xref: /openbmc/linux/drivers/net/can/rcar/rcar_canfd.c (revision 840d9a813c8eaa5c55d86525e374a97ca5023b53)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitmap.h>
25 #include <linux/bitops.h>
26 #include <linux/can/dev.h>
27 #include <linux/clk.h>
28 #include <linux/errno.h>
29 #include <linux/ethtool.h>
30 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/netdevice.h>
36 #include <linux/of.h>
37 #include <linux/phy/phy.h>
38 #include <linux/platform_device.h>
39 #include <linux/reset.h>
40 #include <linux/types.h>
41 
42 #define RCANFD_DRV_NAME			"rcar_canfd"
43 
44 /* Global register bits */
45 
46 /* RSCFDnCFDGRMCFG */
47 #define RCANFD_GRMCFG_RCMC		BIT(0)
48 
49 /* RSCFDnCFDGCFG / RSCFDnGCFG */
50 #define RCANFD_GCFG_EEFE		BIT(6)
51 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
52 #define RCANFD_GCFG_DCS			BIT(4)
53 #define RCANFD_GCFG_DCE			BIT(1)
54 #define RCANFD_GCFG_TPRI		BIT(0)
55 
56 /* RSCFDnCFDGCTR / RSCFDnGCTR */
57 #define RCANFD_GCTR_TSRST		BIT(16)
58 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
59 #define RCANFD_GCTR_THLEIE		BIT(10)
60 #define RCANFD_GCTR_MEIE		BIT(9)
61 #define RCANFD_GCTR_DEIE		BIT(8)
62 #define RCANFD_GCTR_GSLPR		BIT(2)
63 #define RCANFD_GCTR_GMDC_MASK		(0x3)
64 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
65 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
66 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
67 
68 /* RSCFDnCFDGSTS / RSCFDnGSTS */
69 #define RCANFD_GSTS_GRAMINIT		BIT(3)
70 #define RCANFD_GSTS_GSLPSTS		BIT(2)
71 #define RCANFD_GSTS_GHLTSTS		BIT(1)
72 #define RCANFD_GSTS_GRSTSTS		BIT(0)
73 /* Non-operational status */
74 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
75 
76 /* RSCFDnCFDGERFL / RSCFDnGERFL */
77 #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
78 #define RCANFD_GERFL_EEF(ch)		BIT(16 + (ch))
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 	((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86 			 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87 		RCANFD_GERFL_MES | \
88 		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89 
90 /* AFL Rx rules registers */
91 
92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94 	(((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95 	 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
96 
97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98 	(((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99 	 reg_gen4(gpriv, 0x1ff, 0xff))
100 
101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_gen4(gpriv, 0x7f, 0x1f))
104 
105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106 #define RCANFD_GAFLID_GAFLLB		BIT(29)
107 
108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
110 
111 /* Channel register bits */
112 
113 /* RSCFDnCmCFG - Classical CAN only */
114 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
115 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
116 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
117 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
118 
119 /* RSCFDnCFDCmNCFG - CAN FD only */
120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121 	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
122 
123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124 	(((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
125 
126 #define RCANFD_NCFG_NSJW(gpriv, x) \
127 	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
128 
129 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
130 
131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132 #define RCANFD_CCTR_CTME		BIT(24)
133 #define RCANFD_CCTR_ERRD		BIT(23)
134 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
135 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
136 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
137 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
138 #define RCANFD_CCTR_TDCVFIE		BIT(19)
139 #define RCANFD_CCTR_SOCOIE		BIT(18)
140 #define RCANFD_CCTR_EOCOIE		BIT(17)
141 #define RCANFD_CCTR_TAIE		BIT(16)
142 #define RCANFD_CCTR_ALIE		BIT(15)
143 #define RCANFD_CCTR_BLIE		BIT(14)
144 #define RCANFD_CCTR_OLIE		BIT(13)
145 #define RCANFD_CCTR_BORIE		BIT(12)
146 #define RCANFD_CCTR_BOEIE		BIT(11)
147 #define RCANFD_CCTR_EPIE		BIT(10)
148 #define RCANFD_CCTR_EWIE		BIT(9)
149 #define RCANFD_CCTR_BEIE		BIT(8)
150 #define RCANFD_CCTR_CSLPR		BIT(2)
151 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
152 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
153 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
154 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
155 
156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157 #define RCANFD_CSTS_COMSTS		BIT(7)
158 #define RCANFD_CSTS_RECSTS		BIT(6)
159 #define RCANFD_CSTS_TRMSTS		BIT(5)
160 #define RCANFD_CSTS_BOSTS		BIT(4)
161 #define RCANFD_CSTS_EPSTS		BIT(3)
162 #define RCANFD_CSTS_SLPSTS		BIT(2)
163 #define RCANFD_CSTS_HLTSTS		BIT(1)
164 #define RCANFD_CSTS_CRSTSTS		BIT(0)
165 
166 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
167 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
168 
169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170 #define RCANFD_CERFL_ADERR		BIT(14)
171 #define RCANFD_CERFL_B0ERR		BIT(13)
172 #define RCANFD_CERFL_B1ERR		BIT(12)
173 #define RCANFD_CERFL_CERR		BIT(11)
174 #define RCANFD_CERFL_AERR		BIT(10)
175 #define RCANFD_CERFL_FERR		BIT(9)
176 #define RCANFD_CERFL_SERR		BIT(8)
177 #define RCANFD_CERFL_ALF		BIT(7)
178 #define RCANFD_CERFL_BLF		BIT(6)
179 #define RCANFD_CERFL_OVLF		BIT(5)
180 #define RCANFD_CERFL_BORF		BIT(4)
181 #define RCANFD_CERFL_BOEF		BIT(3)
182 #define RCANFD_CERFL_EPF		BIT(2)
183 #define RCANFD_CERFL_EWF		BIT(1)
184 #define RCANFD_CERFL_BEF		BIT(0)
185 
186 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
187 
188 /* RSCFDnCFDCmDCFG */
189 #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
190 
191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192 	(((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
193 
194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195 	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
196 
197 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
198 
199 /* RSCFDnCFDCmFDCFG */
200 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
201 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
202 #define RCANFD_FDCFG_TDCE		BIT(9)
203 #define RCANFD_FDCFG_TDCOC		BIT(8)
204 #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
205 
206 /* RSCFDnCFDRFCCx */
207 #define RCANFD_RFCC_RFIM		BIT(12)
208 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
209 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
210 #define RCANFD_RFCC_RFIE		BIT(1)
211 #define RCANFD_RFCC_RFE			BIT(0)
212 
213 /* RSCFDnCFDRFSTSx */
214 #define RCANFD_RFSTS_RFIF		BIT(3)
215 #define RCANFD_RFSTS_RFMLT		BIT(2)
216 #define RCANFD_RFSTS_RFFLL		BIT(1)
217 #define RCANFD_RFSTS_RFEMP		BIT(0)
218 
219 /* RSCFDnCFDRFIDx */
220 #define RCANFD_RFID_RFIDE		BIT(31)
221 #define RCANFD_RFID_RFRTR		BIT(30)
222 
223 /* RSCFDnCFDRFPTRx */
224 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
225 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
226 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
227 
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
231 #define RCANFD_RFFDSTS_RFESI		BIT(0)
232 
233 /* Common FIFO bits */
234 
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, x)	\
237 	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_gen4(gpriv,  8, 16))
239 #define RCANFD_CFCC_CFIM		BIT(12)
240 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_gen4(gpriv, 21,  8))
241 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
242 #define RCANFD_CFCC_CFTXIE		BIT(2)
243 #define RCANFD_CFCC_CFE			BIT(0)
244 
245 /* RSCFDnCFDCFSTSk */
246 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
247 #define RCANFD_CFSTS_CFTXIF		BIT(4)
248 #define RCANFD_CFSTS_CFMLT		BIT(2)
249 #define RCANFD_CFSTS_CFFLL		BIT(1)
250 #define RCANFD_CFSTS_CFEMP		BIT(0)
251 
252 /* RSCFDnCFDCFIDk */
253 #define RCANFD_CFID_CFIDE		BIT(31)
254 #define RCANFD_CFID_CFRTR		BIT(30)
255 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
256 
257 /* RSCFDnCFDCFPTRk */
258 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
259 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
260 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
261 
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
266 
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268  * These modes are supported in two separate set of register maps & names.
