1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34
35 #include "cpu.h"
36
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64 static u64 __ro_after_init x86_arch_cap_msr;
65
66 static DEFINE_MUTEX(spec_ctrl_mutex);
67
68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69
70 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)71 static void update_spec_ctrl(u64 val)
72 {
73 this_cpu_write(x86_spec_ctrl_current, val);
74 wrmsrl(MSR_IA32_SPEC_CTRL, val);
75 }
76
77 /*
78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80 */
update_spec_ctrl_cond(u64 val)81 void update_spec_ctrl_cond(u64 val)
82 {
83 if (this_cpu_read(x86_spec_ctrl_current) == val)
84 return;
85
86 this_cpu_write(x86_spec_ctrl_current, val);
87
88 /*
89 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 * forced the update can be delayed until that time.
91 */
92 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 wrmsrl(MSR_IA32_SPEC_CTRL, val);
94 }
95
spec_ctrl_current(void)96 noinstr u64 spec_ctrl_current(void)
97 {
98 return this_cpu_read(x86_spec_ctrl_current);
99 }
100 EXPORT_SYMBOL_GPL(spec_ctrl_current);
101
102 /*
103 * AMD specific MSR info for Speculative Store Bypass control.
104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105 */
106 u64 __ro_after_init x86_amd_ls_cfg_base;
107 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108
109 /* Control conditional STIBP in switch_to() */
110 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111 /* Control conditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113 /* Control unconditional IBPB in switch_mm() */
114 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115
116 /* Control MDS CPU buffer clear before idling (halt, mwait) */
117 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118 EXPORT_SYMBOL_GPL(mds_idle_clear);
119
120 /*
121 * Controls whether l1d flush based mitigations are enabled,
122 * based on hw features and admin setting via boot parameter
123 * defaults to false
124 */
125 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126
127 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130
cpu_select_mitigations(void)131 void __init cpu_select_mitigations(void)
132 {
133 /*
134 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 * init code as it is not enumerated and depends on the family.
137 */
138 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140
141 /*
142 * Previously running kernel (kexec), may have some controls
143 * turned ON. Clear them and let the mitigations setup below
144 * rediscover them based on configuration.
145 */
146 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 }
148
149 x86_arch_cap_msr = x86_read_arch_cap_msr();
150
151 /* Select the proper CPU mitigations before patching alternatives: */
152 spectre_v1_select_mitigation();
153 spectre_v2_select_mitigation();
154 /*
155 * retbleed_select_mitigation() relies on the state set by
156 * spectre_v2_select_mitigation(); specifically it wants to know about
157 * spectre_v2=ibrs.
158 */
159 retbleed_select_mitigation();
160 /*
161 * spectre_v2_user_select_mitigation() relies on the state set by
162 * retbleed_select_mitigation(); specifically the STIBP selection is
163 * forced for UNRET or IBPB.
164 */
165 spectre_v2_user_select_mitigation();
166 ssb_select_mitigation();
167 l1tf_select_mitigation();
168 md_clear_select_mitigation();
169 srbds_select_mitigation();
170 l1d_flush_select_mitigation();
171
172 /*
173 * srso_select_mitigation() depends and must run after
174 * retbleed_select_mitigation().
175 */
176 srso_select_mitigation();
177 gds_select_mitigation();
178 }
179
180 /*
181 * NOTE: This function is *only* called for SVM, since Intel uses
182 * MSR_IA32_SPEC_CTRL for SSBD.
183 */
184 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)185 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186 {
187 u64 guestval, hostval;
188 struct thread_info *ti = current_thread_info();
189
190 /*
191 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193 */
194 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196 return;
197
198 /*
199 * If the host has SSBD mitigation enabled, force it in the host's
200 * virtual MSR value. If its not permanently enabled, evaluate
201 * current's TIF_SSBD thread flag.
202 */
203 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204 hostval = SPEC_CTRL_SSBD;
205 else
206 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
207
208 /* Sanitize the guest value */
209 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210
211 if (hostval != guestval) {
212 unsigned long tif;
213
214 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
215 ssbd_spec_ctrl_to_tif(hostval);
216
217 speculation_ctrl_update(tif);
218 }
219 }
220 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221
x86_amd_ssb_disable(void)222 static void x86_amd_ssb_disable(void)
223 {
224 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225
226 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229 wrmsrl(MSR_AMD64_LS_CFG, msrval);
230 }
231
232 #undef pr_fmt
233 #define pr_fmt(fmt) "MDS: " fmt
234
235 /* Default mitigation for MDS-affected CPUs */
236 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
237 static bool mds_nosmt __ro_after_init = false;
238
239 static const char * const mds_strings[] = {
240 [MDS_MITIGATION_OFF] = "Vulnerable",
241 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
242 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
243 };
244
mds_select_mitigation(void)245 static void __init mds_select_mitigation(void)
246 {
247 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
248 mds_mitigation = MDS_MITIGATION_OFF;
249 return;
250 }
251
252 if (mds_mitigation == MDS_MITIGATION_FULL) {
253 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
254 mds_mitigation = MDS_MITIGATION_VMWERV;
255
256 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
257
258 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
259 (mds_nosmt || cpu_mitigations_auto_nosmt()))
260 cpu_smt_disable(false);
261 }
262 }
263
mds_cmdline(char * str)264 static int __init mds_cmdline(char *str)
265 {
266 if (!boot_cpu_has_bug(X86_BUG_MDS))
267 return 0;
268
269 if (!str)
270 return -EINVAL;
271
272 if (!strcmp(str, "off"))
273 mds_mitigation = MDS_MITIGATION_OFF;
274 else if (!strcmp(str, "full"))
275 mds_mitigation = MDS_MITIGATION_FULL;
276 else if (!strcmp(str, "full,nosmt")) {
277 mds_mitigation = MDS_MITIGATION_FULL;
278 mds_nosmt = true;
279 }
280
281 return 0;
282 }
283 early_param("mds", mds_cmdline);
284
285 #undef pr_fmt
286 #define pr_fmt(fmt) "TAA: " fmt
287
288 enum taa_mitigations {
289 TAA_MITIGATION_OFF,
290 TAA_MITIGATION_UCODE_NEEDED,
291 TAA_MITIGATION_VERW,
292 TAA_MITIGATION_TSX_DISABLED,
293 };
294
295 /* Default mitigation for TAA-affected CPUs */
296 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
297 static bool taa_nosmt __ro_after_init;
298
299 static const char * const taa_strings[] = {
300 [TAA_MITIGATION_OFF] = "Vulnerable",
301 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
302 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
303 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
304 };
305
taa_select_mitigation(void)306 static void __init taa_select_mitigation(void)
307 {
308 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
309 taa_mitigation = TAA_MITIGATION_OFF;
310 return;
311 }
312
313 /* TSX previously disabled by tsx=off */
314 if (!boot_cpu_has(X86_FEATURE_RTM)) {
315 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
316 return;
317 }
318
319 if (cpu_mitigations_off()) {
320 taa_mitigation = TAA_MITIGATION_OFF;
321 return;
322 }
323
324 /*
325 * TAA mitigation via VERW is turned off if both
326 * tsx_async_abort=off and mds=off are specified.
327 */
328 if (taa_mitigation == TAA_MITIGATION_OFF &&
329 mds_mitigation == MDS_MITIGATION_OFF)
330 return;
331
332 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
333 taa_mitigation = TAA_MITIGATION_VERW;
334 else
335 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
336
337 /*
338 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
339 * A microcode update fixes this behavior to clear CPU buffers. It also
340 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
341 * ARCH_CAP_TSX_CTRL_MSR bit.
342 *
343 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
344 * update is required.
345 */
346 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
347 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
348 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
349
350 /*
351 * TSX is enabled, select alternate mitigation for TAA which is
352 * the same as MDS. Enable MDS static branch to clear CPU buffers.
353 *
354 * For guests that can't determine whether the correct microcode is
355 * present on host, enable the mitigation for UCODE_NEEDED as well.
356 */
357 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
358
359 if (taa_nosmt || cpu_mitigations_auto_nosmt())
360 cpu_smt_disable(false);
361 }
362
tsx_async_abort_parse_cmdline(char * str)363 static int __init tsx_async_abort_parse_cmdline(char *str)
364 {
365 if (!boot_cpu_has_bug(X86_BUG_TAA))
366 return 0;
367
368 if (!str)
369 return -EINVAL;
370
371 if (!strcmp(str, "off")) {
372 taa_mitigation = TAA_MITIGATION_OFF;
373 } else if (!strcmp(str, "full")) {
374 taa_mitigation = TAA_MITIGATION_VERW;
375 } else if (!strcmp(str, "full,nosmt")) {
376 taa_mitigation = TAA_MITIGATION_VERW;
377 taa_nosmt = true;
378 }
379
380 return 0;
381 }
382 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
383
384 #undef pr_fmt
385 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
386
387 enum mmio_mitigations {
388 MMIO_MITIGATION_OFF,
389 MMIO_MITIGATION_UCODE_NEEDED,
390 MMIO_MITIGATION_VERW,
391 };
392
393 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
394 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
395 static bool mmio_nosmt __ro_after_init = false;
396
397 static const char * const mmio_strings[] = {
398 [MMIO_MITIGATION_OFF] = "Vulnerable",
399 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
400 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
401 };
402
mmio_select_mitigation(void)403 static void __init mmio_select_mitigation(void)
404 {
405 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
406 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
407 cpu_mitigations_off()) {
408 mmio_mitigation = MMIO_MITIGATION_OFF;
409 return;
410 }
411
412 if (mmio_mitigation == MMIO_MITIGATION_OFF)
413 return;
414
415 /*
416 * Enable CPU buffer clear mitigation for host and VMM, if also affected
417 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
418 */
419 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
420 boot_cpu_has(X86_FEATURE_RTM)))
421 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
422
423 /*
424 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
425 * mitigations, disable KVM-only mitigation in that case.
426 */
427 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
428 static_branch_disable(&mmio_stale_data_clear);
429 else
430 static_branch_enable(&mmio_stale_data_clear);
431
432 /*
433 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
434 * be propagated to uncore buffers, clearing the Fill buffers on idle
435 * is required irrespective of SMT state.
436 */
437 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
438 static_branch_enable(&mds_idle_clear);
439
440 /*
441 * Check if the system has the right microcode.
442 *
443 * CPU Fill buffer clear mitigation is enumerated by either an explicit
444 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
445 * affected systems.
