1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * IEEE 802.11 defines
4 *
5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6 * <jkmaline@cc.hut.fi>
7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8 * Copyright (c) 2005, Devicescape Software, Inc.
9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12 * Copyright (c) 2018 - 2023 Intel Corporation
13 */
14
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <asm/unaligned.h>
24
25 /*
26 * DS bit usage
27 *
28 * TA = transmitter address
29 * RA = receiver address
30 * DA = destination address
31 * SA = source address
32 *
33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use
34 * -----------------------------------------------------------------
35 * 0 0 DA SA BSSID - IBSS/DLS
36 * 0 1 DA BSSID SA - AP -> STA
37 * 1 0 BSSID SA DA - AP <- STA
38 * 1 1 RA TA DA SA unspecified (WDS)
39 */
40
41 #define FCS_LEN 4
42
43 #define IEEE80211_FCTL_VERS 0x0003
44 #define IEEE80211_FCTL_FTYPE 0x000c
45 #define IEEE80211_FCTL_STYPE 0x00f0
46 #define IEEE80211_FCTL_TODS 0x0100
47 #define IEEE80211_FCTL_FROMDS 0x0200
48 #define IEEE80211_FCTL_MOREFRAGS 0x0400
49 #define IEEE80211_FCTL_RETRY 0x0800
50 #define IEEE80211_FCTL_PM 0x1000
51 #define IEEE80211_FCTL_MOREDATA 0x2000
52 #define IEEE80211_FCTL_PROTECTED 0x4000
53 #define IEEE80211_FCTL_ORDER 0x8000
54 #define IEEE80211_FCTL_CTL_EXT 0x0f00
55
56 #define IEEE80211_SCTL_FRAG 0x000F
57 #define IEEE80211_SCTL_SEQ 0xFFF0
58
59 #define IEEE80211_FTYPE_MGMT 0x0000
60 #define IEEE80211_FTYPE_CTL 0x0004
61 #define IEEE80211_FTYPE_DATA 0x0008
62 #define IEEE80211_FTYPE_EXT 0x000c
63
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030
69 #define IEEE80211_STYPE_PROBE_REQ 0x0040
70 #define IEEE80211_STYPE_PROBE_RESP 0x0050
71 #define IEEE80211_STYPE_BEACON 0x0080
72 #define IEEE80211_STYPE_ATIM 0x0090
73 #define IEEE80211_STYPE_DISASSOC 0x00A0
74 #define IEEE80211_STYPE_AUTH 0x00B0
75 #define IEEE80211_STYPE_DEAUTH 0x00C0
76 #define IEEE80211_STYPE_ACTION 0x00D0
77
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER 0x0020
80 #define IEEE80211_STYPE_CTL_EXT 0x0060
81 #define IEEE80211_STYPE_BACK_REQ 0x0080
82 #define IEEE80211_STYPE_BACK 0x0090
83 #define IEEE80211_STYPE_PSPOLL 0x00A0
84 #define IEEE80211_STYPE_RTS 0x00B0
85 #define IEEE80211_STYPE_CTS 0x00C0
86 #define IEEE80211_STYPE_ACK 0x00D0
87 #define IEEE80211_STYPE_CFEND 0x00E0
88 #define IEEE80211_STYPE_CFENDACK 0x00F0
89
90 /* data */
91 #define IEEE80211_STYPE_DATA 0x0000
92 #define IEEE80211_STYPE_DATA_CFACK 0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
95 #define IEEE80211_STYPE_NULLFUNC 0x0040
96 #define IEEE80211_STYPE_CFACK 0x0050
97 #define IEEE80211_STYPE_CFPOLL 0x0060
98 #define IEEE80211_STYPE_CFACKPOLL 0x0070
99 #define IEEE80211_STYPE_QOS_DATA 0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
107
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON 0x0000
110 #define IEEE80211_STYPE_S1G_BEACON 0x0010
111
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
114
115 /* see 802.11ah-2016 9.9 NDP CMAC frames */
116 #define IEEE80211_S1G_1MHZ_NDP_BITS 25
117 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4
118 #define IEEE80211_S1G_2MHZ_NDP_BITS 37
119 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5
120
121 #define IEEE80211_NDP_FTYPE_CTS 0
122 #define IEEE80211_NDP_FTYPE_CF_END 0
123 #define IEEE80211_NDP_FTYPE_PS_POLL 1
124 #define IEEE80211_NDP_FTYPE_ACK 2
125 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3
126 #define IEEE80211_NDP_FTYPE_BA 4
127 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5
128 #define IEEE80211_NDP_FTYPE_PAGING 6
129 #define IEEE80211_NDP_FTYPE_PREQ 7
130
131 #define SM64(f, v) ((((u64)v) << f##_S) & f)
132
133 /* NDP CMAC frame fields */
134 #define IEEE80211_NDP_FTYPE 0x0000000000000007
135 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000
136
137 /* 1M Probe Request 11ah 9.9.3.1.1 */
138 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008
139 #define IEEE80211_NDP_1M_PREQ_ANO_S 3
140 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0
141 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4
142 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000
143 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20
144 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
145 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
146 /* 2M Probe Request 11ah 9.9.3.1.2 */
147 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008
148 #define IEEE80211_NDP_2M_PREQ_ANO_S 3
149 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0
150 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4
151 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000
152 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36
153
154 #define IEEE80211_ANO_NETTYPE_WILD 15
155
156 /* bits unique to S1G beacon */
157 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
158
159 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
160 #define IEEE80211_CTL_EXT_POLL 0x2000
161 #define IEEE80211_CTL_EXT_SPR 0x3000
162 #define IEEE80211_CTL_EXT_GRANT 0x4000
163 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000
164 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000
165 #define IEEE80211_CTL_EXT_SSW 0x8000
166 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
167 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000
168
169
170 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
171 #define IEEE80211_MAX_SN IEEE80211_SN_MASK
172 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
173
174
175 /* PV1 Layout 11ah 9.8.3.1 */
176 #define IEEE80211_PV1_FCTL_VERS 0x0003
177 #define IEEE80211_PV1_FCTL_FTYPE 0x001c
178 #define IEEE80211_PV1_FCTL_STYPE 0x00e0
179 #define IEEE80211_PV1_FCTL_TODS 0x0100
180 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200
181 #define IEEE80211_PV1_FCTL_PM 0x0400
182 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800
183 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000
184 #define IEEE80211_PV1_FCTL_END_SP 0x2000
185 #define IEEE80211_PV1_FCTL_RELAYED 0x4000
186 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000
187 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00
188
ieee80211_sn_less(u16 sn1,u16 sn2)189 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
190 {
191 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
192 }
193
ieee80211_sn_add(u16 sn1,u16 sn2)194 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
195 {
196 return (sn1 + sn2) & IEEE80211_SN_MASK;
197 }
198
ieee80211_sn_inc(u16 sn)199 static inline u16 ieee80211_sn_inc(u16 sn)
200 {
201 return ieee80211_sn_add(sn, 1);
202 }
203
ieee80211_sn_sub(u16 sn1,u16 sn2)204 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
205 {
206 return (sn1 - sn2) & IEEE80211_SN_MASK;
207 }
208
209 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
210 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
211
212 /* miscellaneous IEEE 802.11 constants */
213 #define IEEE80211_MAX_FRAG_THRESHOLD 2352
214 #define IEEE80211_MAX_RTS_THRESHOLD 2353
215 #define IEEE80211_MAX_AID 2007
216 #define IEEE80211_MAX_AID_S1G 8191
217 #define IEEE80211_MAX_TIM_LEN 251
218 #define IEEE80211_MAX_MESH_PEERINGS 63
219 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
220 6.2.1.1.2.
221
222 802.11e clarifies the figure in section 7.1.2. The frame body is
223 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
224 #define IEEE80211_MAX_DATA_LEN 2304
225 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
226 * to 7920 bytes, see 8.2.3 General frame format
227 */
228 #define IEEE80211_MAX_DATA_LEN_DMG 7920
229 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
230 #define IEEE80211_MAX_FRAME_LEN 2352
231
232 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
233 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
234
235 /* Maximal size of an A-MSDU */
236 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
237 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
238
239 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
240 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
241 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
242
243 #define IEEE80211_MAX_SSID_LEN 32
244
245 #define IEEE80211_MAX_MESH_ID_LEN 32
246
247 #define IEEE80211_FIRST_TSPEC_TSID 8
248 #define IEEE80211_NUM_TIDS 16
249
250 /* number of user priorities 802.11 uses */
251 #define IEEE80211_NUM_UPS 8
252 /* number of ACs */
253 #define IEEE80211_NUM_ACS 4
254
255 #define IEEE80211_QOS_CTL_LEN 2
256 /* 1d tag mask */
257 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
258 /* TID mask */
259 #define IEEE80211_QOS_CTL_TID_MASK 0x000f
260 /* EOSP */
261 #define IEEE80211_QOS_CTL_EOSP 0x0010
262 /* ACK policy */
263 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
264 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
265 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
266 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
267 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
268 /* A-MSDU 802.11n */
269 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
270 /* Mesh Control 802.11s */
271 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
272
273 /* Mesh Power Save Level */
274 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
275 /* Mesh Receiver Service Period Initiated */
276 #define IEEE80211_QOS_CTL_RSPI 0x0400
277
278 /* U-APSD queue for WMM IEs sent by AP */
279 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
280 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
281
282 /* U-APSD queues for WMM IEs sent by STA */
283 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
284 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
285 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
286 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
288
289 /* U-APSD max SP length for WMM IEs sent by STA */
290 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
291 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
292 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
293 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
296
297 #define IEEE80211_HT_CTL_LEN 4
298
299 /* trigger type within common_info of trigger frame */
300 #define IEEE80211_TRIGGER_TYPE_MASK 0xf
301 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0
302 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1
303 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2
304 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3
305 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4
306 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5
307 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6
308 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7
309
310 struct ieee80211_hdr {
311 __le16 frame_control;
312 __le16 duration_id;
313 struct_group(addrs,
314 u8 addr1[ETH_ALEN];
315 u8 addr2[ETH_ALEN];
316 u8 addr3[ETH_ALEN];
317 );
318 __le16 seq_ctrl;
319 u8 addr4[ETH_ALEN];
320 } __packed __aligned(2);
321
322 struct ieee80211_hdr_3addr {
323 __le16 frame_control;
324 __le16 duration_id;
325 u8 addr1[ETH_ALEN];
326 u8 addr2[ETH_ALEN];
327 u8 addr3[ETH_ALEN];
328 __le16 seq_ctrl;
329 } __packed __aligned(2);
330
331 struct ieee80211_qos_hdr {
332 __le16 frame_control;
333 __le16 duration_id;
334 u8 addr1[ETH_ALEN];
335 u8 addr2[ETH_ALEN];
336 u8 addr3[ETH_ALEN];
337 __le16 seq_ctrl;
338 __le16 qos_ctrl;
339 } __packed __aligned(2);
340
341 struct ieee80211_qos_hdr_4addr {
342 __le16 frame_control;
343 __le16 duration_id;
344 u8 addr1[ETH_ALEN];
345 u8 addr2[ETH_ALEN];
346 u8 addr3[ETH_ALEN];
347 __le16 seq_ctrl;
348 u8 addr4[ETH_ALEN];
349 __le16 qos_ctrl;
350 } __packed __aligned(2);
351
352 struct ieee80211_trigger {
353 __le16 frame_control;
354 __le16 duration;
355 u8 ra[ETH_ALEN];
356 u8 ta[ETH_ALEN];
357 __le64 common_info;
358 u8 variable[];
359 } __packed __aligned(2);
360
361 /**
362 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
363 * @fc: frame control bytes in little-endian byteorder
364 */
ieee80211_has_tods(__le16 fc)365 static inline bool ieee80211_has_tods(__le16 fc)
366 {
367 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
368 }
369
370 /**
371 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
372 * @fc: frame control bytes in little-endian byteorder
373 */
ieee80211_has_fromds(__le16 fc)374 static inline bool ieee80211_has_fromds(__le16 fc)
375 {
376 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
377 }
378
379 /**
380 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
381 * @fc: frame control bytes in little-endian byteorder
382 */
ieee80211_has_a4(__le16 fc)383 static inline bool ieee80211_has_a4(__le16 fc)
384 {
385 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
386 return (fc & tmp) == tmp;
387 }
388
389 /**
390 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
391 * @fc: frame control bytes in little-endian byteorder
392 */
ieee80211_has_morefrags(__le16 fc)393 static inline bool ieee80211_has_morefrags(__le16 fc)
394 {
395 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
396 }
397
398 /**
399 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
400 * @fc: frame control bytes in little-endian byteorder
401 */
ieee80211_has_retry(__le16 fc)402 static inline bool ieee80211_has_retry(__le16 fc)
403 {
404 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
405 }
406
407 /**
408 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
409 * @fc: frame control bytes in little-endian byteorder
410 */
ieee80211_has_pm(__le16 fc)411 static inline bool ieee80211_has_pm(__le16 fc)
412 {
413 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
414 }
415
416 /**
417 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
418 * @fc: frame control bytes in little-endian byteorder
419 */
ieee80211_has_moredata(__le16 fc)420 static inline bool ieee80211_has_moredata(__le16 fc)
421 {
422 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
423 }
424
425 /**
426 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
427 * @fc: frame control bytes in little-endian byteorder
428 */
ieee80211_has_protected(__le16 fc)429 static inline bool ieee80211_has_protected(__le16 fc)
430 {
431 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
432 }
433
434 /**
435 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
436 * @fc: frame control bytes in little-endian byteorder
437 */
ieee80211_has_order(__le16 fc)438 static inline bool ieee80211_has_order(__le16 fc)
439 {
440 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
441 }
442
443 /**
444 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
445 * @fc: frame control bytes in little-endian byteorder
446 */
ieee80211_is_mgmt(__le16 fc)447 static inline bool ieee80211_is_mgmt(__le16 fc)
448 {
449 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
450 cpu_to_le16(IEEE80211_FTYPE_MGMT);
451 }
452
453 /**
454 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
455 * @fc: frame control bytes in little-endian byteorder
456 */
ieee80211_is_ctl(__le16 fc)457 static inline bool ieee80211_is_ctl(__le16 fc)
458 {
459 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
460 cpu_to_le16(IEEE80211_FTYPE_CTL);
461 }
462
463 /**
464 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
465 * @fc: frame control bytes in little-endian byteorder
466 */
ieee80211_is_data(__le16 fc)467 static inline bool ieee80211_is_data(__le16 fc)
468 {
469 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
470 cpu_to_le16(IEEE80211_FTYPE_DATA);
471 }
472
473 /**
474 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
475 * @fc: frame control bytes in little-endian byteorder
476 */
ieee80211_is_ext(__le16 fc)477 static inline bool ieee80211_is_ext(__le16 fc)
478 {
479 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
480 cpu_to_le16(IEEE80211_FTYPE_EXT);
481 }
482
483
484 /**
485 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
486 * @fc: frame control bytes in little-endian byteorder
487 */
ieee80211_is_data_qos(__le16 fc)488 static inline bool ieee80211_is_data_qos(__le16 fc)
489 {
490 /*
491 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
492 * to check the one bit
493 */
494 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
495 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
496 }
497
498 /**
499 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
500 * @fc: frame control bytes in little-endian byteorder
501 */
ieee80211_is_data_present(__le16 fc)502 static inline bool ieee80211_is_data_present(__le16 fc)
503 {
504 /*
505 * mask with 0x40 and test that that bit is clear to only return true
506 * for the data-containing substypes.
507 */
508 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
509 cpu_to_le16(IEEE80211_FTYPE_DATA);
510 }
511
512 /**
513 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
514 * @fc: frame control bytes in little-endian byteorder
515 */
ieee80211_is_assoc_req(__le16 fc)516 static inline bool ieee80211_is_assoc_req(__le16 fc)
517 {
518 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
519 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
520 }
521
522 /**
523 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
524 * @fc: frame control bytes in little-endian byteorder
525 */
ieee80211_is_assoc_resp(__le16 fc)526 static inline bool ieee80211_is_assoc_resp(__le16 fc)
527 {
528 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
529 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
530 }
531
532 /**
533 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
534 * @fc: frame control bytes in little-endian byteorder
535 */
ieee80211_is_reassoc_req(__le16 fc)536 static inline bool ieee80211_is_reassoc_req(__le16 fc)
537 {
538 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
539 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
540 }
541
542 /**
543 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
544 * @fc: frame control bytes in little-endian byteorder
545 */
ieee80211_is_reassoc_resp(__le16 fc)546 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
547 {
548 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
549 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
550 }
551
552 /**
553 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
554 * @fc: frame control bytes in little-endian byteorder
555 */
ieee80211_is_probe_req(__le16 fc)556 static inline bool ieee80211_is_probe_req(__le16 fc)
557 {
558 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
559 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
560 }
561
562 /**
563 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
564 * @fc: frame control bytes in little-endian byteorder
565 */
ieee80211_is_probe_resp(__le16 fc)566 static inline bool ieee80211_is_probe_resp(__le16 fc)
567 {
568 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
570 }
571
572 /**
573 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
574 * @fc: frame control bytes in little-endian byteorder
575 */
ieee80211_is_beacon(__le16 fc)576 static inline bool ieee80211_is_beacon(__le16 fc)
577 {
578 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
579 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
580 }
581
582 /**
583 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
584 * IEEE80211_STYPE_S1G_BEACON
585 * @fc: frame control bytes in little-endian byteorder
586 */
ieee80211_is_s1g_beacon(__le16 fc)587 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
588 {
589 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
590 IEEE80211_FCTL_STYPE)) ==
591 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
592 }
593
594 /**
595 * ieee80211_next_tbtt_present - check if IEEE80211_FTYPE_EXT &&
596 * IEEE80211_STYPE_S1G_BEACON && IEEE80211_S1G_BCN_NEXT_TBTT
597 * @fc: frame control bytes in little-endian byteorder
598 */
ieee80211_next_tbtt_present(__le16 fc)599 static inline bool ieee80211_next_tbtt_present(__le16 fc)
600 {
601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON) &&
603 fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT);
604 }
605
606 /**
607 * ieee80211_is_s1g_short_beacon - check if next tbtt present bit is set. Only
608 * true for S1G beacons when they're short.
