xref: /openbmc/qemu/hw/nvram/xlnx-versal-efuse-ctrl.c (revision ec08d9a51e6af3cd3edbdbf2ca6e97a1e2b5f0d1)
1  /*
2   * QEMU model of the Versal eFuse controller
3   *
4   * Copyright (c) 2020 Xilinx Inc.
5   * Copyright (c) 2023 Advanced Micro Devices, Inc.
6   *
7   * Permission is hereby granted, free of charge, to any person obtaining a copy
8   * of this software and associated documentation files (the "Software"), to deal
9   * in the Software without restriction, including without limitation the rights
10   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11   * copies of the Software, and to permit persons to whom the Software is
12   * furnished to do so, subject to the following conditions:
13   *
14   * The above copyright notice and this permission notice shall be included in
15   * all copies or substantial portions of the Software.
16   *
17   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23   * THE SOFTWARE.
24   */
25  
26  #include "qemu/osdep.h"
27  #include "hw/nvram/xlnx-versal-efuse.h"
28  
29  #include "qemu/log.h"
30  #include "qapi/error.h"
31  #include "migration/vmstate.h"
32  #include "hw/qdev-properties.h"
33  
34  #ifndef XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG
35  #define XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG 0
36  #endif
37  
38  REG32(WR_LOCK, 0x0)
39      FIELD(WR_LOCK, LOCK, 0, 16)
40  REG32(CFG, 0x4)
41      FIELD(CFG, SLVERR_ENABLE, 5, 1)
42      FIELD(CFG, MARGIN_RD, 2, 1)
43      FIELD(CFG, PGM_EN, 1, 1)
44  REG32(STATUS, 0x8)
45      FIELD(STATUS, AES_USER_KEY_1_CRC_PASS, 11, 1)
46      FIELD(STATUS, AES_USER_KEY_1_CRC_DONE, 10, 1)
47      FIELD(STATUS, AES_USER_KEY_0_CRC_PASS, 9, 1)
48      FIELD(STATUS, AES_USER_KEY_0_CRC_DONE, 8, 1)
49      FIELD(STATUS, AES_CRC_PASS, 7, 1)
50      FIELD(STATUS, AES_CRC_DONE, 6, 1)
51      FIELD(STATUS, CACHE_DONE, 5, 1)
52      FIELD(STATUS, CACHE_LOAD, 4, 1)
53      FIELD(STATUS, EFUSE_2_TBIT, 2, 1)
54      FIELD(STATUS, EFUSE_1_TBIT, 1, 1)
55      FIELD(STATUS, EFUSE_0_TBIT, 0, 1)
56  REG32(EFUSE_PGM_ADDR, 0xc)
57      FIELD(EFUSE_PGM_ADDR, PAGE, 13, 4)
58      FIELD(EFUSE_PGM_ADDR, ROW, 5, 8)
59      FIELD(EFUSE_PGM_ADDR, COLUMN, 0, 5)
60  REG32(EFUSE_RD_ADDR, 0x10)
61      FIELD(EFUSE_RD_ADDR, PAGE, 13, 4)
62      FIELD(EFUSE_RD_ADDR, ROW, 5, 8)
63  REG32(EFUSE_RD_DATA, 0x14)
64  REG32(TPGM, 0x18)
65      FIELD(TPGM, VALUE, 0, 16)
66  REG32(TRD, 0x1c)
67      FIELD(TRD, VALUE, 0, 8)
68  REG32(TSU_H_PS, 0x20)
69      FIELD(TSU_H_PS, VALUE, 0, 8)
70  REG32(TSU_H_PS_CS, 0x24)
71      FIELD(TSU_H_PS_CS, VALUE, 0, 8)
72  REG32(TRDM, 0x28)
73      FIELD(TRDM, VALUE, 0, 8)
74  REG32(TSU_H_CS, 0x2c)
75      FIELD(TSU_H_CS, VALUE, 0, 8)
76  REG32(EFUSE_ISR, 0x30)
77      FIELD(EFUSE_ISR, APB_SLVERR, 31, 1)
78      FIELD(EFUSE_ISR, CACHE_PARITY_E2, 14, 1)
79      FIELD(EFUSE_ISR, CACHE_PARITY_E1, 13, 1)
80      FIELD(EFUSE_ISR, CACHE_PARITY_E0S, 12, 1)
81      FIELD(EFUSE_ISR, CACHE_PARITY_E0R, 11, 1)
