1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace.h"
57
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
61
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
66
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
69
70 #include "qemu/pmem.h"
71
72 #include "migration/vmstate.h"
73
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
78
79 #include "monitor/monitor.h"
80
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
84
85 //#define DEBUG_SUBPAGE
86
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97
98 static MemoryRegion io_mem_unassigned;
99
100 typedef struct PhysPageEntry PhysPageEntry;
101
102 struct PhysPageEntry {
103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104 uint32_t skip : 6;
105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106 uint32_t ptr : 26;
107 };
108
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110
111 /* Size of the L2 (and L3, etc) page tables. */
112 #define ADDR_SPACE_BITS 64
113
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
116
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118
119 typedef PhysPageEntry Node[P_L2_SIZE];
120
121 typedef struct PhysPageMap {
122 struct rcu_head rcu;
123
124 unsigned sections_nb;
125 unsigned sections_nb_alloc;
126 unsigned nodes_nb;
127 unsigned nodes_nb_alloc;
128 Node *nodes;
129 MemoryRegionSection *sections;
130 } PhysPageMap;
131
132 struct AddressSpaceDispatch {
133 MemoryRegionSection *mru_section;
134 /* This is a multi-level map on the physical address space.
135 * The bottom level has pointers to MemoryRegionSections.
136 */
137 PhysPageEntry phys_map;
138 PhysPageMap map;
139 };
140
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143 MemoryRegion iomem;
144 FlatView *fv;
145 hwaddr base;
146 uint16_t sub_section[];
147 } subpage_t;
148
149 #define PHYS_SECTION_UNASSIGNED 0
150
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
155
156 /**
157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158 * @cpu: the CPU whose AddressSpace this is
159 * @as: the AddressSpace itself
160 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161 * @tcg_as_listener: listener for tracking changes to the AddressSpace
162 */
163 typedef struct CPUAddressSpace {
164 CPUState *cpu;
165 AddressSpace *as;
166 struct AddressSpaceDispatch *memory_dispatch;
167 MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
169
170 struct DirtyBitmapSnapshot {
171 ram_addr_t start;
172 ram_addr_t end;
173 unsigned long dirty[];
174 };
175
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177 {
178 static unsigned alloc_hint = 16;
179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182 alloc_hint = map->nodes_nb_alloc;
183 }
184 }
185
phys_map_node_alloc(PhysPageMap * map,bool leaf)186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187 {
188 unsigned i;
189 uint32_t ret;
190 PhysPageEntry e;
191 PhysPageEntry *p;
192
193 ret = map->nodes_nb++;
194 p = map->nodes[ret];
195 assert(ret != PHYS_MAP_NODE_NIL);
196 assert(ret != map->nodes_nb_alloc);
197
198 e.skip = leaf ? 0 : 1;
199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200 for (i = 0; i < P_L2_SIZE; ++i) {
201 memcpy(&p[i], &e, sizeof(e));
202 }
203 return ret;
204 }
205
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207 hwaddr *index, uint64_t *nb, uint16_t leaf,
208 int level)
209 {
210 PhysPageEntry *p;
211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212
213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214 lp->ptr = phys_map_node_alloc(map, level == 0);
215 }
216 p = map->nodes[lp->ptr];
217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218
219 while (*nb && lp < &p[P_L2_SIZE]) {
220 if ((*index & (step - 1)) == 0 && *nb >= step) {
221 lp->skip = 0;
222 lp->ptr = leaf;
223 *index += step;
224 *nb -= step;
225 } else {
226 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227 }
228 ++lp;
229 }
230 }
231
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)232 static void phys_page_set(AddressSpaceDispatch *d,
233 hwaddr index, uint64_t nb,
234 uint16_t leaf)
235 {
236 /* Wildly overreserve - it doesn't matter much. */
237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238
239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 }
241
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243 * and update our entry so we can skip it and go directly to the destination.
244 */
phys_page_compact(PhysPageEntry * lp,Node * nodes)245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246 {
247 unsigned valid_ptr = P_L2_SIZE;
248 int valid = 0;
249 PhysPageEntry *p;
250 int i;
251
252 if (lp->ptr == PHYS_MAP_NODE_NIL) {
253 return;
254 }
255
256 p = nodes[lp->ptr];
257 for (i = 0; i < P_L2_SIZE; i++) {
258 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259 continue;
260 }
261
262 valid_ptr = i;
263 valid++;
264 if (p[i].skip) {
265 phys_page_compact(&p[i], nodes);
266 }
267 }
268
269 /* We can only compress if there's only one child. */
270 if (valid != 1) {
271 return;
272 }
273
274 assert(valid_ptr < P_L2_SIZE);
275
276 /* Don't compress if it won't fit in the # of bits we have. */
277 if (P_L2_LEVELS >= (1 << 6) &&
278 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279 return;
280 }
281
282 lp->ptr = p[valid_ptr].ptr;
283 if (!p[valid_ptr].skip) {
284 /* If our only child is a leaf, make this a leaf. */
285 /* By design, we should have made this node a leaf to begin with so we
286 * should never reach here.
287 * But since it's so simple to handle this, let's do it just in case we
288 * change this rule.
289 */
290 lp->skip = 0;
291 } else {
292 lp->skip += p[valid_ptr].skip;
293 }
294 }
295
address_space_dispatch_compact(AddressSpaceDispatch * d)296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
297 {
298 if (d->phys_map.skip) {
299 phys_page_compact(&d->phys_map, d->map.nodes);
300 }
301 }
302
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304 hwaddr addr)
305 {
306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307 * the section must cover the entire address space.
308 */
309 return int128_gethi(section->size) ||
310 range_covers_byte(section->offset_within_address_space,
311 int128_getlo(section->size), addr);
312 }
313
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315 {
316 PhysPageEntry lp = d->phys_map, *p;
317 Node *nodes = d->map.nodes;
318 MemoryRegionSection *sections = d->map.sections;
319 hwaddr index = addr >> TARGET_PAGE_BITS;
320 int i;
321
322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323 if (lp.ptr == PHYS_MAP_NODE_NIL) {
324 return §ions[PHYS_SECTION_UNASSIGNED];
325 }
326 p = nodes[lp.ptr];
327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 }
329
330 if (section_covers_addr(§ions[lp.ptr], addr)) {
331 return §ions[lp.ptr];
332 } else {
333 return §ions[PHYS_SECTION_UNASSIGNED];
334 }
335 }
336
337 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339 hwaddr addr,
340 bool resolve_subpage)
341 {
342 MemoryRegionSection *section = qatomic_read(&d->mru_section);
343 subpage_t *subpage;
344
345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346 !section_covers_addr(section, addr)) {
347 section = phys_page_find(d, addr);
348 qatomic_set(&d->mru_section, section);
349 }
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 }
354 return section;
355 }
356
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360 hwaddr *plen, bool resolve_subpage)
361 {
362 MemoryRegionSection *section;
363 MemoryRegion *mr;
364 Int128 diff;
365
366 section = address_space_lookup_region(d, addr, resolve_subpage);
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
373 mr = section->mr;
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
386 if (memory_region_is_ram(mr)) {
387 diff = int128_sub(section->size, int128_make64(addr));
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
390 return section;
391 }
392
393 /**
394 * address_space_translate_iommu - translate an address through an IOMMU
395 * memory region and then through the target address space.
396 *
397 * @iommu_mr: the IOMMU memory region that we start the translation from
398 * @addr: the address to be translated through the MMU
399 * @xlat: the translated address offset within the destination memory region.
400 * It cannot be %NULL.
401 * @plen_out: valid read/write length of the translated address. It
402 * cannot be %NULL.
403 * @page_mask_out: page mask for the translated address. This
404 * should only be meaningful for IOMMU translated
405 * addresses, since there may be huge pages that this bit
406 * would tell. It can be %NULL if we don't care about it.
407 * @is_write: whether the translation operation is for write
408 * @is_mmio: whether this can be MMIO, set true if it can
409 * @target_as: the address space targeted by the IOMMU
410 * @attrs: transaction attributes
411 *
412 * This function is called from RCU critical section. It is the common
413 * part of flatview_do_translate and address_space_translate_cached.
414 */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416 hwaddr *xlat,
417 hwaddr *plen_out,
418 hwaddr *page_mask_out,
419 bool is_write,
420 bool is_mmio,
421 AddressSpace **target_as,
422 MemTxAttrs attrs)
423 {
424 MemoryRegionSection *section;
425 hwaddr page_mask = (hwaddr)-1;
426
427 do {
428 hwaddr addr = *xlat;
429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430 int iommu_idx = 0;
431 IOMMUTLBEntry iotlb;
432
433 if (imrc->attrs_to_index) {
434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 }
436
437 iotlb = imrc->translate(iommu_mr, addr, is_write ?
438 IOMMU_WO : IOMMU_RO, iommu_idx);
439
440 if (!(iotlb.perm & (1 << is_write))) {
441 goto unassigned;
442 }
443
444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445 | (addr & iotlb.addr_mask));
446 page_mask &= iotlb.addr_mask;
447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448 *target_as = iotlb.target_as;
449
450 section = address_space_translate_internal(
451 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452 plen_out, is_mmio);
453
454 iommu_mr = memory_region_get_iommu(section->mr);
455 } while (unlikely(iommu_mr));
456
457 if (page_mask_out) {
458 *page_mask_out = page_mask;
459 }
460 return *section;
461
462 unassigned:
463 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 }
465
466 /**
467 * flatview_do_translate - translate an address in FlatView
468 *
469 * @fv: the flat view that we want to translate on
470 * @addr: the address to be translated in above address space
471 * @xlat: the translated address offset within memory region. It
472 * cannot be @NULL.
473 * @plen_out: valid read/write length of the translated address. It
474 * can be @NULL when we don't care about it.
475 * @page_mask_out: page mask for the translated address. This
476 * should only be meaningful for IOMMU translated
477 * addresses, since there may be huge pages that this bit
478 * would tell. It can be @NULL if we don't care about it.
479 * @is_write: whether the translation operation is for write
480 * @is_mmio: whether this can be MMIO, set true if it can
481 * @target_as: the address space targeted by the IOMMU
482 * @attrs: memory transaction attributes
483 *
484 * This function is called from RCU critical section
485 */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as,
494 MemTxAttrs attrs)
495 {
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 hwaddr plen = (hwaddr)(-1);
499
500 if (!plen_out) {
501 plen_out = &plen;
502 }
503
504 section = address_space_translate_internal(
505 flatview_to_dispatch(fv), addr, xlat,
506 plen_out, is_mmio);
507
508 iommu_mr = memory_region_get_iommu(section->mr);
509 if (unlikely(iommu_mr)) {
510 return address_space_translate_iommu(iommu_mr, xlat,
511 plen_out, page_mask_out,
512 is_write, is_mmio,
513 target_as, attrs);
514 }
515 if (page_mask_out) {
516 /* Not behind an IOMMU, use default page size. */
517 *page_mask_out = ~TARGET_PAGE_MASK;
518 }
519
520 return *section;
521 }
522
523 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525 bool is_write, MemTxAttrs attrs)
526 {
527 MemoryRegionSection section;
528 hwaddr xlat, page_mask;
529
530 /*
531 * This can never be MMIO, and we don't really care about plen,
532 * but page mask.