609 * @fc: frame control bytes in little-endian byteorder
610 */
ieee80211_is_s1g_short_beacon(__le16 fc)611 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc)
612 {
613 return ieee80211_is_s1g_beacon(fc) && ieee80211_next_tbtt_present(fc);
614 }
615
616 /**
617 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
618 * @fc: frame control bytes in little-endian byteorder
619 */
ieee80211_is_atim(__le16 fc)620 static inline bool ieee80211_is_atim(__le16 fc)
621 {
622 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
623 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
624 }
625
626 /**
627 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
628 * @fc: frame control bytes in little-endian byteorder
629 */
ieee80211_is_disassoc(__le16 fc)630 static inline bool ieee80211_is_disassoc(__le16 fc)
631 {
632 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
633 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
634 }
635
636 /**
637 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
638 * @fc: frame control bytes in little-endian byteorder
639 */
ieee80211_is_auth(__le16 fc)640 static inline bool ieee80211_is_auth(__le16 fc)
641 {
642 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
643 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
644 }
645
646 /**
647 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
648 * @fc: frame control bytes in little-endian byteorder
649 */
ieee80211_is_deauth(__le16 fc)650 static inline bool ieee80211_is_deauth(__le16 fc)
651 {
652 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
653 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
654 }
655
656 /**
657 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
658 * @fc: frame control bytes in little-endian byteorder
659 */
ieee80211_is_action(__le16 fc)660 static inline bool ieee80211_is_action(__le16 fc)
661 {
662 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
663 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
664 }
665
666 /**
667 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
668 * @fc: frame control bytes in little-endian byteorder
669 */
ieee80211_is_back_req(__le16 fc)670 static inline bool ieee80211_is_back_req(__le16 fc)
671 {
672 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
673 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
674 }
675
676 /**
677 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
678 * @fc: frame control bytes in little-endian byteorder
679 */
ieee80211_is_back(__le16 fc)680 static inline bool ieee80211_is_back(__le16 fc)
681 {
682 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
683 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
684 }
685
686 /**
687 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
688 * @fc: frame control bytes in little-endian byteorder
689 */
ieee80211_is_pspoll(__le16 fc)690 static inline bool ieee80211_is_pspoll(__le16 fc)
691 {
692 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
693 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
694 }
695
696 /**
697 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
698 * @fc: frame control bytes in little-endian byteorder
699 */
ieee80211_is_rts(__le16 fc)700 static inline bool ieee80211_is_rts(__le16 fc)
701 {
702 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
703 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
704 }
705
706 /**
707 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
708 * @fc: frame control bytes in little-endian byteorder
709 */
ieee80211_is_cts(__le16 fc)710 static inline bool ieee80211_is_cts(__le16 fc)
711 {
712 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
713 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
714 }
715
716 /**
717 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
718 * @fc: frame control bytes in little-endian byteorder
719 */
ieee80211_is_ack(__le16 fc)720 static inline bool ieee80211_is_ack(__le16 fc)
721 {
722 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
723 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
724 }
725
726 /**
727 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
728 * @fc: frame control bytes in little-endian byteorder
729 */
ieee80211_is_cfend(__le16 fc)730 static inline bool ieee80211_is_cfend(__le16 fc)
731 {
732 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
733 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
734 }
735
736 /**
737 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
738 * @fc: frame control bytes in little-endian byteorder
739 */
ieee80211_is_cfendack(__le16 fc)740 static inline bool ieee80211_is_cfendack(__le16 fc)
741 {
742 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
743 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
744 }
745
746 /**
747 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
748 * @fc: frame control bytes in little-endian byteorder
749 */
ieee80211_is_nullfunc(__le16 fc)750 static inline bool ieee80211_is_nullfunc(__le16 fc)
751 {
752 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
753 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
754 }
755
756 /**
757 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
758 * @fc: frame control bytes in little-endian byteorder
759 */
ieee80211_is_qos_nullfunc(__le16 fc)760 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
761 {
762 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
763 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
764 }
765
766 /**
767 * ieee80211_is_trigger - check if frame is trigger frame
768 * @fc: frame control field in little-endian byteorder
769 */
ieee80211_is_trigger(__le16 fc)770 static inline bool ieee80211_is_trigger(__le16 fc)
771 {
772 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
773 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
774 }
775
776 /**
777 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
778 * @fc: frame control bytes in little-endian byteorder
779 */
ieee80211_is_any_nullfunc(__le16 fc)780 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
781 {
782 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
783 }
784
785 /**
786 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
787 * @seq_ctrl: frame sequence control bytes in little-endian byteorder
788 */
ieee80211_is_first_frag(__le16 seq_ctrl)789 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
790 {
791 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
792 }
793
794 /**
795 * ieee80211_is_frag - check if a frame is a fragment
796 * @hdr: 802.11 header of the frame
797 */
ieee80211_is_frag(struct ieee80211_hdr * hdr)798 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
799 {
800 return ieee80211_has_morefrags(hdr->frame_control) ||
801 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
802 }
803
804 struct ieee80211s_hdr {
805 u8 flags;
806 u8 ttl;
807 __le32 seqnum;
808 u8 eaddr1[ETH_ALEN];
809 u8 eaddr2[ETH_ALEN];
810 } __packed __aligned(2);
811
812 /* Mesh flags */
813 #define MESH_FLAGS_AE_A4 0x1
814 #define MESH_FLAGS_AE_A5_A6 0x2
815 #define MESH_FLAGS_AE 0x3
816 #define MESH_FLAGS_PS_DEEP 0x4
817
818 /**
819 * enum ieee80211_preq_flags - mesh PREQ element flags
820 *
821 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
822 */
823 enum ieee80211_preq_flags {
824 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
825 };
826
827 /**
828 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
829 *
830 * @IEEE80211_PREQ_TO_FLAG: target only subfield
831 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
832 */
833 enum ieee80211_preq_target_flags {
834 IEEE80211_PREQ_TO_FLAG = 1<<0,
835 IEEE80211_PREQ_USN_FLAG = 1<<2,
836 };
837
838 /**
839 * struct ieee80211_quiet_ie - Quiet element
840 * @count: Quiet Count
841 * @period: Quiet Period
842 * @duration: Quiet Duration
843 * @offset: Quiet Offset
844 *
845 * This structure represents the payload of the "Quiet element" as
846 * described in IEEE Std 802.11-2020 section 9.4.2.22.
847 */
848 struct ieee80211_quiet_ie {
849 u8 count;
850 u8 period;
851 __le16 duration;
852 __le16 offset;
853 } __packed;
854
855 /**
856 * struct ieee80211_msrment_ie - Measurement element
857 * @token: Measurement Token
858 * @mode: Measurement Report Mode
859 * @type: Measurement Type
860 * @request: Measurement Request or Measurement Report
861 *
862 * This structure represents the payload of both the "Measurement
863 * Request element" and the "Measurement Report element" as described
864 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
865 */
866 struct ieee80211_msrment_ie {
867 u8 token;
868 u8 mode;
869 u8 type;
870 u8 request[];
871 } __packed;
872
873 /**
874 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
875 * @mode: Channel Switch Mode
876 * @new_ch_num: New Channel Number
877 * @count: Channel Switch Count
878 *
879 * This structure represents the payload of the "Channel Switch
880 * Announcement element" as described in IEEE Std 802.11-2020 section
881 * 9.4.2.18.
882 */
883 struct ieee80211_channel_sw_ie {
884 u8 mode;
885 u8 new_ch_num;
886 u8 count;
887 } __packed;
888
889 /**
890 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
891 * @mode: Channel Switch Mode
892 * @new_operating_class: New Operating Class
893 * @new_ch_num: New Channel Number
894 * @count: Channel Switch Count
895 *
896 * This structure represents the "Extended Channel Switch Announcement
897 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
898 */
899 struct ieee80211_ext_chansw_ie {
900 u8 mode;
901 u8 new_operating_class;
902 u8 new_ch_num;
903 u8 count;
904 } __packed;
905
906 /**
907 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
908 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
909 * values here
910 * This structure represents the "Secondary Channel Offset element"
911 */
912 struct ieee80211_sec_chan_offs_ie {
913 u8 sec_chan_offs;
914 } __packed;
915
916 /**
917 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
918 * @mesh_ttl: Time To Live
919 * @mesh_flags: Flags
920 * @mesh_reason: Reason Code
921 * @mesh_pre_value: Precedence Value
922 *
923 * This structure represents the payload of the "Mesh Channel Switch
924 * Parameters element" as described in IEEE Std 802.11-2020 section
925 * 9.4.2.102.
926 */
927 struct ieee80211_mesh_chansw_params_ie {
928 u8 mesh_ttl;
929 u8 mesh_flags;
930 __le16 mesh_reason;
931 __le16 mesh_pre_value;
932 } __packed;
933
934 /**
935 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
936 * @new_channel_width: New Channel Width
937 * @new_center_freq_seg0: New Channel Center Frequency Segment 0
938 * @new_center_freq_seg1: New Channel Center Frequency Segment 1
939 *
940 * This structure represents the payload of the "Wide Bandwidth
941 * Channel Switch element" as described in IEEE Std 802.11-2020
942 * section 9.4.2.160.
943 */
944 struct ieee80211_wide_bw_chansw_ie {
945 u8 new_channel_width;
946 u8 new_center_freq_seg0, new_center_freq_seg1;
947 } __packed;
948
949 /**
950 * struct ieee80211_tim_ie - Traffic Indication Map information element
951 * @dtim_count: DTIM Count
952 * @dtim_period: DTIM Period
953 * @bitmap_ctrl: Bitmap Control
954 * @required_octet: "Syntatic sugar" to force the struct size to the
955 * minimum valid size when carried in a non-S1G PPDU
956 * @virtual_map: Partial Virtual Bitmap
957 *
958 * This structure represents the payload of the "TIM element" as
959 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
960 * definition is only applicable when the element is carried in a
961 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
962 * Control and Partial Virtual Bitmap may not be present.
963 */
964 struct ieee80211_tim_ie {
965 u8 dtim_count;
966 u8 dtim_period;
967 u8 bitmap_ctrl;
968 union {
969 u8 required_octet;
970 DECLARE_FLEX_ARRAY(u8, virtual_map);
971 };
972 } __packed;
973
974 /**
975 * struct ieee80211_meshconf_ie - Mesh Configuration element
976 * @meshconf_psel: Active Path Selection Protocol Identifier
977 * @meshconf_pmetric: Active Path Selection Metric Identifier
978 * @meshconf_congest: Congestion Control Mode Identifier
979 * @meshconf_synch: Synchronization Method Identifier
980 * @meshconf_auth: Authentication Protocol Identifier
981 * @meshconf_form: Mesh Formation Info
982 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
983 *
984 * This structure represents the payload of the "Mesh Configuration
985 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
986 */
987 struct ieee80211_meshconf_ie {
988 u8 meshconf_psel;
989 u8 meshconf_pmetric;
990 u8 meshconf_congest;
991 u8 meshconf_synch;
992 u8 meshconf_auth;
993 u8 meshconf_form;
994 u8 meshconf_cap;
995 } __packed;
996
997 /**
998 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
999 *
1000 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1001 * additional mesh peerings with other mesh STAs
1002 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1003 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1004 * is ongoing
1005 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1006 * neighbors in deep sleep mode
1007 *
1008 * Enumerates the "Mesh Capability" as described in IEEE Std
1009 * 802.11-2020 section 9.4.2.97.7.
1010 */
1011 enum mesh_config_capab_flags {
1012 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
1013 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
1014 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
1015 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
1016 };
1017
1018 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1019
1020 /*
1021 * mesh channel switch parameters element's flag indicator
1022 *
1023 */
1024 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1025 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1026 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1027
1028 /**
1029 * struct ieee80211_rann_ie - RANN (root announcement) element
1030 * @rann_flags: Flags
1031 * @rann_hopcount: Hop Count
1032 * @rann_ttl: Element TTL
1033 * @rann_addr: Root Mesh STA Address
1034 * @rann_seq: HWMP Sequence Number
1035 * @rann_interval: Interval
1036 * @rann_metric: Metric
1037 *
1038 * This structure represents the payload of the "RANN element" as
1039 * described in IEEE Std 802.11-2020 section 9.4.2.111.
1040 */
1041 struct ieee80211_rann_ie {
1042 u8 rann_flags;
1043 u8 rann_hopcount;
1044 u8 rann_ttl;
1045 u8 rann_addr[ETH_ALEN];
1046 __le32 rann_seq;
1047 __le32 rann_interval;
1048 __le32 rann_metric;
1049 } __packed;
1050
1051 enum ieee80211_rann_flags {
1052 RANN_FLAG_IS_GATE = 1 << 0,
1053 };
1054
1055 enum ieee80211_ht_chanwidth_values {
1056 IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1057 IEEE80211_HT_CHANWIDTH_ANY = 1,
1058 };
1059
1060 /**
1061 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1062 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1063 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1064 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1065 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1066 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1067 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1068 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1069 * (the NSS value is the value of this field + 1)
1070 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1071 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1072 * using a beamforming steering matrix
1073 */
1074 enum ieee80211_vht_opmode_bits {
1075 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03,
1076 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
1077 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
1078 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
1079 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
1080 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04,
1081 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
1082 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
1083 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
1084 };
1085
1086 /**
1087 * enum ieee80211_s1g_chanwidth
1088 * These are defined in IEEE802.11-2016ah Table 10-20
1089 * as BSS Channel Width
1090 *
1091 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1092 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1093 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1094 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1095 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1096 */
1097 enum ieee80211_s1g_chanwidth {
1098 IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1099 IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1100 IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1101 IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1102 IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1103 };
1104
1105 #define WLAN_SA_QUERY_TR_ID_LEN 2
1106 #define WLAN_MEMBERSHIP_LEN 8
1107 #define WLAN_USER_POSITION_LEN 16
1108
1109 /**
1110 * struct ieee80211_tpc_report_ie - TPC Report element
1111 * @tx_power: Transmit Power
1112 * @link_margin: Link Margin
1113 *
1114 * This structure represents the payload of the "TPC Report element" as
1115 * described in IEEE Std 802.11-2020 section 9.4.2.16.
1116 */
1117 struct ieee80211_tpc_report_ie {
1118 u8 tx_power;
1119 u8 link_margin;
1120 } __packed;
1121
1122 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1)
1123 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1
1124 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0)
1125 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5)
1126 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10
1127
1128 struct ieee80211_addba_ext_ie {
1129 u8 data;
1130 } __packed;
1131
1132 /**
1133 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1134 * @compat_info: Compatibility Information
1135 * @beacon_int: Beacon Interval
1136 * @tsf_completion: TSF Completion
1137 *
1138 * This structure represents the payload of the "S1G Beacon
1139 * Compatibility element" as described in IEEE Std 802.11-2020 section
1140 * 9.4.2.196.