446 */
447 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
448 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
449 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
450 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
451 mmio_mitigation = MMIO_MITIGATION_VERW;
452 else
453 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
454
455 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
456 cpu_smt_disable(false);
457 }
458
mmio_stale_data_parse_cmdline(char * str)459 static int __init mmio_stale_data_parse_cmdline(char *str)
460 {
461 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
462 return 0;
463
464 if (!str)
465 return -EINVAL;
466
467 if (!strcmp(str, "off")) {
468 mmio_mitigation = MMIO_MITIGATION_OFF;
469 } else if (!strcmp(str, "full")) {
470 mmio_mitigation = MMIO_MITIGATION_VERW;
471 } else if (!strcmp(str, "full,nosmt")) {
472 mmio_mitigation = MMIO_MITIGATION_VERW;
473 mmio_nosmt = true;
474 }
475
476 return 0;
477 }
478 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
479
480 #undef pr_fmt
481 #define pr_fmt(fmt) "Register File Data Sampling: " fmt
482
483 enum rfds_mitigations {
484 RFDS_MITIGATION_OFF,
485 RFDS_MITIGATION_VERW,
486 RFDS_MITIGATION_UCODE_NEEDED,
487 };
488
489 /* Default mitigation for Register File Data Sampling */
490 static enum rfds_mitigations rfds_mitigation __ro_after_init =
491 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
492
493 static const char * const rfds_strings[] = {
494 [RFDS_MITIGATION_OFF] = "Vulnerable",
495 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File",
496 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
497 };
498
rfds_select_mitigation(void)499 static void __init rfds_select_mitigation(void)
500 {
501 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
502 rfds_mitigation = RFDS_MITIGATION_OFF;
503 return;
504 }
505 if (rfds_mitigation == RFDS_MITIGATION_OFF)
506 return;
507
508 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
509 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
510 else
511 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
512 }
513
rfds_parse_cmdline(char * str)514 static __init int rfds_parse_cmdline(char *str)
515 {
516 if (!str)
517 return -EINVAL;
518
519 if (!boot_cpu_has_bug(X86_BUG_RFDS))
520 return 0;
521
522 if (!strcmp(str, "off"))
523 rfds_mitigation = RFDS_MITIGATION_OFF;
524 else if (!strcmp(str, "on"))
525 rfds_mitigation = RFDS_MITIGATION_VERW;
526
527 return 0;
528 }
529 early_param("reg_file_data_sampling", rfds_parse_cmdline);
530
531 #undef pr_fmt
532 #define pr_fmt(fmt) "" fmt
533
md_clear_update_mitigation(void)534 static void __init md_clear_update_mitigation(void)
535 {
536 if (cpu_mitigations_off())
537 return;
538
539 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
540 goto out;
541
542 /*
543 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
544 * Stale Data mitigation, if necessary.
545 */
546 if (mds_mitigation == MDS_MITIGATION_OFF &&
547 boot_cpu_has_bug(X86_BUG_MDS)) {
548 mds_mitigation = MDS_MITIGATION_FULL;
549 mds_select_mitigation();
550 }
551 if (taa_mitigation == TAA_MITIGATION_OFF &&
552 boot_cpu_has_bug(X86_BUG_TAA)) {
553 taa_mitigation = TAA_MITIGATION_VERW;
554 taa_select_mitigation();
555 }
556 /*
557 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
558 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
559 */
560 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
561 mmio_mitigation = MMIO_MITIGATION_VERW;
562 mmio_select_mitigation();
563 }
564 if (rfds_mitigation == RFDS_MITIGATION_OFF &&
565 boot_cpu_has_bug(X86_BUG_RFDS)) {
566 rfds_mitigation = RFDS_MITIGATION_VERW;
567 rfds_select_mitigation();
568 }
569 out:
570 if (boot_cpu_has_bug(X86_BUG_MDS))
571 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
572 if (boot_cpu_has_bug(X86_BUG_TAA))
573 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
574 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
575 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
576 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
577 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
578 if (boot_cpu_has_bug(X86_BUG_RFDS))
579 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
580 }
581
md_clear_select_mitigation(void)582 static void __init md_clear_select_mitigation(void)
583 {
584 mds_select_mitigation();
585 taa_select_mitigation();
586 mmio_select_mitigation();
587 rfds_select_mitigation();
588
589 /*
590 * As these mitigations are inter-related and rely on VERW instruction
591 * to clear the microarchitural buffers, update and print their status
592 * after mitigation selection is done for each of these vulnerabilities.
593 */
594 md_clear_update_mitigation();
595 }
596
597 #undef pr_fmt
598 #define pr_fmt(fmt) "SRBDS: " fmt
599
600 enum srbds_mitigations {
601 SRBDS_MITIGATION_OFF,
602 SRBDS_MITIGATION_UCODE_NEEDED,
603 SRBDS_MITIGATION_FULL,
604 SRBDS_MITIGATION_TSX_OFF,
605 SRBDS_MITIGATION_HYPERVISOR,
606 };
607
608 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
609
610 static const char * const srbds_strings[] = {
611 [SRBDS_MITIGATION_OFF] = "Vulnerable",
612 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
613 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
614 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
615 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
616 };
617
618 static bool srbds_off;
619
update_srbds_msr(void)620 void update_srbds_msr(void)
621 {
622 u64 mcu_ctrl;
623
624 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625 return;
626
627 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
628 return;
629
630 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
631 return;
632
633 /*
634 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
635 * being disabled and it hasn't received the SRBDS MSR microcode.
636 */
637 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
638 return;
639
640 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
641
642 switch (srbds_mitigation) {
643 case SRBDS_MITIGATION_OFF:
644 case SRBDS_MITIGATION_TSX_OFF:
645 mcu_ctrl |= RNGDS_MITG_DIS;
646 break;
647 case SRBDS_MITIGATION_FULL:
648 mcu_ctrl &= ~RNGDS_MITG_DIS;
649 break;
650 default:
651 break;
652 }
653
654 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
655 }
656
srbds_select_mitigation(void)657 static void __init srbds_select_mitigation(void)
658 {
659 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
660 return;
661
662 /*
663 * Check to see if this is one of the MDS_NO systems supporting TSX that
664 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
665 * by Processor MMIO Stale Data vulnerability.
666 */
667 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
668 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
669 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
670 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
671 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
672 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
673 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
674 else if (cpu_mitigations_off() || srbds_off)
675 srbds_mitigation = SRBDS_MITIGATION_OFF;
676
677 update_srbds_msr();
678 pr_info("%s\n", srbds_strings[srbds_mitigation]);
679 }
680
srbds_parse_cmdline(char * str)681 static int __init srbds_parse_cmdline(char *str)
682 {
683 if (!str)
684 return -EINVAL;
685
686 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
687 return 0;
688
689 srbds_off = !strcmp(str, "off");
690 return 0;
691 }
692 early_param("srbds", srbds_parse_cmdline);
693
694 #undef pr_fmt
695 #define pr_fmt(fmt) "L1D Flush : " fmt
696
697 enum l1d_flush_mitigations {
698 L1D_FLUSH_OFF = 0,
699 L1D_FLUSH_ON,
700 };
701
702 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
703
l1d_flush_select_mitigation(void)704 static void __init l1d_flush_select_mitigation(void)
705 {
706 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
707 return;
708
709 static_branch_enable(&switch_mm_cond_l1d_flush);
710 pr_info("Conditional flush on switch_mm() enabled\n");
711 }
712
l1d_flush_parse_cmdline(char * str)713 static int __init l1d_flush_parse_cmdline(char *str)
714 {
715 if (!strcmp(str, "on"))
716 l1d_flush_mitigation = L1D_FLUSH_ON;
717
718 return 0;
719 }
720 early_param("l1d_flush", l1d_flush_parse_cmdline);
721
722 #undef pr_fmt
723 #define pr_fmt(fmt) "GDS: " fmt
724
725 enum gds_mitigations {
726 GDS_MITIGATION_OFF,
727 GDS_MITIGATION_UCODE_NEEDED,
728 GDS_MITIGATION_FORCE,
729 GDS_MITIGATION_FULL,
730 GDS_MITIGATION_FULL_LOCKED,
731 GDS_MITIGATION_HYPERVISOR,
732 };
733
734 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
735 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
736 #else
737 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
738 #endif
739
740 static const char * const gds_strings[] = {
741 [GDS_MITIGATION_OFF] = "Vulnerable",
742 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
743 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
744 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
745 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
746 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
747 };
748
gds_ucode_mitigated(void)749 bool gds_ucode_mitigated(void)
750 {
751 return (gds_mitigation == GDS_MITIGATION_FULL ||
752 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
753 }
754 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
755
update_gds_msr(void)756 void update_gds_msr(void)
757 {
758 u64 mcu_ctrl_after;
759 u64 mcu_ctrl;
760
761 switch (gds_mitigation) {
762 case GDS_MITIGATION_OFF:
763 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
764 mcu_ctrl |= GDS_MITG_DIS;
765 break;
766 case GDS_MITIGATION_FULL_LOCKED:
767 /*
768 * The LOCKED state comes from the boot CPU. APs might not have
769 * the same state. Make sure the mitigation is enabled on all
770 * CPUs.
771 */
772 case GDS_MITIGATION_FULL:
773 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
774 mcu_ctrl &= ~GDS_MITG_DIS;
775 break;
776 case GDS_MITIGATION_FORCE:
777 case GDS_MITIGATION_UCODE_NEEDED:
778 case GDS_MITIGATION_HYPERVISOR:
779 return;
780 };
781
782 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
783
784 /*
785 * Check to make sure that the WRMSR value was not ignored. Writes to
786 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
787 * processor was not.