533 */
534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535 NULL, &page_mask, is_write, false, &as,
536 attrs);
537
538 /* Illegal translation */
539 if (section.mr == &io_mem_unassigned) {
540 goto iotlb_fail;
541 }
542
543 /* Convert memory region offset into address space offset */
544 xlat += section.offset_within_address_space -
545 section.offset_within_region;
546
547 return (IOMMUTLBEntry) {
548 .target_as = as,
549 .iova = addr & ~page_mask,
550 .translated_addr = xlat & ~page_mask,
551 .addr_mask = page_mask,
552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553 .perm = IOMMU_RW,
554 };
555
556 iotlb_fail:
557 return (IOMMUTLBEntry) {0};
558 }
559
560 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562 hwaddr *plen, bool is_write,
563 MemTxAttrs attrs)
564 {
565 MemoryRegion *mr;
566 MemoryRegionSection section;
567 AddressSpace *as = NULL;
568
569 /* This can be MMIO, so setup MMIO bit. */
570 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571 is_write, true, &as, attrs);
572 mr = section.mr;
573
574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576 *plen = MIN(page, *plen);
577 }
578
579 return mr;
580 }
581
582 typedef struct TCGIOMMUNotifier {
583 IOMMUNotifier n;
584 MemoryRegion *mr;
585 CPUState *cpu;
586 int iommu_idx;
587 bool active;
588 } TCGIOMMUNotifier;
589
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591 {
592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593
594 if (!notifier->active) {
595 return;
596 }
597 tlb_flush(notifier->cpu);
598 notifier->active = false;
599 /* We leave the notifier struct on the list to avoid reallocating it later.
600 * Generally the number of IOMMUs a CPU deals with will be small.
601 * In any case we can't unregister the iommu notifier from a notify
602 * callback.
603 */
604 }
605
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)606 static void tcg_register_iommu_notifier(CPUState *cpu,
607 IOMMUMemoryRegion *iommu_mr,
608 int iommu_idx)
609 {
610 /* Make sure this CPU has an IOMMU notifier registered for this
611 * IOMMU/IOMMU index combination, so that we can flush its TLB
612 * when the IOMMU tells us the mappings we've cached have changed.
613 */
614 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615 TCGIOMMUNotifier *notifier = NULL;
616 int i;
617
618 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621 break;
622 }
623 }
624 if (i == cpu->iommu_notifiers->len) {
625 /* Not found, add a new entry at the end of the array */
626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627 notifier = g_new0(TCGIOMMUNotifier, 1);
628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629
630 notifier->mr = mr;
631 notifier->iommu_idx = iommu_idx;
632 notifier->cpu = cpu;
633 /* Rather than trying to register interest in the specific part
634 * of the iommu's address space that we've accessed and then
635 * expand it later as subsequent accesses touch more of it, we
636 * just register interest in the whole thing, on the assumption
637 * that iommu reconfiguration will be rare.
638 */
639 iommu_notifier_init(¬ifier->n,
640 tcg_iommu_unmap_notify,
641 IOMMU_NOTIFIER_UNMAP,
642 0,
643 HWADDR_MAX,
644 iommu_idx);
645 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
646 &error_fatal);
647 }
648
649 if (!notifier->active) {
650 notifier->active = true;
651 }
652 }
653
tcg_iommu_free_notifier_list(CPUState * cpu)654 void tcg_iommu_free_notifier_list(CPUState *cpu)
655 {
656 /* Destroy the CPU's notifier list */
657 int i;
658 TCGIOMMUNotifier *notifier;
659
660 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
663 g_free(notifier);
664 }
665 g_array_free(cpu->iommu_notifiers, true);
666 }
667
tcg_iommu_init_notifier_list(CPUState * cpu)668 void tcg_iommu_init_notifier_list(CPUState *cpu)
669 {
670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 }
672
673 /* Called from RCU critical section */
674 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676 hwaddr *xlat, hwaddr *plen,
677 MemTxAttrs attrs, int *prot)
678 {
679 MemoryRegionSection *section;
680 IOMMUMemoryRegion *iommu_mr;
681 IOMMUMemoryRegionClass *imrc;
682 IOMMUTLBEntry iotlb;
683 int iommu_idx;
684 hwaddr addr = orig_addr;
685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686
687 for (;;) {
688 section = address_space_translate_internal(d, addr, &addr, plen, false);
689
690 iommu_mr = memory_region_get_iommu(section->mr);
691 if (!iommu_mr) {
692 break;
693 }
694
695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696
697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700 * doesn't short-cut its translation table walk.
701 */
702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704 | (addr & iotlb.addr_mask));
705 /* Update the caller's prot bits to remove permissions the IOMMU
706 * is giving us a failure response for. If we get down to no
707 * permissions left at all we can give up now.
708 */
709 if (!(iotlb.perm & IOMMU_RO)) {
710 *prot &= ~(PAGE_READ | PAGE_EXEC);
711 }
712 if (!(iotlb.perm & IOMMU_WO)) {
713 *prot &= ~PAGE_WRITE;
714 }
715
716 if (!*prot) {
717 goto translate_fail;
718 }
719
720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 }
722
723 assert(!memory_region_is_iommu(section->mr));
724 *xlat = addr;
725 return section;
726
727 translate_fail:
728 /*
729 * We should be given a page-aligned address -- certainly
730 * tlb_set_page_with_attrs() does so. The page offset of xlat
731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732 * The page portion of xlat will be logged by memory_region_access_valid()
733 * when this memory access is rejected, so use the original untranslated
734 * physical address.
735 */
736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737 *xlat = orig_addr;
738 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 }
740
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)741 void cpu_address_space_init(CPUState *cpu, int asidx,
742 const char *prefix, MemoryRegion *mr)
743 {
744 CPUAddressSpace *newas;
745 AddressSpace *as = g_new0(AddressSpace, 1);
746 char *as_name;
747
748 assert(mr);
749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750 address_space_init(as, mr, as_name);
751 g_free(as_name);
752
753 /* Target code should have set num_ases before calling us */
754 assert(asidx < cpu->num_ases);
755
756 if (asidx == 0) {
757 /* address space 0 gets the convenience alias */
758 cpu->as = as;
759 }
760
761 /* KVM cannot currently support multiple address spaces. */
762 assert(asidx == 0 || !kvm_enabled());
763
764 if (!cpu->cpu_ases) {
765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766 cpu->cpu_ases_count = cpu->num_ases;
767 }
768
769 newas = &cpu->cpu_ases[asidx];
770 newas->cpu = cpu;
771 newas->as = as;
772 if (tcg_enabled()) {
773 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
774 newas->tcg_as_listener.commit = tcg_commit;
775 newas->tcg_as_listener.name = "tcg";
776 memory_listener_register(&newas->tcg_as_listener, as);
777 }
778 }
779
cpu_address_space_destroy(CPUState * cpu,int asidx)780 void cpu_address_space_destroy(CPUState *cpu, int asidx)
781 {
782 CPUAddressSpace *cpuas;
783
784 assert(cpu->cpu_ases);
785 assert(asidx >= 0 && asidx < cpu->num_ases);
786 /* KVM cannot currently support multiple address spaces. */
787 assert(asidx == 0 || !kvm_enabled());
788
789 cpuas = &cpu->cpu_ases[asidx];
790 if (tcg_enabled()) {
791 memory_listener_unregister(&cpuas->tcg_as_listener);
792 }
793
794 address_space_destroy(cpuas->as);
795 g_free_rcu(cpuas->as, rcu);
796
797 if (asidx == 0) {
798 /* reset the convenience alias for address space 0 */
799 cpu->as = NULL;
800 }
801
802 if (--cpu->cpu_ases_count == 0) {
803 g_free(cpu->cpu_ases);
804 cpu->cpu_ases = NULL;
805 }
806 }
807
cpu_get_address_space(CPUState * cpu,int asidx)808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
809 {
810 /* Return the AddressSpace corresponding to the specified index */
811 return cpu->cpu_ases[asidx].as;
812 }
813
814 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
816 {
817 RAMBlock *block;
818
819 block = qatomic_rcu_read(&ram_list.mru_block);
820 if (block && addr - block->offset < block->max_length) {
821 return block;
822 }
823 RAMBLOCK_FOREACH(block) {
824 if (addr - block->offset < block->max_length) {
825 goto found;
826 }
827 }
828
829 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
830 abort();
831
832 found:
833 /* It is safe to write mru_block outside the BQL. This
834 * is what happens:
835 *
836 * mru_block = xxx
837 * rcu_read_unlock()
838 * xxx removed from list
839 * rcu_read_lock()
840 * read mru_block
841 * mru_block = NULL;
842 * call_rcu(reclaim_ramblock, xxx);
843 * rcu_read_unlock()
844 *
845 * qatomic_rcu_set is not needed here. The block was already published
846 * when it was placed into the list. Here we're just making an extra
847 * copy of the pointer.
848 */
849 ram_list.mru_block = block;
850 return block;
851 }
852
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
854 {
855 CPUState *cpu;
856 ram_addr_t start1;
857 RAMBlock *block;
858 ram_addr_t end;
859
860 assert(tcg_enabled());
861 end = TARGET_PAGE_ALIGN(start + length);
862 start &= TARGET_PAGE_MASK;
863
864 RCU_READ_LOCK_GUARD();
865 block = qemu_get_ram_block(start);
866 assert(block == qemu_get_ram_block(end - 1));
867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868 CPU_FOREACH(cpu) {
869 tlb_reset_dirty(cpu, start1, length);
870 }
871 }
872
873 /* Note: start and end must be within the same ram block. */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
875 ram_addr_t length,
876 unsigned client)
877 {
878 DirtyMemoryBlocks *blocks;
879 unsigned long end, page, start_page;
880 bool dirty = false;
881 RAMBlock *ramblock;
882 uint64_t mr_offset, mr_size;
883
884 if (length == 0) {
885 return false;
886 }
887
888 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
889 start_page = start >> TARGET_PAGE_BITS;
890 page = start_page;
891
892 WITH_RCU_READ_LOCK_GUARD() {
893 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
894 ramblock = qemu_get_ram_block(start);
895 /* Range sanity check on the ramblock */
896 assert(start >= ramblock->offset &&
897 start + length <= ramblock->offset + ramblock->used_length);
898
899 while (page < end) {
900 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
901 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
902 unsigned long num = MIN(end - page,
903 DIRTY_MEMORY_BLOCK_SIZE - offset);
904
905 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
906 offset, num);
907 page += num;
908 }
909
910 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
911 mr_size = (end - start_page) << TARGET_PAGE_BITS;
912 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
913 }
914
915 if (dirty) {
916 cpu_physical_memory_dirty_bits_cleared(start, length);
917 }
918
919 return dirty;
920 }
921
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
923 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
924 {
925 DirtyMemoryBlocks *blocks;
926 ram_addr_t start, first, last;
927 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
928 DirtyBitmapSnapshot *snap;
929 unsigned long page, end, dest;
930
931 start = memory_region_get_ram_addr(mr);
932 /* We know we're only called for RAM MemoryRegions */
933 assert(start != RAM_ADDR_INVALID);
934 start += offset;
935
936 first = QEMU_ALIGN_DOWN(start, align);
937 last = QEMU_ALIGN_UP(start + length, align);
938
939 snap = g_malloc0(sizeof(*snap) +
940 ((last - first) >> (TARGET_PAGE_BITS + 3)));
941 snap->start = first;
942 snap->end = last;
943
944 page = first >> TARGET_PAGE_BITS;
945 end = last >> TARGET_PAGE_BITS;
946 dest = 0;
947
948 WITH_RCU_READ_LOCK_GUARD() {
949 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
950
951 while (page < end) {
952 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
953 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
954 unsigned long num = MIN(end - page,
955 DIRTY_MEMORY_BLOCK_SIZE - ofs);
956
957 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
958 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
959 ofs >>= BITS_PER_LEVEL;
960
961 bitmap_copy_and_clear_atomic(snap->dirty + dest,
962 blocks->blocks[idx] + ofs,
963 num);
964 page += num;
965 dest += num >> BITS_PER_LEVEL;
966 }
967 }
968
969 cpu_physical_memory_dirty_bits_cleared(start, length);
970
971 memory_region_clear_dirty_bitmap(mr, offset, length);
972
973 return snap;
974 }
975
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
977 ram_addr_t start,
978 ram_addr_t length)
979 {
980 unsigned long page, end;
981
982 assert(start >= snap->start);
983 assert(start + length <= snap->end);
984
985 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
986 page = (start - snap->start) >> TARGET_PAGE_BITS;
987
988 while (page < end) {
989 if (test_bit(page, snap->dirty)) {
990 return true;
991 }
992 page++;
993 }
994 return false;
995 }
996
997 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)998 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
999 MemoryRegionSection *section)
1000 {
1001 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1002 return section - d->map.sections;
1003 }
1004
1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1006 uint16_t section);
1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1008
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1009 static uint16_t phys_section_add(PhysPageMap *map,
1010 MemoryRegionSection *section)
1011 {
1012 /* The physical section number is ORed with a page-aligned
1013 * pointer to produce the iotlb entries. Thus it should
1014 * never overflow into the page-aligned value.