269  * However, some of the register offsets are common for both modes. Those
270  * offsets are listed below as Common registers.
271  *
272  * The CAN FD only mode specific registers & Classical CAN only mode specific
273  * registers are listed separately. Their register names starts with
274  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275  */
276 
277 /* Common registers */
278 
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
287 
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG			(0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR			(0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS			(0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL			(0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC			(0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR			(0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB			(0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
306 
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x)		(reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
313 
314 /* Common FIFO Control registers */
315 
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 	(reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 	(reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 	(reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
325 
326 /* RSCFDnCFDFESTS / RSCFDnFESTS */
327 #define RCANFD_FESTS			(0x0238)
328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329 #define RCANFD_FFSTS			(0x023c)
330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331 #define RCANFD_FMSTS			(0x0240)
332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333 #define RCANFD_RFISTS			(0x0244)
334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335 #define RCANFD_CFRISTS			(0x0248)
336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337 #define RCANFD_CFTISTS			(0x024c)
338 
339 /* RSCFDnCFDTMCp / RSCFDnTMCp */
340 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
343 
344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
354 
355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
361 
362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
368 
369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370 #define RCANFD_GTINTSTS0		(0x0460)
371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372 #define RCANFD_GTINTSTS1		(0x0464)
373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374 #define RCANFD_GTSTCFG			(0x0468)
375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376 #define RCANFD_GTSTCTR			(0x046c)
377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378 #define RCANFD_GLOCKK			(0x047c)
379 /* RSCFDnCFDGRMCFG */
380 #define RCANFD_GRMCFG			(0x04fc)
381 
382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
390 
391 /* Classical CAN only mode register map */
392 
393 /* RSCFDnGAFLXXXj offset */
394 #define RCANFD_C_GAFL_OFFSET		(0x0500)
395 
396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
398 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
399 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
400 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
401 
402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403 #define RCANFD_C_RFOFFSET	(0x0e00)
404 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
405 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406 #define RCANFD_C_RFDF(x, df) \
407 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
408 
409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410 #define RCANFD_C_CFOFFSET		(0x0e80)
411 
412 #define RCANFD_C_CFID(ch, idx) \
413 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
414 
415 #define RCANFD_C_CFPTR(ch, idx)	\
416 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
417 
418 #define RCANFD_C_CFDF(ch, idx, df) \
419 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
420 
421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
423 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
424 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
425 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
426 
427 /* RSCFDnTHLACCm */
428 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
429 /* RSCFDnRPGACCr */
430 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
431 
432 /* R-Car Gen4 Classical and CAN FD mode specific register map */
433 #define RCANFD_GEN4_FDCFG(m)		(0x1404 + (0x20 * (m)))
434 
435 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
436 
437 /* CAN FD mode specific register map */
438 
439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440 #define RCANFD_F_DCFG(gpriv, m)		(reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441 #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
442 #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
443 #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
444 #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
445 
446 /* RSCFDnCFDGAFLXXXj offset */
447 #define RCANFD_F_GAFL_OFFSET		(0x1000)
448 
449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
451 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
452 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
453 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
454 
455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456 #define RCANFD_F_RFOFFSET(gpriv)	reg_gen4(gpriv, 0x6000, 0x3000)
457 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460 #define RCANFD_F_RFDF(gpriv, x, df) \
461 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462 
463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464 #define RCANFD_F_CFOFFSET(gpriv)	reg_gen4(gpriv, 0x6400, 0x3400)
465 
466 #define RCANFD_F_CFID(gpriv, ch, idx) \
467 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468 
469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471 
472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474 
475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477 	 (0x04 * (df)))
478 
479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
481 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
482 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
483 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
484 
485 /* RSCFDnCFDTHLACCm */
486 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
487 /* RSCFDnCFDRPGACCr */
488 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
489 
490 /* Constants */
491 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
492 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
493 
494 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
495 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
496 
497 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
498 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
499 
500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502  * number is added to RFFIFO index.
503  */
504 #define RCANFD_RFFIFO_IDX		0
505 
506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508  */
509 #define RCANFD_CFFIFO_IDX		0
510 
511 /* fCAN clock select register settings */
512 enum rcar_canfd_fcanclk {
513 	RCANFD_CANFDCLK = 0,		/* CANFD clock */
514 	RCANFD_EXTCLK,			/* Externally input clock */
515 };
516 
517 struct rcar_canfd_global;
518 
519 struct rcar_canfd_hw_info {
520 	u8 max_channels;
521 	u8 postdiv;
522 	/* hardware features */
523 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
524 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
525 };
526 
527 /* Channel priv data */
528 struct rcar_canfd_channel {
529 	struct can_priv can;			/* Must be the first member */
530 	struct net_device *ndev;
531 	struct rcar_canfd_global *gpriv;	/* Controller reference */
532 	void __iomem *base;			/* Register base address */
533 	struct phy *transceiver;		/* Optional transceiver */
534 	struct napi_struct napi;
535 	u32 tx_head;				/* Incremented on xmit */
536 	u32 tx_tail;				/* Incremented on xmit done */
537 	u32 channel;				/* Channel number */
538 	spinlock_t tx_lock;			/* To protect tx path */
539 };
540 
541 /* Global priv data */
542 struct rcar_canfd_global {
543 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
544 	void __iomem *base;		/* Register base address */
545 	struct platform_device *pdev;	/* Respective platform device */
546 	struct clk *clkp;		/* Peripheral clock */
547 	struct clk *can_clk;		/* fCAN clock */
548 	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
549 	unsigned long channels_mask;	/* Enabled channels mask */
550 	bool fdmode;			/* CAN FD or Classical CAN only mode */
551 	struct reset_control *rstc1;
552 	struct reset_control *rstc2;
553 	const struct rcar_canfd_hw_info *info;
554 };
555 
556 /* CAN FD mode nominal rate constants */
557 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
558 	.name = RCANFD_DRV_NAME,
559 	.tseg1_min = 2,
560 	.tseg1_max = 128,
561 	.tseg2_min = 2,
562 	.tseg2_max = 32,
563 	.sjw_max = 32,
564 	.brp_min = 1,
565 	.brp_max = 1024,
566 	.brp_inc = 1,
567 };
568 
569 /* CAN FD mode data rate constants */
570 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
571 	.name = RCANFD_DRV_NAME,
572 	.tseg1_min = 2,
573 	.tseg1_max = 16,
574 	.tseg2_min = 2,
575 	.tseg2_max = 8,
576 	.sjw_max = 8,
577 	.brp_min = 1,