788 */
789 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
790 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
791 }
792
gds_select_mitigation(void)793 static void __init gds_select_mitigation(void)
794 {
795 u64 mcu_ctrl;
796
797 if (!boot_cpu_has_bug(X86_BUG_GDS))
798 return;
799
800 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
801 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
802 goto out;
803 }
804
805 if (cpu_mitigations_off())
806 gds_mitigation = GDS_MITIGATION_OFF;
807 /* Will verify below that mitigation _can_ be disabled */
808
809 /* No microcode */
810 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
811 if (gds_mitigation == GDS_MITIGATION_FORCE) {
812 /*
813 * This only needs to be done on the boot CPU so do it
814 * here rather than in update_gds_msr()
815 */
816 setup_clear_cpu_cap(X86_FEATURE_AVX);
817 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
818 } else {
819 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
820 }
821 goto out;
822 }
823
824 /* Microcode has mitigation, use it */
825 if (gds_mitigation == GDS_MITIGATION_FORCE)
826 gds_mitigation = GDS_MITIGATION_FULL;
827
828 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
829 if (mcu_ctrl & GDS_MITG_LOCKED) {
830 if (gds_mitigation == GDS_MITIGATION_OFF)
831 pr_warn("Mitigation locked. Disable failed.\n");
832
833 /*
834 * The mitigation is selected from the boot CPU. All other CPUs
835 * _should_ have the same state. If the boot CPU isn't locked
836 * but others are then update_gds_msr() will WARN() of the state
837 * mismatch. If the boot CPU is locked update_gds_msr() will
838 * ensure the other CPUs have the mitigation enabled.
839 */
840 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
841 }
842
843 update_gds_msr();
844 out:
845 pr_info("%s\n", gds_strings[gds_mitigation]);
846 }
847
gds_parse_cmdline(char * str)848 static int __init gds_parse_cmdline(char *str)
849 {
850 if (!str)
851 return -EINVAL;
852
853 if (!boot_cpu_has_bug(X86_BUG_GDS))
854 return 0;
855
856 if (!strcmp(str, "off"))
857 gds_mitigation = GDS_MITIGATION_OFF;
858 else if (!strcmp(str, "force"))
859 gds_mitigation = GDS_MITIGATION_FORCE;
860
861 return 0;
862 }
863 early_param("gather_data_sampling", gds_parse_cmdline);
864
865 #undef pr_fmt
866 #define pr_fmt(fmt) "Spectre V1 : " fmt
867
868 enum spectre_v1_mitigation {
869 SPECTRE_V1_MITIGATION_NONE,
870 SPECTRE_V1_MITIGATION_AUTO,
871 };
872
873 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
874 SPECTRE_V1_MITIGATION_AUTO;
875
876 static const char * const spectre_v1_strings[] = {
877 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
878 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
879 };
880
881 /*
882 * Does SMAP provide full mitigation against speculative kernel access to
883 * userspace?
884 */
smap_works_speculatively(void)885 static bool smap_works_speculatively(void)
886 {
887 if (!boot_cpu_has(X86_FEATURE_SMAP))
888 return false;
889
890 /*
891 * On CPUs which are vulnerable to Meltdown, SMAP does not
892 * prevent speculative access to user data in the L1 cache.
893 * Consider SMAP to be non-functional as a mitigation on these
894 * CPUs.
895 */
896 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
897 return false;
898
899 return true;
900 }
901
spectre_v1_select_mitigation(void)902 static void __init spectre_v1_select_mitigation(void)
903 {
904 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
905 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
906 return;
907 }
908
909 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
910 /*
911 * With Spectre v1, a user can speculatively control either
912 * path of a conditional swapgs with a user-controlled GS
913 * value. The mitigation is to add lfences to both code paths.
914 *
915 * If FSGSBASE is enabled, the user can put a kernel address in
916 * GS, in which case SMAP provides no protection.
917 *
918 * If FSGSBASE is disabled, the user can only put a user space
919 * address in GS. That makes an attack harder, but still
920 * possible if there's no SMAP protection.
921 */
922 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
923 !smap_works_speculatively()) {
924 /*
925 * Mitigation can be provided from SWAPGS itself or
926 * PTI as the CR3 write in the Meltdown mitigation
927 * is serializing.
928 *
929 * If neither is there, mitigate with an LFENCE to
930 * stop speculation through swapgs.
931 */
932 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
933 !boot_cpu_has(X86_FEATURE_PTI))
934 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
935
936 /*
937 * Enable lfences in the kernel entry (non-swapgs)
938 * paths, to prevent user entry from speculatively
939 * skipping swapgs.
940 */
941 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
942 }
943 }
944
945 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
946 }
947
nospectre_v1_cmdline(char * str)948 static int __init nospectre_v1_cmdline(char *str)
949 {
950 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
951 return 0;
952 }
953 early_param("nospectre_v1", nospectre_v1_cmdline);
954
955 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
956
957 #undef pr_fmt
958 #define pr_fmt(fmt) "RETBleed: " fmt
959
960 enum retbleed_mitigation {
961 RETBLEED_MITIGATION_NONE,
962 RETBLEED_MITIGATION_UNRET,
963 RETBLEED_MITIGATION_IBPB,
964 RETBLEED_MITIGATION_IBRS,
965 RETBLEED_MITIGATION_EIBRS,
966 RETBLEED_MITIGATION_STUFF,
967 };
968
969 enum retbleed_mitigation_cmd {
970 RETBLEED_CMD_OFF,
971 RETBLEED_CMD_AUTO,
972 RETBLEED_CMD_UNRET,
973 RETBLEED_CMD_IBPB,
974 RETBLEED_CMD_STUFF,
975 };
976
977 static const char * const retbleed_strings[] = {
978 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
979 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
980 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
981 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
982 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
983 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
984 };
985
986 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
987 RETBLEED_MITIGATION_NONE;
988 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
989 RETBLEED_CMD_AUTO;
990
991 static int __ro_after_init retbleed_nosmt = false;
992
retbleed_parse_cmdline(char * str)993 static int __init retbleed_parse_cmdline(char *str)
994 {
995 if (!str)
996 return -EINVAL;
997
998 while (str) {
999 char *next = strchr(str, ',');
1000 if (next) {
1001 *next = 0;
1002 next++;
1003 }
1004
1005 if (!strcmp(str, "off")) {
1006 retbleed_cmd = RETBLEED_CMD_OFF;
1007 } else if (!strcmp(str, "auto")) {
1008 retbleed_cmd = RETBLEED_CMD_AUTO;
1009 } else if (!strcmp(str, "unret")) {
1010 retbleed_cmd = RETBLEED_CMD_UNRET;
1011 } else if (!strcmp(str, "ibpb")) {
1012 retbleed_cmd = RETBLEED_CMD_IBPB;
1013 } else if (!strcmp(str, "stuff")) {
1014 retbleed_cmd = RETBLEED_CMD_STUFF;
1015 } else if (!strcmp(str, "nosmt")) {
1016 retbleed_nosmt = true;
1017 } else if (!strcmp(str, "force")) {
1018 setup_force_cpu_bug(X86_BUG_RETBLEED);
1019 } else {
1020 pr_err("Ignoring unknown retbleed option (%s).", str);
1021 }
1022
1023 str = next;
1024 }
1025
1026 return 0;
1027 }
1028 early_param("retbleed", retbleed_parse_cmdline);
1029
1030 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1031 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1032
retbleed_select_mitigation(void)1033 static void __init retbleed_select_mitigation(void)
1034 {
1035 bool mitigate_smt = false;
1036
1037 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1038 return;
1039
1040 switch (retbleed_cmd) {
1041 case RETBLEED_CMD_OFF:
1042 return;
1043
1044 case RETBLEED_CMD_UNRET:
1045 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
1046 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1047 } else {
1048 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
1049 goto do_cmd_auto;
1050 }
1051 break;
1052
1053 case RETBLEED_CMD_IBPB:
1054 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1055 pr_err("WARNING: CPU does not support IBPB.\n");
1056 goto do_cmd_auto;
1057 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
1058 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1059 } else {
1060 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
1061 goto do_cmd_auto;
1062 }
1063 break;
1064
1065 case RETBLEED_CMD_STUFF:
1066 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1067 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1068 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1069
1070 } else {
1071 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1072 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1073 else
1074 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1075
1076 goto do_cmd_auto;
1077 }
1078 break;
1079
1080 do_cmd_auto:
1081 case RETBLEED_CMD_AUTO:
1082 default:
1083 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1084 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1085 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1086 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1087 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1088 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1089 }
1090
1091 /*
1092 * The Intel mitigation (IBRS or eIBRS) was already selected in
1093 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1094 * be set accordingly below.
1095 */
1096
1097 break;
1098 }
1099
1100 switch (retbleed_mitigation) {
1101 case RETBLEED_MITIGATION_UNRET:
1102 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1103 setup_force_cpu_cap(X86_FEATURE_UNRET);
1104
1105 x86_return_thunk = retbleed_return_thunk;
1106
1107 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1108 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1109 pr_err(RETBLEED_UNTRAIN_MSG);
1110
1111 mitigate_smt = true;
1112 break;
1113
1114 case RETBLEED_MITIGATION_IBPB:
1115 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1116
1117 /*
1118 * IBPB on entry already obviates the need for
1119 * software-based untraining so clear those in case some
1120 * other mitigation like SRSO has selected them.
1121 */
1122 setup_clear_cpu_cap(X86_FEATURE_UNRET);
1123 setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1124
1125 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1126 mitigate_smt = true;
1127
1128 /*
1129 * There is no need for RSB filling: entry_ibpb() ensures
1130 * all predictions, including the RSB, are invalidated,
1131 * regardless of IBPB implementation.