1141 */
1142 struct ieee80211_s1g_bcn_compat_ie {
1143 __le16 compat_info;
1144 __le16 beacon_int;
1145 __le32 tsf_completion;
1146 } __packed;
1147
1148 /**
1149 * struct ieee80211_s1g_oper_ie - S1G Operation element
1150 * @ch_width: S1G Operation Information Channel Width
1151 * @oper_class: S1G Operation Information Operating Class
1152 * @primary_ch: S1G Operation Information Primary Channel Number
1153 * @oper_ch: S1G Operation Information Channel Center Frequency
1154 * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1155 *
1156 * This structure represents the payload of the "S1G Operation
1157 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1158 */
1159 struct ieee80211_s1g_oper_ie {
1160 u8 ch_width;
1161 u8 oper_class;
1162 u8 primary_ch;
1163 u8 oper_ch;
1164 __le16 basic_mcs_nss;
1165 } __packed;
1166
1167 /**
1168 * struct ieee80211_aid_response_ie - AID Response element
1169 * @aid: AID/Group AID
1170 * @switch_count: AID Switch Count
1171 * @response_int: AID Response Interval
1172 *
1173 * This structure represents the payload of the "AID Response element"
1174 * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1175 */
1176 struct ieee80211_aid_response_ie {
1177 __le16 aid;
1178 u8 switch_count;
1179 __le16 response_int;
1180 } __packed;
1181
1182 struct ieee80211_s1g_cap {
1183 u8 capab_info[10];
1184 u8 supp_mcs_nss[5];
1185 } __packed;
1186
1187 struct ieee80211_ext {
1188 __le16 frame_control;
1189 __le16 duration;
1190 union {
1191 struct {
1192 u8 sa[ETH_ALEN];
1193 __le32 timestamp;
1194 u8 change_seq;
1195 u8 variable[0];
1196 } __packed s1g_beacon;
1197 struct {
1198 u8 sa[ETH_ALEN];
1199 __le32 timestamp;
1200 u8 change_seq;
1201 u8 next_tbtt[3];
1202 u8 variable[0];
1203 } __packed s1g_short_beacon;
1204 } u;
1205 } __packed __aligned(2);
1206
1207 #define IEEE80211_TWT_CONTROL_NDP BIT(0)
1208 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1)
1209 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3)
1210 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4)
1211 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5)
1212
1213 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0)
1214 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1)
1215 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4)
1216 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5)
1217 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6)
1218 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7)
1219 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10)
1220 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15)
1221
1222 enum ieee80211_twt_setup_cmd {
1223 TWT_SETUP_CMD_REQUEST,
1224 TWT_SETUP_CMD_SUGGEST,
1225 TWT_SETUP_CMD_DEMAND,
1226 TWT_SETUP_CMD_GROUPING,
1227 TWT_SETUP_CMD_ACCEPT,
1228 TWT_SETUP_CMD_ALTERNATE,
1229 TWT_SETUP_CMD_DICTATE,
1230 TWT_SETUP_CMD_REJECT,
1231 };
1232
1233 struct ieee80211_twt_params {
1234 __le16 req_type;
1235 __le64 twt;
1236 u8 min_twt_dur;
1237 __le16 mantissa;
1238 u8 channel;
1239 } __packed;
1240
1241 struct ieee80211_twt_setup {
1242 u8 dialog_token;
1243 u8 element_id;
1244 u8 length;
1245 u8 control;
1246 u8 params[];
1247 } __packed;
1248
1249 struct ieee80211_mgmt {
1250 __le16 frame_control;
1251 __le16 duration;
1252 u8 da[ETH_ALEN];
1253 u8 sa[ETH_ALEN];
1254 u8 bssid[ETH_ALEN];
1255 __le16 seq_ctrl;
1256 union {
1257 struct {
1258 __le16 auth_alg;
1259 __le16 auth_transaction;
1260 __le16 status_code;
1261 /* possibly followed by Challenge text */
1262 u8 variable[];
1263 } __packed auth;
1264 struct {
1265 __le16 reason_code;
1266 } __packed deauth;
1267 struct {
1268 __le16 capab_info;
1269 __le16 listen_interval;
1270 /* followed by SSID and Supported rates */
1271 u8 variable[];
1272 } __packed assoc_req;
1273 struct {
1274 __le16 capab_info;
1275 __le16 status_code;
1276 __le16 aid;
1277 /* followed by Supported rates */
1278 u8 variable[];
1279 } __packed assoc_resp, reassoc_resp;
1280 struct {
1281 __le16 capab_info;
1282 __le16 status_code;
1283 u8 variable[];
1284 } __packed s1g_assoc_resp, s1g_reassoc_resp;
1285 struct {
1286 __le16 capab_info;
1287 __le16 listen_interval;
1288 u8 current_ap[ETH_ALEN];
1289 /* followed by SSID and Supported rates */
1290 u8 variable[];
1291 } __packed reassoc_req;
1292 struct {
1293 __le16 reason_code;
1294 } __packed disassoc;
1295 struct {
1296 __le64 timestamp;
1297 __le16 beacon_int;
1298 __le16 capab_info;
1299 /* followed by some of SSID, Supported rates,
1300 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1301 u8 variable[];
1302 } __packed beacon;
1303 struct {
1304 /* only variable items: SSID, Supported rates */
1305 DECLARE_FLEX_ARRAY(u8, variable);
1306 } __packed probe_req;
1307 struct {
1308 __le64 timestamp;
1309 __le16 beacon_int;
1310 __le16 capab_info;
1311 /* followed by some of SSID, Supported rates,
1312 * FH Params, DS Params, CF Params, IBSS Params */
1313 u8 variable[];
1314 } __packed probe_resp;
1315 struct {
1316 u8 category;
1317 union {
1318 struct {
1319 u8 action_code;
1320 u8 dialog_token;
1321 u8 status_code;
1322 u8 variable[];
1323 } __packed wme_action;
1324 struct{
1325 u8 action_code;
1326 u8 variable[];
1327 } __packed chan_switch;
1328 struct{
1329 u8 action_code;
1330 struct ieee80211_ext_chansw_ie data;
1331 u8 variable[];
1332 } __packed ext_chan_switch;
1333 struct{
1334 u8 action_code;
1335 u8 dialog_token;
1336 u8 element_id;
1337 u8 length;
1338 struct ieee80211_msrment_ie msr_elem;
1339 } __packed measurement;
1340 struct{
1341 u8 action_code;
1342 u8 dialog_token;
1343 __le16 capab;
1344 __le16 timeout;
1345 __le16 start_seq_num;
1346 /* followed by BA Extension */
1347 u8 variable[];
1348 } __packed addba_req;
1349 struct{
1350 u8 action_code;
1351 u8 dialog_token;
1352 __le16 status;
1353 __le16 capab;
1354 __le16 timeout;
1355 } __packed addba_resp;
1356 struct{
1357 u8 action_code;
1358 __le16 params;
1359 __le16 reason_code;
1360 } __packed delba;
1361 struct {
1362 u8 action_code;
1363 u8 variable[];
1364 } __packed self_prot;
1365 struct{
1366 u8 action_code;
1367 u8 variable[];
1368 } __packed mesh_action;
1369 struct {
1370 u8 action;
1371 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1372 } __packed sa_query;
1373 struct {
1374 u8 action;
1375 u8 smps_control;
1376 } __packed ht_smps;
1377 struct {
1378 u8 action_code;
1379 u8 chanwidth;
1380 } __packed ht_notify_cw;
1381 struct {
1382 u8 action_code;
1383 u8 dialog_token;
1384 __le16 capability;
1385 u8 variable[0];
1386 } __packed tdls_discover_resp;
1387 struct {
1388 u8 action_code;
1389 u8 operating_mode;
1390 } __packed vht_opmode_notif;
1391 struct {
1392 u8 action_code;
1393 u8 membership[WLAN_MEMBERSHIP_LEN];
1394 u8 position[WLAN_USER_POSITION_LEN];
1395 } __packed vht_group_notif;
1396 struct {
1397 u8 action_code;
1398 u8 dialog_token;
1399 u8 tpc_elem_id;
1400 u8 tpc_elem_length;
1401 struct ieee80211_tpc_report_ie tpc;
1402 } __packed tpc_report;
1403 struct {
1404 u8 action_code;
1405 u8 dialog_token;
1406 u8 follow_up;
1407 u8 tod[6];
1408 u8 toa[6];
1409 __le16 tod_error;
1410 __le16 toa_error;
1411 u8 variable[];
1412 } __packed ftm;
1413 struct {
1414 u8 action_code;
1415 u8 variable[];
1416 } __packed s1g;
1417 struct {
1418 u8 action_code;
1419 u8 dialog_token;
1420 u8 follow_up;
1421 u32 tod;
1422 u32 toa;
1423 u8 max_tod_error;
1424 u8 max_toa_error;
1425 } __packed wnm_timing_msr;
1426 } u;
1427 } __packed action;
1428 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1429 } u;
1430 } __packed __aligned(2);
1431
1432 /* Supported rates membership selectors */
1433 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
1434 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
1435 #define BSS_MEMBERSHIP_SELECTOR_GLK 125
1436 #define BSS_MEMBERSHIP_SELECTOR_EPS 124
1437 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1438 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122
1439 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121
1440
1441 /* mgmt header + 1 byte category code */
1442 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1443
1444
1445 /* Management MIC information element (IEEE 802.11w) */
1446 struct ieee80211_mmie {
1447 u8 element_id;
1448 u8 length;
1449 __le16 key_id;
1450 u8 sequence_number[6];
1451 u8 mic[8];
1452 } __packed;
1453
1454 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1455 struct ieee80211_mmie_16 {
1456 u8 element_id;
1457 u8 length;
1458 __le16 key_id;
1459 u8 sequence_number[6];
1460 u8 mic[16];
1461 } __packed;
1462
1463 struct ieee80211_vendor_ie {
1464 u8 element_id;
1465 u8 len;
1466 u8 oui[3];
1467 u8 oui_type;
1468 } __packed;
1469
1470 struct ieee80211_wmm_ac_param {
1471 u8 aci_aifsn; /* AIFSN, ACM, ACI */
1472 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1473 __le16 txop_limit;
1474 } __packed;
1475
1476 struct ieee80211_wmm_param_ie {
1477 u8 element_id; /* Element ID: 221 (0xdd); */
1478 u8 len; /* Length: 24 */
1479 /* required fields for WMM version 1 */
1480 u8 oui[3]; /* 00:50:f2 */
1481 u8 oui_type; /* 2 */
1482 u8 oui_subtype; /* 1 */
1483 u8 version; /* 1 for WMM version 1.0 */
1484 u8 qos_info; /* AP/STA specific QoS info */
1485 u8 reserved; /* 0 */
1486 /* AC_BE, AC_BK, AC_VI, AC_VO */
1487 struct ieee80211_wmm_ac_param ac[4];
1488 } __packed;
1489
1490 /* Control frames */
1491 struct ieee80211_rts {
1492 __le16 frame_control;
1493 __le16 duration;
1494 u8 ra[ETH_ALEN];
1495 u8 ta[ETH_ALEN];
1496 } __packed __aligned(2);
1497
1498 struct ieee80211_cts {
1499 __le16 frame_control;
1500 __le16 duration;
1501 u8 ra[ETH_ALEN];
1502 } __packed __aligned(2);
1503
1504 struct ieee80211_pspoll {
1505 __le16 frame_control;
1506 __le16 aid;
1507 u8 bssid[ETH_ALEN];
1508 u8 ta[ETH_ALEN];
1509 } __packed __aligned(2);
1510
1511 /* TDLS */
1512
1513 /* Channel switch timing */
1514 struct ieee80211_ch_switch_timing {
1515 __le16 switch_time;
1516 __le16 switch_timeout;
1517 } __packed;
1518
1519 /* Link-id information element */
1520 struct ieee80211_tdls_lnkie {
1521 u8 ie_type; /* Link Identifier IE */
1522 u8 ie_len;
1523 u8 bssid[ETH_ALEN];
1524 u8 init_sta[ETH_ALEN];
1525 u8 resp_sta[ETH_ALEN];
1526 } __packed;
1527
1528 struct ieee80211_tdls_data {
1529 u8 da[ETH_ALEN];
1530 u8 sa[ETH_ALEN];
1531 __be16 ether_type;
1532 u8 payload_type;
1533 u8 category;
1534 u8 action_code;
1535 union {
1536 struct {
1537 u8 dialog_token;
1538 __le16 capability;
1539 u8 variable[0];
1540 } __packed setup_req;
1541 struct {
1542 __le16 status_code;
1543 u8 dialog_token;
1544 __le16 capability;
1545 u8 variable[0];
1546 } __packed setup_resp;
1547 struct {
1548 __le16 status_code;
1549 u8 dialog_token;
1550 u8 variable[0];
1551 } __packed setup_cfm;
1552 struct {
1553 __le16 reason_code;
1554 u8 variable[0];
1555 } __packed teardown;
1556 struct {
1557 u8 dialog_token;
1558 u8 variable[0];
1559 } __packed discover_req;
1560 struct {
1561 u8 target_channel;
1562 u8 oper_class;
1563 u8 variable[0];
1564 } __packed chan_switch_req;
1565 struct {
1566 __le16 status_code;
1567 u8 variable[0];
1568 } __packed chan_switch_resp;
1569 } u;
1570 } __packed;
1571
1572 /*
1573 * Peer-to-Peer IE attribute related definitions.
1574 */
1575 /*
1576 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1577 */
1578 enum ieee80211_p2p_attr_id {
1579 IEEE80211_P2P_ATTR_STATUS = 0,
1580 IEEE80211_P2P_ATTR_MINOR_REASON,
1581 IEEE80211_P2P_ATTR_CAPABILITY,
1582 IEEE80211_P2P_ATTR_DEVICE_ID,
1583 IEEE80211_P2P_ATTR_GO_INTENT,
1584 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1585 IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1586 IEEE80211_P2P_ATTR_GROUP_BSSID,
1587 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1588 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1589 IEEE80211_P2P_ATTR_MANAGABILITY,
1590 IEEE80211_P2P_ATTR_CHANNEL_LIST,
1591 IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1592 IEEE80211_P2P_ATTR_DEVICE_INFO,
1593 IEEE80211_P2P_ATTR_GROUP_INFO,
1594 IEEE80211_P2P_ATTR_GROUP_ID,
1595 IEEE80211_P2P_ATTR_INTERFACE,
1596 IEEE80211_P2P_ATTR_OPER_CHANNEL,
1597 IEEE80211_P2P_ATTR_INVITE_FLAGS,
1598 /* 19 - 220: Reserved */
1599 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1600
1601 IEEE80211_P2P_ATTR_MAX
1602 };
1603
1604 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1605 /* Typical max value used here */
1606 #define IEEE80211_P2P_NOA_DESC_MAX 4
1607
1608 struct ieee80211_p2p_noa_desc {
1609 u8 count;
1610 __le32 duration;
1611 __le32 interval;
1612 __le32 start_time;
1613 } __packed;
1614
1615 struct ieee80211_p2p_noa_attr {
1616 u8 index;
1617 u8 oppps_ctwindow;
1618 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1619 } __packed;
1620
1621 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
1622 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
1623
1624 /**
1625 * struct ieee80211_bar - Block Ack Request frame format
1626 * @frame_control: Frame Control
1627 * @duration: Duration
1628 * @ra: RA
1629 * @ta: TA
1630 * @control: BAR Control
1631 * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1632 *
1633 * This structure represents the "BlockAckReq frame format"
1634 * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1635 */
1636 struct ieee80211_bar {
1637 __le16 frame_control;
1638 __le16 duration;
1639 __u8 ra[ETH_ALEN];
1640 __u8 ta[ETH_ALEN];
1641 __le16 control;
1642 __le16 start_seq_num;
1643 } __packed;
1644
1645 /* 802.11 BAR control masks */
1646 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
1647 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
1648 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
1649 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
1650 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
1651
1652 #define IEEE80211_HT_MCS_MASK_LEN 10
1653
1654 /**
1655 * struct ieee80211_mcs_info - Supported MCS Set field
1656 * @rx_mask: RX mask
1657 * @rx_highest: highest supported RX rate. If set represents
1658 * the highest supported RX data rate in units of 1 Mbps.
1659 * If this field is 0 this value should not be used to
1660 * consider the highest RX data rate supported.
1661 * @tx_params: TX parameters
1662 * @reserved: Reserved bits
1663 *
1664 * This structure represents the "Supported MCS Set field" as
1665 * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1666 */
1667 struct ieee80211_mcs_info {
1668 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1669 __le16 rx_highest;
1670 u8 tx_params;
1671 u8 reserved[3];
1672 } __packed;
1673
1674 /* 802.11n HT capability MSC set */
1675 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
1676 #define IEEE80211_HT_MCS_TX_DEFINED 0x01
1677 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
1678 /* value 0 == 1 stream etc */
1679 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
1680 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
1681 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
1682 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
1683
1684 /*
1685 * 802.11n D5.0 20.3.5 / 20.6 says:
1686 * - indices 0 to 7 and 32 are single spatial stream
1687 * - 8 to 31 are multiple spatial streams using equal modulation
1688 * [8..15 for two streams, 16..23 for three and 24..31 for four]
1689 * - remainder are multiple spatial streams using unequal modulation
1690 */
1691 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1692 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1693 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1694
1695 /**
1696 * struct ieee80211_ht_cap - HT capabilities element
1697 * @cap_info: HT Capability Information
1698 * @ampdu_params_info: A-MPDU Parameters
1699 * @mcs: Supported MCS Set
1700 * @extended_ht_cap_info: HT Extended Capabilities
1701 * @tx_BF_cap_info: Transmit Beamforming Capabilities
1702 * @antenna_selection_info: ASEL Capability
1703 *
1704 * This structure represents the payload of the "HT Capabilities
1705 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1706 */
1707 struct ieee80211_ht_cap {
1708 __le16 cap_info;
1709 u8 ampdu_params_info;
1710
1711 /* 16 bytes MCS information */
1712 struct ieee80211_mcs_info mcs;
1713
1714 __le16 extended_ht_cap_info;
1715 __le32 tx_BF_cap_info;
1716 u8 antenna_selection_info;
1717 } __packed;
1718
1719 /* 802.11n HT capabilities masks (for cap_info) */
1720 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001
1721 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
1722 #define IEEE80211_HT_CAP_SM_PS 0x000C
1723 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2
1724 #define IEEE80211_HT_CAP_GRN_FLD 0x0010
1725 #define IEEE80211_HT_CAP_SGI_20 0x0020
1726 #define IEEE80211_HT_CAP_SGI_40 0x0040
1727 #define IEEE80211_HT_CAP_TX_STBC 0x0080
1728 #define IEEE80211_HT_CAP_RX_STBC 0x0300
1729 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
1730 #define IEEE80211_HT_CAP_DELAY_BA 0x0400
1731 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
1732 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000
1733 #define IEEE80211_HT_CAP_RESERVED 0x2000
1734 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
1735 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
1736
1737 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1738 #define IEEE80211_HT_EXT_CAP_PCO 0x0001
1739 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
1740 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
1741 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
1742 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
1743 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
1744 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
1745
1746 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1747 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
1748 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
1749 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
1750
1751 /*
1752 * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1753 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1754 */
1755 enum ieee80211_max_ampdu_length_exp {
1756 IEEE80211_HT_MAX_AMPDU_8K = 0,
1757 IEEE80211_HT_MAX_AMPDU_16K = 1,
1758 IEEE80211_HT_MAX_AMPDU_32K = 2,
1759 IEEE80211_HT_MAX_AMPDU_64K = 3
1760 };
1761
1762 /*
1763 * Maximum length of AMPDU that the STA can receive in VHT.
1764 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1765 */
1766 enum ieee80211_vht_max_ampdu_length_exp {
1767 IEEE80211_VHT_MAX_AMPDU_8K = 0,
1768 IEEE80211_VHT_MAX_AMPDU_16K = 1,
1769 IEEE80211_VHT_MAX_AMPDU_32K = 2,
1770 IEEE80211_VHT_MAX_AMPDU_64K = 3,
1771 IEEE80211_VHT_MAX_AMPDU_128K = 4,
1772 IEEE80211_VHT_MAX_AMPDU_256K = 5,
1773 IEEE80211_VHT_MAX_AMPDU_512K = 6,
1774 IEEE80211_VHT_MAX_AMPDU_1024K = 7
1775 };
1776
1777 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1778
1779 /* Minimum MPDU start spacing */
1780 enum ieee80211_min_mpdu_spacing {
1781 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
1782 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
1783 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
1784 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
1785 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
1786 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
1787 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
1788 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
1789 };
1790
1791 /**
1792 * struct ieee80211_ht_operation - HT operation IE
1793 * @primary_chan: Primary Channel
1794 * @ht_param: HT Operation Information parameters
1795 * @operation_mode: HT Operation Information operation mode
1796 * @stbc_param: HT Operation Information STBC params
1797 * @basic_set: Basic HT-MCS Set
1798 *
1799 * This structure represents the payload of the "HT Operation
1800 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1801 */
1802 struct ieee80211_ht_operation {
1803 u8 primary_chan;
1804 u8 ht_param;
1805 __le16 operation_mode;
1806 __le16 stbc_param;
1807 u8 basic_set[16];
1808 } __packed;
1809
1810 /* for ht_param */
1811 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
1812 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
1813 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
1814 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
1815 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
1816 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08
1817
1818 /* for operation_mode */
1819 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
1820 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
1821 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
1822 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
1823 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
1824 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
1825 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
1826 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
1827 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
1828
1829 /* for stbc_param */
1830 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
1831 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
1832 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
1833 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
1834 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
1835 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
1836
1837
1838 /* block-ack parameters */
1839 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
1840 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
1841 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
1842 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
1843 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
1844 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
1845
1846 /*
1847 * A-MPDU buffer sizes
1848 * According to HT size varies from 8 to 64 frames
1849 * HE adds the ability to have up to 256 frames.
1850 * EHT adds the ability to have up to 1K frames.
1851 */
1852 #define IEEE80211_MIN_AMPDU_BUF 0x8
1853 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40
1854 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100
1855 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400
1856
1857
1858 /* Spatial Multiplexing Power Save Modes (for capability) */
1859 #define WLAN_HT_CAP_SM_PS_STATIC 0
1860 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1
1861 #define WLAN_HT_CAP_SM_PS_INVALID 2
1862 #define WLAN_HT_CAP_SM_PS_DISABLED 3
1863
1864 /* for SM power control field lower two bits */
1865 #define WLAN_HT_SMPS_CONTROL_DISABLED 0
1866 #define WLAN_HT_SMPS_CONTROL_STATIC 1
1867 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
1868
1869 /**
1870 * struct ieee80211_vht_mcs_info - VHT MCS information
1871 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
1872 * @rx_highest: Indicates highest long GI VHT PPDU data rate
1873 * STA can receive. Rate expressed in units of 1 Mbps.
1874 * If this field is 0 this value should not be used to
1875 * consider the highest RX data rate supported.
1876 * The top 3 bits of this field indicate the Maximum NSTS,total
1877 * (a beamformee capability.)
1878 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
1879 * @tx_highest: Indicates highest long GI VHT PPDU data rate
1880 * STA can transmit. Rate expressed in units of 1 Mbps.
1881 * If this field is 0 this value should not be used to
1882 * consider the highest TX data rate supported.
1883 * The top 2 bits of this field are reserved, the
1884 * 3rd bit from the top indiciates VHT Extended NSS BW
1885 * Capability.
1886 */
1887 struct ieee80211_vht_mcs_info {
1888 __le16 rx_mcs_map;
1889 __le16 rx_highest;
1890 __le16 tx_mcs_map;
1891 __le16 tx_highest;
1892 } __packed;
1893
1894 /* for rx_highest */
1895 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
1896 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
1897
1898 /* for tx_highest */
1899 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
1900
1901 /**
1902 * enum ieee80211_vht_mcs_support - VHT MCS support definitions
1903 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
1904 * number of streams
1905 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
1906 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
1907 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
1908 *
1909 * These definitions are used in each 2-bit subfield of the @rx_mcs_map
1910 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
1911 * both split into 8 subfields by number of streams. These values indicate
1912 * which MCSes are supported for the number of streams the value appears
1913 * for.
