically accessing a specific CP register bank depending on
2667   * the current secure state of the system.  These macros are not intended for
2668   * supporting instruction translation reads/writes as these are dependent
2669   * solely on the SCR.NS bit and not the mode.
2670   */
2671  #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2672      A32_BANKED_REG_GET((_env), _regname,                \
2673                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2674  
2675  #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2676      A32_BANKED_REG_SET((_env), _regname,                                    \
2677                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2678                         (_val))
2679  
2680  uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2681                                   uint32_t cur_el, bool secure);
2682  
2683  /* Return the highest implemented Exception Level */
arm_highest_el(CPUARMState * env)2684  static inline int arm_highest_el(CPUARMState *env)
2685  {
2686      if (arm_feature(env, ARM_FEATURE_EL3)) {
2687          return 3;
2688      }
2689      if (arm_feature(env, ARM_FEATURE_EL2)) {
2690          return 2;
2691      }
2692      return 1;
2693  }
2694  
2695  /* Return true if a v7M CPU is in Handler mode */
arm_v7m_is_handler_mode(CPUARMState * env)2696  static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2697  {
2698      return env->v7m.exception != 0;
2699  }
2700  
2701  /* Return the current Exception Level (as per ARMv8; note that this differs
2702   * from the ARMv7 Privilege Level).
2703   */
arm_current_el(CPUARMState * env)2704  static inline int arm_current_el(CPUARMState *env)
2705  {
2706      if (arm_feature(env, ARM_FEATURE_M)) {
2707          return arm_v7m_is_handler_mode(env) ||
2708              !(env->v7m.control[env->v7m.secure] & 1);
2709      }
2710  
2711      if (is_a64(env)) {
2712          return extract32(env->pstate, 2, 2);
2713      }
2714  
2715      switch (env->uncached_cpsr & 0x1f) {
2716      case ARM_CPU_MODE_USR:
2717          return 0;
2718      case ARM_CPU_MODE_HYP:
2719          return 2;
2720      case ARM_CPU_MODE_MON:
2721          return 3;
2722      default:
2723          if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2724              /* If EL3 is 32-bit then all secure privileged modes run in
2725               * EL3
2726               */
2727              return 3;
2728          }
2729  
2730          return 1;
2731      }
2732  }
2733  
2734  /**
2735   * write_list_to_cpustate
2736   * @cpu: ARMCPU
2737   *
2738   * For each register listed in the ARMCPU cpreg_indexes list, write
2739   * its value from the cpreg_values list into the ARMCPUState structure.
2740   * This updates TCG's working data structures from KVM data or
2741   * from incoming migration state.
2742   *
2743   * Returns: true if all register values were updated correctly,
2744   * false if some register was unknown or could not be written.
2745   * Note that we do not stop early on failure -- we will attempt
2746   * writing all registers in the list.
2747   */
2748  bool write_list_to_cpustate(ARMCPU *cpu);
2749  
2750  /**
2751   * write_cpustate_to_list:
2752   * @cpu: ARMCPU
2753   * @kvm_sync: true if this is for syncing back to KVM
2754   *
2755   * For each register listed in the ARMCPU cpreg_indexes list, write
2756   * its value from the ARMCPUState structure into the cpreg_values list.
2757   * This is used to copy info from TCG's working data structures into
2758   * KVM or for outbound migration.
2759   *
2760   * @kvm_sync is true if we are doing this in order to sync the
2761   * register state back to KVM. In this case we will only update
2762   * values in the list if the previous list->cpustate sync actually
2763   * successfully wrote the CPU state. Otherwise we will keep the value
2764   * that is in the list.
2765   *
2766   * Returns: true if all register values were read correctly,
2767   * false if some register was unknown or could not be read.
2768   * Note that we do not stop early on failure -- we will attempt
2769   * reading all registers in the list.