1132 */
1133 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1134
1135 break;
1136
1137 case RETBLEED_MITIGATION_STUFF:
1138 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1139 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1140 x86_set_skl_return_thunk();
1141 break;
1142
1143 default:
1144 break;
1145 }
1146
1147 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1148 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1149 cpu_smt_disable(false);
1150
1151 /*
1152 * Let IBRS trump all on Intel without affecting the effects of the
1153 * retbleed= cmdline option except for call depth based stuffing
1154 */
1155 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1156 switch (spectre_v2_enabled) {
1157 case SPECTRE_V2_IBRS:
1158 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1159 break;
1160 case SPECTRE_V2_EIBRS:
1161 case SPECTRE_V2_EIBRS_RETPOLINE:
1162 case SPECTRE_V2_EIBRS_LFENCE:
1163 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1164 break;
1165 default:
1166 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1167 pr_err(RETBLEED_INTEL_MSG);
1168 }
1169 }
1170
1171 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1172 }
1173
1174 #undef pr_fmt
1175 #define pr_fmt(fmt) "Spectre V2 : " fmt
1176
1177 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1178 SPECTRE_V2_USER_NONE;
1179 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1180 SPECTRE_V2_USER_NONE;
1181
1182 #ifdef CONFIG_RETPOLINE
1183 static bool spectre_v2_bad_module;
1184
retpoline_module_ok(bool has_retpoline)1185 bool retpoline_module_ok(bool has_retpoline)
1186 {
1187 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1188 return true;
1189
1190 pr_err("System may be vulnerable to spectre v2\n");
1191 spectre_v2_bad_module = true;
1192 return false;
1193 }
1194
spectre_v2_module_string(void)1195 static inline const char *spectre_v2_module_string(void)
1196 {
1197 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1198 }
1199 #else
spectre_v2_module_string(void)1200 static inline const char *spectre_v2_module_string(void) { return ""; }
1201 #endif
1202
1203 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1204 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1205 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1206 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1207
1208 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1209 void unpriv_ebpf_notify(int new_state)
1210 {
1211 if (new_state)
1212 return;
1213
1214 /* Unprivileged eBPF is enabled */
1215
1216 switch (spectre_v2_enabled) {
1217 case SPECTRE_V2_EIBRS:
1218 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1219 break;
1220 case SPECTRE_V2_EIBRS_LFENCE:
1221 if (sched_smt_active())
1222 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1223 break;
1224 default:
1225 break;
1226 }
1227 }
1228 #endif
1229
match_option(const char * arg,int arglen,const char * opt)1230 static inline bool match_option(const char *arg, int arglen, const char *opt)
1231 {
1232 int len = strlen(opt);
1233
1234 return len == arglen && !strncmp(arg, opt, len);
1235 }
1236
1237 /* The kernel command line selection for spectre v2 */
1238 enum spectre_v2_mitigation_cmd {
1239 SPECTRE_V2_CMD_NONE,
1240 SPECTRE_V2_CMD_AUTO,
1241 SPECTRE_V2_CMD_FORCE,
1242 SPECTRE_V2_CMD_RETPOLINE,
1243 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1244 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1245 SPECTRE_V2_CMD_EIBRS,
1246 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1247 SPECTRE_V2_CMD_EIBRS_LFENCE,
1248 SPECTRE_V2_CMD_IBRS,
1249 };
1250
1251 enum spectre_v2_user_cmd {
1252 SPECTRE_V2_USER_CMD_NONE,
1253 SPECTRE_V2_USER_CMD_AUTO,
1254 SPECTRE_V2_USER_CMD_FORCE,
1255 SPECTRE_V2_USER_CMD_PRCTL,
1256 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1257 SPECTRE_V2_USER_CMD_SECCOMP,
1258 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1259 };
1260
1261 static const char * const spectre_v2_user_strings[] = {
1262 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1263 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1264 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1265 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1266 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1267 };
1268
1269 static const struct {
1270 const char *option;
1271 enum spectre_v2_user_cmd cmd;
1272 bool secure;
1273 } v2_user_options[] __initconst = {
1274 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1275 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1276 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1277 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1278 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1279 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1280 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1281 };
1282
spec_v2_user_print_cond(const char * reason,bool secure)1283 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1284 {
1285 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1286 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1287 }
1288
1289 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1290
1291 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1292 spectre_v2_parse_user_cmdline(void)
1293 {
1294 char arg[20];
1295 int ret, i;
1296
1297 switch (spectre_v2_cmd) {
1298 case SPECTRE_V2_CMD_NONE:
1299 return SPECTRE_V2_USER_CMD_NONE;
1300 case SPECTRE_V2_CMD_FORCE:
1301 return SPECTRE_V2_USER_CMD_FORCE;
1302 default:
1303 break;
1304 }
1305
1306 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1307 arg, sizeof(arg));
1308 if (ret < 0)
1309 return SPECTRE_V2_USER_CMD_AUTO;
1310
1311 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1312 if (match_option(arg, ret, v2_user_options[i].option)) {
1313 spec_v2_user_print_cond(v2_user_options[i].option,
1314 v2_user_options[i].secure);
1315 return v2_user_options[i].cmd;
1316 }
1317 }
1318
1319 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1320 return SPECTRE_V2_USER_CMD_AUTO;
1321 }
1322
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1323 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1324 {
1325 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1326 }
1327
1328 static void __init
spectre_v2_user_select_mitigation(void)1329 spectre_v2_user_select_mitigation(void)
1330 {
1331 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1332 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1333 enum spectre_v2_user_cmd cmd;
1334
1335 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1336 return;
1337
1338 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1339 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1340 smt_possible = false;
1341
1342 cmd = spectre_v2_parse_user_cmdline();
1343 switch (cmd) {
1344 case SPECTRE_V2_USER_CMD_NONE:
1345 goto set_mode;
1346 case SPECTRE_V2_USER_CMD_FORCE:
1347 mode = SPECTRE_V2_USER_STRICT;
1348 break;
1349 case SPECTRE_V2_USER_CMD_AUTO:
1350 case SPECTRE_V2_USER_CMD_PRCTL:
1351 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1352 mode = SPECTRE_V2_USER_PRCTL;
1353 break;
1354 case SPECTRE_V2_USER_CMD_SECCOMP:
1355 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1356 if (IS_ENABLED(CONFIG_SECCOMP))
1357 mode = SPECTRE_V2_USER_SECCOMP;
1358 else
1359 mode = SPECTRE_V2_USER_PRCTL;
1360 break;
1361 }
1362
1363 /* Initialize Indirect Branch Prediction Barrier */
1364 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1365 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1366
1367 spectre_v2_user_ibpb = mode;
1368 switch (cmd) {
1369 case SPECTRE_V2_USER_CMD_FORCE:
1370 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1371 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1372 static_branch_enable(&switch_mm_always_ibpb);
1373 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1374 break;
1375 case SPECTRE_V2_USER_CMD_PRCTL:
1376 case SPECTRE_V2_USER_CMD_AUTO:
1377 case SPECTRE_V2_USER_CMD_SECCOMP:
1378 static_branch_enable(&switch_mm_cond_ibpb);
1379 break;
1380 default:
1381 break;
1382 }
1383
1384 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1385 static_key_enabled(&switch_mm_always_ibpb) ?
1386 "always-on" : "conditional");
1387 }
1388
1389 /*
1390 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1391 * is not required.
1392 *
1393 * Intel's Enhanced IBRS also protects against cross-thread branch target
1394 * injection in user-mode as the IBRS bit remains always set which
1395 * implicitly enables cross-thread protections. However, in legacy IBRS
1396 * mode, the IBRS bit is set only on kernel entry and cleared on return
1397 * to userspace. AMD Automatic IBRS also does not protect userspace.
1398 * These modes therefore disable the implicit cross-thread protection,
1399 * so allow for STIBP to be selected in those cases.
1400 */
1401 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1402 !smt_possible ||
1403 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1404 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1405 return;
1406
1407 /*
1408 * At this point, an STIBP mode other than "off" has been set.
1409 * If STIBP support is not being forced, check if STIBP always-on
1410 * is preferred.
1411 */
1412 if (mode != SPECTRE_V2_USER_STRICT &&
1413 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1414 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1415
1416 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1417 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1418 if (mode != SPECTRE_V2_USER_STRICT &&
1419 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1420 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1421 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1422 }
1423
1424 spectre_v2_user_stibp = mode;
1425
1426 set_mode:
1427 pr_info("%s\n", spectre_v2_user_strings[mode]);
1428 }
1429
1430 static const char * const spectre_v2_strings[] = {
1431 [SPECTRE_V2_NONE] = "Vulnerable",
1432 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1433 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1434 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1435 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1436 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1437 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1438 };
1439
1440 static const struct {
1441 const char *option;
1442 enum spectre_v2_mitigation_cmd cmd;
1443 bool secure;
1444 } mitigation_options[] __initconst = {
1445 { "off", SPECTRE_V2_CMD_NONE, false },
1446 { "on", SPECTRE_V2_CMD_FORCE, true },
1447 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1448 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1449 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1450 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1451 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1452 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1453 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1454 { "auto", SPECTRE_V2_CMD_AUTO, false },
1455 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1456 };
1457
spec_v2_print_cond(const char * reason,bool secure)1458 static void __init spec_v2_print_cond(const char *reason, bool secure)
1459 {
1460 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1461 pr_info("%s selected on command line.\n", reason);
1462 }
1463
spectre_v2_parse_cmdline(void)1464 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1465 {
1466 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1467 char arg[20];
1468 int ret, i;
1469
1470 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1471 cpu_mitigations_off())
1472 return SPECTRE_V2_CMD_NONE;
1473
1474 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1475 if (ret < 0)
1476 return SPECTRE_V2_CMD_AUTO;
1477
1478 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1479 if (!match_option(arg, ret, mitigation_options[i].option))
1480 continue;
1481 cmd = mitigation_options[i].cmd;
1482 break;
1483 }
1484
1485 if (i >= ARRAY_SIZE(mitigation_options)) {
1486 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1487 return SPECTRE_V2_CMD_AUTO;
1488 }
1489
1490 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1491 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1492 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1493 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1494 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1495 !IS_ENABLED(CONFIG_RETPOLINE)) {
1496 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1497 mitigation_options[i].option);
1498 return SPECTRE_V2_CMD_AUTO;
1499 }
1500
1501 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1502 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1503 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1504 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1505 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1506 mitigation_options[i].option);
1507 return SPECTRE_V2_CMD_AUTO;
1508 }
1509
1510 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1511 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1512 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1513 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1514 mitigation_options[i].option);
1515 return SPECTRE_V2_CMD_AUTO;
1516 }
1517
1518 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1519 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1520 mitigation_options[i].option);
1521 return SPECTRE_V2_CMD_AUTO;
1522 }
1523
1524 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1525 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1526 mitigation_options[i].option);
1527 return SPECTRE_V2_CMD_AUTO;
1528 }
1529
1530 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1531 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1532 mitigation_options[i].option);
1533 return SPECTRE_V2_CMD_AUTO;
1534 }
1535
1536 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1537 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1538 mitigation_options[i].option);
1539 return SPECTRE_V2_CMD_AUTO;
1540 }
1541
1542 spec_v2_print_cond(mitigation_options[i].option,
1543 mitigation_options[i].secure);
1544 return cmd;
1545 }
1546
spectre_v2_select_retpoline(void)1547 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1548 {
1549 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1550 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1551 return SPECTRE_V2_NONE;
1552 }
1553
1554 return SPECTRE_V2_RETPOLINE;
1555 }
1556
1557 static bool __ro_after_init rrsba_disabled;
1558
1559 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1560 static void __init spec_ctrl_disable_kernel_rrsba(void)
1561 {
1562 if (rrsba_disabled)
1563 return;
1564
1565 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1566 rrsba_disabled = true;
1567 return;
1568 }
1569
1570 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1571 return;
1572
1573 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1574 update_spec_ctrl(x86_spec_ctrl_base);
1575 rrsba_disabled = true;
1576 }
1577
spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)1578 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1579 {
1580 /*
1581 * Similar to context switches, there are two types of RSB attacks
1582 * after VM exit:
1583 *
1584 * 1) RSB underflow
1585 *
1586 * 2) Poisoned RSB entry
1587 *
1588 * When retpoline is enabled, both are mitigated by filling/clearing
1589 * the RSB.