1914 */
1915 enum ieee80211_vht_mcs_support {
1916 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
1917 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
1918 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
1919 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
1920 };
1921
1922 /**
1923 * struct ieee80211_vht_cap - VHT capabilities
1924 *
1925 * This structure is the "VHT capabilities element" as
1926 * described in 802.11ac D3.0 8.4.2.160
1927 * @vht_cap_info: VHT capability info
1928 * @supp_mcs: VHT MCS supported rates
1929 */
1930 struct ieee80211_vht_cap {
1931 __le32 vht_cap_info;
1932 struct ieee80211_vht_mcs_info supp_mcs;
1933 } __packed;
1934
1935 /**
1936 * enum ieee80211_vht_chanwidth - VHT channel width
1937 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
1938 * determine the channel width (20 or 40 MHz)
1939 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
1940 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
1941 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
1942 */
1943 enum ieee80211_vht_chanwidth {
1944 IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
1945 IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
1946 IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
1947 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
1948 };
1949
1950 /**
1951 * struct ieee80211_vht_operation - VHT operation IE
1952 *
1953 * This structure is the "VHT operation element" as
1954 * described in 802.11ac D3.0 8.4.2.161
1955 * @chan_width: Operating channel width
1956 * @center_freq_seg0_idx: center freq segment 0 index
1957 * @center_freq_seg1_idx: center freq segment 1 index
1958 * @basic_mcs_set: VHT Basic MCS rate set
1959 */
1960 struct ieee80211_vht_operation {
1961 u8 chan_width;
1962 u8 center_freq_seg0_idx;
1963 u8 center_freq_seg1_idx;
1964 __le16 basic_mcs_set;
1965 } __packed;
1966
1967 /**
1968 * struct ieee80211_he_cap_elem - HE capabilities element
1969 * @mac_cap_info: HE MAC Capabilities Information
1970 * @phy_cap_info: HE PHY Capabilities Information
1971 *
1972 * This structure represents the fixed fields of the payload of the
1973 * "HE capabilities element" as described in IEEE Std 802.11ax-2021
1974 * sections 9.4.2.248.2 and 9.4.2.248.3.
1975 */
1976 struct ieee80211_he_cap_elem {
1977 u8 mac_cap_info[6];
1978 u8 phy_cap_info[11];
1979 } __packed;
1980
1981 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
1982
1983 /**
1984 * enum ieee80211_he_mcs_support - HE MCS support definitions
1985 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
1986 * number of streams
1987 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
1988 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
1989 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
1990 *
1991 * These definitions are used in each 2-bit subfield of the rx_mcs_*
1992 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
1993 * both split into 8 subfields by number of streams. These values indicate
1994 * which MCSes are supported for the number of streams the value appears
1995 * for.
1996 */
1997 enum ieee80211_he_mcs_support {
1998 IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
1999 IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
2000 IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
2001 IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
2002 };
2003
2004 /**
2005 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2006 *
2007 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2008 * described in P802.11ax_D2.0 section 9.4.2.237.4
2009 *
2010 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2011 * widths less than 80MHz.
2012 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2013 * widths less than 80MHz.
2014 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2015 * width 160MHz.
2016 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2017 * width 160MHz.
2018 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2019 * channel width 80p80MHz.
2020 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2021 * channel width 80p80MHz.
2022 */
2023 struct ieee80211_he_mcs_nss_supp {
2024 __le16 rx_mcs_80;
2025 __le16 tx_mcs_80;
2026 __le16 rx_mcs_160;
2027 __le16 tx_mcs_160;
2028 __le16 rx_mcs_80p80;
2029 __le16 tx_mcs_80p80;
2030 } __packed;
2031
2032 /**
2033 * struct ieee80211_he_operation - HE Operation element
2034 * @he_oper_params: HE Operation Parameters + BSS Color Information
2035 * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2036 * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2037 * BSSID Indicator, and 6 GHz Operation Information
2038 *
2039 * This structure represents the payload of the "HE Operation
2040 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2041 */
2042 struct ieee80211_he_operation {
2043 __le32 he_oper_params;
2044 __le16 he_mcs_nss_set;
2045 u8 optional[];
2046 } __packed;
2047
2048 /**
2049 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2050 * @he_sr_control: SR Control
2051 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2052 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2053 * Bitmap, and SRG Partial BSSID Bitmap
2054 *
2055 * This structure represents the payload of the "Spatial Reuse
2056 * Parameter Set element" as described in IEEE Std 802.11ax-2021
2057 * section 9.4.2.252.
2058 */
2059 struct ieee80211_he_spr {
2060 u8 he_sr_control;
2061 u8 optional[];
2062 } __packed;
2063
2064 /**
2065 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2066 * @aifsn: ACI/AIFSN
2067 * @ecw_min_max: ECWmin/ECWmax
2068 * @mu_edca_timer: MU EDCA Timer
2069 *
2070 * This structure represents the "MU AC Parameter Record" as described
2071 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2072 */
2073 struct ieee80211_he_mu_edca_param_ac_rec {
2074 u8 aifsn;
2075 u8 ecw_min_max;
2076 u8 mu_edca_timer;
2077 } __packed;
2078
2079 /**
2080 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2081 * @mu_qos_info: QoS Info
2082 * @ac_be: MU AC_BE Parameter Record
2083 * @ac_bk: MU AC_BK Parameter Record
2084 * @ac_vi: MU AC_VI Parameter Record
2085 * @ac_vo: MU AC_VO Parameter Record
2086 *
2087 * This structure represents the payload of the "MU EDCA Parameter Set
2088 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2089 */
2090 struct ieee80211_mu_edca_param_set {
2091 u8 mu_qos_info;
2092 struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2093 struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2094 struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2095 struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2096 } __packed;
2097
2098 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2099 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2100
2101 /**
2102 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2103 * supported NSS for per MCS.
2104 *
2105 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2106 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2107 * for Tx.
2108 *
2109 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2110 * supported for reception and the maximum number of spatial streams
2111 * supported for transmission for MCS 0 - 7.
2112 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2113 * supported for reception and the maximum number of spatial streams
2114 * supported for transmission for MCS 8 - 9.
2115 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2116 * supported for reception and the maximum number of spatial streams
2117 * supported for transmission for MCS 10 - 11.
2118 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2119 * supported for reception and the maximum number of spatial streams
2120 * supported for transmission for MCS 12 - 13.
2121 * @rx_tx_max_nss: array of the previous fields for easier loop access
2122 */
2123 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2124 union {
2125 struct {
2126 u8 rx_tx_mcs7_max_nss;
2127 u8 rx_tx_mcs9_max_nss;
2128 u8 rx_tx_mcs11_max_nss;
2129 u8 rx_tx_mcs13_max_nss;
2130 };
2131 u8 rx_tx_max_nss[4];
2132 };
2133 };
2134
2135 /**
2136 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2137 * 20MHz only stations).
2138 *
2139 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2140 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2141 * for Tx.
2142 *
2143 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2144 * supported for reception and the maximum number of spatial streams
2145 * supported for transmission for MCS 0 - 9.
2146 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2147 * supported for reception and the maximum number of spatial streams
2148 * supported for transmission for MCS 10 - 11.
2149 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2150 * supported for reception and the maximum number of spatial streams
2151 * supported for transmission for MCS 12 - 13.
2152 * @rx_tx_max_nss: array of the previous fields for easier loop access
2153 */
2154 struct ieee80211_eht_mcs_nss_supp_bw {
2155 union {
2156 struct {
2157 u8 rx_tx_mcs9_max_nss;
2158 u8 rx_tx_mcs11_max_nss;
2159 u8 rx_tx_mcs13_max_nss;
2160 };
2161 u8 rx_tx_max_nss[3];
2162 };
2163 };
2164
2165 /**
2166 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2167 *
2168 * This structure is the "EHT Capabilities element" fixed fields as
2169 * described in P802.11be_D2.0 section 9.4.2.313.
2170 *
2171 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2172 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2173 */
2174 struct ieee80211_eht_cap_elem_fixed {
2175 u8 mac_cap_info[2];
2176 u8 phy_cap_info[9];
2177 } __packed;
2178
2179 /**
2180 * struct ieee80211_eht_cap_elem - EHT capabilities element
2181 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2182 * @optional: optional parts
2183 */
2184 struct ieee80211_eht_cap_elem {
2185 struct ieee80211_eht_cap_elem_fixed fixed;
2186
2187 /*
2188 * Followed by:
2189 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2190 * EHT PPE Thresholds field: variable length.
2191 */
2192 u8 optional[];
2193 } __packed;
2194
2195 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01
2196 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02
2197 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04
2198 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08
2199 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30
2200
2201 /**
2202 * struct ieee80211_eht_operation - eht operation element
2203 *
2204 * This structure is the "EHT Operation Element" fields as
2205 * described in P802.11be_D2.0 section 9.4.2.311
2206 *
2207 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2208 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2209 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2210 * receive.
2211 * @optional: optional parts
2212 */
2213 struct ieee80211_eht_operation {
2214 u8 params;
2215 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2216 u8 optional[];
2217 } __packed;
2218
2219 /**
2220 * struct ieee80211_eht_operation_info - eht operation information
2221 *
2222 * @control: EHT operation information control.
2223 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2224 * EHT BSS.
2225 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2226 * @optional: optional parts
2227 */
2228 struct ieee80211_eht_operation_info {
2229 u8 control;
2230 u8 ccfs0;
2231 u8 ccfs1;
2232 u8 optional[];
2233 } __packed;
2234
2235 /* 802.11ac VHT Capabilities */
2236 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
2237 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
2238 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
2239 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
2240 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
2241 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
2242 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
2243 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
2244 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010
2245 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
2246 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
2247 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080
2248 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
2249 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
2250 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
2251 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
2252 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
2253 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
2254 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
2255 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
2256 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
2257 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
2258 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2259 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
2260 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
2261 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2262 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
2263 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
2264 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
2265 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
2266 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
2267 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
2268 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2269 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
2270 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
2271 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
2272 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
2273 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
2274 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
2275
2276 /**
2277 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2278 * @cap: VHT capabilities of the peer
2279 * @bw: bandwidth to use
2280 * @mcs: MCS index to use
2281 * @ext_nss_bw_capable: indicates whether or not the local transmitter
2282 * (rate scaling algorithm) can deal with the new logic
2283 * (dot11VHTExtendedNSSBWCapable)
2284 * @max_vht_nss: current maximum NSS as advertised by the STA in
2285 * operating mode notification, can be 0 in which case the
2286 * capability data will be used to derive this (from MCS support)
2287 *
2288 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2289 * vary for a given BW/MCS. This function parses the data.
2290 *
2291 * Note: This function is exported by cfg80211.
2292 */
2293 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2294 enum ieee80211_vht_chanwidth bw,
2295 int mcs, bool ext_nss_bw_capable,
2296 unsigned int max_vht_nss);
2297
2298 /**
2299 * enum ieee80211_ap_reg_power - regulatory power for a Access Point
2300 *
2301 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
2302 * @IEEE80211_REG_LPI_AP: Indoor Access Point
2303 * @IEEE80211_REG_SP_AP: Standard power Access Point
2304 * @IEEE80211_REG_VLP_AP: Very low power Access Point
2305 * @IEEE80211_REG_AP_POWER_AFTER_LAST: internal
2306 * @IEEE80211_REG_AP_POWER_MAX: maximum value
2307 */
2308 enum ieee80211_ap_reg_power {
2309 IEEE80211_REG_UNSET_AP,
2310 IEEE80211_REG_LPI_AP,
2311 IEEE80211_REG_SP_AP,
2312 IEEE80211_REG_VLP_AP,
2313 IEEE80211_REG_AP_POWER_AFTER_LAST,
2314 IEEE80211_REG_AP_POWER_MAX =
2315 IEEE80211_REG_AP_POWER_AFTER_LAST - 1,
2316 };
2317
2318 /**
2319 * enum ieee80211_client_reg_power - regulatory power for a client
2320 *
2321 * @IEEE80211_REG_UNSET_CLIENT: Client has no regulatory power mode
2322 * @IEEE80211_REG_DEFAULT_CLIENT: Default Client
2323 * @IEEE80211_REG_SUBORDINATE_CLIENT: Subordinate Client
2324 * @IEEE80211_REG_CLIENT_POWER_AFTER_LAST: internal
2325 * @IEEE80211_REG_CLIENT_POWER_MAX: maximum value
2326 */
2327 enum ieee80211_client_reg_power {
2328 IEEE80211_REG_UNSET_CLIENT,
2329 IEEE80211_REG_DEFAULT_CLIENT,
2330 IEEE80211_REG_SUBORDINATE_CLIENT,
2331 IEEE80211_REG_CLIENT_POWER_AFTER_LAST,
2332 IEEE80211_REG_CLIENT_POWER_MAX =
2333 IEEE80211_REG_CLIENT_POWER_AFTER_LAST - 1,
2334 };
2335
2336 /* 802.11ax HE MAC capabilities */
2337 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
2338 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
2339 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
2340 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
2341 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
2342 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
2343 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
2344 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
2345 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
2346 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
2347 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
2348 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
2349 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
2350 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
2351 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
2352 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
2353 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
2354
2355 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
2356 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
2357 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
2358 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
2359 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
2360 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
2361 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
2362 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
2363 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
2364 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
2365 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
2366 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
2367 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
2368 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
2369 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
2370 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
2371 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
2372 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
2373
2374 /* Link adaptation is split between byte HE_MAC_CAP1 and
2375 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2376 * in which case the following values apply:
2377 * 0 = No feedback.
2378 * 1 = reserved.
2379 * 2 = Unsolicited feedback.
2380 * 3 = both
2381 */
2382 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
2383
2384 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
2385 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
2386 #define IEEE80211_HE_MAC_CAP2_TRS 0x04
2387 #define IEEE80211_HE_MAC_CAP2_BSR 0x08
2388 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
2389 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
2390 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
2391 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
2392
2393 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
2394 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
2395
2396 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2397 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2398 * same field in the HE capabilities.
2399 */
2400 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00
2401 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08
2402 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10
2403 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18
2404 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
2405 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
2406 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
2407 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
2408
2409 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
2410 #define IEEE80211_HE_MAC_CAP4_QTP 0x02
2411 #define IEEE80211_HE_MAC_CAP4_BQR 0x04
2412 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08
2413 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
2414 #define IEEE80211_HE_MAC_CAP4_OPS 0x20
2415 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40
2416 /* Multi TID agg TX is split between byte #4 and #5
2417 * The value is a combination of B39,B40,B41
2418 */
2419 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
2420
2421 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
2422 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
2423 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04
2424 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
2425 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
2426 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
2427 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
2428 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
2429
2430 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20
2431 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16
2432 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13
2433
2434 /* 802.11ax HE PHY capabilities */
2435 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
2436 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
2437 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
2438 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
2439 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e
2440
2441 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
2442 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
2443 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
2444
2445 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
2446 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
2447 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
2448 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
2449 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
2450 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
2451 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
2452 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
2453 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2454 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
2455
2456 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
2457 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
2458 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
2459 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
2460 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
2461 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
2462
2463 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2464 * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2465 * case it indicates support for Tx.
2466 */
2467 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
2468 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
2469
2470 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
2471 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
2472 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
2473 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
2474 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
2475 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
2476 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
2477 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
2478 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
2479 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
2480 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
2481 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
2482 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
2483 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
2484 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40
2485 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
2486
2487 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
2488 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
2489
2490 /* Minimal allowed value of Max STS under 80MHz is 3 */
2491 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
2492 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
2493 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
2494 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
2495 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
2496 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
2497
2498 /* Minimal allowed value of Max STS above 80MHz is 3 */
2499 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
2500 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
2501 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
2502 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
2503 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
2504 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
2505
2506 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
2507 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
2508 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
2509 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
2510 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
2511 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
2512 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
2513 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
2514 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
2515
2516 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
2517 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
2518 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
2519 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
2520 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
2521 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
2522 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
2523 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
2524 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
2525
2526 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
2527 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
2528
2529 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
2530 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
2531 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04
2532 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08
2533 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
2534 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
2535 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
2536 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
2537
2538 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01
2539 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02
2540 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
2541 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
2542 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
2543 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
2544 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
2545 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
2546 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
2547 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
2548 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
2549 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
2550 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
2551
2552 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
2553 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
2554 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
2555 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
2556 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
2557 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
2558 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
2559 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
2560 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
2561 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
2562 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
2563
2564 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
2565 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
2566 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
2567 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
2568 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
2569 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
2570 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0
2571 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1
2572 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2
2573 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3
2574 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6
2575 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0
2576
2577 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01
2578
2579 /* 802.11ax HE TX/RX MCS NSS Support */
2580 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
2581 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
2582 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
2583 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
2584 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
2585
2586 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2587 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2588 HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2589 HIGHEST_MCS_SUPPORTED_MCS8,
2590 HIGHEST_MCS_SUPPORTED_MCS9,
2591 HIGHEST_MCS_SUPPORTED_MCS10,
2592 HIGHEST_MCS_SUPPORTED_MCS11,
2593 };
2594
2595 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2596 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2597 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2598 {
2599 u8 count = 4;
2600
2601 if (he_cap->phy_cap_info[0] &
2602 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2603 count += 4;
2604
2605 if (he_cap->phy_cap_info[0] &
2606 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2607 count += 4;
2608
2609 return count;
2610 }
2611
2612 /* 802.11ax HE PPE Thresholds */
2613 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
2614 #define IEEE80211_PPE_THRES_NSS_POS (0)
2615 #define IEEE80211_PPE_THRES_NSS_MASK (7)
2616 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
2617 (BIT(5) | BIT(6))
2618 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
2619 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
2620 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
2621 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7)
2622
2623 /*
2624 * Calculate 802.11ax HE capabilities IE PPE field size
2625 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2626 */
2627 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2628 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2629 {
2630 u8 n;
2631
2632 if ((phy_cap_info[6] &
2633 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2634 return 0;
2635
2636 n = hweight8(ppe_thres_hdr &
2637 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2638 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2639 IEEE80211_PPE_THRES_NSS_POS));
2640
2641 /*
2642 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2643 * total size.
2644 */
2645 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2646 n = DIV_ROUND_UP(n, 8);
2647
2648 return n;
2649 }
2650
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2651 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2652 {
2653 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2654 u8 needed = sizeof(*he_cap_ie_elem);
2655
2656 if (len < needed)
2657 return false;
2658
2659 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2660 if (len < needed)
2661 return false;
2662
2663 if (he_cap_ie_elem->phy_cap_info[6] &
2664 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2665 if (len < needed + 1)
2666 return false;
2667 needed += ieee80211_he_ppe_size(data[needed],
2668 he_cap_ie_elem->phy_cap_info);
2669 }
2670
2671 return len >= needed;
2672 }
2673
2674 /* HE Operation defines */
2675 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007
2676 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
2677 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
2678 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
2679 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
2680 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
2681 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
2682 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
2683 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
2684 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
2685 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
2686 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
2687
2688 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0
2689 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1
2690
2691 /**
2692 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2693 * @primary: primary channel
2694 * @control: control flags
2695 * @ccfs0: channel center frequency segment 0
2696 * @ccfs1: channel center frequency segment 1
2697 * @minrate: minimum rate (in 1 Mbps units)
2698 */
2699 struct ieee80211_he_6ghz_oper {
2700 u8 primary;
2701 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3
2702 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0
2703 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1
2704 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2
2705 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3
2706 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4
2707 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38
2708 u8 control;
2709 u8 ccfs0;
2710 u8 ccfs1;
2711 u8 minrate;
2712 } __packed;
2713
2714 /*
2715 * In "9.4.2.161 Transmit Power Envelope element" of "IEEE Std 802.11ax-2021",
2716 * it show four types in "Table 9-275a-Maximum Transmit Power Interpretation
2717 * subfield encoding", and two category for each type in "Table E-12-Regulatory
2718 * Info subfield encoding in the United States".