82      FIELD(EFUSE_ISR, CACHE_APB_SLVERR, 10, 1)
83      FIELD(EFUSE_ISR, CACHE_REQ_ERROR, 9, 1)
84      FIELD(EFUSE_ISR, MAIN_REQ_ERROR, 8, 1)
85      FIELD(EFUSE_ISR, READ_ON_CACHE_LD, 7, 1)
86      FIELD(EFUSE_ISR, CACHE_FSM_ERROR, 6, 1)
87      FIELD(EFUSE_ISR, MAIN_FSM_ERROR, 5, 1)
88      FIELD(EFUSE_ISR, CACHE_ERROR, 4, 1)
89      FIELD(EFUSE_ISR, RD_ERROR, 3, 1)
90      FIELD(EFUSE_ISR, RD_DONE, 2, 1)
91      FIELD(EFUSE_ISR, PGM_ERROR, 1, 1)
92      FIELD(EFUSE_ISR, PGM_DONE, 0, 1)
93  REG32(EFUSE_IMR, 0x34)
94      FIELD(EFUSE_IMR, APB_SLVERR, 31, 1)
95      FIELD(EFUSE_IMR, CACHE_PARITY_E2, 14, 1)
96      FIELD(EFUSE_IMR, CACHE_PARITY_E1, 13, 1)
97      FIELD(EFUSE_IMR, CACHE_PARITY_E0S, 12, 1)
98      FIELD(EFUSE_IMR, CACHE_PARITY_E0R, 11, 1)
99      FIELD(EFUSE_IMR, CACHE_APB_SLVERR, 10, 1)
100      FIELD(EFUSE_IMR, CACHE_REQ_ERROR, 9, 1)
101      FIELD(EFUSE_IMR, MAIN_REQ_ERROR, 8, 1)
102      FIELD(EFUSE_IMR, READ_ON_CACHE_LD, 7, 1)
103      FIELD(EFUSE_IMR, CACHE_FSM_ERROR, 6, 1)
104      FIELD(EFUSE_IMR, MAIN_FSM_ERROR, 5, 1)
105      FIELD(EFUSE_IMR, CACHE_ERROR, 4, 1)
106      FIELD(EFUSE_IMR, RD_ERROR, 3, 1)
107      FIELD(EFUSE_IMR, RD_DONE, 2, 1)
108      FIELD(EFUSE_IMR, PGM_ERROR, 1, 1)
109      FIELD(EFUSE_IMR, PGM_DONE, 0, 1)
110  REG32(EFUSE_IER, 0x38)
111      FIELD(EFUSE_IER, APB_SLVERR, 31, 1)
112      FIELD(EFUSE_IER, CACHE_PARITY_E2, 14, 1)
113      FIELD(EFUSE_IER, CACHE_PARITY_E1, 13, 1)
114      FIELD(EFUSE_IER, CACHE_PARITY_E0S, 12, 1)
115      FIELD(EFUSE_IER, CACHE_PARITY_E0R, 11, 1)
116      FIELD(EFUSE_IER, CACHE_APB_SLVERR, 10, 1)
117      FIELD(EFUSE_IER, CACHE_REQ_ERROR, 9, 1)
118      FIELD(EFUSE_IER, MAIN_REQ_ERROR, 8, 1)
119      FIELD(EFUSE_IER, READ_ON_CACHE_LD, 7, 1)
120      FIELD(EFUSE_IER, CACHE_FSM_ERROR, 6, 1)
121      FIELD(EFUSE_IER, MAIN_FSM_ERROR, 5, 1)
122      FIELD(EFUSE_IER, CACHE_ERROR, 4, 1)
123      FIELD(EFUSE_IER, RD_ERROR, 3, 1)
124      FIELD(EFUSE_IER, RD_DONE, 2, 1)
125      FIELD(EFUSE_IER, PGM_ERROR, 1, 1)
126      FIELD(EFUSE_IER, PGM_DONE, 0, 1)
127  REG32(EFUSE_IDR, 0x3c)
128      FIELD(EFUSE_IDR, APB_SLVERR, 31, 1)
129      FIELD(EFUSE_IDR, CACHE_PARITY_E2, 14, 1)
130      FIELD(EFUSE_IDR, CACHE_PARITY_E1, 13, 1)
131      FIELD(EFUSE_IDR, CACHE_PARITY_E0S, 12, 1)
132      FIELD(EFUSE_IDR, CACHE_PARITY_E0R, 11, 1)
133      FIELD(EFUSE_IDR, CACHE_APB_SLVERR, 10, 1)
134      FIELD(EFUSE_IDR, CACHE_REQ_ERROR, 9, 1)
135      FIELD(EFUSE_IDR, MAIN_REQ_ERROR, 8, 1)
136      FIELD(EFUSE_IDR, READ_ON_CACHE_LD, 7, 1)
137      FIELD(EFUSE_IDR, CACHE_FSM_ERROR, 6, 1)
138      FIELD(EFUSE_IDR, MAIN_FSM_ERROR, 5, 1)
139      FIELD(EFUSE_IDR, CACHE_ERROR, 4, 1)
140      FIELD(EFUSE_IDR, RD_ERROR, 3, 1)
141      FIELD(EFUSE_IDR, RD_DONE, 2, 1)
142      FIELD(EFUSE_IDR, PGM_ERROR, 1, 1)
143      FIELD(EFUSE_IDR, PGM_DONE, 0, 1)
144  REG32(EFUSE_CACHE_LOAD, 0x40)
145      FIELD(EFUSE_CACHE_LOAD, LOAD, 0, 1)
146  REG32(EFUSE_PGM_LOCK, 0x44)
147      FIELD(EFUSE_PGM_LOCK, SPK_ID_LOCK, 0, 1)