1590 *
1591 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1592 * prediction isolation protections, RSB still needs to be cleared
1593 * because of #2. Note that SMEP provides no protection here, unlike
1594 * user-space-poisoned RSB entries.
1595 *
1596 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1597 * bug is present then a LITE version of RSB protection is required,
1598 * just a single call needs to retire before a RET is executed.
1599 */
1600 switch (mode) {
1601 case SPECTRE_V2_NONE:
1602 return;
1603
1604 case SPECTRE_V2_EIBRS_LFENCE:
1605 case SPECTRE_V2_EIBRS:
1606 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1607 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1608 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1609 }
1610 return;
1611
1612 case SPECTRE_V2_EIBRS_RETPOLINE:
1613 case SPECTRE_V2_RETPOLINE:
1614 case SPECTRE_V2_LFENCE:
1615 case SPECTRE_V2_IBRS:
1616 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1617 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1618 return;
1619 }
1620
1621 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1622 dump_stack();
1623 }
1624
1625 /*
1626 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1627 * branch history in userspace. Not needed if BHI_NO is set.
1628 */
spec_ctrl_bhi_dis(void)1629 static bool __init spec_ctrl_bhi_dis(void)
1630 {
1631 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1632 return false;
1633
1634 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1635 update_spec_ctrl(x86_spec_ctrl_base);
1636 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1637
1638 return true;
1639 }
1640
1641 enum bhi_mitigations {
1642 BHI_MITIGATION_OFF,
1643 BHI_MITIGATION_ON,
1644 };
1645
1646 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1647 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1648
spectre_bhi_parse_cmdline(char * str)1649 static int __init spectre_bhi_parse_cmdline(char *str)
1650 {
1651 if (!str)
1652 return -EINVAL;
1653
1654 if (!strcmp(str, "off"))
1655 bhi_mitigation = BHI_MITIGATION_OFF;
1656 else if (!strcmp(str, "on"))
1657 bhi_mitigation = BHI_MITIGATION_ON;
1658 else
1659 pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1660
1661 return 0;
1662 }
1663 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1664
bhi_select_mitigation(void)1665 static void __init bhi_select_mitigation(void)
1666 {
1667 if (bhi_mitigation == BHI_MITIGATION_OFF)
1668 return;
1669
1670 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1671 if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1672 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1673 spec_ctrl_disable_kernel_rrsba();
1674 if (rrsba_disabled)
1675 return;
1676 }
1677
1678 if (spec_ctrl_bhi_dis())
1679 return;
1680
1681 if (!IS_ENABLED(CONFIG_X86_64))
1682 return;
1683
1684 /* Mitigate KVM by default */
1685 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1686 pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
1687
1688 /* Mitigate syscalls when the mitigation is forced =on */
1689 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1690 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1691 }
1692
spectre_v2_select_mitigation(void)1693 static void __init spectre_v2_select_mitigation(void)
1694 {
1695 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1696 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1697
1698 /*
1699 * If the CPU is not affected and the command line mode is NONE or AUTO
1700 * then nothing to do.
1701 */
1702 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1703 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1704 return;
1705
1706 switch (cmd) {
1707 case SPECTRE_V2_CMD_NONE:
1708 return;
1709
1710 case SPECTRE_V2_CMD_FORCE:
1711 case SPECTRE_V2_CMD_AUTO:
1712 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1713 mode = SPECTRE_V2_EIBRS;
1714 break;
1715 }
1716
1717 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1718 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1719 retbleed_cmd != RETBLEED_CMD_OFF &&
1720 retbleed_cmd != RETBLEED_CMD_STUFF &&
1721 boot_cpu_has(X86_FEATURE_IBRS) &&
1722 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1723 mode = SPECTRE_V2_IBRS;
1724 break;
1725 }
1726
1727 mode = spectre_v2_select_retpoline();
1728 break;
1729
1730 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1731 pr_err(SPECTRE_V2_LFENCE_MSG);
1732 mode = SPECTRE_V2_LFENCE;
1733 break;
1734
1735 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1736 mode = SPECTRE_V2_RETPOLINE;
1737 break;
1738
1739 case SPECTRE_V2_CMD_RETPOLINE:
1740 mode = spectre_v2_select_retpoline();
1741 break;
1742
1743 case SPECTRE_V2_CMD_IBRS:
1744 mode = SPECTRE_V2_IBRS;
1745 break;
1746
1747 case SPECTRE_V2_CMD_EIBRS:
1748 mode = SPECTRE_V2_EIBRS;
1749 break;
1750
1751 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1752 mode = SPECTRE_V2_EIBRS_LFENCE;
1753 break;
1754
1755 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1756 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1757 break;
1758 }
1759
1760 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1761 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1762
1763 if (spectre_v2_in_ibrs_mode(mode)) {
1764 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1765 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1766 } else {
1767 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1768 update_spec_ctrl(x86_spec_ctrl_base);
1769 }
1770 }
1771
1772 switch (mode) {
1773 case SPECTRE_V2_NONE:
1774 case SPECTRE_V2_EIBRS:
1775 break;
1776
1777 case SPECTRE_V2_IBRS:
1778 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1779 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1780 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1781 break;
1782
1783 case SPECTRE_V2_LFENCE:
1784 case SPECTRE_V2_EIBRS_LFENCE:
1785 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1786 fallthrough;
1787
1788 case SPECTRE_V2_RETPOLINE:
1789 case SPECTRE_V2_EIBRS_RETPOLINE:
1790 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1791 break;
1792 }
1793
1794 /*
1795 * Disable alternate RSB predictions in kernel when indirect CALLs and
1796 * JMPs gets protection against BHI and Intramode-BTI, but RET
1797 * prediction from a non-RSB predictor is still a risk.
1798 */
1799 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1800 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1801 mode == SPECTRE_V2_RETPOLINE)
1802 spec_ctrl_disable_kernel_rrsba();
1803
1804 if (boot_cpu_has(X86_BUG_BHI))
1805 bhi_select_mitigation();
1806
1807 spectre_v2_enabled = mode;
1808 pr_info("%s\n", spectre_v2_strings[mode]);
1809
1810 /*
1811 * If Spectre v2 protection has been enabled, fill the RSB during a
1812 * context switch. In general there are two types of RSB attacks
1813 * across context switches, for which the CALLs/RETs may be unbalanced.
1814 *
1815 * 1) RSB underflow
1816 *
1817 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1818 * speculated return targets may come from the branch predictor,
1819 * which could have a user-poisoned BTB or BHB entry.
1820 *
1821 * AMD has it even worse: *all* returns are speculated from the BTB,
1822 * regardless of the state of the RSB.
1823 *
1824 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1825 * scenario is mitigated by the IBRS branch prediction isolation
1826 * properties, so the RSB buffer filling wouldn't be necessary to
1827 * protect against this type of attack.
1828 *
1829 * The "user -> user" attack scenario is mitigated by RSB filling.
1830 *
1831 * 2) Poisoned RSB entry
1832 *
1833 * If the 'next' in-kernel return stack is shorter than 'prev',
1834 * 'next' could be tricked into speculating with a user-poisoned RSB
1835 * entry.
1836 *
1837 * The "user -> kernel" attack scenario is mitigated by SMEP and
1838 * eIBRS.
1839 *
1840 * The "user -> user" scenario, also known as SpectreBHB, requires
1841 * RSB clearing.
1842 *
1843 * So to mitigate all cases, unconditionally fill RSB on context
1844 * switches.
1845 *
1846 * FIXME: Is this pointless for retbleed-affected AMD?
1847 */
1848 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1849 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1850
1851 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1852
1853 /*
1854 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1855 * and Enhanced IBRS protect firmware too, so enable IBRS around
1856 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1857 * otherwise enabled.
1858 *
1859 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1860 * the user might select retpoline on the kernel command line and if
1861 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1862 * enable IBRS around firmware calls.
1863 */
1864 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1865 boot_cpu_has(X86_FEATURE_IBPB) &&
1866 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1867 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1868
1869 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1870 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1871 pr_info("Enabling Speculation Barrier for firmware calls\n");
1872 }
1873
1874 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1875 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1876 pr_info("Enabling Restricted Speculation for firmware calls\n");
1877 }
1878
1879 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1880 spectre_v2_cmd = cmd;
1881 }
1882
update_stibp_msr(void * __unused)1883 static void update_stibp_msr(void * __unused)
1884 {
1885 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1886 update_spec_ctrl(val);
1887 }
1888
1889 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)1890 static void update_stibp_strict(void)
1891 {
1892 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1893
1894 if (sched_smt_active())
1895 mask |= SPEC_CTRL_STIBP;
1896
1897 if (mask == x86_spec_ctrl_base)
1898 return;
1899
1900 pr_info("Update user space SMT mitigation: STIBP %s\n",
1901 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1902 x86_spec_ctrl_base = mask;
1903 on_each_cpu(update_stibp_msr, NULL, 1);
1904 }
1905
1906 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)1907 static void update_indir_branch_cond(void)
1908 {
1909 if (sched_smt_active())
1910 static_branch_enable(&switch_to_cond_stibp);
1911 else
1912 static_branch_disable(&switch_to_cond_stibp);
1913 }
1914
1915 #undef pr_fmt
1916 #define pr_fmt(fmt) fmt
1917
1918 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)1919 static void update_mds_branch_idle(void)
1920 {
1921 /*
1922 * Enable the idle clearing if SMT is active on CPUs which are
1923 * affected only by MSBDS and not any other MDS variant.
1924 *
1925 * The other variants cannot be mitigated when SMT is enabled, so
1926 * clearing the buffers on idle just to prevent the Store Buffer
1927 * repartitioning leak would be a window dressing exercise.