2719 * So it it totally max 8 Transmit Power Envelope element.
2720 */
2721 #define IEEE80211_TPE_MAX_IE_COUNT 8
2722 /*
2723 * In "Table 9-277—Meaning of Maximum Transmit Power Count subfield"
2724 * of "IEEE Std 802.11ax™‐2021", the max power level is 8.
2725 */
2726 #define IEEE80211_MAX_NUM_PWR_LEVEL 8
2727
2728 #define IEEE80211_TPE_MAX_POWER_COUNT 8
2729
2730 /* transmit power interpretation type of transmit power envelope element */
2731 enum ieee80211_tx_power_intrpt_type {
2732 IEEE80211_TPE_LOCAL_EIRP,
2733 IEEE80211_TPE_LOCAL_EIRP_PSD,
2734 IEEE80211_TPE_REG_CLIENT_EIRP,
2735 IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2736 };
2737
2738 /**
2739 * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2740 * @tx_power_info: Transmit Power Information field
2741 * @tx_power: Maximum Transmit Power field
2742 *
2743 * This structure represents the payload of the "Transmit Power
2744 * Envelope element" as described in IEEE Std 802.11ax-2021 section
2745 * 9.4.2.161
2746 */
2747 struct ieee80211_tx_pwr_env {
2748 u8 tx_power_info;
2749 s8 tx_power[IEEE80211_TPE_MAX_POWER_COUNT];
2750 } __packed;
2751
2752 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2753 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2754 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2755
2756 /*
2757 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2758 * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2759 * after the ext ID byte. It is assumed that he_oper_ie has at least
2760 * sizeof(struct ieee80211_he_operation) bytes, the caller must have
2761 * validated this.
2762 * @return the actual size of the IE data (not including header), or 0 on error
2763 */
2764 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2765 ieee80211_he_oper_size(const u8 *he_oper_ie)
2766 {
2767 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2768 u8 oper_len = sizeof(struct ieee80211_he_operation);
2769 u32 he_oper_params;
2770
2771 /* Make sure the input is not NULL */
2772 if (!he_oper_ie)
2773 return 0;
2774
2775 /* Calc required length */
2776 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2777 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2778 oper_len += 3;
2779 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2780 oper_len++;
2781 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2782 oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2783
2784 /* Add the first byte (extension ID) to the total length */
2785 oper_len++;
2786
2787 return oper_len;
2788 }
2789
2790 /**
2791 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
2792 * @he_oper: HE operation element (must be pre-validated for size)
2793 * but may be %NULL
2794 *
2795 * Return: a pointer to the 6 GHz operation field, or %NULL
2796 */
2797 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)2798 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
2799 {
2800 const u8 *ret;
2801 u32 he_oper_params;
2802
2803 if (!he_oper)
2804 return NULL;
2805
2806 ret = (const void *)&he_oper->optional;
2807
2808 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2809
2810 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
2811 return NULL;
2812 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2813 ret += 3;
2814 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2815 ret++;
2816
2817 return (const void *)ret;
2818 }
2819
2820 /* HE Spatial Reuse defines */
2821 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0)
2822 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1)
2823 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2)
2824 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3)
2825 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4)
2826
2827 /*
2828 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
2829 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
2830 * after the ext ID byte. It is assumed that he_spr_ie has at least
2831 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
2832 * this
2833 * @return the actual size of the IE data (not including header), or 0 on error
2834 */
2835 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)2836 ieee80211_he_spr_size(const u8 *he_spr_ie)
2837 {
2838 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
2839 u8 spr_len = sizeof(struct ieee80211_he_spr);
2840 u8 he_spr_params;
2841
2842 /* Make sure the input is not NULL */
2843 if (!he_spr_ie)
2844 return 0;
2845
2846 /* Calc required length */
2847 he_spr_params = he_spr->he_sr_control;
2848 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
2849 spr_len++;
2850 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
2851 spr_len += 18;
2852
2853 /* Add the first byte (extension ID) to the total length */
2854 spr_len++;
2855
2856 return spr_len;
2857 }
2858
2859 /* S1G Capabilities Information field */
2860 #define IEEE80211_S1G_CAPABILITY_LEN 15
2861
2862 #define S1G_CAP0_S1G_LONG BIT(0)
2863 #define S1G_CAP0_SGI_1MHZ BIT(1)
2864 #define S1G_CAP0_SGI_2MHZ BIT(2)
2865 #define S1G_CAP0_SGI_4MHZ BIT(3)
2866 #define S1G_CAP0_SGI_8MHZ BIT(4)
2867 #define S1G_CAP0_SGI_16MHZ BIT(5)
2868 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6)
2869
2870 #define S1G_SUPP_CH_WIDTH_2 0
2871 #define S1G_SUPP_CH_WIDTH_4 1
2872 #define S1G_SUPP_CH_WIDTH_8 2
2873 #define S1G_SUPP_CH_WIDTH_16 3
2874 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
2875 cap[0])) << 1)
2876
2877 #define S1G_CAP1_RX_LDPC BIT(0)
2878 #define S1G_CAP1_TX_STBC BIT(1)
2879 #define S1G_CAP1_RX_STBC BIT(2)
2880 #define S1G_CAP1_SU_BFER BIT(3)
2881 #define S1G_CAP1_SU_BFEE BIT(4)
2882 #define S1G_CAP1_BFEE_STS GENMASK(7, 5)
2883
2884 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0)
2885 #define S1G_CAP2_MU_BFER BIT(3)
2886 #define S1G_CAP2_MU_BFEE BIT(4)
2887 #define S1G_CAP2_PLUS_HTC_VHT BIT(5)
2888 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6)
2889
2890 #define S1G_CAP3_RD_RESPONDER BIT(0)
2891 #define S1G_CAP3_HT_DELAYED_BA BIT(1)
2892 #define S1G_CAP3_MAX_MPDU_LEN BIT(2)
2893 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3)
2894 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5)
2895
2896 #define S1G_CAP4_UPLINK_SYNC BIT(0)
2897 #define S1G_CAP4_DYNAMIC_AID BIT(1)
2898 #define S1G_CAP4_BAT BIT(2)
2899 #define S1G_CAP4_TIME_ADE BIT(3)
2900 #define S1G_CAP4_NON_TIM BIT(4)
2901 #define S1G_CAP4_GROUP_AID BIT(5)
2902 #define S1G_CAP4_STA_TYPE GENMASK(7, 6)
2903
2904 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0)
2905 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1)
2906 #define S1G_CAP5_AMSDU BIT(2)
2907 #define S1G_CAP5_AMPDU BIT(3)
2908 #define S1G_CAP5_ASYMMETRIC_BA BIT(4)
2909 #define S1G_CAP5_FLOW_CONTROL BIT(5)
2910 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6)
2911
2912 #define S1G_CAP6_OBSS_MITIGATION BIT(0)
2913 #define S1G_CAP6_FRAGMENT_BA BIT(1)
2914 #define S1G_CAP6_NDP_PS_POLL BIT(2)
2915 #define S1G_CAP6_RAW_OPERATION BIT(3)
2916 #define S1G_CAP6_PAGE_SLICING BIT(4)
2917 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5)
2918 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6)
2919
2920 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0)
2921 #define S1G_CAP7_DUP_1MHZ BIT(1)
2922 #define S1G_CAP7_MCS_NEGOTIATION BIT(2)
2923 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3)
2924 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4)
2925 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5)
2926 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6)
2927 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7)
2928
2929 #define S1G_CAP8_TWT_GROUPING BIT(0)
2930 #define S1G_CAP8_BDT BIT(1)
2931 #define S1G_CAP8_COLOR GENMASK(4, 2)
2932 #define S1G_CAP8_TWT_REQUEST BIT(5)
2933 #define S1G_CAP8_TWT_RESPOND BIT(6)
2934 #define S1G_CAP8_PV1_FRAME BIT(7)
2935
2936 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
2937
2938 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0)
2939 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1)
2940
2941 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
2942 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01
2943 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02
2944 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04
2945 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08
2946 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10
2947 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20
2948 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0
2949 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0
2950 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1
2951 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2
2952
2953 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01
2954
2955 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
2956 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02
2957 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04
2958 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08
2959 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10
2960 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20
2961 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40
2962
2963 /* EHT beamformee number of spatial streams <= 80MHz is split */
2964 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80
2965 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03
2966
2967 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c
2968 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0
2969
2970 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07
2971 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38
2972
2973 /* EHT number of sounding dimensions for 320MHz is split */
2974 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0
2975 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01
2976 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02
2977 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04
2978 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08
2979 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10
2980 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20
2981 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40
2982 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80
2983
2984 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01
2985 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02
2986 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04
2987 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08
2988 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0
2989
2990 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01
2991 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02
2992 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04
2993 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08
2994 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30
2995 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0
2996 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1
2997 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2
2998 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3
2999
3000 /* Maximum number of supported EHT LTF is split */
3001 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0
3002 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40
3003 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07
3004
3005 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78
3006 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80
3007
3008 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01
3009 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02
3010 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04
3011 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08
3012 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10
3013 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20
3014 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40
3015 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80
3016
3017 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01
3018 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02
3019
3020 /*
3021 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3022 */
3023 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7
3024 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0
3025 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1
3026 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2
3027 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3
3028 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4
3029
3030 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3031 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3032 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3033 const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3034 bool from_ap)
3035 {
3036 u8 count = 0;
3037
3038 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3039 if (he_cap->phy_cap_info[0] &
3040 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3041 return 3;
3042
3043 /* on 2.4 GHz, these three bits are reserved, so should be 0 */
3044 if (he_cap->phy_cap_info[0] &
3045 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3046 count += 3;
3047
3048 if (he_cap->phy_cap_info[0] &
3049 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3050 count += 3;
3051
3052 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3053 count += 3;
3054
3055 if (count)
3056 return count;
3057
3058 return from_ap ? 3 : 4;
3059 }
3060
3061 /* 802.11be EHT PPE Thresholds */
3062 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0
3063 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf
3064 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0
3065 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3
3066 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9
3067
3068 /*
3069 * Calculate 802.11be EHT capabilities IE EHT field size
3070 */
3071 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3072 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3073 {
3074 u32 n;
3075
3076 if (!(phy_cap_info[5] &
3077 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3078 return 0;
3079
3080 n = hweight16(ppe_thres_hdr &
3081 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3082 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3083
3084 /*
3085 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3086 * total size.
3087 */
3088 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3089 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3090 return DIV_ROUND_UP(n, 8);
3091 }
3092
3093 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3094 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3095 bool from_ap)
3096 {
3097 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3098 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3099
3100 if (len < needed || !he_capa)
3101 return false;
3102
3103 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3104 (const void *)data,
3105 from_ap);
3106 if (len < needed)
3107 return false;
3108
3109 if (elem->phy_cap_info[5] &
3110 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3111 u16 ppe_thres_hdr;
3112
3113 if (len < needed + sizeof(ppe_thres_hdr))
3114 return false;
3115
3116 ppe_thres_hdr = get_unaligned_le16(data + needed);
3117 needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3118 elem->phy_cap_info);
3119 }
3120
3121 return len >= needed;
3122 }
3123
3124 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3125 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3126 {
3127 const struct ieee80211_eht_operation *elem = (const void *)data;
3128 u8 needed = sizeof(*elem);
3129
3130 if (len < needed)
3131 return false;
3132
3133 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3134 needed += 3;
3135
3136 if (elem->params &
3137 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3138 needed += 2;
3139 }
3140
3141 return len >= needed;
3142 }
3143
3144 #define LISTEN_INT_USF GENMASK(15, 14)
3145 #define LISTEN_INT_UI GENMASK(13, 0)
3146
3147 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF)
3148 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI)
3149
3150 /* Authentication algorithms */
3151 #define WLAN_AUTH_OPEN 0
3152 #define WLAN_AUTH_SHARED_KEY 1
3153 #define WLAN_AUTH_FT 2
3154 #define WLAN_AUTH_SAE 3
3155 #define WLAN_AUTH_FILS_SK 4
3156 #define WLAN_AUTH_FILS_SK_PFS 5
3157 #define WLAN_AUTH_FILS_PK 6
3158 #define WLAN_AUTH_LEAP 128
3159
3160 #define WLAN_AUTH_CHALLENGE_LEN 128
3161
3162 #define WLAN_CAPABILITY_ESS (1<<0)
3163 #define WLAN_CAPABILITY_IBSS (1<<1)
3164
3165 /*
3166 * A mesh STA sets the ESS and IBSS capability bits to zero.
3167 * however, this holds true for p2p probe responses (in the p2p_find
3168 * phase) as well.
3169 */
3170 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \
3171 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3172
3173 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
3174 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
3175 #define WLAN_CAPABILITY_PRIVACY (1<<4)
3176 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
3177 #define WLAN_CAPABILITY_PBCC (1<<6)
3178 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
3179
3180 /* 802.11h */
3181 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
3182 #define WLAN_CAPABILITY_QOS (1<<9)
3183 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
3184 #define WLAN_CAPABILITY_APSD (1<<11)
3185 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
3186 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
3187 #define WLAN_CAPABILITY_DEL_BACK (1<<14)
3188 #define WLAN_CAPABILITY_IMM_BACK (1<<15)
3189
3190 /* DMG (60gHz) 802.11ad */
3191 /* type - bits 0..1 */
3192 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
3193 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
3194 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
3195 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
3196
3197 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
3198 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
3199 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
3200 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
3201
3202 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
3203 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
3204
3205 /* measurement */
3206 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
3207 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
3208 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
3209
3210 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
3211 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
3212 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
3213 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
3214 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
3215
3216 /* 802.11g ERP information element */
3217 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3218 #define WLAN_ERP_USE_PROTECTION (1<<1)
3219 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3220
3221 /* WLAN_ERP_BARKER_PREAMBLE values */
3222 enum {
3223 WLAN_ERP_PREAMBLE_SHORT = 0,
3224 WLAN_ERP_PREAMBLE_LONG = 1,
3225 };
3226
3227 /* Band ID, 802.11ad #8.4.1.45 */
3228 enum {
3229 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3230 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
3231 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
3232 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
3233 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
3234 IEEE80211_BANDID_60G = 5, /* 60 GHz */
3235 };
3236
3237 /* Status codes */
3238 enum ieee80211_statuscode {
3239 WLAN_STATUS_SUCCESS = 0,
3240 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3241 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3242 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3243 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3244 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3245 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3246 WLAN_STATUS_CHALLENGE_FAIL = 15,
3247 WLAN_STATUS_AUTH_TIMEOUT = 16,
3248 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3249 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3250 /* 802.11b */
3251 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3252 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3253 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3254 /* 802.11h */
3255 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3256 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3257 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3258 /* 802.11g */
3259 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3260 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3261 /* 802.11w */
3262 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3263 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3264 /* 802.11i */
3265 WLAN_STATUS_INVALID_IE = 40,
3266 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3267 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3268 WLAN_STATUS_INVALID_AKMP = 43,
3269 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3270 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3271 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3272 /* 802.11e */
3273 WLAN_STATUS_UNSPECIFIED_QOS = 32,
3274 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3275 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3276 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3277 WLAN_STATUS_REQUEST_DECLINED = 37,
3278 WLAN_STATUS_INVALID_QOS_PARAM = 38,
3279 WLAN_STATUS_CHANGE_TSPEC = 39,
3280 WLAN_STATUS_WAIT_TS_DELAY = 47,
3281 WLAN_STATUS_NO_DIRECT_LINK = 48,
3282 WLAN_STATUS_STA_NOT_PRESENT = 49,
3283 WLAN_STATUS_STA_NOT_QSTA = 50,
3284 /* 802.11s */
3285 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3286 WLAN_STATUS_FCG_NOT_SUPP = 78,
3287 WLAN_STATUS_STA_NO_TBTT = 78,
3288 /* 802.11ad */
3289 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3290 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3291 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3292 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3293 WLAN_STATUS_PERFORMING_FST_NOW = 87,