148  REG32(EFUSE_AES_CRC, 0x48)
149  REG32(EFUSE_AES_USR_KEY0_CRC, 0x4c)
150  REG32(EFUSE_AES_USR_KEY1_CRC, 0x50)
151  REG32(EFUSE_PD, 0x54)
152  REG32(EFUSE_ANLG_OSC_SW_1LP, 0x60)
153  REG32(EFUSE_TEST_CTRL, 0x100)
154  
155  #define R_MAX (R_EFUSE_TEST_CTRL + 1)
156  
157  #define R_WR_LOCK_UNLOCK_PASSCODE   (0xDF0D)
158  
159  /*
160   * eFuse layout references:
161   *   https://github.com/Xilinx/embeddedsw/blob/release-2019.2/lib/sw_services/xilnvm/src/xnvm_efuse_hw.h
162   */
163  #define BIT_POS_OF(A_) \
164      ((uint32_t)((A_) & (R_EFUSE_PGM_ADDR_ROW_MASK | \
165                          R_EFUSE_PGM_ADDR_COLUMN_MASK)))
166  
167  #define BIT_POS(R_, C_) \
168          ((uint32_t)((R_EFUSE_PGM_ADDR_ROW_MASK                  \
169                      & ((R_) << R_EFUSE_PGM_ADDR_ROW_SHIFT))     \
170                      |                                           \
171                      (R_EFUSE_PGM_ADDR_COLUMN_MASK               \
172                       & ((C_) << R_EFUSE_PGM_ADDR_COLUMN_SHIFT))))
173  
174  #define EFUSE_TBIT_POS(A_)          (BIT_POS_OF(A_) >= BIT_POS(0, 28))
175  
176  #define EFUSE_ANCHOR_ROW            (0)
177  #define EFUSE_ANCHOR_3_COL          (27)
178  #define EFUSE_ANCHOR_1_COL          (1)
179  
180  #define EFUSE_AES_KEY_START         BIT_POS(12, 0)
181  #define EFUSE_AES_KEY_END           BIT_POS(19, 31)
182  #define EFUSE_USER_KEY_0_START      BIT_POS(20, 0)
183  #define EFUSE_USER_KEY_0_END        BIT_POS(27, 31)
184  #define EFUSE_USER_KEY_1_START      BIT_POS(28, 0)
185  #define EFUSE_USER_KEY_1_END        BIT_POS(35, 31)
186  
187  #define EFUSE_RD_BLOCKED_START      EFUSE_AES_KEY_START
188  #define EFUSE_RD_BLOCKED_END        EFUSE_USER_KEY_1_END
189  
190  #define EFUSE_GLITCH_DET_WR_LK      BIT_POS(4, 31)
191  #define EFUSE_PPK0_WR_LK            BIT_POS(43, 6)
192  #define EFUSE_PPK1_WR_LK            BIT_POS(43, 7)
193  #define EFUSE_PPK2_WR_LK            BIT_POS(43, 8)
194  #define EFUSE_AES_WR_LK             BIT_POS(43, 11)
195  #define EFUSE_USER_KEY_0_WR_LK      BIT_POS(43, 13)
196  #define EFUSE_USER_KEY_1_WR_LK      BIT_POS(43, 15)
197  #define EFUSE_PUF_SYN_LK            BIT_POS(43, 16)
198  #define EFUSE_DNA_WR_LK             BIT_POS(43, 27)
199  #define EFUSE_BOOT_ENV_WR_LK        BIT_POS(43, 28)
200  
201  #define EFUSE_PGM_LOCKED_START      BIT_POS(44, 0)
202  #define EFUSE_PGM_LOCKED_END        BIT_POS(51, 31)
203  
204  #define EFUSE_PUF_PAGE              (2)
205  #define EFUSE_PUF_SYN_START         BIT_POS(129, 0)
206  #define EFUSE_PUF_SYN_END           BIT_POS(255, 27)
207  
208  #define EFUSE_KEY_CRC_LK_ROW           (43)
209  #define EFUSE_AES_KEY_CRC_LK_MASK      ((1U << 9) | (1U << 10))
210  #define EFUSE_USER_KEY_0_CRC_LK_MASK   (1U << 12)
211  #define EFUSE_USER_KEY_1_CRC_LK_MASK   (1U << 14)
212  
213  /*
214   * A handy macro to return value of an array element,
215   * or a specific default if given index is out of bound.