2770   */
2771  bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2772  
2773  #define ARM_CPUID_TI915T      0x54029152
2774  #define ARM_CPUID_TI925T      0x54029252
2775  
2776  #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2777  
2778  #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2779  
2780  /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2781   *
2782   * If EL3 is 64-bit:
2783   *  + NonSecure EL1 & 0 stage 1
2784   *  + NonSecure EL1 & 0 stage 2
2785   *  + NonSecure EL2
2786   *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2787   *  + Secure EL1 & 0 stage 1
2788   *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2789   *  + Secure EL2 (FEAT_SEL2)
2790   *  + Secure EL2 & 0 (FEAT_SEL2)
2791   *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2792   *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2793   *  + Realm EL2 (FEAT_RME)
2794   *  + EL3
2795   * If EL3 is 32-bit:
2796   *  + NonSecure PL1 & 0 stage 1
2797   *  + NonSecure PL1 & 0 stage 2
2798   *  + NonSecure PL2
2799   *  + Secure PL1 & 0
2800   * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2801   *
2802   * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2803   *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2804   *     because they may differ in access permissions even if the VA->PA map is
2805   *     the same
2806   *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2807   *     translation, which means that we have one mmu_idx that deals with two
2808   *     concatenated translation regimes [this sort of combined s1+2 TLB is
2809   *     architecturally permitted]
2810   *  3. we don't need to allocate an mmu_idx to translations that we won't be
2811   *     handling via the TLB. The only way to do a stage 1 translation without
2812   *     the immediate stage 2 translation is via the ATS or AT system insns,
2813   *     which can be slow-pathed and always do a page table walk.
2814   *     The only use of stage 2 translations is either as part of an s1+2
2815   *     lookup or when loading the descriptors during a stage 1 page table walk,
2816   *     and in both those cases we don't use the TLB.
2817   *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2818   *     translation regimes, because they map reasonably well to each other
2819   *     and they can't both be active at the same time.
2820   *  5. we want to be able to use the TLB for accesses done as part of a
2821   *     stage1 page table walk, rather than having to walk the stage2 page
2822   *     table over and over.
2823   *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2824   *     Never (PAN) bit within PSTATE.
2825   *  7. we fold together most secure and non-secure regimes for A-profile,
2826   *     because there are no banked system registers for aarch64, so the
2827   *     process of switching between secure and non-secure is
2828   *     already heavyweight.
2829   *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2830   *     because both are in use simultaneously for Secure EL2.
2831   *
2832   * This gives us the following list of cases:
2833   *
2834   * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2835   * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2836   * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2837   * EL0 EL2&0
2838   * EL2 EL2&0
2839   * EL2 EL2&0 +PAN
2840   * EL2 (aka NS PL2)
2841   * EL3 (aka AArch32 S PL1 PL1&0)
2842   * AArch32 S PL0 PL1&0 (we call this EL30_0)
2843   * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2844   * Stage2 Secure
2845   * Stage2 NonSecure
2846   * plus one TLB per Physical address space: S, NS, Realm, Root
2847   *
2848   * for a total of 16 different mmu_idx.
2849   *
2850   * R profile CPUs have an MPU, but can use the same set of MMU indexes
2851   * as A profile. They only need to distinguish EL0 and EL1 (and
2852   * EL2 for cores like the Cortex-R52).
2853   *
2854   * M profile CPUs are rather different as they do not have a true MMU.
2855   * They have the following different MMU indexes:
2856   *  User
2857   *  Privileged
2858   *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2859   *  Privileged, execution priority negative (ditto)
2860   * If the CPU supports the v8M Security Extension then there are also:
2861   *  Secure User
2862   *  Secure Privileged
2863   *  Secure User, execution priority negative
2864   *  Secure Privileged, execution priority negative
2865   *
2866   * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2867   * are not quite the same -- different CPU types (most notably M profile
2868   * vs A/R profile) would like to use MMU indexes with different semantics,
2869   * but since we don't ever need to use all of those in a single CPU we
2870   * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2871   * modes + total number of M profile MMU modes". The lower bits of
2872   * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2873   * the same for any particular CPU.
2874   * Variables of type ARMMUIdx are always full values, and the core
2875   * index values are in variables of type 'int'.
2876   *
2877   * Our enumeration includes at the end some entries which are not "true"
2878   * mmu_idx values in that they don't have corresponding TLBs and are only
2879   * valid for doing slow path page table walks.
2880   *
2881   * The constant names here are patterned after the general style of the names
2882   * of the AT/ATS operations.
2883   * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2884   * For M profile we arrange them to have a bit for priv, a bit for negpri
2885   * and a bit for secure.