3294 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3295 WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3296 WLAN_STATUS_REJECT_DSE_BAND = 96,
3297 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3298 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3299 /* 802.11ai */
3300 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3301 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3302 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3303 WLAN_STATUS_SAE_PK = 127,
3304 };
3305
3306
3307 /* Reason codes */
3308 enum ieee80211_reasoncode {
3309 WLAN_REASON_UNSPECIFIED = 1,
3310 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3311 WLAN_REASON_DEAUTH_LEAVING = 3,
3312 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3313 WLAN_REASON_DISASSOC_AP_BUSY = 5,
3314 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3315 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3316 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3317 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3318 /* 802.11h */
3319 WLAN_REASON_DISASSOC_BAD_POWER = 10,
3320 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3321 /* 802.11i */
3322 WLAN_REASON_INVALID_IE = 13,
3323 WLAN_REASON_MIC_FAILURE = 14,
3324 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3325 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3326 WLAN_REASON_IE_DIFFERENT = 17,
3327 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3328 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3329 WLAN_REASON_INVALID_AKMP = 20,
3330 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3331 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3332 WLAN_REASON_IEEE8021X_FAILED = 23,
3333 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3334 /* TDLS (802.11z) */
3335 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3336 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3337 /* 802.11e */
3338 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3339 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3340 WLAN_REASON_DISASSOC_LOW_ACK = 34,
3341 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3342 WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3343 WLAN_REASON_QSTA_NOT_USE = 37,
3344 WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3345 WLAN_REASON_QSTA_TIMEOUT = 39,
3346 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3347 /* 802.11s */
3348 WLAN_REASON_MESH_PEER_CANCELED = 52,
3349 WLAN_REASON_MESH_MAX_PEERS = 53,
3350 WLAN_REASON_MESH_CONFIG = 54,
3351 WLAN_REASON_MESH_CLOSE = 55,
3352 WLAN_REASON_MESH_MAX_RETRIES = 56,
3353 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3354 WLAN_REASON_MESH_INVALID_GTK = 58,
3355 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3356 WLAN_REASON_MESH_INVALID_SECURITY = 60,
3357 WLAN_REASON_MESH_PATH_ERROR = 61,
3358 WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3359 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3360 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3361 WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3362 WLAN_REASON_MESH_CHAN = 66,
3363 };
3364
3365
3366 /* Information Element IDs */
3367 enum ieee80211_eid {
3368 WLAN_EID_SSID = 0,
3369 WLAN_EID_SUPP_RATES = 1,
3370 WLAN_EID_FH_PARAMS = 2, /* reserved now */
3371 WLAN_EID_DS_PARAMS = 3,
3372 WLAN_EID_CF_PARAMS = 4,
3373 WLAN_EID_TIM = 5,
3374 WLAN_EID_IBSS_PARAMS = 6,
3375 WLAN_EID_COUNTRY = 7,
3376 /* 8, 9 reserved */
3377 WLAN_EID_REQUEST = 10,
3378 WLAN_EID_QBSS_LOAD = 11,
3379 WLAN_EID_EDCA_PARAM_SET = 12,
3380 WLAN_EID_TSPEC = 13,
3381 WLAN_EID_TCLAS = 14,
3382 WLAN_EID_SCHEDULE = 15,
3383 WLAN_EID_CHALLENGE = 16,
3384 /* 17-31 reserved for challenge text extension */
3385 WLAN_EID_PWR_CONSTRAINT = 32,
3386 WLAN_EID_PWR_CAPABILITY = 33,
3387 WLAN_EID_TPC_REQUEST = 34,
3388 WLAN_EID_TPC_REPORT = 35,
3389 WLAN_EID_SUPPORTED_CHANNELS = 36,
3390 WLAN_EID_CHANNEL_SWITCH = 37,
3391 WLAN_EID_MEASURE_REQUEST = 38,
3392 WLAN_EID_MEASURE_REPORT = 39,
3393 WLAN_EID_QUIET = 40,
3394 WLAN_EID_IBSS_DFS = 41,
3395 WLAN_EID_ERP_INFO = 42,
3396 WLAN_EID_TS_DELAY = 43,
3397 WLAN_EID_TCLAS_PROCESSING = 44,
3398 WLAN_EID_HT_CAPABILITY = 45,
3399 WLAN_EID_QOS_CAPA = 46,
3400 /* 47 reserved for Broadcom */
3401 WLAN_EID_RSN = 48,
3402 WLAN_EID_802_15_COEX = 49,
3403 WLAN_EID_EXT_SUPP_RATES = 50,
3404 WLAN_EID_AP_CHAN_REPORT = 51,
3405 WLAN_EID_NEIGHBOR_REPORT = 52,
3406 WLAN_EID_RCPI = 53,
3407 WLAN_EID_MOBILITY_DOMAIN = 54,
3408 WLAN_EID_FAST_BSS_TRANSITION = 55,
3409 WLAN_EID_TIMEOUT_INTERVAL = 56,
3410 WLAN_EID_RIC_DATA = 57,
3411 WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3412 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3413 WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3414 WLAN_EID_HT_OPERATION = 61,
3415 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3416 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3417 WLAN_EID_ANTENNA_INFO = 64,
3418 WLAN_EID_RSNI = 65,
3419 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3420 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3421 WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3422 WLAN_EID_TIME_ADVERTISEMENT = 69,
3423 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3424 WLAN_EID_MULTIPLE_BSSID = 71,
3425 WLAN_EID_BSS_COEX_2040 = 72,
3426 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3427 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3428 WLAN_EID_RIC_DESCRIPTOR = 75,
3429 WLAN_EID_MMIE = 76,
3430 WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3431 WLAN_EID_EVENT_REQUEST = 78,
3432 WLAN_EID_EVENT_REPORT = 79,
3433 WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3434 WLAN_EID_DIAGNOSTIC_REPORT = 81,
3435 WLAN_EID_LOCATION_PARAMS = 82,
3436 WLAN_EID_NON_TX_BSSID_CAP = 83,
3437 WLAN_EID_SSID_LIST = 84,
3438 WLAN_EID_MULTI_BSSID_IDX = 85,
3439 WLAN_EID_FMS_DESCRIPTOR = 86,
3440 WLAN_EID_FMS_REQUEST = 87,
3441 WLAN_EID_FMS_RESPONSE = 88,
3442 WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3443 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3444 WLAN_EID_TSF_REQUEST = 91,
3445 WLAN_EID_TSF_RESPOSNE = 92,
3446 WLAN_EID_WNM_SLEEP_MODE = 93,
3447 WLAN_EID_TIM_BCAST_REQ = 94,
3448 WLAN_EID_TIM_BCAST_RESP = 95,
3449 WLAN_EID_COLL_IF_REPORT = 96,
3450 WLAN_EID_CHANNEL_USAGE = 97,
3451 WLAN_EID_TIME_ZONE = 98,
3452 WLAN_EID_DMS_REQUEST = 99,
3453 WLAN_EID_DMS_RESPONSE = 100,
3454 WLAN_EID_LINK_ID = 101,
3455 WLAN_EID_WAKEUP_SCHEDUL = 102,
3456 /* 103 reserved */
3457 WLAN_EID_CHAN_SWITCH_TIMING = 104,
3458 WLAN_EID_PTI_CONTROL = 105,
3459 WLAN_EID_PU_BUFFER_STATUS = 106,
3460 WLAN_EID_INTERWORKING = 107,
3461 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3462 WLAN_EID_EXPEDITED_BW_REQ = 109,
3463 WLAN_EID_QOS_MAP_SET = 110,
3464 WLAN_EID_ROAMING_CONSORTIUM = 111,
3465 WLAN_EID_EMERGENCY_ALERT = 112,
3466 WLAN_EID_MESH_CONFIG = 113,
3467 WLAN_EID_MESH_ID = 114,
3468 WLAN_EID_LINK_METRIC_REPORT = 115,
3469 WLAN_EID_CONGESTION_NOTIFICATION = 116,
3470 WLAN_EID_PEER_MGMT = 117,
3471 WLAN_EID_CHAN_SWITCH_PARAM = 118,
3472 WLAN_EID_MESH_AWAKE_WINDOW = 119,
3473 WLAN_EID_BEACON_TIMING = 120,
3474 WLAN_EID_MCCAOP_SETUP_REQ = 121,
3475 WLAN_EID_MCCAOP_SETUP_RESP = 122,
3476 WLAN_EID_MCCAOP_ADVERT = 123,
3477 WLAN_EID_MCCAOP_TEARDOWN = 124,
3478 WLAN_EID_GANN = 125,
3479 WLAN_EID_RANN = 126,
3480 WLAN_EID_EXT_CAPABILITY = 127,
3481 /* 128, 129 reserved for Agere */
3482 WLAN_EID_PREQ = 130,
3483 WLAN_EID_PREP = 131,
3484 WLAN_EID_PERR = 132,
3485 /* 133-136 reserved for Cisco */
3486 WLAN_EID_PXU = 137,
3487 WLAN_EID_PXUC = 138,
3488 WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3489 WLAN_EID_MIC = 140,
3490 WLAN_EID_DESTINATION_URI = 141,
3491 WLAN_EID_UAPSD_COEX = 142,
3492 WLAN_EID_WAKEUP_SCHEDULE = 143,
3493 WLAN_EID_EXT_SCHEDULE = 144,
3494 WLAN_EID_STA_AVAILABILITY = 145,
3495 WLAN_EID_DMG_TSPEC = 146,
3496 WLAN_EID_DMG_AT = 147,
3497 WLAN_EID_DMG_CAP = 148,
3498 /* 149 reserved for Cisco */
3499 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3500 WLAN_EID_DMG_OPERATION = 151,
3501 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3502 WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3503 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3504 /* 155-156 reserved for Cisco */
3505 WLAN_EID_AWAKE_WINDOW = 157,
3506 WLAN_EID_MULTI_BAND = 158,
3507 WLAN_EID_ADDBA_EXT = 159,
3508 WLAN_EID_NEXT_PCP_LIST = 160,
3509 WLAN_EID_PCP_HANDOVER = 161,
3510 WLAN_EID_DMG_LINK_MARGIN = 162,
3511 WLAN_EID_SWITCHING_STREAM = 163,
3512 WLAN_EID_SESSION_TRANSITION = 164,
3513 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3514 WLAN_EID_CLUSTER_REPORT = 166,
3515 WLAN_EID_RELAY_CAP = 167,
3516 WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3517 WLAN_EID_BEAM_LINK_MAINT = 169,
3518 WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3519 WLAN_EID_U_PID = 171,
3520 WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3521 /* 173 reserved for Symbol */
3522 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3523 WLAN_EID_QUIET_PERIOD_REQ = 175,
3524 /* 176 reserved for Symbol */
3525 WLAN_EID_QUIET_PERIOD_RESP = 177,
3526 /* 178-179 reserved for Symbol */
3527 /* 180 reserved for ISO/IEC 20011 */
3528 WLAN_EID_EPAC_POLICY = 182,
3529 WLAN_EID_CLISTER_TIME_OFF = 183,
3530 WLAN_EID_INTER_AC_PRIO = 184,
3531 WLAN_EID_SCS_DESCRIPTOR = 185,
3532 WLAN_EID_QLOAD_REPORT = 186,
3533 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3534 WLAN_EID_HL_STREAM_ID = 188,
3535 WLAN_EID_GCR_GROUP_ADDR = 189,
3536 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3537 WLAN_EID_VHT_CAPABILITY = 191,
3538 WLAN_EID_VHT_OPERATION = 192,
3539 WLAN_EID_EXTENDED_BSS_LOAD = 193,
3540 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3541 WLAN_EID_TX_POWER_ENVELOPE = 195,
3542 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3543 WLAN_EID_AID = 197,
3544 WLAN_EID_QUIET_CHANNEL = 198,
3545 WLAN_EID_OPMODE_NOTIF = 199,
3546
3547 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3548
3549 WLAN_EID_AID_REQUEST = 210,
3550 WLAN_EID_AID_RESPONSE = 211,
3551 WLAN_EID_S1G_BCN_COMPAT = 213,
3552 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3553 WLAN_EID_S1G_TWT = 216,
3554 WLAN_EID_S1G_CAPABILITIES = 217,
3555 WLAN_EID_VENDOR_SPECIFIC = 221,
3556 WLAN_EID_QOS_PARAMETER = 222,
3557 WLAN_EID_S1G_OPERATION = 232,
3558 WLAN_EID_CAG_NUMBER = 237,
3559 WLAN_EID_AP_CSN = 239,
3560 WLAN_EID_FILS_INDICATION = 240,
3561 WLAN_EID_DILS = 241,
3562 WLAN_EID_FRAGMENT = 242,
3563 WLAN_EID_RSNX = 244,
3564 WLAN_EID_EXTENSION = 255
3565 };
3566
3567 /* Element ID Extensions for Element ID 255 */
3568 enum ieee80211_eid_ext {
3569 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3570 WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3571 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3572 WLAN_EID_EXT_FILS_SESSION = 4,
3573 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3574 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3575 WLAN_EID_EXT_KEY_DELIVERY = 7,
3576 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3577 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3578 WLAN_EID_EXT_FILS_NONCE = 13,
3579 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3580 WLAN_EID_EXT_HE_CAPABILITY = 35,
3581 WLAN_EID_EXT_HE_OPERATION = 36,
3582 WLAN_EID_EXT_UORA = 37,
3583 WLAN_EID_EXT_HE_MU_EDCA = 38,
3584 WLAN_EID_EXT_HE_SPR = 39,
3585 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3586 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3587 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3588 WLAN_EID_EXT_ESS_REPORT = 45,
3589 WLAN_EID_EXT_OPS = 46,
3590 WLAN_EID_EXT_HE_BSS_LOAD = 47,
3591 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3592 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3593 WLAN_EID_EXT_NON_INHERITANCE = 56,
3594 WLAN_EID_EXT_KNOWN_BSSID = 57,
3595 WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3596 WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3597 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3598 WLAN_EID_EXT_EHT_OPERATION = 106,
3599 WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3600 WLAN_EID_EXT_EHT_CAPABILITY = 108,
3601 };
3602
3603 /* Action category code */
3604 enum ieee80211_category {
3605 WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3606 WLAN_CATEGORY_QOS = 1,
3607 WLAN_CATEGORY_DLS = 2,
3608 WLAN_CATEGORY_BACK = 3,
3609 WLAN_CATEGORY_PUBLIC = 4,
3610 WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3611 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3612 WLAN_CATEGORY_HT = 7,
3613 WLAN_CATEGORY_SA_QUERY = 8,
3614 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3615 WLAN_CATEGORY_WNM = 10,
3616 WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3617 WLAN_CATEGORY_TDLS = 12,
3618 WLAN_CATEGORY_MESH_ACTION = 13,
3619 WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3620 WLAN_CATEGORY_SELF_PROTECTED = 15,
3621 WLAN_CATEGORY_DMG = 16,
3622 WLAN_CATEGORY_WMM = 17,
3623 WLAN_CATEGORY_FST = 18,
3624 WLAN_CATEGORY_UNPROT_DMG = 20,
3625 WLAN_CATEGORY_VHT = 21,
3626 WLAN_CATEGORY_S1G = 22,
3627 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3628 WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3629 };
3630
3631 /* SPECTRUM_MGMT action code */
3632 enum ieee80211_spectrum_mgmt_actioncode {
3633 WLAN_ACTION_SPCT_MSR_REQ = 0,
3634 WLAN_ACTION_SPCT_MSR_RPRT = 1,
3635 WLAN_ACTION_SPCT_TPC_REQ = 2,
3636 WLAN_ACTION_SPCT_TPC_RPRT = 3,
3637 WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3638 };
3639
3640 /* HT action codes */
3641 enum ieee80211_ht_actioncode {
3642 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3643 WLAN_HT_ACTION_SMPS = 1,
3644 WLAN_HT_ACTION_PSMP = 2,
3645 WLAN_HT_ACTION_PCO_PHASE = 3,
3646 WLAN_HT_ACTION_CSI = 4,
3647 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3648 WLAN_HT_ACTION_COMPRESSED_BF = 6,
3649 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3650 };
3651
3652 /* VHT action codes */
3653 enum ieee80211_vht_actioncode {
3654 WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3655 WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3656 WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3657 };
3658
3659 /* Self Protected Action codes */
3660 enum ieee80211_self_protected_actioncode {
3661 WLAN_SP_RESERVED = 0,
3662 WLAN_SP_MESH_PEERING_OPEN = 1,
3663 WLAN_SP_MESH_PEERING_CONFIRM = 2,
3664 WLAN_SP_MESH_PEERING_CLOSE = 3,
3665 WLAN_SP_MGK_INFORM = 4,
3666 WLAN_SP_MGK_ACK = 5,
3667 };
3668
3669 /* Mesh action codes */
3670 enum ieee80211_mesh_actioncode {
3671 WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3672 WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3673 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3674 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3675 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3676 WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3677 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3678 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3679 WLAN_MESH_ACTION_MCCA_TEARDOWN,
3680 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3681 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3682 };
3683
3684 /* Unprotected WNM action codes */
3685 enum ieee80211_unprotected_wnm_actioncode {
3686 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3687 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3688 };
3689
3690 /* Security key length */
3691 enum ieee80211_key_len {
3692 WLAN_KEY_LEN_WEP40 = 5,
3693 WLAN_KEY_LEN_WEP104 = 13,
3694 WLAN_KEY_LEN_CCMP = 16,
3695 WLAN_KEY_LEN_CCMP_256 = 32,
3696 WLAN_KEY_LEN_TKIP = 32,
3697 WLAN_KEY_LEN_AES_CMAC = 16,
3698 WLAN_KEY_LEN_SMS4 = 32,
3699 WLAN_KEY_LEN_GCMP = 16,
3700 WLAN_KEY_LEN_GCMP_256 = 32,
3701 WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3702 WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3703 WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3704 };
3705
3706 enum ieee80211_s1g_actioncode {
3707 WLAN_S1G_AID_SWITCH_REQUEST,
3708 WLAN_S1G_AID_SWITCH_RESPONSE,
3709 WLAN_S1G_SYNC_CONTROL,
3710 WLAN_S1G_STA_INFO_ANNOUNCE,
3711 WLAN_S1G_EDCA_PARAM_SET,
3712 WLAN_S1G_EL_OPERATION,
3713 WLAN_S1G_TWT_SETUP,
3714 WLAN_S1G_TWT_TEARDOWN,
3715 WLAN_S1G_SECT_GROUP_ID_LIST,
3716 WLAN_S1G_SECT_ID_FEEDBACK,
3717 WLAN_S1G_TWT_INFORMATION = 11,
3718 };
3719
3720 #define IEEE80211_WEP_IV_LEN 4
3721 #define IEEE80211_WEP_ICV_LEN 4
3722 #define IEEE80211_CCMP_HDR_LEN 8
3723 #define IEEE80211_CCMP_MIC_LEN 8
3724 #define IEEE80211_CCMP_PN_LEN 6
3725 #define IEEE80211_CCMP_256_HDR_LEN 8
3726 #define IEEE80211_CCMP_256_MIC_LEN 16
3727 #define IEEE80211_CCMP_256_PN_LEN 6
3728 #define IEEE80211_TKIP_IV_LEN 8
3729 #define IEEE80211_TKIP_ICV_LEN 4
3730 #define IEEE80211_CMAC_PN_LEN 6
3731 #define IEEE80211_GMAC_PN_LEN 6
3732 #define IEEE80211_GCMP_HDR_LEN 8
3733 #define IEEE80211_GCMP_MIC_LEN 16
3734 #define IEEE80211_GCMP_PN_LEN 6
3735
3736 #define FILS_NONCE_LEN 16
3737 #define FILS_MAX_KEK_LEN 64
3738
3739 #define FILS_ERP_MAX_USERNAME_LEN 16
3740 #define FILS_ERP_MAX_REALM_LEN 253
3741 #define FILS_ERP_MAX_RRK_LEN 64
3742
3743 #define PMK_MAX_LEN 64
3744 #define SAE_PASSWORD_MAX_LEN 128
3745
3746 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
3747 enum ieee80211_pub_actioncode {
3748 WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
3749 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
3750 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
3751 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
3752 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
3753 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
3754 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
3755 WLAN_PUB_ACTION_MSMT_PILOT = 7,
3756 WLAN_PUB_ACTION_DSE_PC = 8,
3757 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
3758 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
3759 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
3760 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
3761 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
3762 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
3763 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
3764 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
3765 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
3766 WLAN_PUB_ACTION_QMF_POLICY = 18,
3767 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
3768 WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
3769 WLAN_PUB_ACTION_QLOAD_REPORT = 21,
3770 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
3771 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
3772 WLAN_PUB_ACTION_PUBLIC_KEY = 24,
3773 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
3774 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
3775 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
3776 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
3777 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
3778 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
3779 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
3780 WLAN_PUB_ACTION_FTM_REQUEST = 32,
3781 WLAN_PUB_ACTION_FTM_RESPONSE = 33,
3782 WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
3783 };
3784
3785 /* TDLS action codes */
3786 enum ieee80211_tdls_actioncode {
3787 WLAN_TDLS_SETUP_REQUEST = 0,
3788 WLAN_TDLS_SETUP_RESPONSE = 1,
3789 WLAN_TDLS_SETUP_CONFIRM = 2,
3790 WLAN_TDLS_TEARDOWN = 3,
3791 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
3792 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
3793 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
3794 WLAN_TDLS_PEER_PSM_REQUEST = 7,
3795 WLAN_TDLS_PEER_PSM_RESPONSE = 8,
3796 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
3797 WLAN_TDLS_DISCOVERY_REQUEST = 10,
3798 };
3799
3800 /* Extended Channel Switching capability to be set in the 1st byte of
3801 * the @WLAN_EID_EXT_CAPABILITY information element
3802 */
3803 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
3804
3805 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
3806 * @WLAN_EID_EXT_CAPABILITY information element
3807 */
3808 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
3809
3810 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
3811 * of the @WLAN_EID_EXT_CAPABILITY information element
3812 */
3813 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7)
3814
3815 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
3816 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
3817 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
3818 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
3819
3820 /* Interworking capabilities are set in 7th bit of 4th byte of the
3821 * @WLAN_EID_EXT_CAPABILITY information element
3822 */
3823 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
3824
3825 /*
3826 * TDLS capabililites to be enabled in the 5th byte of the
3827 * @WLAN_EID_EXT_CAPABILITY information element
3828 */
3829 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
3830 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
3831 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
3832
3833 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
3834 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
3835
3836 /* Defines the maximal number of MSDUs in an A-MSDU. */
3837 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
3838 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
3839
3840 /*
3841 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
3842 * information element
3843 */
3844 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
3845
3846 /* Defines support for TWT Requester and TWT Responder */
3847 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
3848 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
3849
3850 /*
3851 * When set, indicates that the AP is able to tolerate 26-tone RU UL
3852 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
3853 * 26-tone RU UL OFDMA transmissions as radar pulses).