216   */
217  #define ARRAY_GET(A_, I_, D_) \
218      ((unsigned int)(I_) < ARRAY_SIZE(A_) ? (A_)[I_] : (D_))
219  
220  QEMU_BUILD_BUG_ON(R_MAX != ARRAY_SIZE(((XlnxVersalEFuseCtrl *)0)->regs));
221  
222  typedef struct XlnxEFuseLkSpec {
223      uint16_t row;
224      uint16_t lk_bit;
225  } XlnxEFuseLkSpec;
226  
efuse_imr_update_irq(XlnxVersalEFuseCtrl * s)227  static void efuse_imr_update_irq(XlnxVersalEFuseCtrl *s)
228  {
229      bool pending = s->regs[R_EFUSE_ISR] & ~s->regs[R_EFUSE_IMR];
230      qemu_set_irq(s->irq_efuse_imr, pending);
231  }
232  
efuse_isr_postw(RegisterInfo * reg,uint64_t val64)233  static void efuse_isr_postw(RegisterInfo *reg, uint64_t val64)
234  {
235      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
236      efuse_imr_update_irq(s);
237  }
238  
efuse_ier_prew(RegisterInfo * reg,uint64_t val64)239  static uint64_t efuse_ier_prew(RegisterInfo *reg, uint64_t val64)
240  {
241      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
242      uint32_t val = val64;
243  
244      s->regs[R_EFUSE_IMR] &= ~val;
245      efuse_imr_update_irq(s);
246      return 0;
247  }
248  
efuse_idr_prew(RegisterInfo * reg,uint64_t val64)249  static uint64_t efuse_idr_prew(RegisterInfo *reg, uint64_t val64)
250  {
251      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
252      uint32_t val = val64;
253  
254      s->regs[R_EFUSE_IMR] |= val;
255      efuse_imr_update_irq(s);
256      return 0;
257  }
258  
efuse_status_tbits_sync(XlnxVersalEFuseCtrl * s)259  static void efuse_status_tbits_sync(XlnxVersalEFuseCtrl *s)
260  {
261      uint32_t check = xlnx_efuse_tbits_check(s->efuse);
262      uint32_t val = s->regs[R_STATUS];
263  
264      val = FIELD_DP32(val, STATUS, EFUSE_0_TBIT, !!(check & (1 << 0)));
265      val = FIELD_DP32(val, STATUS, EFUSE_1_TBIT, !!(check & (1 << 1)));
266      val = FIELD_DP32(val, STATUS, EFUSE_2_TBIT, !!(check & (1 << 2)));
267  
268      s->regs[R_STATUS] = val;
269  }
270  
efuse_anchor_bits_check(XlnxVersalEFuseCtrl * s)271  static void efuse_anchor_bits_check(XlnxVersalEFuseCtrl *s)
272  {
273      unsigned page;
274  
275      if (!s->efuse || !s->efuse->init_tbits) {
276          return;
277      }
278  
279      for (page = 0; page < s->efuse->efuse_nr; page++) {
280          uint32_t row = 0, bit;
281  
282          row = FIELD_DP32(row, EFUSE_PGM_ADDR, PAGE, page);
283          row = FIELD_DP32(row, EFUSE_PGM_ADDR, ROW, EFUSE_ANCHOR_ROW);
284  
285          bit = FIELD_DP32(row, EFUSE_PGM_ADDR, COLUMN, EFUSE_ANCHOR_3_COL);
286          if (!xlnx_efuse_get_bit(s->efuse, bit)) {
287              xlnx_efuse_set_bit(s->efuse, bit);
288          }
289  
290          bit = FIELD_DP32(row, EFUSE_PGM_ADDR, COLUMN, EFUSE_ANCHOR_1_COL);
291          if (!xlnx_efuse_get_bit(s->efuse, bit)) {
292              xlnx_efuse_set_bit(s->efuse, bit);
293          }
294      }
295  }
296  
efuse_key_crc_check(RegisterInfo * reg,uint32_t crc,uint32_t pass_mask,uint32_t done_mask,unsigned first,uint32_t lk_mask)297  static void efuse_key_crc_check(RegisterInfo *reg, uint32_t crc,
298                                  uint32_t pass_mask, uint32_t done_mask,
299                                  unsigned first, uint32_t lk_mask)
300  {
301      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
302      uint32_t r, lk_bits;
303  
304      /*
305       * To start, assume both DONE and PASS, and clear PASS by xor
306       * if CRC-check fails or CRC-check disabled by lock fuse.
307       */
308      r = s->regs[R_STATUS] | done_mask | pass_mask;
309  
310      lk_bits = xlnx_efuse_get_row(s->efuse, EFUSE_KEY_CRC_LK_ROW) & lk_mask;
311      if (lk_bits == 0 && xlnx_efuse_k256_check(s->efuse, crc, first)) {
312          pass_mask = 0;
313      }
314  
315      s->regs[R_STATUS] = r ^ pass_mask;
316  }
317  
efuse_data_sync(XlnxVersalEFuseCtrl * s)318  static void efuse_data_sync(XlnxVersalEFuseCtrl *s)
319  {
320      efuse_status_tbits_sync(s);
321  }
322  
efuse_lk_spec_cmp(const void * a,const void * b)323  static int efuse_lk_spec_cmp(const void *a, const void *b)
324  {
325      uint16_t r1 = ((const XlnxEFuseLkSpec *)a)->row;
326      uint16_t r2 = ((const XlnxEFuseLkSpec *)b)->row;
327  
328      return (r1 > r2) - (r1 < r2);
329  }
330  
efuse_lk_spec_sort(XlnxVersalEFuseCtrl * s)331  static void efuse_lk_spec_sort(XlnxVersalEFuseCtrl *s)
332  {
333      XlnxEFuseLkSpec *ary = s->extra_pg0_lock_spec;
334      const uint32_t n8 = s->extra_pg0_lock_n16 * 2;
335      const uint32_t sz  = sizeof(ary[0]);
336      const uint32_t cnt = n8 / sz;
337  
338      if (ary && cnt) {
339          qsort(ary, cnt, sz, efuse_lk_spec_cmp);
340      }
341  }
342  