578 	.brp_max = 256,
579 	.brp_inc = 1,
580 };
581 
582 /* Classical CAN mode bitrate constants */
583 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
584 	.name = RCANFD_DRV_NAME,
585 	.tseg1_min = 4,
586 	.tseg1_max = 16,
587 	.tseg2_min = 2,
588 	.tseg2_max = 8,
589 	.sjw_max = 4,
590 	.brp_min = 1,
591 	.brp_max = 1024,
592 	.brp_inc = 1,
593 };
594 
595 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
596 	.max_channels = 2,
597 	.postdiv = 2,
598 	.shared_global_irqs = 1,
599 };
600 
601 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
602 	.max_channels = 8,
603 	.postdiv = 2,
604 	.shared_global_irqs = 1,
605 };
606 
607 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
608 	.max_channels = 2,
609 	.postdiv = 1,
610 	.multi_channel_irqs = 1,
611 };
612 
613 /* Helper functions */
is_gen4(struct rcar_canfd_global * gpriv)614 static inline bool is_gen4(struct rcar_canfd_global *gpriv)
615 {
616 	return gpriv->info == &rcar_gen4_hw_info;
617 }
618 
reg_gen4(struct rcar_canfd_global * gpriv,u32 gen4,u32 not_gen4)619 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
620 			   u32 gen4, u32 not_gen4)
621 {
622 	return is_gen4(gpriv) ? gen4 : not_gen4;
623 }
624 
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)625 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
626 {
627 	u32 data = readl(reg);
628 
629 	data &= ~mask;
630 	data |= (val & mask);
631 	writel(data, reg);
632 }
633 
rcar_canfd_read(void __iomem * base,u32 offset)634 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
635 {
636 	return readl(base + (offset));
637 }
638 
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)639 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
640 {
641 	writel(val, base + (offset));
642 }
643 
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)644 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
645 {
646 	rcar_canfd_update(val, val, base + (reg));
647 }
648 
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)649 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
650 {
651 	rcar_canfd_update(val, 0, base + (reg));
652 }
653 
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)654 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
655 				  u32 mask, u32 val)
656 {
657 	rcar_canfd_update(mask, val, base + (reg));
658 }
659 
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)660 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
661 				struct canfd_frame *cf, u32 off)
662 {
663 	u32 i, lwords;
664 
665 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
666 	for (i = 0; i < lwords; i++)
667 		*((u32 *)cf->data + i) =
668 			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
669 }
670 
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)671 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
672 				struct canfd_frame *cf, u32 off)
673 {
674 	u32 i, lwords;
675 
676 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
677 	for (i = 0; i < lwords; i++)
678 		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
679 				 *((u32 *)cf->data + i));
680 }
681 
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)682 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
683 {
684 	u32 i;
685 
686 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
687 		can_free_echo_skb(ndev, i, NULL);
688 }
689 
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)690 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
691 {
692 	if (is_gen4(gpriv)) {
693 		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
694 					    : RCANFD_GEN4_FDCFG_CLOE;
695 
696 		for_each_set_bit(ch, &gpriv->channels_mask,
697 				 gpriv->info->max_channels)
698 			rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
699 					   val);
700 	} else {
701 		if (gpriv->fdmode)
702 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
703 					   RCANFD_GRMCFG_RCMC);
704 		else
705 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
706 					     RCANFD_GRMCFG_RCMC);
707 	}
708 }
709 
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)710 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
711 {
712 	u32 sts, ch;
713 	int err;
714 
715 	/* Check RAMINIT flag as CAN RAM initialization takes place
716 	 * after the MCU reset
717 	 */
718 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
719 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
720 	if (err) {
721 		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
722 		return err;
723 	}
724 
725 	/* Transition to Global Reset mode */
726 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
727 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
728 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
729 
730 	/* Ensure Global reset mode */
731 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
732 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
733 	if (err) {
734 		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
735 		return err;
736 	}
737 
738 	/* Reset Global error flags */
739 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
740 
741 	/* Set the controller into appropriate mode */
742 	rcar_canfd_set_mode(gpriv);
743 
744 	/* Transition all Channels to reset mode */
745 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
746 		rcar_canfd_clear_bit(gpriv->base,
747 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
748 
749 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
750 				      RCANFD_CCTR_CHMDC_MASK,
751 				      RCANFD_CCTR_CHDMC_CRESET);
752 
753 		/* Ensure Channel reset mode */
754 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
755 					 (sts & RCANFD_CSTS_CRSTSTS),
756 					 2, 500000);
757 		if (err) {
758 			dev_dbg(&gpriv->pdev->dev,
759 				"channel %u reset failed\n", ch);
760 			return err;
761 		}
762 	}
763 	return 0;
764 }
765 
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)766 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
767 {
768 	u32 cfg, ch;
769 
770 	/* Global configuration settings */
771 
772 	/* ECC Error flag Enable */
773 	cfg = RCANFD_GCFG_EEFE;
774 
775 	if (gpriv->fdmode)
776 		/* Truncate payload to configured message size RFPLS */
777 		cfg |= RCANFD_GCFG_CMPOC;
778 
779 	/* Set External Clock if selected */
780 	if (gpriv->fcan != RCANFD_CANFDCLK)
781 		cfg |= RCANFD_GCFG_DCS;
782 
783 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
784 
785 	/* Channel configuration settings */
786 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
787 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
788 				   RCANFD_CCTR_ERRD);
789 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
790 				      RCANFD_CCTR_BOM_MASK,
791 				      RCANFD_CCTR_BOM_BENTRY);
792 	}
793 }
794 
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch,u32 rule_entry)795 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
796 					   u32 ch, u32 rule_entry)
797 {
798 	int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
799 	u32 rule_entry_index = rule_entry % 16;
800 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
801 
802 	/* Enable write access to entry */
803 	page = RCANFD_GAFL_PAGENUM(rule_entry);
804 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
805 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
806 			    RCANFD_GAFLECTR_AFLDAE));
807 
808 	/* Write number of rules for channel */
809 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
810 			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
811 	if (is_gen4(gpriv))
812 		offset = RCANFD_GEN4_GAFL_OFFSET;
813 	else if (gpriv->fdmode)
814 		offset = RCANFD_F_GAFL_OFFSET;
815 	else
816 		offset = RCANFD_C_GAFL_OFFSET;
817 
818 	/* Accept all IDs */
819 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
820 	/* IDE or RTR is not considered for matching */
821 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
822 	/* Any data length accepted */
823 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
824 	/* Place the msg in corresponding Rx FIFO entry */
825 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
826 			   RCANFD_GAFLP1_GAFLFDP(ridx));
827 
828 	/* Disable write access to page */
829 	rcar_canfd_clear_bit(gpriv->base,
830 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
831 }
832 
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)833 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
834 {
835 	/* Rx FIFO is used for reception */
836 	u32 cfg;
837 	u16 rfdc, rfpls;
838 
839 	/* Select Rx FIFO based on channel */
840 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
841 
842 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
843 	if (gpriv->fdmode)
844 		rfpls = 7;	/* b111 - Max 64 bytes payload */
845 	else
846 		rfpls = 0;	/* b000 - Max 8 bytes payload */
847 
848 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
849 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
850 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
851 }
852 
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)853 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
854 {
855 	/* Tx/Rx(Common) FIFO configured in Tx mode is
856 	 * used for transmission
857 	 *
858 	 * Each channel has 3 Common FIFO dedicated to them.