3854 */
3855 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
3856
3857 /* Defines support for enhanced multi-bssid advertisement*/
3858 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3)
3859
3860 /* TDLS specific payload type in the LLC/SNAP header */
3861 #define WLAN_TDLS_SNAP_RFTYPE 0x2
3862
3863 /* BSS Coex IE information field bits */
3864 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
3865
3866 /**
3867 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
3868 *
3869 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
3870 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
3871 * that will be specified in a vendor specific information element
3872 */
3873 enum ieee80211_mesh_sync_method {
3874 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
3875 IEEE80211_SYNC_METHOD_VENDOR = 255,
3876 };
3877
3878 /**
3879 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
3880 *
3881 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
3882 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
3883 * be specified in a vendor specific information element
3884 */
3885 enum ieee80211_mesh_path_protocol {
3886 IEEE80211_PATH_PROTOCOL_HWMP = 1,
3887 IEEE80211_PATH_PROTOCOL_VENDOR = 255,
3888 };
3889
3890 /**
3891 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
3892 *
3893 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
3894 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
3895 * specified in a vendor specific information element
3896 */
3897 enum ieee80211_mesh_path_metric {
3898 IEEE80211_PATH_METRIC_AIRTIME = 1,
3899 IEEE80211_PATH_METRIC_VENDOR = 255,
3900 };
3901
3902 /**
3903 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
3904 *
3905 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
3906 *
3907 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
3908 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
3909 * this value
3910 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
3911 * the proactive PREQ with proactive PREP subfield set to 0
3912 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
3913 * supports the proactive PREQ with proactive PREP subfield set to 1
3914 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
3915 * the proactive RANN
3916 */
3917 enum ieee80211_root_mode_identifier {
3918 IEEE80211_ROOTMODE_NO_ROOT = 0,
3919 IEEE80211_ROOTMODE_ROOT = 1,
3920 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
3921 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
3922 IEEE80211_PROACTIVE_RANN = 4,
3923 };
3924
3925 /*
3926 * IEEE 802.11-2007 7.3.2.9 Country information element
3927 *
3928 * Minimum length is 8 octets, ie len must be evenly
3929 * divisible by 2
3930 */
3931
3932 /* Although the spec says 8 I'm seeing 6 in practice */
3933 #define IEEE80211_COUNTRY_IE_MIN_LEN 6
3934
3935 /* The Country String field of the element shall be 3 octets in length */
3936 #define IEEE80211_COUNTRY_STRING_LEN 3
3937
3938 /*
3939 * For regulatory extension stuff see IEEE 802.11-2007
3940 * Annex I (page 1141) and Annex J (page 1147). Also
3941 * review 7.3.2.9.
3942 *
3943 * When dot11RegulatoryClassesRequired is true and the
3944 * first_channel/reg_extension_id is >= 201 then the IE
3945 * compromises of the 'ext' struct represented below:
3946 *
3947 * - Regulatory extension ID - when generating IE this just needs
3948 * to be monotonically increasing for each triplet passed in
3949 * the IE
3950 * - Regulatory class - index into set of rules
3951 * - Coverage class - index into air propagation time (Table 7-27),
3952 * in microseconds, you can compute the air propagation time from
3953 * the index by multiplying by 3, so index 10 yields a propagation
3954 * of 10 us. Valid values are 0-31, values 32-255 are not defined
3955 * yet. A value of 0 inicates air propagation of <= 1 us.
3956 *
3957 * See also Table I.2 for Emission limit sets and table
3958 * I.3 for Behavior limit sets. Table J.1 indicates how to map
3959 * a reg_class to an emission limit set and behavior limit set.
3960 */
3961 #define IEEE80211_COUNTRY_EXTENSION_ID 201
3962
3963 /*
3964 * Channels numbers in the IE must be monotonically increasing
3965 * if dot11RegulatoryClassesRequired is not true.
3966 *
3967 * If dot11RegulatoryClassesRequired is true consecutive
3968 * subband triplets following a regulatory triplet shall
3969 * have monotonically increasing first_channel number fields.
3970 *
3971 * Channel numbers shall not overlap.
3972 *
3973 * Note that max_power is signed.
3974 */
3975 struct ieee80211_country_ie_triplet {
3976 union {
3977 struct {
3978 u8 first_channel;
3979 u8 num_channels;
3980 s8 max_power;
3981 } __packed chans;
3982 struct {
3983 u8 reg_extension_id;
3984 u8 reg_class;
3985 u8 coverage_class;
3986 } __packed ext;
3987 };
3988 } __packed;
3989
3990 enum ieee80211_timeout_interval_type {
3991 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
3992 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
3993 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
3994 };
3995
3996 /**
3997 * struct ieee80211_timeout_interval_ie - Timeout Interval element
3998 * @type: type, see &enum ieee80211_timeout_interval_type
3999 * @value: timeout interval value
4000 */
4001 struct ieee80211_timeout_interval_ie {
4002 u8 type;
4003 __le32 value;
4004 } __packed;
4005
4006 /**
4007 * enum ieee80211_idle_options - BSS idle options
4008 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4009 * protected frame to the AP to reset the idle timer at the AP for
4010 * the station.
4011 */
4012 enum ieee80211_idle_options {
4013 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4014 };
4015
4016 /**
4017 * struct ieee80211_bss_max_idle_period_ie
4018 *
4019 * This structure refers to "BSS Max idle period element"
4020 *
4021 * @max_idle_period: indicates the time period during which a station can
4022 * refrain from transmitting frames to its associated AP without being
4023 * disassociated. In units of 1000 TUs.
4024 * @idle_options: indicates the options associated with the BSS idle capability
4025 * as specified in &enum ieee80211_idle_options.
4026 */
4027 struct ieee80211_bss_max_idle_period_ie {
4028 __le16 max_idle_period;
4029 u8 idle_options;
4030 } __packed;
4031
4032 /* BACK action code */
4033 enum ieee80211_back_actioncode {
4034 WLAN_ACTION_ADDBA_REQ = 0,
4035 WLAN_ACTION_ADDBA_RESP = 1,
4036 WLAN_ACTION_DELBA = 2,
4037 };
4038
4039 /* BACK (block-ack) parties */
4040 enum ieee80211_back_parties {
4041 WLAN_BACK_RECIPIENT = 0,
4042 WLAN_BACK_INITIATOR = 1,
4043 };
4044
4045 /* SA Query action */
4046 enum ieee80211_sa_query_action {
4047 WLAN_ACTION_SA_QUERY_REQUEST = 0,
4048 WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4049 };
4050
4051 /**
4052 * struct ieee80211_bssid_index
4053 *
4054 * This structure refers to "Multiple BSSID-index element"
4055 *
4056 * @bssid_index: BSSID index
4057 * @dtim_period: optional, overrides transmitted BSS dtim period
4058 * @dtim_count: optional, overrides transmitted BSS dtim count
4059 */
4060 struct ieee80211_bssid_index {
4061 u8 bssid_index;
4062 u8 dtim_period;
4063 u8 dtim_count;
4064 };
4065
4066 /**
4067 * struct ieee80211_multiple_bssid_configuration
4068 *
4069 * This structure refers to "Multiple BSSID Configuration element"
4070 *
4071 * @bssid_count: total number of active BSSIDs in the set
4072 * @profile_periodicity: the least number of beacon frames need to be received
4073 * in order to discover all the nontransmitted BSSIDs in the set.
4074 */
4075 struct ieee80211_multiple_bssid_configuration {
4076 u8 bssid_count;
4077 u8 profile_periodicity;
4078 };
4079
4080 #define SUITE(oui, id) (((oui) << 8) | (id))
4081
4082 /* cipher suite selectors */
4083 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
4084 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
4085 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
4086 /* reserved: SUITE(0x000FAC, 3) */
4087 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
4088 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
4089 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
4090 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
4091 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
4092 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
4093 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
4094 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
4095 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
4096
4097 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
4098
4099 /* AKM suite selectors */
4100 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
4101 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
4102 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
4103 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
4104 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
4105 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
4106 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
4107 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
4108 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
4109 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10)
4110 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
4111 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
4112 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13)
4113 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
4114 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
4115 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
4116 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
4117 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18)
4118 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19)
4119 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20)
4120
4121 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2)
4122
4123 #define WLAN_MAX_KEY_LEN 32
4124
4125 #define WLAN_PMK_NAME_LEN 16
4126 #define WLAN_PMKID_LEN 16
4127 #define WLAN_PMK_LEN_EAP_LEAP 16
4128 #define WLAN_PMK_LEN 32
4129 #define WLAN_PMK_LEN_SUITE_B_192 48
4130
4131 #define WLAN_OUI_WFA 0x506f9a
4132 #define WLAN_OUI_TYPE_WFA_P2P 9
4133 #define WLAN_OUI_TYPE_WFA_DPP 0x1A
4134 #define WLAN_OUI_MICROSOFT 0x0050f2
4135 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1
4136 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2
4137 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4
4138 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8
4139
4140 /*
4141 * WMM/802.11e Tspec Element
4142 */
4143 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
4144 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
4145
4146 enum ieee80211_tspec_status_code {
4147 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4148 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4149 };
4150
4151 struct ieee80211_tspec_ie {
4152 u8 element_id;
4153 u8 len;
4154 u8 oui[3];
4155 u8 oui_type;
4156 u8 oui_subtype;
4157 u8 version;
4158 __le16 tsinfo;
4159 u8 tsinfo_resvd;
4160 __le16 nominal_msdu;
4161 __le16 max_msdu;
4162 __le32 min_service_int;
4163 __le32 max_service_int;
4164 __le32 inactivity_int;
4165 __le32 suspension_int;
4166 __le32 service_start_time;
4167 __le32 min_data_rate;
4168 __le32 mean_data_rate;
4169 __le32 peak_data_rate;
4170 __le32 max_burst_size;
4171 __le32 delay_bound;
4172 __le32 min_phy_rate;
4173 __le16 sba;
4174 __le16 medium_time;
4175 } __packed;
4176
4177 struct ieee80211_he_6ghz_capa {
4178 /* uses IEEE80211_HE_6GHZ_CAP_* below */
4179 __le16 capa;
4180 } __packed;
4181
4182 /* HE 6 GHz band capabilities */
4183 /* uses enum ieee80211_min_mpdu_spacing values */
4184 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007
4185 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4186 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038
4187 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4188 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0
4189 /* WLAN_HT_CAP_SM_PS_* values */
4190 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600
4191 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800
4192 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000
4193 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000
4194
4195 /**
4196 * ieee80211_get_qos_ctl - get pointer to qos control bytes
4197 * @hdr: the frame
4198 *
4199 * The qos ctrl bytes come after the frame_control, duration, seq_num
4200 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4201 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4202 */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4203 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4204 {
4205 union {
4206 struct ieee80211_qos_hdr addr3;
4207 struct ieee80211_qos_hdr_4addr addr4;
4208 } *qos;
4209
4210 qos = (void *)hdr;
4211 if (ieee80211_has_a4(qos->addr3.frame_control))
4212 return (u8 *)&qos->addr4.qos_ctrl;
4213 else
4214 return (u8 *)&qos->addr3.qos_ctrl;
4215 }
4216
4217 /**
4218 * ieee80211_get_tid - get qos TID
4219 * @hdr: the frame
4220 */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4221 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4222 {
4223 u8 *qc = ieee80211_get_qos_ctl(hdr);
4224
4225 return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4226 }
4227
4228 /**
4229 * ieee80211_get_SA - get pointer to SA
4230 * @hdr: the frame
4231 *
4232 * Given an 802.11 frame, this function returns the offset
4233 * to the source address (SA). It does not verify that the
4234 * header is long enough to contain the address, and the
4235 * header must be long enough to contain the frame control
4236 * field.
4237 */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4238 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4239 {
4240 if (ieee80211_has_a4(hdr->frame_control))
4241 return hdr->addr4;
4242 if (ieee80211_has_fromds(hdr->frame_control))
4243 return hdr->addr3;
4244 return hdr->addr2;
4245 }
4246
4247 /**
4248 * ieee80211_get_DA - get pointer to DA
4249 * @hdr: the frame
4250 *
4251 * Given an 802.11 frame, this function returns the offset
4252 * to the destination address (DA). It does not verify that
4253 * the header is long enough to contain the address, and the
4254 * header must be long enough to contain the frame control
4255 * field.
4256 */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4257 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4258 {
4259 if (ieee80211_has_tods(hdr->frame_control))
4260 return hdr->addr3;
4261 else
4262 return hdr->addr1;
4263 }
4264
4265 /**
4266 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4267 * @skb: the skb to check, starting with the 802.11 header
4268 */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4269 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4270 {
4271 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4272 __le16 fc = mgmt->frame_control;
4273
4274 /*
4275 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4276 * note that this ignores the IBSS special case.
4277 */
4278 if (!ieee80211_is_mgmt(fc))
4279 return false;
4280
4281 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4282 return true;
4283
4284 if (!ieee80211_is_action(fc))
4285 return false;
4286
4287 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4288 return true;
4289
4290 /* action frame - additionally check for non-bufferable FTM */
4291
4292 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4293 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4294 return true;
4295
4296 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4297 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4298 return false;
4299
4300 return true;
4301 }
4302
4303 /**
4304 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4305 * @hdr: the frame (buffer must include at least the first octet of payload)
4306 */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4307 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4308 {
4309 if (ieee80211_is_disassoc(hdr->frame_control) ||
4310 ieee80211_is_deauth(hdr->frame_control))
4311 return true;
4312
4313 if (ieee80211_is_action(hdr->frame_control)) {
4314 u8 *category;
4315
4316 /*
4317 * Action frames, excluding Public Action frames, are Robust
4318 * Management Frames. However, if we are looking at a Protected
4319 * frame, skip the check since the data may be encrypted and
4320 * the frame has already been found to be a Robust Management
4321 * Frame (by the other end).
4322 */
4323 if (ieee80211_has_protected(hdr->frame_control))
4324 return true;
4325 category = ((u8 *) hdr) + 24;
4326 return *category != WLAN_CATEGORY_PUBLIC &&
4327 *category != WLAN_CATEGORY_HT &&
4328 *category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4329 *category != WLAN_CATEGORY_SELF_PROTECTED &&
4330 *category != WLAN_CATEGORY_UNPROT_DMG &&
4331 *category != WLAN_CATEGORY_VHT &&
4332 *category != WLAN_CATEGORY_S1G &&
4333 *category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4334 }
4335
4336 return false;
4337 }
4338
4339 /**
4340 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4341 * @skb: the skb containing the frame, length will be checked
4342 */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4343 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4344 {
4345 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4346 return false;
4347 return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4348 }
4349
4350 /**
4351 * ieee80211_is_public_action - check if frame is a public action frame
4352 * @hdr: the frame
4353 * @len: length of the frame
4354 */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4355 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4356 size_t len)
4357 {
4358 struct ieee80211_mgmt *mgmt = (void *)hdr;
4359
4360 if (len < IEEE80211_MIN_ACTION_SIZE)
4361 return false;
4362 if (!ieee80211_is_action(hdr->frame_control))
4363 return false;
4364 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4365 }
4366
4367 /**
4368 * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4369 * protected dual of public action management frame
4370 * @skb: the skb containing the frame, length will be checked
4371 *
4372 * Return: true if the skb contains a protected dual of public action
4373 * management frame, false otherwise.
4374 */
4375 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4376 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4377 {
4378 u8 action;
4379
4380 if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4381 skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4382 return false;
4383
4384 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4385
4386 return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4387 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4388 action != WLAN_PUB_ACTION_MSMT_PILOT &&
4389 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4390 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4391 action != WLAN_PUB_ACTION_FTM_REQUEST &&
4392 action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4393 action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4394 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4395 }
4396
4397 /**
4398 * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4399 * privacy action frame
4400 * @hdr: the frame
4401 */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4402 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4403 {
4404 struct ieee80211_mgmt *mgmt = (void *)hdr;
4405
4406 if (!ieee80211_is_action(hdr->frame_control) ||
4407 !is_multicast_ether_addr(hdr->addr1))
4408 return false;
4409
4410 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4411 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4412 }
4413
4414 /**
4415 * ieee80211_is_group_privacy_action - check if frame is a group addressed
4416 * privacy action frame
4417 * @skb: the skb containing the frame, length will be checked
4418 */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4419 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4420 {
4421 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4422 return false;
4423 return _ieee80211_is_group_privacy_action((void *)skb->data);
4424 }
4425
4426 /**
4427 * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4428 * @tu: the TUs
4429 */
ieee80211_tu_to_usec(unsigned long tu)4430 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4431 {
4432 return 1024 * tu;
4433 }
4434
4435 /**
4436 * ieee80211_check_tim - check if AID bit is set in TIM
4437 * @tim: the TIM IE
4438 * @tim_len: length of the TIM IE
4439 * @aid: the AID to look for
4440 */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4441 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4442 u8 tim_len, u16 aid)
4443 {
4444 u8 mask;
4445 u8 index, indexn1, indexn2;
4446
4447 if (unlikely(!tim || tim_len < sizeof(*tim)))
4448 return false;
4449
4450 aid &= 0x3fff;
4451 index = aid / 8;
4452 mask = 1 << (aid & 7);
4453
4454 indexn1 = tim->bitmap_ctrl & 0xfe;
4455 indexn2 = tim_len + indexn1 - 4;
4456
4457 if (index < indexn1 || index > indexn2)
4458 return false;
4459
4460 index -= indexn1;
4461
4462 return !!(tim->virtual_map[index] & mask);
4463 }
4464
4465 /**
4466 * ieee80211_get_tdls_action - get tdls packet action (or -1, if not tdls packet)
4467 * @skb: the skb containing the frame, length will not be checked
4468 * @hdr_size: the size of the ieee80211_hdr that starts at skb->data
4469 *
4470 * This function assumes the frame is a data frame, and that the network header
4471 * is in the correct place.