efuse_lk_spec_find(XlnxVersalEFuseCtrl * s,uint32_t row)343  static uint32_t efuse_lk_spec_find(XlnxVersalEFuseCtrl *s, uint32_t row)
344  {
345      const XlnxEFuseLkSpec *ary = s->extra_pg0_lock_spec;
346      const uint32_t n8  = s->extra_pg0_lock_n16 * 2;
347      const uint32_t sz  = sizeof(ary[0]);
348      const uint32_t cnt = n8 / sz;
349      const XlnxEFuseLkSpec *item = NULL;
350  
351      if (ary && cnt) {
352          XlnxEFuseLkSpec k = { .row = row, };
353  
354          item = bsearch(&k, ary, cnt, sz, efuse_lk_spec_cmp);
355      }
356  
357      return item ? item->lk_bit : 0;
358  }
359  
efuse_bit_locked(XlnxVersalEFuseCtrl * s,uint32_t bit)360  static uint32_t efuse_bit_locked(XlnxVersalEFuseCtrl *s, uint32_t bit)
361  {
362      /* Hard-coded locks */
363      static const uint16_t pg0_hard_lock[] = {
364          [4] = EFUSE_GLITCH_DET_WR_LK,
365          [37] = EFUSE_BOOT_ENV_WR_LK,
366  
367          [8 ... 11]  = EFUSE_DNA_WR_LK,
368          [12 ... 19] = EFUSE_AES_WR_LK,
369          [20 ... 27] = EFUSE_USER_KEY_0_WR_LK,
370          [28 ... 35] = EFUSE_USER_KEY_1_WR_LK,
371          [64 ... 71] = EFUSE_PPK0_WR_LK,
372          [72 ... 79] = EFUSE_PPK1_WR_LK,
373          [80 ... 87] = EFUSE_PPK2_WR_LK,
374      };
375  
376      uint32_t row = FIELD_EX32(bit, EFUSE_PGM_ADDR, ROW);
377      uint32_t lk_bit = ARRAY_GET(pg0_hard_lock, row, 0);
378  
379      return lk_bit ? lk_bit : efuse_lk_spec_find(s, row);
380  }
381  
efuse_pgm_locked(XlnxVersalEFuseCtrl * s,unsigned int bit)382  static bool efuse_pgm_locked(XlnxVersalEFuseCtrl *s, unsigned int bit)
383  {
384  
385      unsigned int lock = 1;
386  
387      /* Global lock */
388      if (!ARRAY_FIELD_EX32(s->regs, CFG, PGM_EN)) {
389          goto ret_lock;
390      }
391  
392      /* Row lock */
393      switch (FIELD_EX32(bit, EFUSE_PGM_ADDR, PAGE)) {
394      case 0:
395          if (ARRAY_FIELD_EX32(s->regs, EFUSE_PGM_LOCK, SPK_ID_LOCK) &&
396              bit >= EFUSE_PGM_LOCKED_START && bit <= EFUSE_PGM_LOCKED_END) {
397              goto ret_lock;
398          }
399  
400          lock = efuse_bit_locked(s, bit);
401          break;
402      case EFUSE_PUF_PAGE:
403          if (bit < EFUSE_PUF_SYN_START || bit > EFUSE_PUF_SYN_END) {
404              lock = 0;
405              goto ret_lock;
406          }
407  
408          lock = EFUSE_PUF_SYN_LK;
409          break;
410      default:
411          lock = 0;
412          goto ret_lock;
413      }
414  
415      /* Row lock by an efuse bit */
416      if (lock) {
417          lock = xlnx_efuse_get_bit(s->efuse, lock);
418      }
419  
420   ret_lock:
421      return lock != 0;
422  }
423  
efuse_pgm_addr_postw(RegisterInfo * reg,uint64_t val64)424  static void efuse_pgm_addr_postw(RegisterInfo *reg, uint64_t val64)
425  {
426      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
427      unsigned bit = val64;
428      bool ok = false;
429  
430      /* Always zero out PGM_ADDR because it is write-only */
431      s->regs[R_EFUSE_PGM_ADDR] = 0;
432  
433      /*
434       * Indicate error if bit is write-protected (or read-only
435       * as guarded by efuse_set_bit()).
436       *
437       * Keep it simple by not modeling program timing.
438       *
439       * Note: model must NEVER clear the PGM_ERROR bit; it is
440       *       up to guest to do so (or by reset).
441       */
442      if (efuse_pgm_locked(s, bit)) {
443          g_autofree char *path = object_get_canonical_path(OBJECT(s));
444  
445          qemu_log_mask(LOG_GUEST_ERROR,
446                        "%s: Denied setting of efuse<%u, %u, %u>\n",
447                        path,
448                        FIELD_EX32(bit, EFUSE_PGM_ADDR, PAGE),
449                        FIELD_EX32(bit, EFUSE_PGM_ADDR, ROW),
450                        FIELD_EX32(bit, EFUSE_PGM_ADDR, COLUMN));
451      } else if (xlnx_efuse_set_bit(s->efuse, bit)) {
452          ok = true;
453          if (EFUSE_TBIT_POS(bit)) {
454              efuse_status_tbits_sync(s);
455          }
456      }
457  
458      if (!ok) {
459          ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, PGM_ERROR, 1);
460      }
461  
462      ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, PGM_DONE, 1);
463      efuse_imr_update_irq(s);
464  }
465  
efuse_rd_addr_postw(RegisterInfo * reg,uint64_t val64)466  static void efuse_rd_addr_postw(RegisterInfo *reg, uint64_t val64)
467  {
468      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
469      unsigned bit = val64;
470      bool denied;
471  
472      /* Always zero out RD_ADDR because it is write-only */
473      s->regs[R_EFUSE_RD_ADDR] = 0;
474  
475      /*
476       * Indicate error if row is read-blocked.