859 	 * Use the 1st (index 0) out of 3
860 	 */
861 	u32 cfg;
862 	u16 cftml, cfm, cfdc, cfpls;
863 
864 	cftml = 0;		/* 0th buffer */
865 	cfm = 1;		/* b01 - Transmit mode */
866 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
867 	if (gpriv->fdmode)
868 		cfpls = 7;	/* b111 - Max 64 bytes payload */
869 	else
870 		cfpls = 0;	/* b000 - Max 8 bytes payload */
871 
872 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
873 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
874 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
875 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
876 
877 	if (gpriv->fdmode)
878 		/* Clear FD mode specific control/status register */
879 		rcar_canfd_write(gpriv->base,
880 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
881 }
882 
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)883 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
884 {
885 	u32 ctr;
886 
887 	/* Clear any stray error interrupt flags */
888 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
889 
890 	/* Global interrupts setup */
891 	ctr = RCANFD_GCTR_MEIE;
892 	if (gpriv->fdmode)
893 		ctr |= RCANFD_GCTR_CFMPOFIE;
894 
895 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
896 }
897 
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)898 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
899 						 *gpriv)
900 {
901 	/* Disable all interrupts */
902 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
903 
904 	/* Clear any stray error interrupt flags */
905 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
906 }
907 
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)908 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
909 						 *priv)
910 {
911 	u32 ctr, ch = priv->channel;
912 
913 	/* Clear any stray error flags */
914 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
915 
916 	/* Channel interrupts setup */
917 	ctr = (RCANFD_CCTR_TAIE |
918 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
919 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
920 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
921 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
922 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
923 }
924 
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)925 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
926 						  *priv)
927 {
928 	u32 ctr, ch = priv->channel;
929 
930 	ctr = (RCANFD_CCTR_TAIE |
931 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
932 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
933 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
934 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
935 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
936 
937 	/* Clear any stray error flags */
938 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
939 }
940 
rcar_canfd_global_error(struct net_device * ndev)941 static void rcar_canfd_global_error(struct net_device *ndev)
942 {
943 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
944 	struct rcar_canfd_global *gpriv = priv->gpriv;
945 	struct net_device_stats *stats = &ndev->stats;
946 	u32 ch = priv->channel;
947 	u32 gerfl, sts;
948 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
949 
950 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
951 	if (gerfl & RCANFD_GERFL_EEF(ch)) {
952 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
953 		stats->tx_dropped++;
954 	}
955 	if (gerfl & RCANFD_GERFL_MES) {
956 		sts = rcar_canfd_read(priv->base,
957 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
958 		if (sts & RCANFD_CFSTS_CFMLT) {
959 			netdev_dbg(ndev, "Tx Message Lost flag\n");
960 			stats->tx_dropped++;
961 			rcar_canfd_write(priv->base,
962 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
963 					 sts & ~RCANFD_CFSTS_CFMLT);
964 		}
965 
966 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
967 		if (sts & RCANFD_RFSTS_RFMLT) {
968 			netdev_dbg(ndev, "Rx Message Lost flag\n");
969 			stats->rx_dropped++;
970 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
971 					 sts & ~RCANFD_RFSTS_RFMLT);
972 		}
973 	}
974 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
975 		/* Message Lost flag will be set for respective channel
976 		 * when this condition happens with counters and flags
977 		 * already updated.
978 		 */
979 		netdev_dbg(ndev, "global payload overflow interrupt\n");
980 	}
981 
982 	/* Clear all global error interrupts. Only affected channels bits
983 	 * get cleared
984 	 */
985 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
986 }
987 
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)988 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
989 			     u16 txerr, u16 rxerr)
990 {
991 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
992 	struct net_device_stats *stats = &ndev->stats;
993 	struct can_frame *cf;
994 	struct sk_buff *skb;
995 	u32 ch = priv->channel;
996 
997 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
998 
999 	/* Propagate the error condition to the CAN stack */
1000 	skb = alloc_can_err_skb(ndev, &cf);
1001 	if (!skb) {
1002 		stats->rx_dropped++;
1003 		return;
1004 	}
1005 
1006 	/* Channel error interrupts */
1007 	if (cerfl & RCANFD_CERFL_BEF) {
1008 		netdev_dbg(ndev, "Bus error\n");
1009 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1010 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1011 		priv->can.can_stats.bus_error++;
1012 	}
1013 	if (cerfl & RCANFD_CERFL_ADERR) {
1014 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1015 		stats->tx_errors++;
1016 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1017 	}
1018 	if (cerfl & RCANFD_CERFL_B0ERR) {
1019 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1020 		stats->tx_errors++;
1021 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1022 	}
1023 	if (cerfl & RCANFD_CERFL_B1ERR) {
1024 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1025 		stats->tx_errors++;
1026 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1027 	}
1028 	if (cerfl & RCANFD_CERFL_CERR) {
1029 		netdev_dbg(ndev, "CRC Error\n");
1030 		stats->rx_errors++;
1031 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1032 	}
1033 	if (cerfl & RCANFD_CERFL_AERR) {
1034 		netdev_dbg(ndev, "ACK Error\n");
1035 		stats->tx_errors++;
1036 		cf->can_id |= CAN_ERR_ACK;
1037 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1038 	}
1039 	if (cerfl & RCANFD_CERFL_FERR) {
1040 		netdev_dbg(ndev, "Form Error\n");
1041 		stats->rx_errors++;
1042 		cf->data[2] |= CAN_ERR_PROT_FORM;
1043 	}
1044 	if (cerfl & RCANFD_CERFL_SERR) {
1045 		netdev_dbg(ndev, "Stuff Error\n");
1046 		stats->rx_errors++;
1047 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1048 	}
1049 	if (cerfl & RCANFD_CERFL_ALF) {
1050 		netdev_dbg(ndev, "Arbitration lost Error\n");
1051 		priv->can.can_stats.arbitration_lost++;
1052 		cf->can_id |= CAN_ERR_LOSTARB;
1053 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1054 	}
1055 	if (cerfl & RCANFD_CERFL_BLF) {
1056 		netdev_dbg(ndev, "Bus Lock Error\n");
1057 		stats->rx_errors++;
1058 		cf->can_id |= CAN_ERR_BUSERROR;
1059 	}
1060 	if (cerfl & RCANFD_CERFL_EWF) {
1061 		netdev_dbg(ndev, "Error warning interrupt\n");
1062 		priv->can.state = CAN_STATE_ERROR_WARNING;
1063 		priv->can.can_stats.error_warning++;
1064 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1065 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1066 			CAN_ERR_CRTL_RX_WARNING;
1067 		cf->data[6] = txerr;
1068 		cf->data[7] = rxerr;
1069 	}
1070 	if (cerfl & RCANFD_CERFL_EPF) {
1071 		netdev_dbg(ndev, "Error passive interrupt\n");
1072 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1073 		priv->can.can_stats.error_passive++;
1074 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1075 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1076 			CAN_ERR_CRTL_RX_PASSIVE;
1077 		cf->data[6] = txerr;
1078 		cf->data[7] = rxerr;
1079 	}
1080 	if (cerfl & RCANFD_CERFL_BOEF) {
1081 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1082 		rcar_canfd_tx_failure_cleanup(ndev);
1083 		priv->can.state = CAN_STATE_BUS_OFF;
1084 		priv->can.can_stats.bus_off++;
1085 		can_bus_off(ndev);
1086 		cf->can_id |= CAN_ERR_BUSOFF;
1087 	}
1088 	if (cerfl & RCANFD_CERFL_OVLF) {
1089 		netdev_dbg(ndev,
1090 			   "Overload Frame Transmission error interrupt\n");
1091 		stats->tx_errors++;
1092 		cf->can_id |= CAN_ERR_PROT;
1093 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1094 	}
1095 
1096 	/* Clear channel error interrupts that are handled */
1097 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1098 			 RCANFD_CERFL_ERR(~cerfl));
1099 	netif_rx(skb);
1100 }
1101 
rcar_canfd_tx_done(struct net_device * ndev)1102 static void rcar_canfd_tx_done(struct net_device *ndev)
1103 {
1104 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1105 	struct rcar_canfd_global *gpriv = priv->gpriv;
1106 	struct net_device_stats *stats = &ndev->stats;
1107 	u32 sts;
1108 	unsigned long flags;
1109 	u32 ch = priv->channel;
1110 
1111 	do {
1112 		u8 unsent, sent;
1113 
1114 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1115 		stats->tx_packets++;
1116 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1117 
1118 		spin_lock_irqsave(&priv->tx_lock, flags);
1119 		priv->tx_tail++;
1120 		sts = rcar_canfd_read(priv->base,
1121 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1122 		unsent = RCANFD_CFSTS_CFMC(sts);
1123 
1124 		/* Wake producer only when there is room */
1125 		if (unsent != RCANFD_FIFO_DEPTH)
1126 			netif_wake_queue(ndev);
1127 
1128 		if (priv->tx_head - priv->tx_tail <= unsent) {
1129 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1130 			break;
1131 		}
1132 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1133 
1134 	} while (1);
1135 
1136 	/* Clear interrupt */
1137 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1138 			 sts & ~RCANFD_CFSTS_CFTXIF);
1139 }
1140 
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1141 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1142 {
1143 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1144 	struct net_device *ndev = priv->ndev;
1145 	u32 gerfl;
1146 
1147 	/* Handle global error interrupts */
1148 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1149 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1150 		rcar_canfd_global_error(ndev);
1151 }
1152 
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1153 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1154 {
1155 	struct rcar_canfd_global *gpriv = dev_id;
1156 	u32 ch;
1157 
1158 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1159 		rcar_canfd_handle_global_err(gpriv, ch);
1160 
1161 	return IRQ_HANDLED;
1162 }
1163 
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1164 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1165 {
1166 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1167 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1168 	u32 sts, cc;
1169 
1170 	/* Handle Rx interrupts */
1171 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1172 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1173 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1174 		   cc & RCANFD_RFCC_RFIE)) {
1175 		if (napi_schedule_prep(&priv->napi)) {
1176 			/* Disable Rx FIFO interrupts */
1177 			rcar_canfd_clear_bit(priv->base,
1178 					     RCANFD_RFCC(gpriv, ridx),
1179 					     RCANFD_RFCC_RFIE);
1180 			__napi_schedule(&priv->napi);
1181 		}
1182 	}
1183 }
1184 
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1185 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1186 {
1187 	struct rcar_canfd_global *gpriv = dev_id;
1188 	u32 ch;
1189 
1190 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1191 		rcar_canfd_handle_global_receive(gpriv, ch);
1192 
1193 	return IRQ_HANDLED;
1194 }
1195 
rcar_canfd_global_interrupt(int irq,void * dev_id)1196 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1197 {
1198 	struct rcar_canfd_global *gpriv = dev_id;
1199 	u32 ch;
1200 
1201 	/* Global error interrupts still indicate a condition specific
1202 	 * to a channel. RxFIFO interrupt is a global interrupt.