1015 */
1016 assert(map->sections_nb < TARGET_PAGE_SIZE);
1017
1018 if (map->sections_nb == map->sections_nb_alloc) {
1019 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1020 map->sections = g_renew(MemoryRegionSection, map->sections,
1021 map->sections_nb_alloc);
1022 }
1023 map->sections[map->sections_nb] = *section;
1024 memory_region_ref(section->mr);
1025 return map->sections_nb++;
1026 }
1027
phys_section_destroy(MemoryRegion * mr)1028 static void phys_section_destroy(MemoryRegion *mr)
1029 {
1030 bool have_sub_page = mr->subpage;
1031
1032 memory_region_unref(mr);
1033
1034 if (have_sub_page) {
1035 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1036 object_unref(OBJECT(&subpage->iomem));
1037 g_free(subpage);
1038 }
1039 }
1040
phys_sections_free(PhysPageMap * map)1041 static void phys_sections_free(PhysPageMap *map)
1042 {
1043 while (map->sections_nb > 0) {
1044 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1045 phys_section_destroy(section->mr);
1046 }
1047 g_free(map->sections);
1048 g_free(map->nodes);
1049 }
1050
register_subpage(FlatView * fv,MemoryRegionSection * section)1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1052 {
1053 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1054 subpage_t *subpage;
1055 hwaddr base = section->offset_within_address_space
1056 & TARGET_PAGE_MASK;
1057 MemoryRegionSection *existing = phys_page_find(d, base);
1058 MemoryRegionSection subsection = {
1059 .offset_within_address_space = base,
1060 .size = int128_make64(TARGET_PAGE_SIZE),
1061 };
1062 hwaddr start, end;
1063
1064 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1065
1066 if (!(existing->mr->subpage)) {
1067 subpage = subpage_init(fv, base);
1068 subsection.fv = fv;
1069 subsection.mr = &subpage->iomem;
1070 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1071 phys_section_add(&d->map, &subsection));
1072 } else {
1073 subpage = container_of(existing->mr, subpage_t, iomem);
1074 }
1075 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1076 end = start + int128_get64(section->size) - 1;
1077 subpage_register(subpage, start, end,
1078 phys_section_add(&d->map, section));
1079 }
1080
1081
register_multipage(FlatView * fv,MemoryRegionSection * section)1082 static void register_multipage(FlatView *fv,
1083 MemoryRegionSection *section)
1084 {
1085 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1086 hwaddr start_addr = section->offset_within_address_space;
1087 uint16_t section_index = phys_section_add(&d->map, section);
1088 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1089 TARGET_PAGE_BITS));
1090
1091 assert(num_pages);
1092 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1093 }
1094
1095 /*
1096 * The range in *section* may look like this:
1097 *
1098 * |s|PPPPPPP|s|
1099 *
1100 * where s stands for subpage and P for page.
1101 */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1103 {
1104 MemoryRegionSection remain = *section;
1105 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1106
1107 /* register first subpage */
1108 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1109 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1110 - remain.offset_within_address_space;
1111
1112 MemoryRegionSection now = remain;
1113 now.size = int128_min(int128_make64(left), now.size);
1114 register_subpage(fv, &now);
1115 if (int128_eq(remain.size, now.size)) {
1116 return;
1117 }
1118 remain.size = int128_sub(remain.size, now.size);
1119 remain.offset_within_address_space += int128_get64(now.size);
1120 remain.offset_within_region += int128_get64(now.size);
1121 }
1122
1123 /* register whole pages */
1124 if (int128_ge(remain.size, page_size)) {
1125 MemoryRegionSection now = remain;
1126 now.size = int128_and(now.size, int128_neg(page_size));
1127 register_multipage(fv, &now);
1128 if (int128_eq(remain.size, now.size)) {
1129 return;
1130 }
1131 remain.size = int128_sub(remain.size, now.size);
1132 remain.offset_within_address_space += int128_get64(now.size);
1133 remain.offset_within_region += int128_get64(now.size);
1134 }
1135
1136 /* register last subpage */
1137 register_subpage(fv, &remain);
1138 }
1139
qemu_flush_coalesced_mmio_buffer(void)1140 void qemu_flush_coalesced_mmio_buffer(void)
1141 {
1142 if (kvm_enabled())
1143 kvm_flush_coalesced_mmio_buffer();
1144 }
1145
qemu_mutex_lock_ramlist(void)1146 void qemu_mutex_lock_ramlist(void)
1147 {
1148 qemu_mutex_lock(&ram_list.mutex);
1149 }
1150
qemu_mutex_unlock_ramlist(void)1151 void qemu_mutex_unlock_ramlist(void)
1152 {
1153 qemu_mutex_unlock(&ram_list.mutex);
1154 }
1155
ram_block_format(void)1156 GString *ram_block_format(void)
1157 {
1158 RAMBlock *block;
1159 char *psize;
1160 GString *buf = g_string_new("");
1161
1162 RCU_READ_LOCK_GUARD();
1163 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1164 "Block Name", "PSize", "Offset", "Used", "Total",
1165 "HVA", "RO");
1166
1167 RAMBLOCK_FOREACH(block) {
1168 psize = size_to_str(block->page_size);
1169 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1170 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1171 block->idstr, psize,
1172 (uint64_t)block->offset,
1173 (uint64_t)block->used_length,
1174 (uint64_t)block->max_length,
1175 (uint64_t)(uintptr_t)block->host,
1176 block->mr->readonly ? "ro" : "rw");
1177
1178 g_free(psize);
1179 }
1180
1181 return buf;
1182 }
1183
find_min_backend_pagesize(Object * obj,void * opaque)1184 static int find_min_backend_pagesize(Object *obj, void *opaque)
1185 {
1186 long *hpsize_min = opaque;
1187
1188 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1189 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1190 long hpsize = host_memory_backend_pagesize(backend);
1191
1192 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1193 *hpsize_min = hpsize;
1194 }
1195 }
1196
1197 return 0;
1198 }
1199
find_max_backend_pagesize(Object * obj,void * opaque)1200 static int find_max_backend_pagesize(Object *obj, void *opaque)
1201 {
1202 long *hpsize_max = opaque;
1203
1204 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1205 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1206 long hpsize = host_memory_backend_pagesize(backend);
1207
1208 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1209 *hpsize_max = hpsize;
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * TODO: We assume right now that all mapped host memory backends are
1218 * used as RAM, however some might be used for different purposes.
1219 */
qemu_minrampagesize(void)1220 long qemu_minrampagesize(void)
1221 {
1222 long hpsize = LONG_MAX;
1223 Object *memdev_root = object_resolve_path("/objects", NULL);
1224
1225 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1226 return hpsize;
1227 }
1228
qemu_maxrampagesize(void)1229 long qemu_maxrampagesize(void)
1230 {
1231 long pagesize = 0;
1232 Object *memdev_root = object_resolve_path("/objects", NULL);
1233
1234 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1235 return pagesize;
1236 }
1237
1238 #ifdef CONFIG_POSIX
get_file_size(int fd)1239 static int64_t get_file_size(int fd)
1240 {
1241 int64_t size;
1242 #if defined(__linux__)
1243 struct stat st;
1244
1245 if (fstat(fd, &st) < 0) {
1246 return -errno;
1247 }
1248
1249 /* Special handling for devdax character devices */
1250 if (S_ISCHR(st.st_mode)) {
1251 g_autofree char *subsystem_path = NULL;
1252 g_autofree char *subsystem = NULL;
1253
1254 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1255 major(st.st_rdev), minor(st.st_rdev));
1256 subsystem = g_file_read_link(subsystem_path, NULL);
1257
1258 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1259 g_autofree char *size_path = NULL;
1260 g_autofree char *size_str = NULL;
1261
1262 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1263 major(st.st_rdev), minor(st.st_rdev));
1264
1265 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1266 return g_ascii_strtoll(size_str, NULL, 0);
1267 }
1268 }
1269 }
1270 #endif /* defined(__linux__) */
1271
1272 /* st.st_size may be zero for special files yet lseek(2) works */
1273 size = lseek(fd, 0, SEEK_END);
1274 if (size < 0) {
1275 return -errno;
1276 }
1277 return size;
1278 }
1279
get_file_align(int fd)1280 static int64_t get_file_align(int fd)
1281 {
1282 int64_t align = -1;
1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1284 struct stat st;
1285
1286 if (fstat(fd, &st) < 0) {
1287 return -errno;
1288 }
1289
1290 /* Special handling for devdax character devices */
1291 if (S_ISCHR(st.st_mode)) {
1292 g_autofree char *path = NULL;
1293 g_autofree char *rpath = NULL;
1294 struct daxctl_ctx *ctx;
1295 struct daxctl_region *region;
1296 int rc = 0;
1297
1298 path = g_strdup_printf("/sys/dev/char/%d:%d",
1299 major(st.st_rdev), minor(st.st_rdev));
1300 rpath = realpath(path, NULL);
1301 if (!rpath) {
1302 return -errno;
1303 }
1304
1305 rc = daxctl_new(&ctx);
1306 if (rc) {
1307 return -1;
1308 }
1309
1310 daxctl_region_foreach(ctx, region) {
1311 if (strstr(rpath, daxctl_region_get_path(region))) {
1312 align = daxctl_region_get_align(region);
1313 break;
1314 }
1315 }
1316 daxctl_unref(ctx);
1317 }
1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1319
1320 return align;
1321 }
1322
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1323 static int file_ram_open(const char *path,
1324 const char *region_name,
1325 bool readonly,
1326 bool *created)
1327 {
1328 char *filename;
1329 char *sanitized_name;
1330 char *c;
1331 int fd = -1;
1332
1333 *created = false;
1334 for (;;) {
1335 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1336 if (fd >= 0) {
1337 /*
1338 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1339 * opened a directory and fail similarly to how we fail ENOENT
1340 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1341 */
1342 if (readonly) {
1343 struct stat file_stat;
1344
1345 if (fstat(fd, &file_stat)) {
1346 close(fd);
1347 if (errno == EINTR) {
1348 continue;
1349 }
1350 return -errno;
1351 } else if (S_ISDIR(file_stat.st_mode)) {
1352 close(fd);
1353 return -EISDIR;
1354 }
1355 }
1356 /* @path names an existing file, use it */
1357 break;
1358 }
1359 if (errno == ENOENT) {
1360 if (readonly) {
1361 /* Refuse to create new, readonly files. */
1362 return -ENOENT;
1363 }
1364 /* @path names a file that doesn't exist, create it */
1365 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1366 if (fd >= 0) {
1367 *created = true;
1368 break;
1369 }
1370 } else if (errno == EISDIR) {
1371 /* @path names a directory, create a file there */
1372 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1373 sanitized_name = g_strdup(region_name);
1374 for (c = sanitized_name; *c != '\0'; c++) {
1375 if (*c == '/') {
1376 *c = '_';
1377 }
1378 }
1379
1380 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1381 sanitized_name);
1382 g_free(sanitized_name);
1383
1384 fd = mkstemp(filename);
1385 if (fd >= 0) {
1386 unlink(filename);
1387 g_free(filename);
1388 break;
1389 }
1390 g_free(filename);
1391 }
1392 if (errno != EEXIST && errno != EINTR) {
1393 return -errno;
1394 }
1395 /*
1396 * Try again on EINTR and EEXIST. The latter happens when
1397 * something else creates the file between our two open().