477       *
478       * Note: model must NEVER clear the RD_ERROR bit; it is
479       *       up to guest to do so (or by reset).
480       */
481      s->regs[R_EFUSE_RD_DATA] = xlnx_versal_efuse_read_row(s->efuse,
482                                                            bit, &denied);
483      if (denied) {
484          g_autofree char *path = object_get_canonical_path(OBJECT(s));
485  
486          qemu_log_mask(LOG_GUEST_ERROR,
487                        "%s: Denied reading of efuse<%u, %u>\n",
488                        path,
489                        FIELD_EX32(bit, EFUSE_RD_ADDR, PAGE),
490                        FIELD_EX32(bit, EFUSE_RD_ADDR, ROW));
491  
492          ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, RD_ERROR, 1);
493      }
494  
495      ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, RD_DONE, 1);
496      efuse_imr_update_irq(s);
497      return;
498  }
499  
efuse_cache_load_prew(RegisterInfo * reg,uint64_t val64)500  static uint64_t efuse_cache_load_prew(RegisterInfo *reg, uint64_t val64)
501  {
502      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
503  
504      if (val64 & R_EFUSE_CACHE_LOAD_LOAD_MASK) {
505          efuse_data_sync(s);
506  
507          ARRAY_FIELD_DP32(s->regs, STATUS, CACHE_DONE, 1);
508          efuse_imr_update_irq(s);
509      }
510  
511      return 0;
512  }
513  
efuse_pgm_lock_prew(RegisterInfo * reg,uint64_t val64)514  static uint64_t efuse_pgm_lock_prew(RegisterInfo *reg, uint64_t val64)
515  {
516      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque);
517  
518      /* Ignore all other bits */
519      val64 = FIELD_EX32(val64, EFUSE_PGM_LOCK, SPK_ID_LOCK);
520  
521      /* Once the bit is written 1, only reset will clear it to 0 */
522      val64 |= ARRAY_FIELD_EX32(s->regs, EFUSE_PGM_LOCK, SPK_ID_LOCK);
523  
524      return val64;
525  }
526  
efuse_aes_crc_postw(RegisterInfo * reg,uint64_t val64)527  static void efuse_aes_crc_postw(RegisterInfo *reg, uint64_t val64)
528  {
529      efuse_key_crc_check(reg, val64,
530                          R_STATUS_AES_CRC_PASS_MASK,
531                          R_STATUS_AES_CRC_DONE_MASK,
532                          EFUSE_AES_KEY_START,
533                          EFUSE_AES_KEY_CRC_LK_MASK);
534  }
535  
efuse_aes_u0_crc_postw(RegisterInfo * reg,uint64_t val64)536  static void efuse_aes_u0_crc_postw(RegisterInfo *reg, uint64_t val64)
537  {
538      efuse_key_crc_check(reg, val64,
539                          R_STATUS_AES_USER_KEY_0_CRC_PASS_MASK,
540                          R_STATUS_AES_USER_KEY_0_CRC_DONE_MASK,
541                          EFUSE_USER_KEY_0_START,
542                          EFUSE_USER_KEY_0_CRC_LK_MASK);
543  }
544  
efuse_aes_u1_crc_postw(RegisterInfo * reg,uint64_t val64)545  static void efuse_aes_u1_crc_postw(RegisterInfo *reg, uint64_t val64)
546  {
547      efuse_key_crc_check(reg, val64,
548                          R_STATUS_AES_USER_KEY_1_CRC_PASS_MASK,
549                          R_STATUS_AES_USER_KEY_1_CRC_DONE_MASK,
550                          EFUSE_USER_KEY_1_START,
551                          EFUSE_USER_KEY_1_CRC_LK_MASK);
552  }
553  
efuse_wr_lock_prew(RegisterInfo * reg,uint64_t val)554  static uint64_t efuse_wr_lock_prew(RegisterInfo *reg, uint64_t val)
555  {
556      return val != R_WR_LOCK_UNLOCK_PASSCODE;
557  }
558  
559  static const RegisterAccessInfo efuse_ctrl_regs_info[] = {
560      {   .name = "WR_LOCK",  .addr = A_WR_LOCK,
561          .reset = 0x1,
562          .pre_write = efuse_wr_lock_prew,
563      },{ .name = "CFG",  .addr = A_CFG,
564          .rsvd = 0x9,
565      },{ .name = "STATUS",  .addr = A_STATUS,
566          .rsvd = 0x8,
567          .ro = 0xfff,
568      },{ .name = "EFUSE_PGM_ADDR",  .addr = A_EFUSE_PGM_ADDR,
569          .post_write = efuse_pgm_addr_postw,
570      },{ .name = "EFUSE_RD_ADDR",  .addr = A_EFUSE_RD_ADDR,
571          .rsvd = 0x1f,
572          .post_write = efuse_rd_addr_postw,
573      },{ .name = "EFUSE_RD_DATA",  .addr = A_EFUSE_RD_DATA,
574          .ro = 0xffffffff,
575      },{ .name = "TPGM",  .addr = A_TPGM,
576      },{ .name = "TRD",  .addr = A_TRD,