1928 */
1929 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1930 return;
1931
1932 if (sched_smt_active()) {
1933 static_branch_enable(&mds_idle_clear);
1934 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1935 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1936 static_branch_disable(&mds_idle_clear);
1937 }
1938 }
1939
1940 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1941 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1942 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1943
cpu_bugs_smt_update(void)1944 void cpu_bugs_smt_update(void)
1945 {
1946 mutex_lock(&spec_ctrl_mutex);
1947
1948 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1949 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1950 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1951
1952 switch (spectre_v2_user_stibp) {
1953 case SPECTRE_V2_USER_NONE:
1954 break;
1955 case SPECTRE_V2_USER_STRICT:
1956 case SPECTRE_V2_USER_STRICT_PREFERRED:
1957 update_stibp_strict();
1958 break;
1959 case SPECTRE_V2_USER_PRCTL:
1960 case SPECTRE_V2_USER_SECCOMP:
1961 update_indir_branch_cond();
1962 break;
1963 }
1964
1965 switch (mds_mitigation) {
1966 case MDS_MITIGATION_FULL:
1967 case MDS_MITIGATION_VMWERV:
1968 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1969 pr_warn_once(MDS_MSG_SMT);
1970 update_mds_branch_idle();
1971 break;
1972 case MDS_MITIGATION_OFF:
1973 break;
1974 }
1975
1976 switch (taa_mitigation) {
1977 case TAA_MITIGATION_VERW:
1978 case TAA_MITIGATION_UCODE_NEEDED:
1979 if (sched_smt_active())
1980 pr_warn_once(TAA_MSG_SMT);
1981 break;
1982 case TAA_MITIGATION_TSX_DISABLED:
1983 case TAA_MITIGATION_OFF:
1984 break;
1985 }
1986
1987 switch (mmio_mitigation) {
1988 case MMIO_MITIGATION_VERW:
1989 case MMIO_MITIGATION_UCODE_NEEDED:
1990 if (sched_smt_active())
1991 pr_warn_once(MMIO_MSG_SMT);
1992 break;
1993 case MMIO_MITIGATION_OFF:
1994 break;
1995 }
1996
1997 mutex_unlock(&spec_ctrl_mutex);
1998 }
1999
2000 #undef pr_fmt
2001 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
2002
2003 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2004
2005 /* The kernel command line selection */
2006 enum ssb_mitigation_cmd {
2007 SPEC_STORE_BYPASS_CMD_NONE,
2008 SPEC_STORE_BYPASS_CMD_AUTO,
2009 SPEC_STORE_BYPASS_CMD_ON,
2010 SPEC_STORE_BYPASS_CMD_PRCTL,
2011 SPEC_STORE_BYPASS_CMD_SECCOMP,
2012 };
2013
2014 static const char * const ssb_strings[] = {
2015 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
2016 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
2017 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
2018 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2019 };
2020
2021 static const struct {
2022 const char *option;
2023 enum ssb_mitigation_cmd cmd;
2024 } ssb_mitigation_options[] __initconst = {
2025 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
2026 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
2027 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
2028 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
2029 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2030 };
2031
ssb_parse_cmdline(void)2032 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2033 {
2034 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2035 char arg[20];
2036 int ret, i;
2037
2038 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2039 cpu_mitigations_off()) {
2040 return SPEC_STORE_BYPASS_CMD_NONE;
2041 } else {
2042 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2043 arg, sizeof(arg));
2044 if (ret < 0)
2045 return SPEC_STORE_BYPASS_CMD_AUTO;
2046
2047 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2048 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2049 continue;
2050
2051 cmd = ssb_mitigation_options[i].cmd;
2052 break;
2053 }
2054
2055 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2056 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2057 return SPEC_STORE_BYPASS_CMD_AUTO;
2058 }
2059 }
2060
2061 return cmd;
2062 }
2063
__ssb_select_mitigation(void)2064 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2065 {
2066 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2067 enum ssb_mitigation_cmd cmd;
2068
2069 if (!boot_cpu_has(X86_FEATURE_SSBD))
2070 return mode;
2071
2072 cmd = ssb_parse_cmdline();
2073 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2074 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2075 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2076 return mode;
2077
2078 switch (cmd) {
2079 case SPEC_STORE_BYPASS_CMD_SECCOMP:
2080 /*
2081 * Choose prctl+seccomp as the default mode if seccomp is
2082 * enabled.
2083 */
2084 if (IS_ENABLED(CONFIG_SECCOMP))
2085 mode = SPEC_STORE_BYPASS_SECCOMP;
2086 else
2087 mode = SPEC_STORE_BYPASS_PRCTL;
2088 break;
2089 case SPEC_STORE_BYPASS_CMD_ON:
2090 mode = SPEC_STORE_BYPASS_DISABLE;
2091 break;
2092 case SPEC_STORE_BYPASS_CMD_AUTO:
2093 case SPEC_STORE_BYPASS_CMD_PRCTL:
2094 mode = SPEC_STORE_BYPASS_PRCTL;
2095 break;
2096 case SPEC_STORE_BYPASS_CMD_NONE:
2097 break;
2098 }
2099
2100 /*
2101 * We have three CPU feature flags that are in play here:
2102 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2103 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2104 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2105 */
2106 if (mode == SPEC_STORE_BYPASS_DISABLE) {
2107 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2108 /*
2109 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2110 * use a completely different MSR and bit dependent on family.
2111 */
2112 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2113 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2114 x86_amd_ssb_disable();
2115 } else {
2116 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2117 update_spec_ctrl(x86_spec_ctrl_base);
2118 }
2119 }
2120
2121 return mode;
2122 }
2123
ssb_select_mitigation(void)2124 static void ssb_select_mitigation(void)
2125 {
2126 ssb_mode = __ssb_select_mitigation();
2127
2128 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2129 pr_info("%s\n", ssb_strings[ssb_mode]);
2130 }
2131
2132 #undef pr_fmt
2133 #define pr_fmt(fmt) "Speculation prctl: " fmt
2134
task_update_spec_tif(struct task_struct * tsk)2135 static void task_update_spec_tif(struct task_struct *tsk)
2136 {
2137 /* Force the update of the real TIF bits */
2138 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2139
2140 /*
2141 * Immediately update the speculation control MSRs for the current
2142 * task, but for a non-current task delay setting the CPU
2143 * mitigation until it is scheduled next.
2144 *
2145 * This can only happen for SECCOMP mitigation. For PRCTL it's
2146 * always the current task.
2147 */
2148 if (tsk == current)
2149 speculation_ctrl_update_current();
2150 }
2151
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2152 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2153 {
2154
2155 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2156 return -EPERM;
2157
2158 switch (ctrl) {
2159 case PR_SPEC_ENABLE:
2160 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2161 return 0;
2162 case PR_SPEC_DISABLE:
2163 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2164 return 0;
2165 default:
2166 return -ERANGE;
2167 }
2168 }
2169
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2170 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2171 {
2172 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2173 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2174 return -ENXIO;
2175
2176 switch (ctrl) {
2177 case PR_SPEC_ENABLE:
2178 /* If speculation is force disabled, enable is not allowed */
2179 if (task_spec_ssb_force_disable(task))
2180 return -EPERM;
2181 task_clear_spec_ssb_disable(task);
2182 task_clear_spec_ssb_noexec(task);
2183 task_update_spec_tif(task);
2184 break;
2185 case PR_SPEC_DISABLE:
2186 task_set_spec_ssb_disable(task);
2187 task_clear_spec_ssb_noexec(task);
2188 task_update_spec_tif(task);
2189 break;
2190 case PR_SPEC_FORCE_DISABLE:
2191 task_set_spec_ssb_disable(task);
2192 task_set_spec_ssb_force_disable(task);
2193 task_clear_spec_ssb_noexec(task);
2194 task_update_spec_tif(task);
2195 break;
2196 case PR_SPEC_DISABLE_NOEXEC:
2197 if (task_spec_ssb_force_disable(task))
2198 return -EPERM;
2199 task_set_spec_ssb_disable(task);
2200 task_set_spec_ssb_noexec(task);
2201 task_update_spec_tif(task);
2202 break;
2203 default:
2204 return -ERANGE;
2205 }
2206 return 0;
2207 }
2208
is_spec_ib_user_controlled(void)2209 static bool is_spec_ib_user_controlled(void)
2210 {
2211 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2212 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2213 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2214 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2215 }
2216
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2217 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2218 {
2219 switch (ctrl) {
2220 case PR_SPEC_ENABLE:
2221 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2222 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2223 return 0;
2224
2225 /*
2226 * With strict mode for both IBPB and STIBP, the instruction
2227 * code paths avoid checking this task flag and instead,
2228 * unconditionally run the instruction. However, STIBP and IBPB
2229 * are independent and either can be set to conditionally
2230 * enabled regardless of the mode of the other.
2231 *
2232 * If either is set to conditional, allow the task flag to be
2233 * updated, unless it was force-disabled by a previous prctl
2234 * call. Currently, this is possible on an AMD CPU which has the
2235 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2236 * kernel is booted with 'spectre_v2_user=seccomp', then
2237 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2238 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2239 */
2240 if (!is_spec_ib_user_controlled() ||
2241 task_spec_ib_force_disable(task))
2242 return -EPERM;
2243
2244 task_clear_spec_ib_disable(task);
2245 task_update_spec_tif(task);
2246 break;
2247 case PR_SPEC_DISABLE:
2248 case PR_SPEC_FORCE_DISABLE:
2249 /*
2250 * Indirect branch speculation is always allowed when
2251 * mitigation is force disabled.