1398 */
1399 }
1400
1401 return fd;
1402 }
1403
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1404 static void *file_ram_alloc(RAMBlock *block,
1405 ram_addr_t memory,
1406 int fd,
1407 bool truncate,
1408 off_t offset,
1409 Error **errp)
1410 {
1411 uint32_t qemu_map_flags;
1412 void *area;
1413
1414 block->page_size = qemu_fd_getpagesize(fd);
1415 if (block->mr->align % block->page_size) {
1416 error_setg(errp, "alignment 0x%" PRIx64
1417 " must be multiples of page size 0x%zx",
1418 block->mr->align, block->page_size);
1419 return NULL;
1420 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1421 error_setg(errp, "alignment 0x%" PRIx64
1422 " must be a power of two", block->mr->align);
1423 return NULL;
1424 } else if (offset % block->page_size) {
1425 error_setg(errp, "offset 0x%" PRIx64
1426 " must be multiples of page size 0x%zx",
1427 offset, block->page_size);
1428 return NULL;
1429 }
1430 block->mr->align = MAX(block->page_size, block->mr->align);
1431 #if defined(__s390x__)
1432 if (kvm_enabled()) {
1433 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1434 }
1435 #endif
1436
1437 if (memory < block->page_size) {
1438 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1439 "or larger than page size 0x%zx",
1440 memory, block->page_size);
1441 return NULL;
1442 }
1443
1444 memory = ROUND_UP(memory, block->page_size);
1445
1446 /*
1447 * ftruncate is not supported by hugetlbfs in older
1448 * hosts, so don't bother bailing out on errors.
1449 * If anything goes wrong with it under other filesystems,
1450 * mmap will fail.
1451 *
1452 * Do not truncate the non-empty backend file to avoid corrupting
1453 * the existing data in the file. Disabling shrinking is not
1454 * enough. For example, the current vNVDIMM implementation stores
1455 * the guest NVDIMM labels at the end of the backend file. If the
1456 * backend file is later extended, QEMU will not be able to find
1457 * those labels. Therefore, extending the non-empty backend file
1458 * is disabled as well.
1459 */
1460 if (truncate && ftruncate(fd, offset + memory)) {
1461 perror("ftruncate");
1462 }
1463
1464 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1465 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1466 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1467 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1468 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1469 if (area == MAP_FAILED) {
1470 error_setg_errno(errp, errno,
1471 "unable to map backing store for guest RAM");
1472 return NULL;
1473 }
1474
1475 block->fd = fd;
1476 block->fd_offset = offset;
1477 return area;
1478 }
1479 #endif
1480
1481 /* Allocate space within the ram_addr_t space that governs the
1482 * dirty bitmaps.
1483 * Called with the ramlist lock held.
1484 */
find_ram_offset(ram_addr_t size)1485 static ram_addr_t find_ram_offset(ram_addr_t size)
1486 {
1487 RAMBlock *block, *next_block;
1488 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1489
1490 assert(size != 0); /* it would hand out same offset multiple times */
1491
1492 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1493 return 0;
1494 }
1495
1496 RAMBLOCK_FOREACH(block) {
1497 ram_addr_t candidate, next = RAM_ADDR_MAX;
1498
1499 /* Align blocks to start on a 'long' in the bitmap
1500 * which makes the bitmap sync'ing take the fast path.
1501 */
1502 candidate = block->offset + block->max_length;
1503 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1504
1505 /* Search for the closest following block
1506 * and find the gap.
1507 */
1508 RAMBLOCK_FOREACH(next_block) {
1509 if (next_block->offset >= candidate) {
1510 next = MIN(next, next_block->offset);
1511 }
1512 }
1513
1514 /* If it fits remember our place and remember the size
1515 * of gap, but keep going so that we might find a smaller
1516 * gap to fill so avoiding fragmentation.
1517 */
1518 if (next - candidate >= size && next - candidate < mingap) {
1519 offset = candidate;
1520 mingap = next - candidate;
1521 }
1522
1523 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1524 }
1525
1526 if (offset == RAM_ADDR_MAX) {
1527 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1528 (uint64_t)size);
1529 abort();
1530 }
1531
1532 trace_find_ram_offset(size, offset);
1533
1534 return offset;
1535 }
1536
qemu_ram_setup_dump(void * addr,ram_addr_t size)1537 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1538 {
1539 int ret;
1540
1541 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1542 if (!machine_dump_guest_core(current_machine)) {
1543 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1544 if (ret) {
1545 perror("qemu_madvise");
1546 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1547 "but dump-guest-core=off specified\n");
1548 }
1549 }
1550 }
1551
qemu_ram_get_idstr(RAMBlock * rb)1552 const char *qemu_ram_get_idstr(RAMBlock *rb)
1553 {
1554 return rb->idstr;
1555 }
1556
qemu_ram_get_host_addr(RAMBlock * rb)1557 void *qemu_ram_get_host_addr(RAMBlock *rb)
1558 {
1559 return rb->host;
1560 }
1561
qemu_ram_get_offset(RAMBlock * rb)1562 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1563 {
1564 return rb->offset;
1565 }
1566
qemu_ram_get_used_length(RAMBlock * rb)1567 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1568 {
1569 return rb->used_length;
1570 }
1571
qemu_ram_get_max_length(RAMBlock * rb)1572 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1573 {
1574 return rb->max_length;
1575 }
1576
qemu_ram_is_shared(RAMBlock * rb)1577 bool qemu_ram_is_shared(RAMBlock *rb)
1578 {
1579 return rb->flags & RAM_SHARED;
1580 }
1581
qemu_ram_is_noreserve(RAMBlock * rb)1582 bool qemu_ram_is_noreserve(RAMBlock *rb)
1583 {
1584 return rb->flags & RAM_NORESERVE;
1585 }
1586
1587 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1588 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1589 {
1590 return rb->flags & RAM_UF_ZEROPAGE;
1591 }
1592
qemu_ram_set_uf_zeroable(RAMBlock * rb)1593 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1594 {
1595 rb->flags |= RAM_UF_ZEROPAGE;
1596 }
1597
qemu_ram_is_migratable(RAMBlock * rb)1598 bool qemu_ram_is_migratable(RAMBlock *rb)
1599 {
1600 return rb->flags & RAM_MIGRATABLE;
1601 }
1602
qemu_ram_set_migratable(RAMBlock * rb)1603 void qemu_ram_set_migratable(RAMBlock *rb)
1604 {
1605 rb->flags |= RAM_MIGRATABLE;
1606 }
1607
qemu_ram_unset_migratable(RAMBlock * rb)1608 void qemu_ram_unset_migratable(RAMBlock *rb)
1609 {
1610 rb->flags &= ~RAM_MIGRATABLE;
1611 }
1612
qemu_ram_is_named_file(RAMBlock * rb)1613 bool qemu_ram_is_named_file(RAMBlock *rb)
1614 {
1615 return rb->flags & RAM_NAMED_FILE;
1616 }
1617
qemu_ram_get_fd(RAMBlock * rb)1618 int qemu_ram_get_fd(RAMBlock *rb)
1619 {
1620 return rb->fd;
1621 }
1622
1623 /* Called with the BQL held. */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1624 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1625 {
1626 RAMBlock *block;
1627
1628 assert(new_block);
1629 assert(!new_block->idstr[0]);
1630
1631 if (dev) {
1632 char *id = qdev_get_dev_path(dev);
1633 if (id) {
1634 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1635 g_free(id);
1636 }
1637 }
1638 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1639
1640 RCU_READ_LOCK_GUARD();
1641 RAMBLOCK_FOREACH(block) {
1642 if (block != new_block &&
1643 !strcmp(block->idstr, new_block->idstr)) {
1644 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1645 new_block->idstr);
1646 abort();
1647 }
1648 }
1649 }
1650
1651 /* Called with the BQL held. */
qemu_ram_unset_idstr(RAMBlock * block)1652 void qemu_ram_unset_idstr(RAMBlock *block)
1653 {
1654 /* FIXME: arch_init.c assumes that this is not called throughout
1655 * migration. Ignore the problem since hot-unplug during migration
1656 * does not work anyway.
1657 */
1658 if (block) {
1659 memset(block->idstr, 0, sizeof(block->idstr));
1660 }
1661 }
1662
qemu_ram_pagesize(RAMBlock * rb)1663 size_t qemu_ram_pagesize(RAMBlock *rb)
1664 {
1665 return rb->page_size;
1666 }
1667
1668 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1669 size_t qemu_ram_pagesize_largest(void)
1670 {
1671 RAMBlock *block;
1672 size_t largest = 0;
1673
1674 RAMBLOCK_FOREACH(block) {
1675 largest = MAX(largest, qemu_ram_pagesize(block));
1676 }
1677
1678 return largest;
1679 }
1680
memory_try_enable_merging(void * addr,size_t len)1681 static int memory_try_enable_merging(void *addr, size_t len)
1682 {
1683 if (!machine_mem_merge(current_machine)) {
1684 /* disabled by the user */
1685 return 0;
1686 }
1687
1688 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1689 }
1690
1691 /*
1692 * Resizing RAM while migrating can result in the migration being canceled.
1693 * Care has to be taken if the guest might have already detected the memory.
1694 *
1695 * As memory core doesn't know how is memory accessed, it is up to
1696 * resize callback to update device state and/or add assertions to detect
1697 * misuse, if necessary.
1698 */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1699 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1700 {
1701 const ram_addr_t oldsize = block->used_length;
1702 const ram_addr_t unaligned_size = newsize;
1703
1704 assert(block);
1705
1706 newsize = TARGET_PAGE_ALIGN(newsize);
1707 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1708
1709 if (block->used_length == newsize) {
1710 /*
1711 * We don't have to resize the ram block (which only knows aligned
1712 * sizes), however, we have to notify if the unaligned size changed.
1713 */
1714 if (unaligned_size != memory_region_size(block->mr)) {
1715 memory_region_set_size(block->mr, unaligned_size);
1716 if (block->resized) {
1717 block->resized(block->idstr, unaligned_size, block->host);
1718 }
1719 }
1720 return 0;
1721 }
1722
1723 if (!(block->flags & RAM_RESIZEABLE)) {
1724 error_setg_errno(errp, EINVAL,
1725 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1726 " != 0x" RAM_ADDR_FMT, block->idstr,
1727 newsize, block->used_length);
1728 return -EINVAL;
1729 }
1730
1731 if (block->max_length < newsize) {
1732 error_setg_errno(errp, EINVAL,
1733 "Size too large: %s: 0x" RAM_ADDR_FMT
1734 " > 0x" RAM_ADDR_FMT, block->idstr,
1735 newsize, block->max_length);
1736 return -EINVAL;
1737 }
1738
1739 /* Notify before modifying the ram block and touching the bitmaps. */
1740 if (block->host) {
1741 ram_block_notify_resize(block->host, oldsize, newsize);
1742 }
1743
1744 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1745 block->used_length = newsize;
1746 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1747 DIRTY_CLIENTS_ALL);
1748 memory_region_set_size(block->mr, unaligned_size);
1749 if (block->resized) {
1750 block->resized(block->idstr, unaligned_size, block->host);
1751 }
1752 return 0;
1753 }
1754
1755 /*
1756 * Trigger sync on the given ram block for range [start, start + length]
1757 * with the backing store if one is available.