577          .reset = 0x19,
578      },{ .name = "TSU_H_PS",  .addr = A_TSU_H_PS,
579          .reset = 0xff,
580      },{ .name = "TSU_H_PS_CS",  .addr = A_TSU_H_PS_CS,
581          .reset = 0x11,
582      },{ .name = "TRDM",  .addr = A_TRDM,
583          .reset = 0x3a,
584      },{ .name = "TSU_H_CS",  .addr = A_TSU_H_CS,
585          .reset = 0x16,
586      },{ .name = "EFUSE_ISR",  .addr = A_EFUSE_ISR,
587          .rsvd = 0x7fff8000,
588          .w1c = 0x80007fff,
589          .post_write = efuse_isr_postw,
590      },{ .name = "EFUSE_IMR",  .addr = A_EFUSE_IMR,
591          .reset = 0x80007fff,
592          .rsvd = 0x7fff8000,
593          .ro = 0xffffffff,
594      },{ .name = "EFUSE_IER",  .addr = A_EFUSE_IER,
595          .rsvd = 0x7fff8000,
596          .pre_write = efuse_ier_prew,
597      },{ .name = "EFUSE_IDR",  .addr = A_EFUSE_IDR,
598          .rsvd = 0x7fff8000,
599          .pre_write = efuse_idr_prew,
600      },{ .name = "EFUSE_CACHE_LOAD",  .addr = A_EFUSE_CACHE_LOAD,
601          .pre_write = efuse_cache_load_prew,
602      },{ .name = "EFUSE_PGM_LOCK",  .addr = A_EFUSE_PGM_LOCK,
603          .pre_write = efuse_pgm_lock_prew,
604      },{ .name = "EFUSE_AES_CRC",  .addr = A_EFUSE_AES_CRC,
605          .post_write = efuse_aes_crc_postw,
606      },{ .name = "EFUSE_AES_USR_KEY0_CRC",  .addr = A_EFUSE_AES_USR_KEY0_CRC,
607          .post_write = efuse_aes_u0_crc_postw,
608      },{ .name = "EFUSE_AES_USR_KEY1_CRC",  .addr = A_EFUSE_AES_USR_KEY1_CRC,
609          .post_write = efuse_aes_u1_crc_postw,
610      },{ .name = "EFUSE_PD",  .addr = A_EFUSE_PD,
611          .ro = 0xfffffffe,
612      },{ .name = "EFUSE_ANLG_OSC_SW_1LP",  .addr = A_EFUSE_ANLG_OSC_SW_1LP,
613      },{ .name = "EFUSE_TEST_CTRL",  .addr = A_EFUSE_TEST_CTRL,
614          .reset = 0x8,
615      }
616  };
617  
efuse_ctrl_reg_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)618  static void efuse_ctrl_reg_write(void *opaque, hwaddr addr,
619                                   uint64_t data, unsigned size)
620  {
621      RegisterInfoArray *reg_array = opaque;
622      XlnxVersalEFuseCtrl *s;
623      Object *dev;
624  
625      assert(reg_array != NULL);
626  
627      dev = reg_array->mem.owner;
628      assert(dev);
629  
630      s = XLNX_VERSAL_EFUSE_CTRL(dev);
631  
632      if (addr != A_WR_LOCK && s->regs[R_WR_LOCK]) {
633          g_autofree char *path = object_get_canonical_path(OBJECT(s));
634  
635          qemu_log_mask(LOG_GUEST_ERROR,
636                        "%s[reg_0x%02lx]: Attempt to write locked register.\n",
637                        path, (long)addr);
638      } else {
639          register_write_memory(opaque, addr, data, size);
640      }
641  }
642  
efuse_ctrl_register_reset(RegisterInfo * reg)643  static void efuse_ctrl_register_reset(RegisterInfo *reg)
644  {
645      if (!reg->data || !reg->access) {
646          return;
647      }
648  
649      /* Reset must not trigger some registers' writers */
650      switch (reg->access->addr) {
651      case A_EFUSE_AES_CRC:
652      case A_EFUSE_AES_USR_KEY0_CRC:
653      case A_EFUSE_AES_USR_KEY1_CRC:
654          *(uint32_t *)reg->data = reg->access->reset;
655          return;
656      }
657  
658      register_reset(reg);
659  }
660  
efuse_ctrl_reset_hold(Object * obj,ResetType type)661  static void efuse_ctrl_reset_hold(Object *obj, ResetType type)
662  {
663      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj);
664      unsigned int i;
665  
666      for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
667          efuse_ctrl_register_reset(&s->regs_info[i]);
668      }
669  
670      efuse_anchor_bits_check(s);
671      efuse_data_sync(s);
672      efuse_imr_update_irq(s);
673  }
674  
675  static const MemoryRegionOps efuse_ctrl_ops = {
676      .read = register_read_memory,
677      .write = efuse_ctrl_reg_write,
678      .endianness = DEVICE_LITTLE_ENDIAN,
679      .valid = {
680          .min_access_size = 4,
681          .max_access_size = 4,
682      },
683  };
684  
efuse_ctrl_realize(DeviceState * dev,Error ** errp)685  static void efuse_ctrl_realize(DeviceState *dev, Error **errp)
686  {