2886   */
2887  #define ARM_MMU_IDX_A     0x10  /* A profile */
2888  #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2889  #define ARM_MMU_IDX_M     0x40  /* M profile */
2890  
2891  /* Meanings of the bits for M profile mmu idx values */
2892  #define ARM_MMU_IDX_M_PRIV   0x1
2893  #define ARM_MMU_IDX_M_NEGPRI 0x2
2894  #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2895  
2896  #define ARM_MMU_IDX_TYPE_MASK \
2897      (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2898  #define ARM_MMU_IDX_COREIDX_MASK 0xf
2899  
2900  typedef enum ARMMMUIdx {
2901      /*
2902       * A-profile.
2903       */
2904      ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2905      ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2906      ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2907      ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2908      ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2909      ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2910      ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2911      ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2912      ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2913      ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2914  
2915      /*
2916       * Used for second stage of an S12 page table walk, or for descriptor
2917       * loads during first stage of an S1 page table walk.  Note that both
2918       * are in use simultaneously for SecureEL2: the security state for
2919       * the S2 ptw is selected by the NS bit from the S1 ptw.
2920       */
2921      ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2922      ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2923  
2924      /* TLBs with 1-1 mapping to the physical address spaces. */
2925      ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2926      ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2927      ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2928      ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2929  
2930      /*
2931       * These are not allocated TLBs and are used only for AT system
2932       * instructions or for the first stage of an S12 page table walk.
2933       */
2934      ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2935      ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2936      ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2937  
2938      /*
2939       * M-profile.
2940       */
2941      ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2942      ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2943      ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2944      ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2945      ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2946      ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2947      ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2948      ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2949  } ARMMMUIdx;
2950  
2951  /*
2952   * Bit macros for the core-mmu-index values for each index,
2953   * for use when calling tlb_flush_by_mmuidx() and friends.
2954   */
2955  #define TO_CORE_BIT(NAME) \
2956      ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2957  
2958  typedef enum ARMMMUIdxBit {
2959      TO_CORE_BIT(E10_0),
2960      TO_CORE_BIT(E20_0),
2961      TO_CORE_BIT(E10_1),
2962      TO_CORE_BIT(E10_1_PAN),
2963      TO_CORE_BIT(E2),
2964      TO_CORE_BIT(E20_2),
2965      TO_CORE_BIT(E20_2_PAN),
2966      TO_CORE_BIT(E3),
2967      TO_CORE_BIT(E30_0),
2968      TO_CORE_BIT(E30_3_PAN),
2969      TO_CORE_BIT(Stage2),
2970      TO_CORE_BIT(Stage2_S),
2971  
2972      TO_CORE_BIT(MUser),
2973      TO_CORE_BIT(MPriv),
2974      TO_CORE_BIT(MUserNegPri),
2975      TO_CORE_BIT(MPrivNegPri),
2976      TO_CORE_BIT(MSUser),
2977      TO_CORE_BIT(MSPriv),
2978      TO_CORE_BIT(MSUserNegPri),
2979      TO_CORE_BIT(MSPrivNegPri),
2980  } ARMMMUIdxBit;
2981  
2982  #undef TO_CORE_BIT
2983  
2984  #define MMU_USER_IDX 0
2985  
2986  /* Indexes used when registering address spaces with cpu_address_space_init */
2987  typedef enum ARMASIdx {
2988      ARMASIdx_NS = 0,
2989      ARMASIdx_S = 1,
2990      ARMASIdx_TagNS = 2,
2991      ARMASIdx_TagS = 3,
2992  } ARMASIdx;
2993  
arm_space_to_phys(ARMSecuritySpace space)2994  static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2995  {
2996      /* Assert the relative order of the physical mmu indexes. */
2997      QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2998      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2999      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3000      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3001  
3002      return ARMMMUIdx_Phys_S + space;
3003  }
3004  
arm_phys_to_space(ARMMMUIdx idx)3005  static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3006  {
3007      assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3008      return idx - ARMMMUIdx_Phys_S;
3009  }
3010  
arm_v7m_csselr_razwi(ARMCPU * cpu)3011  static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3012  {
3013      /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3014       * CSSELR is RAZ/WI.