1758 * Otherwise no-op.
1759 * @Note: this is supposed to be a synchronous op.
1760 */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1761 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1762 {
1763 /* The requested range should fit in within the block range */
1764 g_assert((start + length) <= block->used_length);
1765
1766 #ifdef CONFIG_LIBPMEM
1767 /* The lack of support for pmem should not block the sync */
1768 if (ramblock_is_pmem(block)) {
1769 void *addr = ramblock_ptr(block, start);
1770 pmem_persist(addr, length);
1771 return;
1772 }
1773 #endif
1774 if (block->fd >= 0) {
1775 /**
1776 * Case there is no support for PMEM or the memory has not been
1777 * specified as persistent (or is not one) - use the msync.
1778 * Less optimal but still achieves the same goal
1779 */
1780 void *addr = ramblock_ptr(block, start);
1781 if (qemu_msync(addr, length, block->fd)) {
1782 warn_report("%s: failed to sync memory range: start: "
1783 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1784 __func__, start, length);
1785 }
1786 }
1787 }
1788
1789 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1790 static void dirty_memory_extend(ram_addr_t new_ram_size)
1791 {
1792 unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1793 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1794 DIRTY_MEMORY_BLOCK_SIZE);
1795 int i;
1796
1797 /* Only need to extend if block count increased */
1798 if (new_num_blocks <= old_num_blocks) {
1799 return;
1800 }
1801
1802 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1803 DirtyMemoryBlocks *old_blocks;
1804 DirtyMemoryBlocks *new_blocks;
1805 int j;
1806
1807 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1808 new_blocks = g_malloc(sizeof(*new_blocks) +
1809 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1810
1811 if (old_num_blocks) {
1812 memcpy(new_blocks->blocks, old_blocks->blocks,
1813 old_num_blocks * sizeof(old_blocks->blocks[0]));
1814 }
1815
1816 for (j = old_num_blocks; j < new_num_blocks; j++) {
1817 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1818 }
1819
1820 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1821
1822 if (old_blocks) {
1823 g_free_rcu(old_blocks, rcu);
1824 }
1825 }
1826
1827 ram_list.num_dirty_blocks = new_num_blocks;
1828 }
1829
ram_block_add(RAMBlock * new_block,Error ** errp)1830 static void ram_block_add(RAMBlock *new_block, Error **errp)
1831 {
1832 const bool noreserve = qemu_ram_is_noreserve(new_block);
1833 const bool shared = qemu_ram_is_shared(new_block);
1834 RAMBlock *block;
1835 RAMBlock *last_block = NULL;
1836 bool free_on_error = false;
1837 ram_addr_t ram_size;
1838 Error *err = NULL;
1839
1840 qemu_mutex_lock_ramlist();
1841 new_block->offset = find_ram_offset(new_block->max_length);
1842
1843 if (!new_block->host) {
1844 if (xen_enabled()) {
1845 xen_ram_alloc(new_block->offset, new_block->max_length,
1846 new_block->mr, &err);
1847 if (err) {
1848 error_propagate(errp, err);
1849 qemu_mutex_unlock_ramlist();
1850 return;
1851 }
1852 } else {
1853 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1854 &new_block->mr->align,
1855 shared, noreserve);
1856 if (!new_block->host) {
1857 error_setg_errno(errp, errno,
1858 "cannot set up guest memory '%s'",
1859 memory_region_name(new_block->mr));
1860 qemu_mutex_unlock_ramlist();
1861 return;
1862 }
1863 memory_try_enable_merging(new_block->host, new_block->max_length);
1864 free_on_error = true;
1865 }
1866 }
1867
1868 if (new_block->flags & RAM_GUEST_MEMFD) {
1869 int ret;
1870
1871 assert(kvm_enabled());
1872 assert(new_block->guest_memfd < 0);
1873
1874 ret = ram_block_discard_require(true);
1875 if (ret < 0) {
1876 error_setg_errno(errp, -ret,
1877 "cannot set up private guest memory: discard currently blocked");
1878 error_append_hint(errp, "Are you using assigned devices?\n");
1879 goto out_free;
1880 }
1881
1882 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1883 0, errp);
1884 if (new_block->guest_memfd < 0) {
1885 qemu_mutex_unlock_ramlist();
1886 goto out_free;
1887 }
1888 }
1889
1890 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1891 dirty_memory_extend(ram_size);
1892 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1893 * QLIST (which has an RCU-friendly variant) does not have insertion at
1894 * tail, so save the last element in last_block.
1895 */
1896 RAMBLOCK_FOREACH(block) {
1897 last_block = block;
1898 if (block->max_length < new_block->max_length) {
1899 break;
1900 }
1901 }
1902 if (block) {
1903 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1904 } else if (last_block) {
1905 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1906 } else { /* list is empty */
1907 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1908 }
1909 ram_list.mru_block = NULL;
1910
1911 /* Write list before version */
1912 smp_wmb();
1913 ram_list.version++;
1914 qemu_mutex_unlock_ramlist();
1915
1916 cpu_physical_memory_set_dirty_range(new_block->offset,
1917 new_block->used_length,
1918 DIRTY_CLIENTS_ALL);
1919
1920 if (new_block->host) {
1921 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1922 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1923 /*
1924 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1925 * Configure it unless the machine is a qtest server, in which case
1926 * KVM is not used and it may be forked (eg for fuzzing purposes).
1927 */
1928 if (!qtest_enabled()) {
1929 qemu_madvise(new_block->host, new_block->max_length,
1930 QEMU_MADV_DONTFORK);
1931 }
1932 ram_block_notify_add(new_block->host, new_block->used_length,
1933 new_block->max_length);
1934 }
1935 return;
1936
1937 out_free:
1938 if (free_on_error) {
1939 qemu_anon_ram_free(new_block->host, new_block->max_length);
1940 new_block->host = NULL;
1941 }
1942 }
1943
1944 #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,Error ** errp)1945 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1946 uint32_t ram_flags, int fd, off_t offset,
1947 Error **errp)
1948 {
1949 RAMBlock *new_block;
1950 Error *local_err = NULL;
1951 int64_t file_size, file_align;
1952
1953 /* Just support these ram flags by now. */
1954 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1955 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1956 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1957
1958 if (xen_enabled()) {
1959 error_setg(errp, "-mem-path not supported with Xen");
1960 return NULL;
1961 }
1962
1963 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1964 error_setg(errp,
1965 "host lacks kvm mmu notifiers, -mem-path unsupported");
1966 return NULL;
1967 }
1968
1969 size = TARGET_PAGE_ALIGN(size);
1970 size = REAL_HOST_PAGE_ALIGN(size);
1971
1972 file_size = get_file_size(fd);
1973 if (file_size && file_size < offset + size) {
1974 error_setg(errp, "%s backing store size 0x%" PRIx64
1975 " is too small for 'size' option 0x" RAM_ADDR_FMT
1976 " plus 'offset' option 0x%" PRIx64,
1977 memory_region_name(mr), file_size, size,
1978 (uint64_t)offset);
1979 return NULL;
1980 }
1981
1982 file_align = get_file_align(fd);
1983 if (file_align > 0 && file_align > mr->align) {
1984 error_setg(errp, "backing store align 0x%" PRIx64
1985 " is larger than 'align' option 0x%" PRIx64,
1986 file_align, mr->align);
1987 return NULL;
1988 }
1989
1990 new_block = g_malloc0(sizeof(*new_block));
1991 new_block->mr = mr;
1992 new_block->used_length = size;
1993 new_block->max_length = size;
1994 new_block->flags = ram_flags;
1995 new_block->guest_memfd = -1;
1996 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1997 errp);
1998 if (!new_block->host) {
1999 g_free(new_block);
2000 return NULL;
2001 }
2002
2003 ram_block_add(new_block, &local_err);
2004 if (local_err) {
2005 g_free(new_block);
2006 error_propagate(errp, local_err);
2007 return NULL;
2008 }
2009 return new_block;
2010
2011 }
2012
2013
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2014 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2015 uint32_t ram_flags, const char *mem_path,
2016 off_t offset, Error **errp)
2017 {
2018 int fd;
2019 bool created;
2020 RAMBlock *block;
2021
2022 fd = file_ram_open(mem_path, memory_region_name(mr),
2023 !!(ram_flags & RAM_READONLY_FD), &created);
2024 if (fd < 0) {
2025 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2026 mem_path);
2027 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2028 fd == -EACCES) {
2029 /*
2030 * If we can open the file R/O (note: will never create a new file)
2031 * and we are dealing with a private mapping, there are still ways
2032 * to consume such files and get RAM instead of ROM.
2033 */
2034 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2035 &created);
2036 if (fd < 0) {
2037 return NULL;
2038 }
2039 assert(!created);
2040 close(fd);
2041 error_append_hint(errp, "Consider opening the backing store"
2042 " read-only but still creating writable RAM using"
2043 " '-object memory-backend-file,readonly=on,rom=off...'"
2044 " (see \"VM templating\" documentation)\n");
2045 }
2046 return NULL;
2047 }
2048
2049 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2050 if (!block) {
2051 if (created) {
2052 unlink(mem_path);
2053 }
2054 close(fd);
2055 return NULL;
2056 }
2057
2058 return block;
2059 }
2060 #endif
2061
2062 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,void (* resized)(const char *,uint64_t length,void * host),void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2063 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2064 void (*resized)(const char*,
2065 uint64_t length,
2066 void *host),
2067 void *host, uint32_t ram_flags,
2068 MemoryRegion *mr, Error **errp)
2069 {
2070 RAMBlock *new_block;
2071 Error *local_err = NULL;
2072 int align;
2073
2074 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2075 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2076 assert(!host ^ (ram_flags & RAM_PREALLOC));
2077
2078 align = qemu_real_host_page_size();
2079 align = MAX(align, TARGET_PAGE_SIZE);
2080 size = ROUND_UP(size, align);
2081 max_size = ROUND_UP(max_size, align);
2082
2083 new_block = g_malloc0(sizeof(*new_block));
2084 new_block->mr = mr;
2085 new_block->resized = resized;
2086 new_block->used_length = size;
2087 new_block->max_length = max_size;
2088 assert(max_size >= size);
2089 new_block->fd = -1;
2090 new_block->guest_memfd = -1;
2091 new_block->page_size = qemu_real_host_page_size();
2092 new_block->host = host;
2093 new_block->flags = ram_flags;
2094 ram_block_add(new_block, &local_err);
2095 if (local_err) {
2096 g_free(new_block);
2097 error_propagate(errp, local_err);
2098 return NULL;
2099 }
2100 return new_block;
2101 }
2102
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2103 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2104 MemoryRegion *mr, Error **errp)
2105 {
2106 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2107 errp);
2108 }
2109
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2110 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2111 MemoryRegion *mr, Error **errp)
2112 {
2113 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2114 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2115 }
2116
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,void (* resized)(const char *,uint64_t length,void * host),MemoryRegion * mr,Error ** errp)2117 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2118 void (*resized)(const char*,
2119 uint64_t length,
2120 void *host),
2121 MemoryRegion *mr, Error **errp)
2122 {
2123 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2124 RAM_RESIZEABLE, mr, errp);
2125 }
2126
reclaim_ramblock(RAMBlock * block)2127 static void reclaim_ramblock(RAMBlock *block)
2128 {
2129 if (block->flags & RAM_PREALLOC) {
2130 ;
2131 } else if (xen_enabled()) {
2132 xen_invalidate_map_cache_entry(block->host);
2133 #ifndef _WIN32
2134 } else if (block->fd >= 0) {
2135 qemu_ram_munmap(block->fd, block->host, block->max_length);
2136 close(block->fd);
2137 #endif
2138 } else {
2139 qemu_anon_ram_free(block->host, block->max_length);
2140 }
2141
2142 if (block->guest_memfd >= 0) {
2143 close(block->guest_memfd);
2144 ram_block_discard_require(false);
2145 }
2146
2147 g_free(block);
2148 }
2149
qemu_ram_free(RAMBlock * block)2150 void qemu_ram_free(RAMBlock *block)
2151 {
2152 if (!block) {
2153 return;
2154 }
2155
2156 if (block->host) {
2157 ram_block_notify_remove(block->host, block->used_length,
2158 block->max_length);
2159 }
2160
2161 qemu_mutex_lock_ramlist();
2162 QLIST_REMOVE_RCU(block, next);
2163 ram_list.mru_block = NULL;
2164 /* Write list before version */
2165 smp_wmb();
2166 ram_list.version++;
2167 call_rcu(block, reclaim_ramblock, rcu);
2168 qemu_mutex_unlock_ramlist();
2169 }
2170
2171 #ifndef _WIN32
qemu_ram_remap(ram_addr_t addr,ram_addr_t length)2172 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2173 {
2174 RAMBlock *block;
2175 ram_addr_t offset;
2176 int flags;
2177 void *area, *vaddr;
2178 int prot;
2179
2180 RAMBLOCK_FOREACH(block) {
2181 offset = addr - block->offset;
2182 if (offset < block->max_length) {
2183 vaddr = ramblock_ptr(block, offset);
2184 if (block->flags & RAM_PREALLOC) {
2185 ;
2186 } else if (xen_enabled()) {
2187 abort();
2188 } else {
2189 flags = MAP_FIXED;
2190 flags |= block->flags & RAM_SHARED ?