2252 */
2253 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2254 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2255 return -EPERM;
2256
2257 if (!is_spec_ib_user_controlled())
2258 return 0;
2259
2260 task_set_spec_ib_disable(task);
2261 if (ctrl == PR_SPEC_FORCE_DISABLE)
2262 task_set_spec_ib_force_disable(task);
2263 task_update_spec_tif(task);
2264 if (task == current)
2265 indirect_branch_prediction_barrier();
2266 break;
2267 default:
2268 return -ERANGE;
2269 }
2270 return 0;
2271 }
2272
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2273 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2274 unsigned long ctrl)
2275 {
2276 switch (which) {
2277 case PR_SPEC_STORE_BYPASS:
2278 return ssb_prctl_set(task, ctrl);
2279 case PR_SPEC_INDIRECT_BRANCH:
2280 return ib_prctl_set(task, ctrl);
2281 case PR_SPEC_L1D_FLUSH:
2282 return l1d_flush_prctl_set(task, ctrl);
2283 default:
2284 return -ENODEV;
2285 }
2286 }
2287
2288 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2289 void arch_seccomp_spec_mitigate(struct task_struct *task)
2290 {
2291 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2292 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2293 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2294 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2295 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2296 }
2297 #endif
2298
l1d_flush_prctl_get(struct task_struct * task)2299 static int l1d_flush_prctl_get(struct task_struct *task)
2300 {
2301 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2302 return PR_SPEC_FORCE_DISABLE;
2303
2304 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2305 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2306 else
2307 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2308 }
2309
ssb_prctl_get(struct task_struct * task)2310 static int ssb_prctl_get(struct task_struct *task)
2311 {
2312 switch (ssb_mode) {
2313 case SPEC_STORE_BYPASS_DISABLE:
2314 return PR_SPEC_DISABLE;
2315 case SPEC_STORE_BYPASS_SECCOMP:
2316 case SPEC_STORE_BYPASS_PRCTL:
2317 if (task_spec_ssb_force_disable(task))
2318 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2319 if (task_spec_ssb_noexec(task))
2320 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2321 if (task_spec_ssb_disable(task))
2322 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2323 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2324 default:
2325 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2326 return PR_SPEC_ENABLE;
2327 return PR_SPEC_NOT_AFFECTED;
2328 }
2329 }
2330
ib_prctl_get(struct task_struct * task)2331 static int ib_prctl_get(struct task_struct *task)
2332 {
2333 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2334 return PR_SPEC_NOT_AFFECTED;
2335
2336 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2337 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2338 return PR_SPEC_ENABLE;
2339 else if (is_spec_ib_user_controlled()) {
2340 if (task_spec_ib_force_disable(task))
2341 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2342 if (task_spec_ib_disable(task))
2343 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2344 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2345 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2346 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2347 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2348 return PR_SPEC_DISABLE;
2349 else
2350 return PR_SPEC_NOT_AFFECTED;
2351 }
2352
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2353 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2354 {
2355 switch (which) {
2356 case PR_SPEC_STORE_BYPASS:
2357 return ssb_prctl_get(task);
2358 case PR_SPEC_INDIRECT_BRANCH:
2359 return ib_prctl_get(task);
2360 case PR_SPEC_L1D_FLUSH:
2361 return l1d_flush_prctl_get(task);
2362 default:
2363 return -ENODEV;
2364 }
2365 }
2366
x86_spec_ctrl_setup_ap(void)2367 void x86_spec_ctrl_setup_ap(void)
2368 {
2369 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2370 update_spec_ctrl(x86_spec_ctrl_base);
2371
2372 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2373 x86_amd_ssb_disable();
2374 }
2375
2376 bool itlb_multihit_kvm_mitigation;
2377 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2378
2379 #undef pr_fmt
2380 #define pr_fmt(fmt) "L1TF: " fmt
2381
2382 /* Default mitigation for L1TF-affected CPUs */
2383 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2384 #if IS_ENABLED(CONFIG_KVM_INTEL)
2385 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2386 #endif
2387 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2388 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2389
2390 /*
2391 * These CPUs all support 44bits physical address space internally in the
2392 * cache but CPUID can report a smaller number of physical address bits.
2393 *
2394 * The L1TF mitigation uses the top most address bit for the inversion of
2395 * non present PTEs. When the installed memory reaches into the top most
2396 * address bit due to memory holes, which has been observed on machines
2397 * which report 36bits physical address bits and have 32G RAM installed,
2398 * then the mitigation range check in l1tf_select_mitigation() triggers.
2399 * This is a false positive because the mitigation is still possible due to
2400 * the fact that the cache uses 44bit internally. Use the cache bits
2401 * instead of the reported physical bits and adjust them on the affected
2402 * machines to 44bit if the reported bits are less than 44.
2403 */
override_cache_bits(struct cpuinfo_x86 * c)2404 static void override_cache_bits(struct cpuinfo_x86 *c)
2405 {
2406 if (c->x86 != 6)
2407 return;
2408
2409 switch (c->x86_model) {
2410 case INTEL_FAM6_NEHALEM:
2411 case INTEL_FAM6_WESTMERE:
2412 case INTEL_FAM6_SANDYBRIDGE:
2413 case INTEL_FAM6_IVYBRIDGE:
2414 case INTEL_FAM6_HASWELL:
2415 case INTEL_FAM6_HASWELL_L:
2416 case INTEL_FAM6_HASWELL_G:
2417 case INTEL_FAM6_BROADWELL:
2418 case INTEL_FAM6_BROADWELL_G:
2419 case INTEL_FAM6_SKYLAKE_L:
2420 case INTEL_FAM6_SKYLAKE:
2421 case INTEL_FAM6_KABYLAKE_L:
2422 case INTEL_FAM6_KABYLAKE:
2423 if (c->x86_cache_bits < 44)
2424 c->x86_cache_bits = 44;
2425 break;
2426 }
2427 }
2428
l1tf_select_mitigation(void)2429 static void __init l1tf_select_mitigation(void)
2430 {
2431 u64 half_pa;
2432
2433 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2434 return;
2435
2436 if (cpu_mitigations_off())
2437 l1tf_mitigation = L1TF_MITIGATION_OFF;
2438 else if (cpu_mitigations_auto_nosmt())
2439 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2440
2441 override_cache_bits(&boot_cpu_data);
2442
2443 switch (l1tf_mitigation) {
2444 case L1TF_MITIGATION_OFF:
2445 case L1TF_MITIGATION_FLUSH_NOWARN:
2446 case L1TF_MITIGATION_FLUSH:
2447 break;
2448 case L1TF_MITIGATION_FLUSH_NOSMT:
2449 case L1TF_MITIGATION_FULL:
2450 cpu_smt_disable(false);
2451 break;
2452 case L1TF_MITIGATION_FULL_FORCE:
2453 cpu_smt_disable(true);
2454 break;
2455 }
2456
2457 #if CONFIG_PGTABLE_LEVELS == 2
2458 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2459 return;
2460 #endif
2461
2462 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2463 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2464 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2465 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2466 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2467 half_pa);
2468 pr_info("However, doing so will make a part of your RAM unusable.\n");
2469 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2470 return;
2471 }
2472
2473 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2474 }
2475
l1tf_cmdline(char * str)2476 static int __init l1tf_cmdline(char *str)
2477 {
2478 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2479 return 0;
2480
2481 if (!str)
2482 return -EINVAL;
2483
2484 if (!strcmp(str, "off"))
2485 l1tf_mitigation = L1TF_MITIGATION_OFF;
2486 else if (!strcmp(str, "flush,nowarn"))
2487 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2488 else if (!strcmp(str, "flush"))
2489 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2490 else if (!strcmp(str, "flush,nosmt"))
2491 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2492 else if (!strcmp(str, "full"))
2493 l1tf_mitigation = L1TF_MITIGATION_FULL;
2494 else if (!strcmp(str, "full,force"))
2495 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2496
2497 return 0;
2498 }
2499 early_param("l1tf", l1tf_cmdline);
2500
2501 #undef pr_fmt
2502 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2503
2504 enum srso_mitigation {
2505 SRSO_MITIGATION_NONE,
2506 SRSO_MITIGATION_UCODE_NEEDED,
2507 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2508 SRSO_MITIGATION_MICROCODE,
2509 SRSO_MITIGATION_SAFE_RET,
2510 SRSO_MITIGATION_IBPB,
2511 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2512 };
2513
2514 enum srso_mitigation_cmd {
2515 SRSO_CMD_OFF,
2516 SRSO_CMD_MICROCODE,
2517 SRSO_CMD_SAFE_RET,
2518 SRSO_CMD_IBPB,
2519 SRSO_CMD_IBPB_ON_VMEXIT,
2520 };
2521
2522 static const char * const srso_strings[] = {
2523 [SRSO_MITIGATION_NONE] = "Vulnerable",
2524 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2525 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2526 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2527 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2528 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2529 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2530 };
2531
2532 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2533 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2534
srso_parse_cmdline(char * str)2535 static int __init srso_parse_cmdline(char *str)
2536 {
2537 if (!str)
2538 return -EINVAL;
2539
2540 if (!strcmp(str, "off"))
2541 srso_cmd = SRSO_CMD_OFF;
2542 else if (!strcmp(str, "microcode"))
2543 srso_cmd = SRSO_CMD_MICROCODE;
2544 else if (!strcmp(str, "safe-ret"))
2545 srso_cmd = SRSO_CMD_SAFE_RET;
2546 else if (!strcmp(str, "ibpb"))
2547 srso_cmd = SRSO_CMD_IBPB;
2548 else if (!strcmp(str, "ibpb-vmexit"))
2549 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2550 else
2551 pr_err("Ignoring unknown SRSO option (%s).", str);
2552
2553 return 0;
2554 }
2555 early_param("spec_rstack_overflow", srso_parse_cmdline);
2556
2557 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2558
srso_select_mitigation(void)2559 static void __init srso_select_mitigation(void)
2560 {
2561 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2562
2563 if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2564 goto pred_cmd;
2565
2566 if (has_microcode) {
2567 /*
2568 * Zen1/2 with SMT off aren't vulnerable after the right
2569 * IBPB microcode has been applied.
2570 */
2571 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2572 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2573 return;
2574 }
2575
2576 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2577 srso_mitigation = SRSO_MITIGATION_IBPB;
2578 goto out;
2579 }
2580 } else {
2581 pr_warn("IBPB-extending microcode not applied!\n");
2582 pr_warn(SRSO_NOTICE);
2583
2584 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2585 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2586 }
2587
2588 switch (srso_cmd) {
2589 case SRSO_CMD_OFF:
2590 goto pred_cmd;
2591
2592 case SRSO_CMD_MICROCODE:
2593 if (has_microcode) {
2594 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2595 pr_warn(SRSO_NOTICE);
2596 }
2597 break;
2598
2599 case SRSO_CMD_SAFE_RET:
2600 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2601 /*
2602 * Enable the return thunk for generated code
2603 * like ftrace, static_call, etc.
2604 */
2605 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2606 setup_force_cpu_cap(X86_FEATURE_UNRET);
2607
2608 if (boot_cpu_data.x86 == 0x19) {
2609 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2610 x86_return_thunk = srso_alias_return_thunk;
2611 } else {
2612 setup_force_cpu_cap(X86_FEATURE_SRSO);
2613 x86_return_thunk = srso_return_thunk;
2614 }
2615 if (has_microcode)
2616 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2617 else
2618 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2619 } else {
2620 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2621 goto pred_cmd;
2622 }
2623 break;
2624
2625 case SRSO_CMD_IBPB:
2626 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2627 if (has_microcode) {
2628 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2629 srso_mitigation = SRSO_MITIGATION_IBPB;
2630
2631 /*
2632 * IBPB on entry already obviates the need for
2633 * software-based untraining so clear those in case some
2634 * other mitigation like Retbleed has selected them.