4472 */
ieee80211_get_tdls_action(struct sk_buff * skb,u32 hdr_size)4473 static inline int ieee80211_get_tdls_action(struct sk_buff *skb, u32 hdr_size)
4474 {
4475 if (!skb_is_nonlinear(skb) &&
4476 skb->len > (skb_network_offset(skb) + 2)) {
4477 /* Point to where the indication of TDLS should start */
4478 const u8 *tdls_data = skb_network_header(skb) - 2;
4479
4480 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4481 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4482 tdls_data[3] == WLAN_CATEGORY_TDLS)
4483 return tdls_data[4];
4484 }
4485
4486 return -1;
4487 }
4488
4489 /* convert time units */
4490 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
4491 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
4492
4493 /* convert frequencies */
4494 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4495 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4496 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4497 #define KHZ_F "%d.%03d"
4498
4499 /* convert powers */
4500 #define DBI_TO_MBI(gain) ((gain) * 100)
4501 #define MBI_TO_DBI(gain) ((gain) / 100)
4502 #define DBM_TO_MBM(gain) ((gain) * 100)
4503 #define MBM_TO_DBM(gain) ((gain) / 100)
4504
4505 /**
4506 * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4507 * @skb: the skb containing the frame, length will be checked
4508 *
4509 * This function checks if it's either TPC report action frame or Link
4510 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4511 * and 8.5.7.5 accordingly.
4512 */
ieee80211_action_contains_tpc(struct sk_buff * skb)4513 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4514 {
4515 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4516
4517 if (!ieee80211_is_action(mgmt->frame_control))
4518 return false;
4519
4520 if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4521 sizeof(mgmt->u.action.u.tpc_report))
4522 return false;
4523
4524 /*
4525 * TPC report - check that:
4526 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4527 * spectrum management action = 3 (TPC/Link Measurement report)
4528 * TPC report EID = 35
4529 * TPC report element length = 2
4530 *
4531 * The spectrum management's tpc_report struct is used here both for
4532 * parsing tpc_report and radio measurement's link measurement report
4533 * frame, since the relevant part is identical in both frames.
4534 */
4535 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4536 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4537 return false;
4538
4539 /* both spectrum mgmt and link measurement have same action code */
4540 if (mgmt->u.action.u.tpc_report.action_code !=
4541 WLAN_ACTION_SPCT_TPC_RPRT)
4542 return false;
4543
4544 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4545 mgmt->u.action.u.tpc_report.tpc_elem_length !=
4546 sizeof(struct ieee80211_tpc_report_ie))
4547 return false;
4548
4549 return true;
4550 }
4551
ieee80211_is_timing_measurement(struct sk_buff * skb)4552 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4553 {
4554 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4555
4556 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4557 return false;
4558
4559 if (!ieee80211_is_action(mgmt->frame_control))
4560 return false;
4561
4562 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4563 mgmt->u.action.u.wnm_timing_msr.action_code ==
4564 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4565 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4566 return true;
4567
4568 return false;
4569 }
4570
ieee80211_is_ftm(struct sk_buff * skb)4571 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4572 {
4573 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4574
4575 if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4576 return false;
4577
4578 if (mgmt->u.action.u.ftm.action_code ==
4579 WLAN_PUB_ACTION_FTM_RESPONSE &&
4580 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4581 return true;
4582
4583 return false;
4584 }
4585
4586 struct element {
4587 u8 id;
4588 u8 datalen;
4589 u8 data[];
4590 } __packed;
4591
4592 /* element iteration helpers */
4593 #define for_each_element(_elem, _data, _datalen) \
4594 for (_elem = (const struct element *)(_data); \
4595 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4596 (int)sizeof(*_elem) && \
4597 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4598 (int)sizeof(*_elem) + _elem->datalen; \
4599 _elem = (const struct element *)(_elem->data + _elem->datalen))
4600
4601 #define for_each_element_id(element, _id, data, datalen) \
4602 for_each_element(element, data, datalen) \
4603 if (element->id == (_id))
4604
4605 #define for_each_element_extid(element, extid, _data, _datalen) \
4606 for_each_element(element, _data, _datalen) \
4607 if (element->id == WLAN_EID_EXTENSION && \
4608 element->datalen > 0 && \
4609 element->data[0] == (extid))
4610
4611 #define for_each_subelement(sub, element) \
4612 for_each_element(sub, (element)->data, (element)->datalen)
4613
4614 #define for_each_subelement_id(sub, id, element) \
4615 for_each_element_id(sub, id, (element)->data, (element)->datalen)
4616
4617 #define for_each_subelement_extid(sub, extid, element) \
4618 for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4619
4620 /**
4621 * for_each_element_completed - determine if element parsing consumed all data
4622 * @element: element pointer after for_each_element() or friends
4623 * @data: same data pointer as passed to for_each_element() or friends
4624 * @datalen: same data length as passed to for_each_element() or friends
4625 *
4626 * This function returns %true if all the data was parsed or considered
4627 * while walking the elements. Only use this if your for_each_element()
4628 * loop cannot be broken out of, otherwise it always returns %false.
4629 *
4630 * If some data was malformed, this returns %false since the last parsed
4631 * element will not fill the whole remaining data.
4632 */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4633 static inline bool for_each_element_completed(const struct element *element,
4634 const void *data, size_t datalen)
4635 {
4636 return (const u8 *)element == (const u8 *)data + datalen;
4637 }
4638
4639 /*
4640 * RSNX Capabilities:
4641 * bits 0-3: Field length (n-1)
4642 */
4643 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4644 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4645
4646 /*
4647 * reduced neighbor report, based on Draft P802.11ax_D6.1,
4648 * section 9.4.2.170 and accepted contributions.
4649 */
4650 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03
4651 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04
4652 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08
4653 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0
4654 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0
4655 #define IEEE80211_TBTT_INFO_TYPE_MLD 1
4656
4657 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01
4658 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02
4659 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04
4660 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08
4661 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10
4662 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20
4663 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40
4664
4665 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127
4666 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128
4667
4668 struct ieee80211_neighbor_ap_info {
4669 u8 tbtt_info_hdr;
4670 u8 tbtt_info_len;
4671 u8 op_class;
4672 u8 channel;
4673 } __packed;
4674
4675 enum ieee80211_range_params_max_total_ltf {
4676 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4677 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4678 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4679 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4680 };
4681
4682 /*
4683 * reduced neighbor report, based on Draft P802.11be_D3.0,
4684 * section 9.4.2.170.2.
4685 */
4686 struct ieee80211_rnr_mld_params {
4687 u8 mld_id;
4688 __le16 params;
4689 } __packed;
4690
4691 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F
4692 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0
4693 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000
4694 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000
4695
4696 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
4697 struct ieee80211_tbtt_info_7_8_9 {
4698 u8 tbtt_offset;
4699 u8 bssid[ETH_ALEN];
4700
4701 /* The following element is optional, structure may not grow */
4702 u8 bss_params;
4703 s8 psd_20;
4704 } __packed;
4705
4706 /* Format of the TBTT information element if it has >= 11 bytes */
4707 struct ieee80211_tbtt_info_ge_11 {
4708 u8 tbtt_offset;
4709 u8 bssid[ETH_ALEN];
4710 __le32 short_ssid;
4711
4712 /* The following elements are optional, structure may grow */
4713 u8 bss_params;
4714 s8 psd_20;
4715 struct ieee80211_rnr_mld_params mld_params;
4716 } __packed;
4717
4718 /* multi-link device */
4719 #define IEEE80211_MLD_MAX_NUM_LINKS 15
4720
4721 #define IEEE80211_ML_CONTROL_TYPE 0x0007
4722 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0
4723 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1
4724 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2
4725 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3
4726 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4
4727 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0
4728
4729 struct ieee80211_multi_link_elem {
4730 __le16 control;
4731 u8 variable[];
4732 } __packed;
4733
4734 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010
4735 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020
4736 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040
4737 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080
4738 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100
4739 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200
4740
4741 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff
4742 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00
4743 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000
4744
4745 /*
4746 * Described in P802.11be_D3.0
4747 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
4748 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
4749 * dot11MSDTXOPMAX defaults to 1
4750 */
4751 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac
4752
4753 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001
4754 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e
4755 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0
4756 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1
4757 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2
4758 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3
4759 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4
4760 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070
4761 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0
4762 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1
4763 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2
4764 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3
4765 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4
4766 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5
4767 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080
4768 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700
4769 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0
4770 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1
4771 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2
4772 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3
4773 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4
4774 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800
4775 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0
4776 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1
4777 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2
4778 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3
4779 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4
4780 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5
4781 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6
4782 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7
4783 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8
4784 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9
4785 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10
4786 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11
4787
4788 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f
4789 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010
4790 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060
4791 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80
4792 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000
4793
4794 struct ieee80211_mle_basic_common_info {
4795 u8 len;
4796 u8 mld_mac_addr[ETH_ALEN];
4797 u8 variable[];
4798 } __packed;
4799
4800 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010
4801
4802 struct ieee80211_mle_preq_common_info {
4803 u8 len;
4804 u8 variable[];
4805 } __packed;
4806
4807 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010
4808
4809 /* no fixed fields in RECONF */
4810
4811 struct ieee80211_mle_tdls_common_info {
4812 u8 len;
4813 u8 ap_mld_mac_addr[ETH_ALEN];
4814 } __packed;
4815
4816 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010
4817
4818 /* no fixed fields in PRIO_ACCESS */
4819
4820 /**
4821 * ieee80211_mle_common_size - check multi-link element common size
4822 * @data: multi-link element, must already be checked for size using
4823 * ieee80211_mle_size_ok()
4824 */
ieee80211_mle_common_size(const u8 * data)4825 static inline u8 ieee80211_mle_common_size(const u8 *data)
4826 {
4827 const struct ieee80211_multi_link_elem *mle = (const void *)data;
4828 u16 control = le16_to_cpu(mle->control);
4829 u8 common = 0;
4830
4831 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
4832 case IEEE80211_ML_CONTROL_TYPE_BASIC:
4833 case IEEE80211_ML_CONTROL_TYPE_PREQ:
4834 case IEEE80211_ML_CONTROL_TYPE_TDLS:
4835 case IEEE80211_ML_CONTROL_TYPE_RECONF:
4836 /*
4837 * The length is the first octet pointed by mle->variable so no
4838 * need to add anything
4839 */
4840 break;
4841 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
4842 if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR)
4843 common += ETH_ALEN;
4844 return common;
4845 default:
4846 WARN_ON(1);
4847 return 0;
4848 }
4849
4850 return sizeof(*mle) + common + mle->variable[0];
4851 }
4852
4853 /**
4854 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
4855 * @mle: the basic multi link element
4856 *
4857 * The element is assumed to be of the correct type (BASIC) and big enough,
4858 * this must be checked using ieee80211_mle_type_ok().
4859 *
4860 * If the BSS parameter change count value can't be found (the presence bit
4861 * for it is clear), 0 will be returned.
4862 */
4863 static inline u8
ieee80211_mle_get_bss_param_ch_cnt(const struct ieee80211_multi_link_elem * mle)4864 ieee80211_mle_get_bss_param_ch_cnt(const struct ieee80211_multi_link_elem *mle)
4865 {
4866 u16 control = le16_to_cpu(mle->control);
4867 const u8 *common = mle->variable;
4868
4869 /* common points now at the beginning of ieee80211_mle_basic_common_info */
4870 common += sizeof(struct ieee80211_mle_basic_common_info);
4871
4872 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
4873 return 0;
4874
4875 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4876 common += 1;
4877
4878 return *common;
4879 }
4880
4881 /**
4882 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
4883 * @data: pointer to the multi link EHT IE
4884 *
4885 * The element is assumed to be of the correct type (BASIC) and big enough,
4886 * this must be checked using ieee80211_mle_type_ok().
4887 *
4888 * If the medium synchronization is not present, then the default value is
4889 * returned.
4890 */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)4891 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
4892 {
4893 const struct ieee80211_multi_link_elem *mle = (const void *)data;
4894 u16 control = le16_to_cpu(mle->control);
4895 const u8 *common = mle->variable;
4896
4897 /* common points now at the beginning of ieee80211_mle_basic_common_info */
4898 common += sizeof(struct ieee80211_mle_basic_common_info);
4899
4900 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
4901 return IEEE80211_MED_SYNC_DELAY_DEFAULT;
4902
4903 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4904 common += 1;
4905 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
4906 common += 1;
4907
4908 return get_unaligned_le16(common);
4909 }
4910
4911 /**
4912 * ieee80211_mle_get_eml_cap - returns the EML capability
4913 * @data: pointer to the multi link EHT IE
4914 *
4915 * The element is assumed to be of the correct type (BASIC) and big enough,
4916 * this must be checked using ieee80211_mle_type_ok().
4917 *
4918 * If the EML capability is not present, 0 will be returned.
4919 */
ieee80211_mle_get_eml_cap(const u8 * data)4920 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
4921 {
4922 const struct ieee80211_multi_link_elem *mle = (const void *)data;
4923 u16 control = le16_to_cpu(mle->control);
4924 const u8 *common = mle->variable;
4925
4926 /* common points now at the beginning of ieee80211_mle_basic_common_info */
4927 common += sizeof(struct ieee80211_mle_basic_common_info);
4928
4929 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
4930 return 0;
4931
4932 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4933 common += 1;
4934 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
4935 common += 1;
4936 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
4937 common += 2;
4938
4939 return get_unaligned_le16(common);
4940 }
4941
4942 /**
4943 * ieee80211_mle_size_ok - validate multi-link element size
4944 * @data: pointer to the element data
4945 * @len: length of the containing element
4946 */
ieee80211_mle_size_ok(const u8 * data,size_t len)4947 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
4948 {
4949 const struct ieee80211_multi_link_elem *mle = (const void *)data;
4950 u8 fixed = sizeof(*mle);
4951 u8 common = 0;
4952 bool check_common_len = false;
4953 u16 control;
4954
4955 if (!data || len < fixed)
4956 return false;
4957
4958 control = le16_to_cpu(mle->control);
4959
4960 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
4961 case IEEE80211_ML_CONTROL_TYPE_BASIC:
4962 common += sizeof(struct ieee80211_mle_basic_common_info);
4963 check_common_len = true;
4964 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4965 common += 1;
4966 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
4967 common += 1;
4968 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
4969 common += 2;
4970 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
4971 common += 2;
4972 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
4973 common += 2;
4974 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
4975 common += 1;
4976 break;
4977 case IEEE80211_ML_CONTROL_TYPE_PREQ:
4978 common += sizeof(struct ieee80211_mle_preq_common_info);
4979 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
4980 common += 1;
4981 check_common_len = true;
4982 break;
4983 case IEEE80211_ML_CONTROL_TYPE_RECONF:
4984 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
4985 common += ETH_ALEN;
4986 break;
4987 case IEEE80211_ML_CONTROL_TYPE_TDLS:
4988 common += sizeof(struct ieee80211_mle_tdls_common_info);
4989 check_common_len = true;
4990 break;
4991 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
4992 if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR)
4993 common += ETH_ALEN;
4994 break;
4995 default:
4996 /* we don't know this type */
4997 return true;
4998 }
4999
5000 if (len < fixed + common)
5001 return false;
5002
5003 if (!check_common_len)
5004 return true;
5005
5006 /* if present, common length is the first octet there */
5007 return mle->variable[0] >= common;
5008 }
5009
5010 /**
5011 * ieee80211_mle_type_ok - validate multi-link element type and size
5012 * @data: pointer to the element data
5013 * @type: expected type of the element
5014 * @len: length of the containing element
5015 */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5016 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5017 {
5018 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5019 u16 control;
5020
5021 if (!ieee80211_mle_size_ok(data, len))
5022 return false;
5023
5024 control = le16_to_cpu(mle->control);
5025
5026 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5027 return true;
5028
5029 return false;
5030 }
5031
5032 enum ieee80211_mle_subelems {
5033 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0,
5034 IEEE80211_MLE_SUBELEM_FRAGMENT = 254,
5035 };
5036
5037 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f
5038 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010
5039 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5040 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040
5041 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080
5042 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100
5043 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200
5044 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400
5045 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800
5046
5047 struct ieee80211_mle_per_sta_profile {
5048 __le16 control;
5049 u8 sta_info_len;
5050 u8 variable[];
5051 } __packed;
5052
5053 /**
5054 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5055 * profile size
5056 * @data: pointer to the sub element data
5057 * @len: length of the containing sub element
5058 */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5059 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5060 size_t len)
5061 {
5062 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5063 u16 control;
5064 u8 fixed = sizeof(*prof);
5065 u8 info_len = 1;
5066
5067 if (len < fixed)
5068 return false;
5069
5070 control = le16_to_cpu(prof->control);
5071
5072 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5073 info_len += 6;
5074 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5075 info_len += 2;
5076 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5077 info_len += 8;
5078 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5079 info_len += 2;
5080 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5081 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5082 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5083 info_len += 2;
5084 else
5085 info_len += 1;
5086 }
5087 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5088 info_len += 1;
5089
5090 return prof->sta_info_len >= info_len &&
5091 fixed + prof->sta_info_len - 1 <= len;
5092 }
5093
5094 /**
5095 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5096 * parameter change count
5097 * @prof: the per-STA profile, having been checked with
5098 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5099 *
5100 * Return: The BSS parameter change count value if present, 0 otherwise.
5101 */
5102 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5103 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5104 {
5105 u16 control = le16_to_cpu(prof->control);
5106 const u8 *pos = prof->variable;
5107
5108 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5109 return 0;
5110
5111 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5112 pos += 6;
5113 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5114 pos += 2;
5115 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5116 pos += 8;
5117 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5118 pos += 2;
5119 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5120 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5121 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5122 pos += 2;
5123 else
5124 pos += 1;
5125 }
5126
5127 return *pos;
5128 }
5129
5130 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f
5131 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010
5132 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5133 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040
5134 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE 0x0780
5135 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800
5136
5137 /**
5138 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5139 * element sta profile size.
5140 * @data: pointer to the sub element data
5141 * @len: length of the containing sub element
5142 */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5143 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5144 size_t len)
5145 {
5146 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5147 u16 control;
5148 u8 fixed = sizeof(*prof);
5149 u8 info_len = 1;
5150
5151 if (len < fixed)
5152 return false;
5153
5154 control = le16_to_cpu(prof->control);
5155
5156 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5157 info_len += ETH_ALEN;
5158 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5159 info_len += 2;
5160 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5161 info_len += 2;
5162
5163 return prof->sta_info_len >= info_len &&
5164 fixed + prof->sta_info_len - 1 <= len;
5165 }
5166
5167 #define for_each_mle_subelement(_elem, _data, _len) \
5168 if (ieee80211_mle_size_ok(_data, _len)) \
5169 for_each_element(_elem, \
5170 _data + ieee80211_mle_common_size(_data),\
5171 _len - ieee80211_mle_common_size(_data))
5172
5173 #endif /* LINUX_IEEE80211_H */
5174