2191 MAP_SHARED : MAP_PRIVATE;
2192 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2193 prot = PROT_READ;
2194 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2195 if (block->fd >= 0) {
2196 area = mmap(vaddr, length, prot, flags, block->fd,
2197 offset + block->fd_offset);
2198 } else {
2199 flags |= MAP_ANONYMOUS;
2200 area = mmap(vaddr, length, prot, flags, -1, 0);
2201 }
2202 if (area != vaddr) {
2203 error_report("Could not remap addr: "
2204 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2205 length, addr);
2206 exit(1);
2207 }
2208 memory_try_enable_merging(vaddr, length);
2209 qemu_ram_setup_dump(vaddr, length);
2210 }
2211 }
2212 }
2213 }
2214 #endif /* !_WIN32 */
2215
2216 /*
2217 * Return a host pointer to guest's ram.
2218 * For Xen, foreign mappings get created if they don't already exist.
2219 *
2220 * @block: block for the RAM to lookup (optional and may be NULL).
2221 * @addr: address within the memory region.
2222 * @size: pointer to requested size (optional and may be NULL).
2223 * size may get modified and return a value smaller than
2224 * what was requested.
2225 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2226 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2227 * (optional and may always be set to true).
2228 *
2229 * Called within RCU critical section.
2230 */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2231 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2232 hwaddr *size, bool lock,
2233 bool is_write)
2234 {
2235 hwaddr len = 0;
2236
2237 if (size && *size == 0) {
2238 return NULL;
2239 }
2240
2241 if (block == NULL) {
2242 block = qemu_get_ram_block(addr);
2243 addr -= block->offset;
2244 }
2245 if (size) {
2246 *size = MIN(*size, block->max_length - addr);
2247 len = *size;
2248 }
2249
2250 if (xen_enabled() && block->host == NULL) {
2251 /* We need to check if the requested address is in the RAM
2252 * because we don't want to map the entire memory in QEMU.
2253 * In that case just map the requested area.
2254 */
2255 if (xen_mr_is_memory(block->mr)) {
2256 return xen_map_cache(block->mr, block->offset + addr,
2257 len, block->offset,
2258 lock, lock, is_write);
2259 }
2260
2261 block->host = xen_map_cache(block->mr, block->offset,
2262 block->max_length,
2263 block->offset,
2264 1, lock, is_write);
2265 }
2266
2267 return ramblock_ptr(block, addr);
2268 }
2269
2270 /*
2271 * Return a host pointer to ram allocated with qemu_ram_alloc.
2272 * This should not be used for general purpose DMA. Use address_space_map
2273 * or address_space_rw instead. For local memory (e.g. video ram) that the
2274 * device owns, use memory_region_get_ram_ptr.
2275 *
2276 * Called within RCU critical section.
2277 */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2278 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2279 {
2280 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2281 }
2282
2283 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2284 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2285 {
2286 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2287 assert((uintptr_t)host >= (uintptr_t)rb->host);
2288 assert(res < rb->max_length);
2289
2290 return res;
2291 }
2292
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2293 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2294 ram_addr_t *offset)
2295 {
2296 RAMBlock *block;
2297 uint8_t *host = ptr;
2298
2299 if (xen_enabled()) {
2300 ram_addr_t ram_addr;
2301 RCU_READ_LOCK_GUARD();
2302 ram_addr = xen_ram_addr_from_mapcache(ptr);
2303 if (ram_addr == RAM_ADDR_INVALID) {
2304 return NULL;
2305 }
2306
2307 block = qemu_get_ram_block(ram_addr);
2308 if (block) {
2309 *offset = ram_addr - block->offset;
2310 }
2311 return block;
2312 }
2313
2314 RCU_READ_LOCK_GUARD();
2315 block = qatomic_rcu_read(&ram_list.mru_block);
2316 if (block && block->host && host - block->host < block->max_length) {
2317 goto found;
2318 }
2319
2320 RAMBLOCK_FOREACH(block) {
2321 /* This case append when the block is not mapped. */
2322 if (block->host == NULL) {
2323 continue;
2324 }
2325 if (host - block->host < block->max_length) {
2326 goto found;
2327 }
2328 }
2329
2330 return NULL;
2331
2332 found:
2333 *offset = (host - block->host);
2334 if (round_offset) {
2335 *offset &= TARGET_PAGE_MASK;
2336 }
2337 return block;
2338 }
2339
2340 /*
2341 * Finds the named RAMBlock
2342 *
2343 * name: The name of RAMBlock to find
2344 *
2345 * Returns: RAMBlock (or NULL if not found)
2346 */
qemu_ram_block_by_name(const char * name)2347 RAMBlock *qemu_ram_block_by_name(const char *name)
2348 {
2349 RAMBlock *block;
2350
2351 RAMBLOCK_FOREACH(block) {
2352 if (!strcmp(name, block->idstr)) {
2353 return block;
2354 }
2355 }
2356
2357 return NULL;
2358 }
2359
2360 /*
2361 * Some of the system routines need to translate from a host pointer
2362 * (typically a TLB entry) back to a ram offset.
2363 */
qemu_ram_addr_from_host(void * ptr)2364 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2365 {
2366 RAMBlock *block;
2367 ram_addr_t offset;
2368
2369 block = qemu_ram_block_from_host(ptr, false, &offset);
2370 if (!block) {
2371 return RAM_ADDR_INVALID;
2372 }
2373
2374 return block->offset + offset;
2375 }
2376
qemu_ram_addr_from_host_nofail(void * ptr)2377 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2378 {
2379 ram_addr_t ram_addr;
2380
2381 ram_addr = qemu_ram_addr_from_host(ptr);
2382 if (ram_addr == RAM_ADDR_INVALID) {
2383 error_report("Bad ram pointer %p", ptr);
2384 abort();
2385 }
2386 return ram_addr;
2387 }
2388
2389 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2390 MemTxAttrs attrs, void *buf, hwaddr len);
2391 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2392 const void *buf, hwaddr len);
2393 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2394 bool is_write, MemTxAttrs attrs);
2395
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2396 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2397 unsigned len, MemTxAttrs attrs)
2398 {
2399 subpage_t *subpage = opaque;
2400 uint8_t buf[8];
2401 MemTxResult res;
2402
2403 #if defined(DEBUG_SUBPAGE)
2404 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2405 subpage, len, addr);
2406 #endif
2407 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2408 if (res) {
2409 return res;
2410 }
2411 *data = ldn_p(buf, len);
2412 return MEMTX_OK;
2413 }
2414
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2415 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2416 uint64_t value, unsigned len, MemTxAttrs attrs)
2417 {
2418 subpage_t *subpage = opaque;
2419 uint8_t buf[8];
2420
2421 #if defined(DEBUG_SUBPAGE)
2422 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2423 " value %"PRIx64"\n",
2424 __func__, subpage, len, addr, value);
2425 #endif
2426 stn_p(buf, len, value);
2427 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2428 }
2429
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2430 static bool subpage_accepts(void *opaque, hwaddr addr,
2431 unsigned len, bool is_write,
2432 MemTxAttrs attrs)
2433 {
2434 subpage_t *subpage = opaque;
2435 #if defined(DEBUG_SUBPAGE)
2436 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2437 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2438 #endif
2439
2440 return flatview_access_valid(subpage->fv, addr + subpage->base,
2441 len, is_write, attrs);
2442 }
2443
2444 static const MemoryRegionOps subpage_ops = {
2445 .read_with_attrs = subpage_read,
2446 .write_with_attrs = subpage_write,
2447 .impl.min_access_size = 1,
2448 .impl.max_access_size = 8,
2449 .valid.min_access_size = 1,
2450 .valid.max_access_size = 8,
2451 .valid.accepts = subpage_accepts,
2452 .endianness = DEVICE_NATIVE_ENDIAN,
2453 };
2454
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2455 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2456 uint16_t section)
2457 {
2458 int idx, eidx;
2459
2460 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2461 return -1;
2462 idx = SUBPAGE_IDX(start);
2463 eidx = SUBPAGE_IDX(end);
2464 #if defined(DEBUG_SUBPAGE)
2465 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2466 __func__, mmio, start, end, idx, eidx, section);
2467 #endif
2468 for (; idx <= eidx; idx++) {
2469 mmio->sub_section[idx] = section;
2470 }
2471
2472 return 0;
2473 }
2474
subpage_init(FlatView * fv,hwaddr base)2475 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2476 {
2477 subpage_t *mmio;
2478
2479 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2480 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2481 mmio->fv = fv;
2482 mmio->base = base;
2483 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2484 NULL, TARGET_PAGE_SIZE);
2485 mmio->iomem.subpage = true;
2486 #if defined(DEBUG_SUBPAGE)
2487 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2488 mmio, base, TARGET_PAGE_SIZE);
2489 #endif
2490
2491 return mmio;
2492 }
2493
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2494 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2495 {
2496 assert(fv);
2497 MemoryRegionSection section = {
2498 .fv = fv,
2499 .mr = mr,
2500 .offset_within_address_space = 0,
2501 .offset_within_region = 0,
2502 .size = int128_2_64(),
2503 };
2504
2505 return phys_section_add(map, §ion);
2506 }
2507
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2508 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2509 hwaddr index, MemTxAttrs attrs)
2510 {
2511 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2512 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2513 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2514 int section_index = index & ~TARGET_PAGE_MASK;
2515 MemoryRegionSection *ret;
2516
2517 assert(section_index < d->map.sections_nb);
2518 ret = d->map.sections + section_index;
2519 assert(ret->mr);
2520 assert(ret->mr->ops);
2521
2522 return ret;
2523 }
2524
io_mem_init(void)2525 static void io_mem_init(void)
2526 {
2527 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2528 NULL, UINT64_MAX);
2529 }
2530
address_space_dispatch_new(FlatView * fv)2531 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2532 {
2533 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2534 uint16_t n;
2535
2536 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2537 assert(n == PHYS_SECTION_UNASSIGNED);
2538
2539 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2540
2541 return d;
2542 }
2543
address_space_dispatch_free(AddressSpaceDispatch * d)2544 void address_space_dispatch_free(AddressSpaceDispatch *d)
2545 {
2546 phys_sections_free(&d->map);
2547 g_free(d);
2548 }
2549
do_nothing(CPUState * cpu,run_on_cpu_data d)2550 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2551 {
2552 }
2553
tcg_log_global_after_sync(MemoryListener * listener)2554 static void tcg_log_global_after_sync(MemoryListener *listener)
2555 {
2556 CPUAddressSpace *cpuas;
2557
2558 /* Wait for the CPU to end the current TB. This avoids the following
2559 * incorrect race:
2560 *
2561 * vCPU migration
2562 * ---------------------- -------------------------
2563 * TLB check -> slow path
2564 * notdirty_mem_write
2565 * write to RAM
2566 * mark dirty
2567 * clear dirty flag
2568 * TLB check -> fast path
2569 * read memory
2570 * write to RAM
2571 *
2572 * by pushing the migration thread's memory read after the vCPU thread has
2573 * written the memory.