1203 	 */
1204 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1205 		rcar_canfd_handle_global_err(gpriv, ch);
1206 		rcar_canfd_handle_global_receive(gpriv, ch);
1207 	}
1208 	return IRQ_HANDLED;
1209 }
1210 
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1211 static void rcar_canfd_state_change(struct net_device *ndev,
1212 				    u16 txerr, u16 rxerr)
1213 {
1214 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1215 	struct net_device_stats *stats = &ndev->stats;
1216 	enum can_state rx_state, tx_state, state = priv->can.state;
1217 	struct can_frame *cf;
1218 	struct sk_buff *skb;
1219 
1220 	/* Handle transition from error to normal states */
1221 	if (txerr < 96 && rxerr < 96)
1222 		state = CAN_STATE_ERROR_ACTIVE;
1223 	else if (txerr < 128 && rxerr < 128)
1224 		state = CAN_STATE_ERROR_WARNING;
1225 
1226 	if (state != priv->can.state) {
1227 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1228 			   state, priv->can.state, txerr, rxerr);
1229 		skb = alloc_can_err_skb(ndev, &cf);
1230 		if (!skb) {
1231 			stats->rx_dropped++;
1232 			return;
1233 		}
1234 		tx_state = txerr >= rxerr ? state : 0;
1235 		rx_state = txerr <= rxerr ? state : 0;
1236 
1237 		can_change_state(ndev, cf, tx_state, rx_state);
1238 		netif_rx(skb);
1239 	}
1240 }
1241 
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1242 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1243 {
1244 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1245 	struct net_device *ndev = priv->ndev;
1246 	u32 sts;
1247 
1248 	/* Handle Tx interrupts */
1249 	sts = rcar_canfd_read(priv->base,
1250 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1251 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1252 		rcar_canfd_tx_done(ndev);
1253 }
1254 
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1255 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1256 {
1257 	struct rcar_canfd_channel *priv = dev_id;
1258 
1259 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1260 
1261 	return IRQ_HANDLED;
1262 }
1263 
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1264 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1265 {
1266 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1267 	struct net_device *ndev = priv->ndev;
1268 	u16 txerr, rxerr;
1269 	u32 sts, cerfl;
1270 
1271 	/* Handle channel error interrupts */
1272 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1273 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1274 	txerr = RCANFD_CSTS_TECCNT(sts);
1275 	rxerr = RCANFD_CSTS_RECCNT(sts);
1276 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1277 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1278 
1279 	/* Handle state change to lower states */
1280 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1281 		     priv->can.state != CAN_STATE_BUS_OFF))
1282 		rcar_canfd_state_change(ndev, txerr, rxerr);
1283 }
1284 
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1285 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1286 {
1287 	struct rcar_canfd_channel *priv = dev_id;
1288 
1289 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1290 
1291 	return IRQ_HANDLED;
1292 }
1293 
rcar_canfd_channel_interrupt(int irq,void * dev_id)1294 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1295 {
1296 	struct rcar_canfd_global *gpriv = dev_id;
1297 	u32 ch;
1298 
1299 	/* Common FIFO is a per channel resource */
1300 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1301 		rcar_canfd_handle_channel_err(gpriv, ch);
1302 		rcar_canfd_handle_channel_tx(gpriv, ch);
1303 	}
1304 
1305 	return IRQ_HANDLED;
1306 }
1307 
rcar_canfd_set_bittiming(struct net_device * dev)1308 static void rcar_canfd_set_bittiming(struct net_device *dev)
1309 {
1310 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1311 	struct rcar_canfd_global *gpriv = priv->gpriv;
1312 	const struct can_bittiming *bt = &priv->can.bittiming;
1313 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1314 	u16 brp, sjw, tseg1, tseg2;
1315 	u32 cfg;
1316 	u32 ch = priv->channel;
1317 
1318 	/* Nominal bit timing settings */
1319 	brp = bt->brp - 1;
1320 	sjw = bt->sjw - 1;
1321 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1322 	tseg2 = bt->phase_seg2 - 1;
1323 
1324 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1325 		/* CAN FD only mode */
1326 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1327 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1328 
1329 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1330 		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1331 			   brp, sjw, tseg1, tseg2);
1332 
1333 		/* Data bit timing settings */
1334 		brp = dbt->brp - 1;
1335 		sjw = dbt->sjw - 1;
1336 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1337 		tseg2 = dbt->phase_seg2 - 1;
1338 
1339 		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1340 		       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1341 
1342 		rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1343 		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1344 			   brp, sjw, tseg1, tseg2);
1345 	} else {
1346 		/* Classical CAN only mode */
1347 		if (is_gen4(gpriv)) {
1348 			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1349 			       RCANFD_NCFG_NBRP(brp) |
1350 			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1351 			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1352 		} else {
1353 			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1354 			       RCANFD_CFG_BRP(brp) |
1355 			       RCANFD_CFG_SJW(sjw) |
1356 			       RCANFD_CFG_TSEG2(tseg2));
1357 		}
1358 
1359 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1360 		netdev_dbg(priv->ndev,
1361 			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1362 			   brp, sjw, tseg1, tseg2);
1363 	}
1364 }
1365 
rcar_canfd_start(struct net_device * ndev)1366 static int rcar_canfd_start(struct net_device *ndev)
1367 {
1368 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1369 	struct rcar_canfd_global *gpriv = priv->gpriv;
1370 	int err = -EOPNOTSUPP;
1371 	u32 sts, ch = priv->channel;
1372 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1373 
1374 	rcar_canfd_set_bittiming(ndev);
1375 
1376 	rcar_canfd_enable_channel_interrupts(priv);
1377 
1378 	/* Set channel to Operational mode */
1379 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1380 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1381 
1382 	/* Verify channel mode change */
1383 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1384 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1385 	if (err) {
1386 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1387 		goto fail_mode_change;
1388 	}
1389 
1390 	/* Enable Common & Rx FIFO */
1391 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1392 			   RCANFD_CFCC_CFE);
1393 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1394 
1395 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1396 	return 0;
1397 
1398 fail_mode_change:
1399 	rcar_canfd_disable_channel_interrupts(priv);
1400 	return err;
1401 }
1402 
rcar_canfd_open(struct net_device * ndev)1403 static int rcar_canfd_open(struct net_device *ndev)
1404 {
1405 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1406 	struct rcar_canfd_global *gpriv = priv->gpriv;
1407 	int err;
1408 
1409 	err = phy_power_on(priv->transceiver);
1410 	if (err) {
1411 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1412 		return err;
1413 	}
1414 
1415 	/* Peripheral clock is already enabled in probe */
1416 	err = clk_prepare_enable(gpriv->can_clk);
1417 	if (err) {