2635 */
2636 setup_clear_cpu_cap(X86_FEATURE_UNRET);
2637 setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2638 }
2639 } else {
2640 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2641 goto pred_cmd;
2642 }
2643 break;
2644
2645 case SRSO_CMD_IBPB_ON_VMEXIT:
2646 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2647 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2648 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2649 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2650
2651 /*
2652 * There is no need for RSB filling: entry_ibpb() ensures
2653 * all predictions, including the RSB, are invalidated,
2654 * regardless of IBPB implementation.
2655 */
2656 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2657 }
2658 } else {
2659 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2660 goto pred_cmd;
2661 }
2662 break;
2663
2664 default:
2665 break;
2666 }
2667
2668 out:
2669 pr_info("%s\n", srso_strings[srso_mitigation]);
2670
2671 pred_cmd:
2672 if ((!boot_cpu_has_bug(X86_BUG_SRSO) || srso_cmd == SRSO_CMD_OFF) &&
2673 boot_cpu_has(X86_FEATURE_SBPB))
2674 x86_pred_cmd = PRED_CMD_SBPB;
2675 }
2676
2677 #undef pr_fmt
2678 #define pr_fmt(fmt) fmt
2679
2680 #ifdef CONFIG_SYSFS
2681
2682 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2683
2684 #if IS_ENABLED(CONFIG_KVM_INTEL)
2685 static const char * const l1tf_vmx_states[] = {
2686 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2687 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2688 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2689 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2690 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2691 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2692 };
2693
l1tf_show_state(char * buf)2694 static ssize_t l1tf_show_state(char *buf)
2695 {
2696 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2697 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2698
2699 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2700 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2701 sched_smt_active())) {
2702 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2703 l1tf_vmx_states[l1tf_vmx_mitigation]);
2704 }
2705
2706 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2707 l1tf_vmx_states[l1tf_vmx_mitigation],
2708 sched_smt_active() ? "vulnerable" : "disabled");
2709 }
2710
itlb_multihit_show_state(char * buf)2711 static ssize_t itlb_multihit_show_state(char *buf)
2712 {
2713 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2714 !boot_cpu_has(X86_FEATURE_VMX))
2715 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2716 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2717 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2718 else if (itlb_multihit_kvm_mitigation)
2719 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2720 else
2721 return sysfs_emit(buf, "KVM: Vulnerable\n");
2722 }
2723 #else
l1tf_show_state(char * buf)2724 static ssize_t l1tf_show_state(char *buf)
2725 {
2726 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2727 }
2728
itlb_multihit_show_state(char * buf)2729 static ssize_t itlb_multihit_show_state(char *buf)
2730 {
2731 return sysfs_emit(buf, "Processor vulnerable\n");
2732 }
2733 #endif
2734
mds_show_state(char * buf)2735 static ssize_t mds_show_state(char *buf)
2736 {
2737 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2738 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2739 mds_strings[mds_mitigation]);
2740 }
2741
2742 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2743 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2744 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2745 sched_smt_active() ? "mitigated" : "disabled"));
2746 }
2747
2748 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2749 sched_smt_active() ? "vulnerable" : "disabled");
2750 }
2751
tsx_async_abort_show_state(char * buf)2752 static ssize_t tsx_async_abort_show_state(char *buf)
2753 {
2754 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2755 (taa_mitigation == TAA_MITIGATION_OFF))
2756 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2757
2758 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2759 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2760 taa_strings[taa_mitigation]);
2761 }
2762
2763 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2764 sched_smt_active() ? "vulnerable" : "disabled");
2765 }
2766
mmio_stale_data_show_state(char * buf)2767 static ssize_t mmio_stale_data_show_state(char *buf)
2768 {
2769 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2770 return sysfs_emit(buf, "Unknown: No mitigations\n");
2771
2772 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2773 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2774
2775 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2776 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2777 mmio_strings[mmio_mitigation]);
2778 }
2779
2780 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2781 sched_smt_active() ? "vulnerable" : "disabled");
2782 }
2783
rfds_show_state(char * buf)2784 static ssize_t rfds_show_state(char *buf)
2785 {
2786 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2787 }
2788
stibp_state(void)2789 static char *stibp_state(void)
2790 {
2791 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2792 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2793 return "";
2794
2795 switch (spectre_v2_user_stibp) {
2796 case SPECTRE_V2_USER_NONE:
2797 return "; STIBP: disabled";
2798 case SPECTRE_V2_USER_STRICT:
2799 return "; STIBP: forced";
2800 case SPECTRE_V2_USER_STRICT_PREFERRED:
2801 return "; STIBP: always-on";
2802 case SPECTRE_V2_USER_PRCTL:
2803 case SPECTRE_V2_USER_SECCOMP:
2804 if (static_key_enabled(&switch_to_cond_stibp))
2805 return "; STIBP: conditional";
2806 }
2807 return "";
2808 }
2809
ibpb_state(void)2810 static char *ibpb_state(void)
2811 {
2812 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2813 if (static_key_enabled(&switch_mm_always_ibpb))
2814 return "; IBPB: always-on";
2815 if (static_key_enabled(&switch_mm_cond_ibpb))
2816 return "; IBPB: conditional";
2817 return "; IBPB: disabled";
2818 }
2819 return "";
2820 }
2821
pbrsb_eibrs_state(void)2822 static char *pbrsb_eibrs_state(void)
2823 {
2824 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2825 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2826 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2827 return "; PBRSB-eIBRS: SW sequence";
2828 else
2829 return "; PBRSB-eIBRS: Vulnerable";
2830 } else {
2831 return "; PBRSB-eIBRS: Not affected";
2832 }
2833 }
2834
spectre_bhi_state(void)2835 static const char *spectre_bhi_state(void)
2836 {
2837 if (!boot_cpu_has_bug(X86_BUG_BHI))
2838 return "; BHI: Not affected";
2839 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2840 return "; BHI: BHI_DIS_S";
2841 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2842 return "; BHI: SW loop, KVM: SW loop";
2843 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2844 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2845 rrsba_disabled)
2846 return "; BHI: Retpoline";
2847 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2848 return "; BHI: Vulnerable, KVM: SW loop";
2849
2850 return "; BHI: Vulnerable";
2851 }
2852
spectre_v2_show_state(char * buf)2853 static ssize_t spectre_v2_show_state(char *buf)
2854 {
2855 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2856 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2857
2858 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2859 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2860
2861 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2862 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2863 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2864
2865 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2866 spectre_v2_strings[spectre_v2_enabled],
2867 ibpb_state(),
2868 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2869 stibp_state(),
2870 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2871 pbrsb_eibrs_state(),
2872 spectre_bhi_state(),
2873 /* this should always be at the end */
2874 spectre_v2_module_string());
2875 }
2876
srbds_show_state(char * buf)2877 static ssize_t srbds_show_state(char *buf)
2878 {
2879 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2880 }
2881
retbleed_show_state(char * buf)2882 static ssize_t retbleed_show_state(char *buf)
2883 {
2884 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2885 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2886 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2887 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2888 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2889
2890 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2891 !sched_smt_active() ? "disabled" :
2892 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2893 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2894 "enabled with STIBP protection" : "vulnerable");
2895 }
2896
2897 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2898 }
2899
srso_show_state(char * buf)2900 static ssize_t srso_show_state(char *buf)
2901 {
2902 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2903 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2904
2905 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2906 }
2907
gds_show_state(char * buf)2908 static ssize_t gds_show_state(char *buf)
2909 {
2910 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2911 }
2912
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)2913 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2914 char *buf, unsigned int bug)
2915 {
2916 if (!boot_cpu_has_bug(bug))
2917 return sysfs_emit(buf, "Not affected\n");
2918
2919 switch (bug) {
2920 case X86_BUG_CPU_MELTDOWN:
2921 if (boot_cpu_has(X86_FEATURE_PTI))
2922 return sysfs_emit(buf, "Mitigation: PTI\n");
2923
2924 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2925 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2926
2927 break;
2928
2929 case X86_BUG_SPECTRE_V1:
2930 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2931
2932 case X86_BUG_SPECTRE_V2:
2933 return spectre_v2_show_state(buf);
2934
2935 case X86_BUG_SPEC_STORE_BYPASS:
2936 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2937
2938 case X86_BUG_L1TF:
2939 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2940 return l1tf_show_state(buf);
2941 break;
2942
2943 case X86_BUG_MDS:
2944 return mds_show_state(buf);
2945
2946 case X86_BUG_TAA:
2947 return tsx_async_abort_show_state(buf);
2948
2949 case X86_BUG_ITLB_MULTIHIT:
2950 return itlb_multihit_show_state(buf);
2951
2952 case X86_BUG_SRBDS:
2953 return srbds_show_state(buf);
2954
2955 case X86_BUG_MMIO_STALE_DATA:
2956 case X86_BUG_MMIO_UNKNOWN:
2957 return mmio_stale_data_show_state(buf);
2958
2959 case X86_BUG_RETBLEED:
2960 return retbleed_show_state(buf);
2961
2962 case X86_BUG_SRSO:
2963 return srso_show_state(buf);
2964
2965 case X86_BUG_GDS:
2966 return gds_show_state(buf);
2967
2968 case X86_BUG_RFDS:
2969 return rfds_show_state(buf);
2970
2971 default:
2972 break;
2973 }
2974
2975 return sysfs_emit(buf, "Vulnerable\n");
2976 }
2977
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)2978 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2979 {
2980 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2981 }
2982
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)2983 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2984 {
2985 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2986 }
2987
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)2988 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2989 {
2990 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2991 }
2992
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)2993 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2994 {
2995 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2996 }
2997
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)2998 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2999 {
3000 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3001 }
3002
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3003 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3004 {
3005 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3006 }
3007
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3008 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3009 {
3010 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3011 }
3012
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3013 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3014 {
3015 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3016 }
3017
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3018 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3019 {
3020 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3021 }
3022
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3023 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3024 {
3025 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3026 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3027 else
3028 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3029 }
3030
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3031 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3032 {
3033 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3034 }
3035
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3036 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3037 {
3038 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3039 }
3040
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3041 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3042 {
3043 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3044 }
3045
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3046 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3047 {
3048 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3049 }
3050 #endif
3051