2574 */
2575 if (replay_mode == REPLAY_MODE_NONE) {
2576 /*
2577 * VGA can make calls to this function while updating the screen.
2578 * In record/replay mode this causes a deadlock, because
2579 * run_on_cpu waits for rr mutex. Therefore no races are possible
2580 * in this case and no need for making run_on_cpu when
2581 * record/replay is enabled.
2582 */
2583 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2584 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2585 }
2586 }
2587
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2588 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2589 {
2590 CPUAddressSpace *cpuas = data.host_ptr;
2591
2592 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2593 tlb_flush(cpu);
2594 }
2595
tcg_commit(MemoryListener * listener)2596 static void tcg_commit(MemoryListener *listener)
2597 {
2598 CPUAddressSpace *cpuas;
2599 CPUState *cpu;
2600
2601 assert(tcg_enabled());
2602 /* since each CPU stores ram addresses in its TLB cache, we must
2603 reset the modified entries */
2604 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2605 cpu = cpuas->cpu;
2606
2607 /*
2608 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2609 * Otherwise we race between (1) other cpu threads and (2) ongoing
2610 * i/o for the current cpu thread, with data cached by mmu_lookup().
2611 *
2612 * In addition, queueing the work function will kick the cpu back to
2613 * the main loop, which will end the RCU critical section and reclaim
2614 * the memory data structures.
2615 *
2616 * That said, the listener is also called during realize, before
2617 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2618 */
2619 if (cpu->halt_cond) {
2620 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2621 } else {
2622 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2623 }
2624 }
2625
memory_map_init(void)2626 static void memory_map_init(void)
2627 {
2628 system_memory = g_malloc(sizeof(*system_memory));
2629
2630 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2631 address_space_init(&address_space_memory, system_memory, "memory");
2632
2633 system_io = g_malloc(sizeof(*system_io));
2634 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2635 65536);
2636 address_space_init(&address_space_io, system_io, "I/O");
2637 }
2638
get_system_memory(void)2639 MemoryRegion *get_system_memory(void)
2640 {
2641 return system_memory;
2642 }
2643
get_system_io(void)2644 MemoryRegion *get_system_io(void)
2645 {
2646 return system_io;
2647 }
2648
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2649 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2650 hwaddr length)
2651 {
2652 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2653 ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2654
2655 /* We know we're only called for RAM MemoryRegions */
2656 assert(ramaddr != RAM_ADDR_INVALID);
2657 addr += ramaddr;
2658
2659 /* No early return if dirty_log_mask is or becomes 0, because
2660 * cpu_physical_memory_set_dirty_range will still call
2661 * xen_modified_memory.
2662 */
2663 if (dirty_log_mask) {
2664 dirty_log_mask =
2665 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2666 }
2667 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2668 assert(tcg_enabled());
2669 tb_invalidate_phys_range(addr, addr + length - 1);
2670 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2671 }
2672 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2673 }
2674
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2675 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2676 {
2677 /*
2678 * In principle this function would work on other memory region types too,
2679 * but the ROM device use case is the only one where this operation is
2680 * necessary. Other memory regions should use the
2681 * address_space_read/write() APIs.
2682 */
2683 assert(memory_region_is_romd(mr));
2684
2685 invalidate_and_set_dirty(mr, addr, size);
2686 }
2687
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2688 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2689 {
2690 unsigned access_size_max = mr->ops->valid.max_access_size;
2691
2692 /* Regions are assumed to support 1-4 byte accesses unless
2693 otherwise specified. */
2694 if (access_size_max == 0) {
2695 access_size_max = 4;
2696 }
2697
2698 /* Bound the maximum access by the alignment of the address. */
2699 if (!mr->ops->impl.unaligned) {
2700 unsigned align_size_max = addr & -addr;
2701 if (align_size_max != 0 && align_size_max < access_size_max) {
2702 access_size_max = align_size_max;
2703 }
2704 }
2705
2706 /* Don't attempt accesses larger than the maximum. */
2707 if (l > access_size_max) {
2708 l = access_size_max;
2709 }
2710 l = pow2floor(l);
2711
2712 return l;
2713 }
2714
prepare_mmio_access(MemoryRegion * mr)2715 bool prepare_mmio_access(MemoryRegion *mr)
2716 {
2717 bool release_lock = false;
2718
2719 if (!bql_locked()) {
2720 bql_lock();
2721 release_lock = true;
2722 }
2723 if (mr->flush_coalesced_mmio) {
2724 qemu_flush_coalesced_mmio_buffer();
2725 }
2726
2727 return release_lock;
2728 }
2729
2730 /**
2731 * flatview_access_allowed
2732 * @mr: #MemoryRegion to be accessed
2733 * @attrs: memory transaction attributes
2734 * @addr: address within that memory region
2735 * @len: the number of bytes to access
2736 *
2737 * Check if a memory transaction is allowed.
2738 *
2739 * Returns: true if transaction is allowed, false if denied.
2740 */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2741 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2742 hwaddr addr, hwaddr len)
2743 {
2744 if (likely(!attrs.memory)) {
2745 return true;
2746 }
2747 if (memory_region_is_ram(mr)) {
2748 return true;
2749 }
2750 qemu_log_mask(LOG_GUEST_ERROR,
2751 "Invalid access to non-RAM device at "
2752 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2753 "region '%s'\n", addr, len, memory_region_name(mr));
2754 return false;
2755 }
2756
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2757 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2758 const uint8_t *buf,
2759 hwaddr len, hwaddr mr_addr,
2760 hwaddr *l, MemoryRegion *mr)
2761 {
2762 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2763 return MEMTX_ACCESS_ERROR;
2764 }
2765
2766 if (!memory_access_is_direct(mr, true)) {
2767 uint64_t val;
2768 MemTxResult result;
2769 bool release_lock = prepare_mmio_access(mr);
2770
2771 *l = memory_access_size(mr, *l, mr_addr);
2772 /*
2773 * XXX: could force current_cpu to NULL to avoid
2774 * potential bugs
2775 */
2776
2777 /*
2778 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2779 * the buffer by following ldn_he_p().
2780 */
2781 #ifdef QEMU_STATIC_ANALYSIS
2782 assert((*l == 1 && len >= 1) ||
2783 (*l == 2 && len >= 2) ||
2784 (*l == 4 && len >= 4) ||
2785 (*l == 8 && len >= 8));
2786 #endif
2787 val = ldn_he_p(buf, *l);
2788 result = memory_region_dispatch_write(mr, mr_addr, val,
2789 size_memop(*l), attrs);
2790 if (release_lock) {
2791 bql_unlock();
2792 }
2793
2794 return result;
2795 } else {
2796 /* RAM case */
2797 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2798 false, true);
2799
2800 memmove(ram_ptr, buf, *l);
2801 invalidate_and_set_dirty(mr, mr_addr, *l);
2802
2803 return MEMTX_OK;
2804 }
2805 }
2806
2807 /* Called within RCU critical section. */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2808 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2809 MemTxAttrs attrs,
2810 const void *ptr,
2811 hwaddr len, hwaddr mr_addr,
2812 hwaddr l, MemoryRegion *mr)
2813 {
2814 MemTxResult result = MEMTX_OK;
2815 const uint8_t *buf = ptr;
2816
2817 for (;;) {
2818 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2819 mr);
2820
2821 len -= l;
2822 buf += l;
2823 addr += l;
2824
2825 if (!len) {
2826 break;
2827 }
2828
2829 l = len;
2830 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2831 }
2832
2833 return result;
2834 }
2835
2836 /* Called from RCU critical section. */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2837 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2838 const void *buf, hwaddr len)
2839 {
2840 hwaddr l;
2841 hwaddr mr_addr;
2842 MemoryRegion *mr;
2843
2844 l = len;
2845 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2846 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2847 return MEMTX_ACCESS_ERROR;
2848 }
2849 return flatview_write_continue(fv, addr, attrs, buf, len,
2850 mr_addr, l, mr);
2851 }
2852
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2853 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2854 hwaddr len, hwaddr mr_addr,
2855 hwaddr *l,
2856 MemoryRegion *mr)
2857 {
2858 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2859 return MEMTX_ACCESS_ERROR;
2860 }
2861
2862 if (!memory_access_is_direct(mr, false)) {
2863 /* I/O case */
2864 uint64_t val;
2865 MemTxResult result;
2866 bool release_lock = prepare_mmio_access(mr);
2867
2868 *l = memory_access_size(mr, *l, mr_addr);
2869 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2870 attrs);
2871
2872 /*
2873 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2874 * the buffer by following stn_he_p().