3015       */
3016      return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3017  }
3018  
arm_sctlr_b(CPUARMState * env)3019  static inline bool arm_sctlr_b(CPUARMState *env)
3020  {
3021      return
3022          /* We need not implement SCTLR.ITD in user-mode emulation, so
3023           * let linux-user ignore the fact that it conflicts with SCTLR_B.
3024           * This lets people run BE32 binaries with "-cpu any".
3025           */
3026  #ifndef CONFIG_USER_ONLY
3027          !arm_feature(env, ARM_FEATURE_V7) &&
3028  #endif
3029          (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3030  }
3031  
3032  uint64_t arm_sctlr(CPUARMState *env, int el);
3033  
arm_cpu_data_is_big_endian_a32(CPUARMState * env,bool sctlr_b)3034  static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3035                                                    bool sctlr_b)
3036  {
3037  #ifdef CONFIG_USER_ONLY
3038      /*
3039       * In system mode, BE32 is modelled in line with the
3040       * architecture (as word-invariant big-endianness), where loads
3041       * and stores are done little endian but from addresses which
3042       * are adjusted by XORing with the appropriate constant. So the
3043       * endianness to use for the raw data access is not affected by
3044       * SCTLR.B.
3045       * In user mode, however, we model BE32 as byte-invariant
3046       * big-endianness (because user-only code cannot tell the
3047       * difference), and so we need to use a data access endianness
3048       * that depends on SCTLR.B.
3049       */
3050      if (sctlr_b) {
3051          return true;
3052      }
3053  #endif
3054      /* In 32bit endianness is determined by looking at CPSR's E bit */
3055      return env->uncached_cpsr & CPSR_E;
3056  }
3057  
arm_cpu_data_is_big_endian_a64(int el,uint64_t sctlr)3058  static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3059  {
3060      return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3061  }
3062  
3063  /* Return true if the processor is in big-endian mode. */
arm_cpu_data_is_big_endian(CPUARMState * env)3064  static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3065  {
3066      if (!is_a64(env)) {
3067          return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3068      } else {
3069          int cur_el = arm_current_el(env);
3070          uint64_t sctlr = arm_sctlr(env, cur_el);
3071          return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3072      }
3073  }
3074  
3075  #include "exec/cpu-all.h"
3076  
3077  /*
3078   * We have more than 32-bits worth of state per TB, so we split the data
3079   * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3080   * We collect these two parts in CPUARMTBFlags where they are named
3081   * flags and flags2 respectively.
3082   *
3083   * The flags that are shared between all execution modes, TBFLAG_ANY,
3084   * are stored in flags.  The flags that are specific to a given mode
3085   * are stores in flags2.  Since cs_base is sized on the configured
3086   * address size, flags2 always has 64-bits for A64, and a minimum of
3087   * 32-bits for A32 and M32.
3088   *
3089   * The bits for 32-bit A-profile and M-profile partially overlap:
3090   *
3091   *  31         23         11 10             0
3092   * +-------------+----------+----------------+
3093   * |             |          |   TBFLAG_A32   |
3094   * | TBFLAG_AM32 |          +-----+----------+
3095   * |             |                |TBFLAG_M32|
3096   * +-------------+----------------+----------+
3097   *  31         23                6 5        0
3098   *
3099   * Unless otherwise noted, these bits are cached in env->hflags.
3100   */
3101  FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3102  FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3103  FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3104  FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3105  FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3106  /* Target EL if we take a floating-point-disabled exception */
3107  FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3108  /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3109  FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3110  FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3111  FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3112  FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3113  
3114  /*
3115   * Bit usage when in AArch32 state, both A- and M-profile.
3116   */
3117  FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3118  FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3119  
3120  /*
3121   * Bit usage when in AArch32 state, for A-profile only.
3122   */
3123  FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3124  FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3125  /*
3126   * We store the bottom two bits of the CPAR as TB flags and handle
3127   * checks on the other bits at runtime. This shares the same bits as
3128   * VECSTRIDE, which is OK as no XScale CPU has VFP.
3129   * Not cached, because VECLEN+VECSTRIDE are not cached.
3130   */
3131  FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3132  FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3133  FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3134  FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3135  /*
3136   * Indicates whether cp register reads and writes by guest code should access
3137   * the secure or nonsecure bank of banked registers; note that this is not
3138   * the same thing as the current security state of the processor!