1418 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1419 		goto out_phy;
1420 	}
1421 
1422 	err = open_candev(ndev);
1423 	if (err) {
1424 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1425 		goto out_can_clock;
1426 	}
1427 
1428 	napi_enable(&priv->napi);
1429 	err = rcar_canfd_start(ndev);
1430 	if (err)
1431 		goto out_close;
1432 	netif_start_queue(ndev);
1433 	return 0;
1434 out_close:
1435 	napi_disable(&priv->napi);
1436 	close_candev(ndev);
1437 out_can_clock:
1438 	clk_disable_unprepare(gpriv->can_clk);
1439 out_phy:
1440 	phy_power_off(priv->transceiver);
1441 	return err;
1442 }
1443 
rcar_canfd_stop(struct net_device * ndev)1444 static void rcar_canfd_stop(struct net_device *ndev)
1445 {
1446 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1447 	struct rcar_canfd_global *gpriv = priv->gpriv;
1448 	int err;
1449 	u32 sts, ch = priv->channel;
1450 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1451 
1452 	/* Transition to channel reset mode  */
1453 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1454 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1455 
1456 	/* Check Channel reset mode */
1457 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1458 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1459 	if (err)
1460 		netdev_err(ndev, "channel %u reset failed\n", ch);
1461 
1462 	rcar_canfd_disable_channel_interrupts(priv);
1463 
1464 	/* Disable Common & Rx FIFO */
1465 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1466 			     RCANFD_CFCC_CFE);
1467 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1468 
1469 	/* Set the state as STOPPED */
1470 	priv->can.state = CAN_STATE_STOPPED;
1471 }
1472 
rcar_canfd_close(struct net_device * ndev)1473 static int rcar_canfd_close(struct net_device *ndev)
1474 {
1475 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1476 	struct rcar_canfd_global *gpriv = priv->gpriv;
1477 
1478 	netif_stop_queue(ndev);
1479 	rcar_canfd_stop(ndev);
1480 	napi_disable(&priv->napi);
1481 	clk_disable_unprepare(gpriv->can_clk);
1482 	close_candev(ndev);
1483 	phy_power_off(priv->transceiver);
1484 	return 0;
1485 }
1486 
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1487 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1488 					 struct net_device *ndev)
1489 {
1490 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1491 	struct rcar_canfd_global *gpriv = priv->gpriv;
1492 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1493 	u32 sts = 0, id, dlc;
1494 	unsigned long flags;
1495 	u32 ch = priv->channel;
1496 
1497 	if (can_dev_dropped_skb(ndev, skb))
1498 		return NETDEV_TX_OK;
1499 
1500 	if (cf->can_id & CAN_EFF_FLAG) {
1501 		id = cf->can_id & CAN_EFF_MASK;
1502 		id |= RCANFD_CFID_CFIDE;
1503 	} else {
1504 		id = cf->can_id & CAN_SFF_MASK;
1505 	}
1506 
1507 	if (cf->can_id & CAN_RTR_FLAG)
1508 		id |= RCANFD_CFID_CFRTR;
1509 
1510 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1511 
1512 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1513 		rcar_canfd_write(priv->base,
1514 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1515 		rcar_canfd_write(priv->base,
1516 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1517 
1518 		if (can_is_canfd_skb(skb)) {
1519 			/* CAN FD frame format */
1520 			sts |= RCANFD_CFFDCSTS_CFFDF;
1521 			if (cf->flags & CANFD_BRS)
1522 				sts |= RCANFD_CFFDCSTS_CFBRS;
1523 
1524 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1525 				sts |= RCANFD_CFFDCSTS_CFESI;
1526 		}
1527 
1528 		rcar_canfd_write(priv->base,
1529 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1530 
1531 		rcar_canfd_put_data(priv, cf,
1532 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1533 	} else {
1534 		rcar_canfd_write(priv->base,
1535 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1536 		rcar_canfd_write(priv->base,
1537 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1538 		rcar_canfd_put_data(priv, cf,
1539 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1540 	}
1541 
1542 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1543 
1544 	spin_lock_irqsave(&priv->tx_lock, flags);
1545 	priv->tx_head++;
1546 
1547 	/* Stop the queue if we've filled all FIFO entries */
1548 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1549 		netif_stop_queue(ndev);
1550 
1551 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1552 	 * pointer for the Common FIFO
1553 	 */
1554 	rcar_canfd_write(priv->base,
1555 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1556 
1557 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1558 	return NETDEV_TX_OK;
1559 }
1560 
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1561 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1562 {
1563 	struct net_device_stats *stats = &priv->ndev->stats;
1564 	struct rcar_canfd_global *gpriv = priv->gpriv;
1565 	struct canfd_frame *cf;
1566 	struct sk_buff *skb;
1567 	u32 sts = 0, id, dlc;
1568 	u32 ch = priv->channel;
1569 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1570 
1571 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1572 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1573 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1574 
1575 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1576 
1577 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1578 		    sts & RCANFD_RFFDSTS_RFFDF)
1579 			skb = alloc_canfd_skb(priv->ndev, &cf);
1580 		else
1581 			skb = alloc_can_skb(priv->ndev,
1582 					    (struct can_frame **)&cf);
1583 	} else {
1584 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1585 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1586 		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1587 	}
1588 
1589 	if (!skb) {
1590 		stats->rx_dropped++;
1591 		return;
1592 	}
1593 
1594 	if (id & RCANFD_RFID_RFIDE)
1595 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1596 	else
1597 		cf->can_id = id & CAN_SFF_MASK;
1598 
1599 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1600 		if (sts & RCANFD_RFFDSTS_RFFDF)
1601 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1602 		else
1603 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1604 
1605 		if (sts & RCANFD_RFFDSTS_RFESI) {
1606 			cf->flags |= CANFD_ESI;
1607 			netdev_dbg(priv->ndev, "ESI Error\n");
1608 		}
1609 
1610 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1611 			cf->can_id |= CAN_RTR_FLAG;
1612 		} else {
1613 			if (sts & RCANFD_RFFDSTS_RFBRS)
1614 				cf->flags |= CANFD_BRS;
1615 
1616 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1617 		}
1618 	} else {
1619 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1620 		if (id & RCANFD_RFID_RFRTR)
1621 			cf->can_id |= CAN_RTR_FLAG;
1622 		else if (is_gen4(gpriv))
1623 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1624 		else
1625 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1626 	}
1627 
1628 	/* Write 0xff to RFPC to increment the CPU-side
1629 	 * pointer of the Rx FIFO
1630 	 */
1631 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1632 
1633 	if (!(cf->can_id & CAN_RTR_FLAG))
1634 		stats->rx_bytes += cf->len;
1635 	stats->rx_packets++;
1636 	netif_receive_skb(skb);
1637 }
1638 
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1639 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1640 {
1641 	struct rcar_canfd_channel *priv =
1642 		container_of(napi, struct rcar_canfd_channel, napi);
1643 	struct rcar_canfd_global *gpriv = priv->gpriv;
1644 	int num_pkts;
1645 	u32 sts;
1646 	u32 ch = priv->channel;
1647 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1648 