687      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(dev);
688      const uint32_t lks_sz = sizeof(XlnxEFuseLkSpec) / 2;
689  
690      if (!s->efuse) {
691          g_autofree char *path = object_get_canonical_path(OBJECT(s));
692  
693          error_setg(errp, "%s.efuse: link property not connected to XLNX-EFUSE",
694                     path);
695          return;
696      }
697  
698      /* Sort property-defined pgm-locks for bsearch lookup */
699      if ((s->extra_pg0_lock_n16 % lks_sz) != 0) {
700          g_autofree char *path = object_get_canonical_path(OBJECT(s));
701  
702          error_setg(errp,
703                     "%s.pg0-lock: array property item-count not multiple of %u",
704                     path, lks_sz);
705          return;
706      }
707  
708      efuse_lk_spec_sort(s);
709  }
710  
efuse_ctrl_init(Object * obj)711  static void efuse_ctrl_init(Object *obj)
712  {
713      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj);
714      SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
715  
716      s->reg_array =
717          register_init_block32(DEVICE(obj), efuse_ctrl_regs_info,
718                                ARRAY_SIZE(efuse_ctrl_regs_info),
719                                s->regs_info, s->regs,
720                                &efuse_ctrl_ops,
721                                XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG,
722                                R_MAX * 4);
723  
724      sysbus_init_mmio(sbd, &s->reg_array->mem);
725      sysbus_init_irq(sbd, &s->irq_efuse_imr);
726  }
727  
efuse_ctrl_finalize(Object * obj)728  static void efuse_ctrl_finalize(Object *obj)
729  {
730      XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj);
731  
732      register_finalize_block(s->reg_array);
733      g_free(s->extra_pg0_lock_spec);
734  }
735  
736  static const VMStateDescription vmstate_efuse_ctrl = {
737      .name = TYPE_XLNX_VERSAL_EFUSE_CTRL,
738      .version_id = 1,
739      .minimum_version_id = 1,
740      .fields = (const VMStateField[]) {
741          VMSTATE_UINT32_ARRAY(regs, XlnxVersalEFuseCtrl, R_MAX),
742          VMSTATE_END_OF_LIST(),
743      }
744  };
745  
746  static Property efuse_ctrl_props[] = {
747      DEFINE_PROP_LINK("efuse",
748                       XlnxVersalEFuseCtrl, efuse,
749                       TYPE_XLNX_EFUSE, XlnxEFuse *),
750      DEFINE_PROP_ARRAY("pg0-lock",
751                        XlnxVersalEFuseCtrl, extra_pg0_lock_n16,
752                        extra_pg0_lock_spec, qdev_prop_uint16, uint16_t),
753  
754      DEFINE_PROP_END_OF_LIST(),
755  };
756  
efuse_ctrl_class_init(ObjectClass * klass,void * data)757  static void efuse_ctrl_class_init(ObjectClass *klass, void *data)
758  {
759      DeviceClass *dc = DEVICE_CLASS(klass);
760      ResettableClass *rc = RESETTABLE_CLASS(klass);
761  
762      rc->phases.hold = efuse_ctrl_reset_hold;
763      dc->realize = efuse_ctrl_realize;
764      dc->vmsd = &vmstate_efuse_ctrl;
765      device_class_set_props(dc, efuse_ctrl_props);
766  }
767  
768  static const TypeInfo efuse_ctrl_info = {
769      .name          = TYPE_XLNX_VERSAL_EFUSE_CTRL,
770      .parent        = TYPE_SYS_BUS_DEVICE,
771      .instance_size = sizeof(XlnxVersalEFuseCtrl),
772      .class_init    = efuse_ctrl_class_init,
773      .instance_init = efuse_ctrl_init,
774      .instance_finalize = efuse_ctrl_finalize,
775  };
776  
efuse_ctrl_register_types(void)777  static void efuse_ctrl_register_types(void)
778  {
779      type_register_static(&efuse_ctrl_info);
780  }
781  
type_init(efuse_ctrl_register_types)782  type_init(efuse_ctrl_register_types)
783  
784  /*
785   * Retrieve a row, with unreadable bits returned as 0.
786   */
787  uint32_t xlnx_versal_efuse_read_row(XlnxEFuse *efuse,
788                                      uint32_t bit, bool *denied)
789  {
790      bool dummy;
791  
792      if (!denied) {
793          denied = &dummy;
794      }
795  
796      if (bit >= EFUSE_RD_BLOCKED_START && bit <= EFUSE_RD_BLOCKED_END) {
797          *denied = true;
798          return 0;
799      }
800  
801      *denied = false;
802      return xlnx_efuse_get_row(efuse, bit);
803  }
804