3139   */
3140  FIELD(TBFLAG_A32, NS, 10, 1)
3141  /*
3142   * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3143   * This requires an SME trap from AArch32 mode when using NEON.
3144   */
3145  FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3146  
3147  /*
3148   * Bit usage when in AArch32 state, for M-profile only.
3149   */
3150  /* Handler (ie not Thread) mode */
3151  FIELD(TBFLAG_M32, HANDLER, 0, 1)
3152  /* Whether we should generate stack-limit checks */
3153  FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3154  /* Set if FPCCR.LSPACT is set */
3155  FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3156  /* Set if we must create a new FP context */
3157  FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3158  /* Set if FPCCR.S does not match current security state */
3159  FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3160  /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3161  FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3162  /* Set if in secure mode */
3163  FIELD(TBFLAG_M32, SECURE, 6, 1)
3164  
3165  /*
3166   * Bit usage when in AArch64 state
3167   */
3168  FIELD(TBFLAG_A64, TBII, 0, 2)
3169  FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3170  /* The current vector length, either NVL or SVL. */
3171  FIELD(TBFLAG_A64, VL, 4, 4)
3172  FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3173  FIELD(TBFLAG_A64, BT, 9, 1)
3174  FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3175  FIELD(TBFLAG_A64, TBID, 12, 2)
3176  FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3177  FIELD(TBFLAG_A64, ATA, 15, 1)
3178  FIELD(TBFLAG_A64, TCMA, 16, 2)
3179  FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3180  FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3181  FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3182  FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3183  FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3184  FIELD(TBFLAG_A64, SVL, 24, 4)
3185  /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3186  FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3187  FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3188  FIELD(TBFLAG_A64, NAA, 30, 1)
3189  FIELD(TBFLAG_A64, ATA0, 31, 1)
3190  FIELD(TBFLAG_A64, NV, 32, 1)
3191  FIELD(TBFLAG_A64, NV1, 33, 1)
3192  FIELD(TBFLAG_A64, NV2, 34, 1)
3193  /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3194  FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3195  /* Set if FEAT_NV2 RAM accesses are big-endian */
3196  FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3197  
3198  /*
3199   * Helpers for using the above. Note that only the A64 accessors use
3200   * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3201   * word either is or might be 32 bits only.
3202   */
3203  #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3204      (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3205  #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3206      (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3207  #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3208      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3209  #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3210      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3211  #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3212      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3213  
3214  #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3215  #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3216  #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3217  #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3218  #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3219  
3220  /**
3221   * sve_vq
3222   * @env: the cpu context
3223   *
3224   * Return the VL cached within env->hflags, in units of quadwords.
3225   */
sve_vq(CPUARMState * env)3226  static inline int sve_vq(CPUARMState *env)
3227  {
3228      return EX_TBFLAG_A64(env->hflags, VL) + 1;
3229  }
3230  
3231  /**
3232   * sme_vq
3233   * @env: the cpu context
3234   *
3235   * Return the SVL cached within env->hflags, in units of quadwords.
3236   */
sme_vq(CPUARMState * env)3237  static inline int sme_vq(CPUARMState *env)
3238  {
3239      return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3240  }
3241  
bswap_code(bool sctlr_b)3242  static inline bool bswap_code(bool sctlr_b)
3243  {
3244  #ifdef CONFIG_USER_ONLY
3245      /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3246       * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3247       * would also end up as a mixed-endian mode with BE code, LE data.
3248       */
3249      return TARGET_BIG_ENDIAN ^ sctlr_b;
3250  #else
3251      /* All code access in ARM is little endian, and there are no loaders
3252       * doing swaps that need to be reversed
3253       */
3254      return 0;
3255  #endif
3256  }
3257  
3258  #ifdef CONFIG_USER_ONLY
arm_cpu_bswap_data(CPUARMState * env)3259  static inline bool arm_cpu_bswap_data(CPUARMState *env)
3260  {
3261      return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3262  }
3263  #endif
3264  
3265  void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3266                            uint64_t *cs_base, uint32_t *flags);
3267  
3268  enum {
3269      QEMU_PSCI_CONDUIT_DISABLED = 0,
3270      QEMU_PSCI_CONDUIT_SMC = 1,
3271      QEMU_PSCI_CONDUIT_HVC = 2,
3272  };
3273  
3274  #ifndef CONFIG_USER_ONLY
3275  /* Return the address space index to use for a memory access */
arm_asidx_from_attrs(CPUState * cs,MemTxAttrs attrs)3276  static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3277  {
3278      return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3279  }
3280  
3281  /* Return the AddressSpace to use for a memory access
3282   * (which depends on whether the access is S or NS, and whether
3283   * the board gave us a separate AddressSpace for S accesses).