1649 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1650 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1651 		/* Check FIFO empty condition */
1652 		if (sts & RCANFD_RFSTS_RFEMP)
1653 			break;
1654 
1655 		rcar_canfd_rx_pkt(priv);
1656 
1657 		/* Clear interrupt bit */
1658 		if (sts & RCANFD_RFSTS_RFIF)
1659 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1660 					 sts & ~RCANFD_RFSTS_RFIF);
1661 	}
1662 
1663 	/* All packets processed */
1664 	if (num_pkts < quota) {
1665 		if (napi_complete_done(napi, num_pkts)) {
1666 			/* Enable Rx FIFO interrupts */
1667 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1668 					   RCANFD_RFCC_RFIE);
1669 		}
1670 	}
1671 	return num_pkts;
1672 }
1673 
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1674 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1675 {
1676 	int err;
1677 
1678 	switch (mode) {
1679 	case CAN_MODE_START:
1680 		err = rcar_canfd_start(ndev);
1681 		if (err)
1682 			return err;
1683 		netif_wake_queue(ndev);
1684 		return 0;
1685 	default:
1686 		return -EOPNOTSUPP;
1687 	}
1688 }
1689 
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1690 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1691 				       struct can_berr_counter *bec)
1692 {
1693 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1694 	u32 val, ch = priv->channel;
1695 
1696 	/* Peripheral clock is already enabled in probe */
1697 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1698 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1699 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1700 	return 0;
1701 }
1702 
1703 static const struct net_device_ops rcar_canfd_netdev_ops = {
1704 	.ndo_open = rcar_canfd_open,
1705 	.ndo_stop = rcar_canfd_close,
1706 	.ndo_start_xmit = rcar_canfd_start_xmit,
1707 	.ndo_change_mtu = can_change_mtu,
1708 };
1709 
1710 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1711 	.get_ts_info = ethtool_op_get_ts_info,
1712 };
1713 
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1714 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1715 				    u32 fcan_freq, struct phy *transceiver)
1716 {
1717 	const struct rcar_canfd_hw_info *info = gpriv->info;
1718 	struct platform_device *pdev = gpriv->pdev;
1719 	struct device *dev = &pdev->dev;
1720 	struct rcar_canfd_channel *priv;
1721 	struct net_device *ndev;
1722 	int err = -ENODEV;
1723 
1724 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1725 	if (!ndev)
1726 		return -ENOMEM;
1727 
1728 	priv = netdev_priv(ndev);
1729 
1730 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1731 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1732 	ndev->flags |= IFF_ECHO;
1733 	priv->ndev = ndev;
1734 	priv->base = gpriv->base;
1735 	priv->transceiver = transceiver;
1736 	priv->channel = ch;
1737 	priv->gpriv = gpriv;
1738 	if (transceiver)
1739 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1740 	priv->can.clock.freq = fcan_freq;
1741 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1742 
1743 	if (info->multi_channel_irqs) {
1744 		char *irq_name;
1745 		int err_irq;
1746 		int tx_irq;
1747 
1748 		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1749 		if (err_irq < 0) {
1750 			err = err_irq;
1751 			goto fail;
1752 		}
1753 
1754 		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1755 		if (tx_irq < 0) {
1756 			err = tx_irq;
1757 			goto fail;
1758 		}
1759 
1760 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1761 					  ch);
1762 		if (!irq_name) {
1763 			err = -ENOMEM;
1764 			goto fail;
1765 		}
1766 		err = devm_request_irq(dev, err_irq,
1767 				       rcar_canfd_channel_err_interrupt, 0,
1768 				       irq_name, priv);
1769 		if (err) {
1770 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1771 				err_irq, ERR_PTR(err));
1772 			goto fail;
1773 		}
1774 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1775 					  ch);
1776 		if (!irq_name) {
1777 			err = -ENOMEM;
1778 			goto fail;
1779 		}
1780 		err = devm_request_irq(dev, tx_irq,
1781 				       rcar_canfd_channel_tx_interrupt, 0,
1782 				       irq_name, priv);
1783 		if (err) {
1784 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1785 				tx_irq, ERR_PTR(err));
1786 			goto fail;
1787 		}
1788 	}
1789 
1790 	if (gpriv->fdmode) {
1791 		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1792 		priv->can.data_bittiming_const =
1793 			&rcar_canfd_data_bittiming_const;
1794 
1795 		/* Controller starts in CAN FD only mode */
1796 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1797 		if (err)
1798 			goto fail;
1799 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1800 	} else {
1801 		/* Controller starts in Classical CAN only mode */
1802 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1803 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1804 	}
1805 
1806 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1807 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1808 	SET_NETDEV_DEV(ndev, dev);
1809 
1810 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1811 			      RCANFD_NAPI_WEIGHT);
1812 	spin_lock_init(&priv->tx_lock);
1813 	gpriv->ch[priv->channel] = priv;
1814 	err = register_candev(ndev);
1815 	if (err) {
1816 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1817 		goto fail_candev;
1818 	}
1819 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1820 	return 0;
1821 
1822 fail_candev:
1823 	netif_napi_del(&priv->napi);
1824 fail:
1825 	free_candev(ndev);
1826 	return err;
1827 }
1828 
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1829 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1830 {
1831 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1832 
1833 	if (priv) {
1834 		unregister_candev(priv->ndev);
1835 		netif_napi_del(&priv->napi);
1836 		free_candev(priv->ndev);
1837 	}
1838 }
1839 
rcar_canfd_probe(struct platform_device * pdev)1840 static int rcar_canfd_probe(struct platform_device *pdev)
1841 {
1842 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1843 	const struct rcar_canfd_hw_info *info;
1844 	struct device *dev = &pdev->dev;
1845 	void __iomem *addr;
1846 	u32 sts, ch, fcan_freq;
1847 	struct rcar_canfd_global *gpriv;
1848 	struct device_node *of_child;
1849 	unsigned long channels_mask = 0;
1850 	int err, ch_irq, g_irq;
1851 	int g_err_irq, g_recc_irq;
1852 	u32 rule_entry = 0;
1853 	bool fdmode = true;			/* CAN FD only mode - default */
1854 	char name[9] = "channelX";
1855 	int i;
1856 
1857 	info = of_device_get_match_data(dev);
1858 
1859 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1860 		fdmode = false;			/* Classical CAN only mode */
1861 
1862 	for (i = 0; i < info->max_channels; ++i) {
1863 		name[7] = '0' + i;
1864 		of_child = of_get_child_by_name(dev->of_node, name);
1865 		if (of_child && of_device_is_available(of_child)) {
1866 			channels_mask |= BIT(i);
1867 			transceivers[i] = devm_of_phy_optional_get(dev,
1868 							of_child, NULL);
1869 		}
1870 		of_node_put(of_child);
1871 		if (IS_ERR(transceivers[i]))
1872 			return PTR_ERR(transceivers[i]);
1873 	}
1874 
1875 	if (info->shared_global_irqs) {
1876 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1877 		if (ch_irq < 0) {
1878 			/* For backward compatibility get irq by index */
1879 			ch_irq = platform_get_irq(pdev, 0);
1880 			if (ch_irq < 0)
1881 				return ch_irq;
1882 		}
1883 
1884 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1885 		if (g_irq < 0) {
1886 			/* For backward compatibility get irq by index */
1887 			g_irq = platform_get_irq(pdev, 1);
1888 			if (g_irq < 0)
1889 				return g_irq;
1890 		}
1891 	} else {
1892 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1893 		if (g_err_irq < 0)