3284   */
arm_addressspace(CPUState * cs,MemTxAttrs attrs)3285  static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3286  {
3287      return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3288  }
3289  #endif
3290  
3291  /**
3292   * arm_register_pre_el_change_hook:
3293   * Register a hook function which will be called immediately before this
3294   * CPU changes exception level or mode. The hook function will be
3295   * passed a pointer to the ARMCPU and the opaque data pointer passed
3296   * to this function when the hook was registered.
3297   *
3298   * Note that if a pre-change hook is called, any registered post-change hooks
3299   * are guaranteed to subsequently be called.
3300   */
3301  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3302                                   void *opaque);
3303  /**
3304   * arm_register_el_change_hook:
3305   * Register a hook function which will be called immediately after this
3306   * CPU changes exception level or mode. The hook function will be
3307   * passed a pointer to the ARMCPU and the opaque data pointer passed
3308   * to this function when the hook was registered.
3309   *
3310   * Note that any registered hooks registered here are guaranteed to be called
3311   * if pre-change hooks have been.
3312   */
3313  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3314          *opaque);
3315  
3316  /**
3317   * arm_rebuild_hflags:
3318   * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3319   */
3320  void arm_rebuild_hflags(CPUARMState *env);
3321  
3322  /**
3323   * aa32_vfp_dreg:
3324   * Return a pointer to the Dn register within env in 32-bit mode.
3325   */
aa32_vfp_dreg(CPUARMState * env,unsigned regno)3326  static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3327  {
3328      return &env->vfp.zregs[regno >> 1].d[regno & 1];
3329  }
3330  
3331  /**
3332   * aa32_vfp_qreg:
3333   * Return a pointer to the Qn register within env in 32-bit mode.
3334   */
aa32_vfp_qreg(CPUARMState * env,unsigned regno)3335  static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3336  {
3337      return &env->vfp.zregs[regno].d[0];
3338  }
3339  
3340  /**
3341   * aa64_vfp_qreg:
3342   * Return a pointer to the Qn register within env in 64-bit mode.
3343   */
aa64_vfp_qreg(CPUARMState * env,unsigned regno)3344  static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3345  {
3346      return &env->vfp.zregs[regno].d[0];
3347  }
3348  
3349  /* Shared between translate-sve.c and sve_helper.c.  */
3350  extern const uint64_t pred_esz_masks[5];
3351  
3352  /*
3353   * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3354   * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3355   * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3356   */
3357  #define PAGE_BTI            PAGE_TARGET_1
3358  #define PAGE_MTE            PAGE_TARGET_2
3359  #define PAGE_TARGET_STICKY  PAGE_MTE
3360  
3361  /* We associate one allocation tag per 16 bytes, the minimum.  */
3362  #define LOG2_TAG_GRANULE 4
3363  #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3364  
3365  #ifdef CONFIG_USER_ONLY
3366  #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3367  #endif
3368  
3369  #ifdef TARGET_TAGGED_ADDRESSES
3370  /**
3371   * cpu_untagged_addr:
3372   * @cs: CPU context
3373   * @x: tagged address
3374   *
3375   * Remove any address tag from @x.  This is explicitly related to the
3376   * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3377   *
3378   * There should be a better place to put this, but we need this in
3379   * include/exec/cpu_ldst.h, and not some place linux-user specific.
3380   */
cpu_untagged_addr(CPUState * cs,target_ulong x)3381  static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3382  {
3383      CPUARMState *env = cpu_env(cs);
3384      if (env->tagged_addr_enable) {
3385          /*
3386           * TBI is enabled for userspace but not kernelspace addresses.
3387           * Only clear the tag if bit 55 is clear.
3388           */
3389          x &= sextract64(x, 0, 56);
3390      }
3391      return x;
3392  }
3393  #endif
3394  
3395  #endif
3396