1894 			return g_err_irq;
1895 
1896 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1897 		if (g_recc_irq < 0)
1898 			return g_recc_irq;
1899 	}
1900 
1901 	/* Global controller context */
1902 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1903 	if (!gpriv)
1904 		return -ENOMEM;
1905 
1906 	gpriv->pdev = pdev;
1907 	gpriv->channels_mask = channels_mask;
1908 	gpriv->fdmode = fdmode;
1909 	gpriv->info = info;
1910 
1911 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1912 	if (IS_ERR(gpriv->rstc1))
1913 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1914 				     "failed to get rstp_n\n");
1915 
1916 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1917 	if (IS_ERR(gpriv->rstc2))
1918 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1919 				     "failed to get rstc_n\n");
1920 
1921 	/* Peripheral clock */
1922 	gpriv->clkp = devm_clk_get(dev, "fck");
1923 	if (IS_ERR(gpriv->clkp))
1924 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1925 				     "cannot get peripheral clock\n");
1926 
1927 	/* fCAN clock: Pick External clock. If not available fallback to
1928 	 * CANFD clock
1929 	 */
1930 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
1931 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1932 		gpriv->can_clk = devm_clk_get(dev, "canfd");
1933 		if (IS_ERR(gpriv->can_clk))
1934 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1935 					     "cannot get canfd clock\n");
1936 
1937 		gpriv->fcan = RCANFD_CANFDCLK;
1938 
1939 	} else {
1940 		gpriv->fcan = RCANFD_EXTCLK;
1941 	}
1942 	fcan_freq = clk_get_rate(gpriv->can_clk);
1943 
1944 	if (gpriv->fcan == RCANFD_CANFDCLK)
1945 		/* CANFD clock is further divided by (1/2) within the IP */
1946 		fcan_freq /= info->postdiv;
1947 
1948 	addr = devm_platform_ioremap_resource(pdev, 0);
1949 	if (IS_ERR(addr)) {
1950 		err = PTR_ERR(addr);
1951 		goto fail_dev;
1952 	}
1953 	gpriv->base = addr;
1954 
1955 	/* Request IRQ that's common for both channels */
1956 	if (info->shared_global_irqs) {
1957 		err = devm_request_irq(dev, ch_irq,
1958 				       rcar_canfd_channel_interrupt, 0,
1959 				       "canfd.ch_int", gpriv);
1960 		if (err) {
1961 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1962 				ch_irq, ERR_PTR(err));
1963 			goto fail_dev;
1964 		}
1965 
1966 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1967 				       0, "canfd.g_int", gpriv);
1968 		if (err) {
1969 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1970 				g_irq, ERR_PTR(err));
1971 			goto fail_dev;
1972 		}
1973 	} else {
1974 		err = devm_request_irq(dev, g_recc_irq,
1975 				       rcar_canfd_global_receive_fifo_interrupt, 0,
1976 				       "canfd.g_recc", gpriv);
1977 
1978 		if (err) {
1979 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1980 				g_recc_irq, ERR_PTR(err));
1981 			goto fail_dev;
1982 		}
1983 
1984 		err = devm_request_irq(dev, g_err_irq,
1985 				       rcar_canfd_global_err_interrupt, 0,
1986 				       "canfd.g_err", gpriv);
1987 		if (err) {
1988 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1989 				g_err_irq, ERR_PTR(err));
1990 			goto fail_dev;
1991 		}
1992 	}
1993 
1994 	err = reset_control_reset(gpriv->rstc1);
1995 	if (err)
1996 		goto fail_dev;
1997 	err = reset_control_reset(gpriv->rstc2);
1998 	if (err) {
1999 		reset_control_assert(gpriv->rstc1);
2000 		goto fail_dev;
2001 	}
2002 
2003 	/* Enable peripheral clock for register access */
2004 	err = clk_prepare_enable(gpriv->clkp);
2005 	if (err) {
2006 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2007 			ERR_PTR(err));
2008 		goto fail_reset;
2009 	}
2010 
2011 	err = rcar_canfd_reset_controller(gpriv);
2012 	if (err) {
2013 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2014 		goto fail_clk;
2015 	}
2016 
2017 	/* Controller in Global reset & Channel reset mode */
2018 	rcar_canfd_configure_controller(gpriv);
2019 
2020 	/* Configure per channel attributes */
2021 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2022 		/* Configure Channel's Rx fifo */
2023 		rcar_canfd_configure_rx(gpriv, ch);
2024 
2025 		/* Configure Channel's Tx (Common) fifo */
2026 		rcar_canfd_configure_tx(gpriv, ch);
2027 
2028 		/* Configure receive rules */
2029 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2030 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2031 	}
2032 
2033 	/* Configure common interrupts */
2034 	rcar_canfd_enable_global_interrupts(gpriv);
2035 
2036 	/* Start Global operation mode */
2037 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2038 			      RCANFD_GCTR_GMDC_GOPM);
2039 
2040 	/* Verify mode change */
2041 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2042 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2043 	if (err) {
2044 		dev_err(dev, "global operational mode failed\n");
2045 		goto fail_mode;
2046 	}
2047 
2048 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2049 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2050 					       transceivers[ch]);
2051 		if (err)
2052 			goto fail_channel;
2053 	}
2054 
2055 	platform_set_drvdata(pdev, gpriv);
2056 	dev_info(dev, "global operational state (clk %d, fdmode %d)\n",
2057 		 gpriv->fcan, gpriv->fdmode);
2058 	return 0;
2059 
2060 fail_channel:
2061 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2062 		rcar_canfd_channel_remove(gpriv, ch);
2063 fail_mode:
2064 	rcar_canfd_disable_global_interrupts(gpriv);
2065 fail_clk:
2066 	clk_disable_unprepare(gpriv->clkp);
2067 fail_reset:
2068 	reset_control_assert(gpriv->rstc1);
2069 	reset_control_assert(gpriv->rstc2);
2070 fail_dev:
2071 	return err;
2072 }
2073 
rcar_canfd_remove(struct platform_device * pdev)2074 static void rcar_canfd_remove(struct platform_device *pdev)
2075 {
2076 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2077 	u32 ch;
2078 
2079 	rcar_canfd_reset_controller(gpriv);
2080 	rcar_canfd_disable_global_interrupts(gpriv);
2081 
2082 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2083 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2084 		rcar_canfd_channel_remove(gpriv, ch);
2085 	}
2086 
2087 	/* Enter global sleep mode */
2088 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2089 	clk_disable_unprepare(gpriv->clkp);
2090 	reset_control_assert(gpriv->rstc1);
2091 	reset_control_assert(gpriv->rstc2);
2092 }
2093 
rcar_canfd_suspend(struct device * dev)2094 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2095 {
2096 	return 0;
2097 }
2098 
rcar_canfd_resume(struct device * dev)2099 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2100 {
2101 	return 0;
2102 }
2103 
2104 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2105 			 rcar_canfd_resume);
2106 
2107 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2108 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2109 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2110 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2111 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2112 	{ }
2113 };
2114 
2115 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2116 
2117 static struct platform_driver rcar_canfd_driver = {
2118 	.driver = {
2119 		.name = RCANFD_DRV_NAME,
2120 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2121 		.pm = &rcar_canfd_pm_ops,
2122 	},
2123 	.probe = rcar_canfd_probe,
2124 	.remove_new = rcar_canfd_remove,
2125 };
2126 
2127 module_platform_driver(rcar_canfd_driver);
2128 
2129 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2130 MODULE_LICENSE("GPL");
2131 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2132 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2133