2875 */
2876 #ifdef QEMU_STATIC_ANALYSIS
2877 assert((*l == 1 && len >= 1) ||
2878 (*l == 2 && len >= 2) ||
2879 (*l == 4 && len >= 4) ||
2880 (*l == 8 && len >= 8));
2881 #endif
2882 stn_he_p(buf, *l, val);
2883
2884 if (release_lock) {
2885 bql_unlock();
2886 }
2887 return result;
2888 } else {
2889 /* RAM case */
2890 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2891 false, false);
2892
2893 memcpy(buf, ram_ptr, *l);
2894
2895 return MEMTX_OK;
2896 }
2897 }
2898
2899 /* Called within RCU critical section. */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2900 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2901 MemTxAttrs attrs, void *ptr,
2902 hwaddr len, hwaddr mr_addr, hwaddr l,
2903 MemoryRegion *mr)
2904 {
2905 MemTxResult result = MEMTX_OK;
2906 uint8_t *buf = ptr;
2907
2908 fuzz_dma_read_cb(addr, len, mr);
2909 for (;;) {
2910 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2911
2912 len -= l;
2913 buf += l;
2914 addr += l;
2915
2916 if (!len) {
2917 break;
2918 }
2919
2920 l = len;
2921 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2922 }
2923
2924 return result;
2925 }
2926
2927 /* Called from RCU critical section. */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2928 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2929 MemTxAttrs attrs, void *buf, hwaddr len)
2930 {
2931 hwaddr l;
2932 hwaddr mr_addr;
2933 MemoryRegion *mr;
2934
2935 l = len;
2936 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2937 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2938 return MEMTX_ACCESS_ERROR;
2939 }
2940 return flatview_read_continue(fv, addr, attrs, buf, len,
2941 mr_addr, l, mr);
2942 }
2943
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2944 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2945 MemTxAttrs attrs, void *buf, hwaddr len)
2946 {
2947 MemTxResult result = MEMTX_OK;
2948 FlatView *fv;
2949
2950 if (len > 0) {
2951 RCU_READ_LOCK_GUARD();
2952 fv = address_space_to_flatview(as);
2953 result = flatview_read(fv, addr, attrs, buf, len);
2954 }
2955
2956 return result;
2957 }
2958
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2959 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2960 MemTxAttrs attrs,
2961 const void *buf, hwaddr len)
2962 {
2963 MemTxResult result = MEMTX_OK;
2964 FlatView *fv;
2965
2966 if (len > 0) {
2967 RCU_READ_LOCK_GUARD();
2968 fv = address_space_to_flatview(as);
2969 result = flatview_write(fv, addr, attrs, buf, len);
2970 }
2971
2972 return result;
2973 }
2974
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)2975 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2976 void *buf, hwaddr len, bool is_write)
2977 {
2978 if (is_write) {
2979 return address_space_write(as, addr, attrs, buf, len);
2980 } else {
2981 return address_space_read_full(as, addr, attrs, buf, len);
2982 }
2983 }
2984
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)2985 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2986 uint8_t c, hwaddr len, MemTxAttrs attrs)
2987 {
2988 #define FILLBUF_SIZE 512
2989 uint8_t fillbuf[FILLBUF_SIZE];
2990 int l;
2991 MemTxResult error = MEMTX_OK;
2992
2993 memset(fillbuf, c, FILLBUF_SIZE);
2994 while (len > 0) {
2995 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2996 error |= address_space_write(as, addr, attrs, fillbuf, l);
2997 len -= l;
2998 addr += l;
2999 }
3000
3001 return error;
3002 }
3003
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3004 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3005 hwaddr len, bool is_write)
3006 {
3007 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3008 buf, len, is_write);
3009 }
3010
3011 enum write_rom_type {
3012 WRITE_DATA,
3013 FLUSH_CACHE,
3014 };
3015
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3016 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3017 hwaddr addr,
3018 MemTxAttrs attrs,
3019 const void *ptr,
3020 hwaddr len,
3021 enum write_rom_type type)
3022 {
3023 hwaddr l;
3024 uint8_t *ram_ptr;
3025 hwaddr addr1;
3026 MemoryRegion *mr;
3027 const uint8_t *buf = ptr;
3028
3029 RCU_READ_LOCK_GUARD();
3030 while (len > 0) {
3031 l = len;
3032 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3033
3034 if (!(memory_region_is_ram(mr) ||
3035 memory_region_is_romd(mr))) {
3036 l = memory_access_size(mr, l, addr1);
3037 } else {
3038 /* ROM/RAM case */
3039 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3040 switch (type) {
3041 case WRITE_DATA:
3042 memcpy(ram_ptr, buf, l);
3043 invalidate_and_set_dirty(mr, addr1, l);
3044 break;
3045 case FLUSH_CACHE:
3046 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3047 break;
3048 }
3049 }
3050 len -= l;
3051 buf += l;
3052 addr += l;
3053 }
3054 return MEMTX_OK;
3055 }
3056
3057 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3058 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3059 MemTxAttrs attrs,
3060 const void *buf, hwaddr len)
3061 {
3062 return address_space_write_rom_internal(as, addr, attrs,
3063 buf, len, WRITE_DATA);
3064 }
3065
cpu_flush_icache_range(hwaddr start,hwaddr len)3066 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3067 {
3068 /*
3069 * This function should do the same thing as an icache flush that was
3070 * triggered from within the guest. For TCG we are always cache coherent,
3071 * so there is no need to flush anything. For KVM / Xen we need to flush
3072 * the host's instruction cache at least.
3073 */
3074 if (tcg_enabled()) {
3075 return;
3076 }
3077
3078 address_space_write_rom_internal(&address_space_memory,
3079 start, MEMTXATTRS_UNSPECIFIED,
3080 NULL, len, FLUSH_CACHE);
3081 }
3082
3083 /*
3084 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3085 * to detect illegal pointers passed to address_space_unmap.
3086 */
3087 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3088
3089 typedef struct {
3090 uint64_t magic;
3091 MemoryRegion *mr;
3092 hwaddr addr;
3093 size_t len;
3094 uint8_t buffer[];
3095 } BounceBuffer;
3096
3097 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3098 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3099 {
3100 QLIST_REMOVE(client, link);
3101 g_free(client);
3102 }
3103
address_space_notify_map_clients_locked(AddressSpace * as)3104 static void address_space_notify_map_clients_locked(AddressSpace *as)
3105 {
3106 AddressSpaceMapClient *client;
3107
3108 while (!QLIST_EMPTY(&as->map_client_list)) {
3109 client = QLIST_FIRST(&as->map_client_list);
3110 qemu_bh_schedule(client->bh);
3111 address_space_unregister_map_client_do(client);
3112 }
3113 }
3114
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3115 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3116 {
3117 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3118
3119 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3120 client->bh = bh;
3121 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3122 /* Write map_client_list before reading bounce_buffer_size. */
3123 smp_mb();
3124 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3125 address_space_notify_map_clients_locked(as);
3126 }
3127 }
3128
cpu_exec_init_all(void)3129 void cpu_exec_init_all(void)
3130 {
3131 qemu_mutex_init(&ram_list.mutex);
3132 /* The data structures we set up here depend on knowing the page size,
3133 * so no more changes can be made after this point.
3134 * In an ideal world, nothing we did before we had finished the
3135 * machine setup would care about the target page size, and we could
3136 * do this much later, rather than requiring board models to state
3137 * up front what their requirements are.
3138 */
3139 finalize_target_page_bits();
3140 io_mem_init();
3141 memory_map_init();
3142 }
3143
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3144 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3145 {
3146 AddressSpaceMapClient *client;
3147
3148 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3149 QLIST_FOREACH(client, &as->map_client_list, link) {
3150 if (client->bh == bh) {
3151 address_space_unregister_map_client_do(client);
3152 break;
3153 }
3154 }
3155 }
3156
address_space_notify_map_clients(AddressSpace * as)3157 static void address_space_notify_map_clients(AddressSpace *as)
3158 {
3159 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3160 address_space_notify_map_clients_locked(as);
3161 }
3162
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3163 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3164 bool is_write, MemTxAttrs attrs)
3165 {
3166 MemoryRegion *mr;
3167 hwaddr l, xlat;
3168
3169 while (len > 0) {
3170 l = len;
3171 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3172 if (!memory_access_is_direct(mr, is_write)) {
3173 l = memory_access_size(mr, l, addr);
3174 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3175 return false;
3176 }
3177 }
3178
3179 len -= l;
3180 addr += l;
3181 }
3182 return true;
3183 }
3184
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3185 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3186 hwaddr len, bool is_write,
3187 MemTxAttrs attrs)
3188 {
3189 FlatView *fv;
3190
3191 RCU_READ_LOCK_GUARD();
3192 fv = address_space_to_flatview(as);
3193 return flatview_access_valid(fv, addr, len, is_write, attrs);
3194 }
3195
3196 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3197 flatview_extend_translation(FlatView *fv, hwaddr addr,
3198 hwaddr target_len,
3199 MemoryRegion *mr, hwaddr base, hwaddr len,
3200 bool is_write, MemTxAttrs attrs)
3201 {
3202 hwaddr done = 0;
3203 hwaddr xlat;
3204 MemoryRegion *this_mr;
3205
3206 for (;;) {
3207 target_len -= len;
3208 addr += len;
3209 done += len;
3210 if (target_len == 0) {
3211 return done;
3212 }
3213
3214 len = target_len;
3215 this_mr = flatview_translate(fv, addr, &xlat,
3216 &len, is_write, attrs);
3217 if (this_mr != mr || xlat != base + done) {
3218 return done;
3219 }
3220 }
3221 }
3222
3223 /* Map a physical memory region into a host virtual address.
3224 * May map a subset of the requested range, given by and returned in *plen.
3225 * May return NULL if resources needed to perform the mapping are exhausted.
3226 * Use only for reads OR writes - not for read-modify-write operations.
3227 * Use address_space_register_map_client() to know when retrying the map
3228 * operation is likely to succeed.
3229 */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3230 void *address_space_map(AddressSpace *as,
3231 hwaddr addr,
3232 hwaddr *plen,
3233 bool is_write,
3234 MemTxAttrs attrs)
3235 {
3236 hwaddr len = *plen;
3237 hwaddr l, xlat;
3238 MemoryRegion *mr;
3239 FlatView *fv;
3240
3241 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3242
3243 if (len == 0) {
3244 return NULL;
3245 }
3246
3247 l = len;
3248 RCU_READ_LOCK_GUARD();
3249 fv = address_space_to_flatview(as);
3250 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3251
3252 if (!memory_access_is_direct(mr, is_write)) {
3253 size_t used = qatomic_read(&as->bounce_buffer_size);
3254 for (;;) {
3255 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3256 size_t new_size = used + alloc;
3257 size_t actual =
3258 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3259 if (actual == used) {
3260 l = alloc;
3261 break;
3262 }
3263 used = actual;
3264 }
3265
3266 if (l == 0) {
3267 *plen = 0;
3268 return NULL;
3269 }
3270
3271 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3272 bounce->magic = BOUNCE_BUFFER_MAGIC;
3273 memory_region_ref(mr);
3274 bounce->mr = mr;
3275 bounce->addr = addr;
3276 bounce->len = l;
3277
3278 if (!is_write) {
3279 flatview_read(fv, addr, attrs,
3280 bounce->buffer, l);
3281 }
3282
3283 *plen = l;
3284 return bounce->buffer;
3285 }
3286
3287 memory_region_ref(mr);
3288 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3289 l, is_write, attrs);
3290 fuzz_dma_read_cb(addr, *plen, mr);
3291 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3292 }
3293
3294 /* Unmaps a memory region previously mapped by address_space_map().
3295 * Will also mark the memory as dirty if is_write is true. access_len gives
3296 * the amount of memory that was actually read or written by the caller.
3297 */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3298 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3299 bool is_write, hwaddr access_len)
3300 {
3301 MemoryRegion *mr;
3302 ram_addr_t addr1;
3303
3304 mr = memory_region_from_host(buffer, &addr1);
3305 if (mr != NULL) {
3306 if (is_write) {
3307 invalidate_and_set_dirty(mr, addr1, access_len);
3308 }
3309 if (xen_enabled()) {
3310 xen_invalidate_map_cache_entry(buffer);
3311 }
3312 memory_region_unref(mr);
3313 return;
3314 }
3315
3316
3317 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3318 assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3319
3320 if (is_write) {
3321 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3322 bounce->buffer, access_len);
3323 }
3324
3325 qatomic_sub(&as->bounce_buffer_size, bounce->len);
3326 bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3327 memory_region_unref(bounce->mr);
3328 g_free(bounce);
3329 /* Write bounce_buffer_size before reading map_client_list. */
3330 smp_mb();
3331 address_space_notify_map_clients(as);
3332 }
3333
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3334 void *cpu_physical_memory_map(hwaddr addr,
3335 hwaddr *plen,
3336 bool is_write)
3337 {
3338 return address_space_map(&address_space_memory, addr, plen, is_write,
3339 MEMTXATTRS_UNSPECIFIED);
3340 }
3341
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3342 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3343 bool is_write, hwaddr access_len)
3344 {
3345 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3346 }
3347
3348 #define ARG1_DECL AddressSpace *as
3349 #define ARG1 as
3350 #define SUFFIX
3351 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3352 #define RCU_READ_LOCK(...) rcu_read_lock()
3353 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3354 #include "memory_ldst.c.inc"
3355
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3356 int64_t address_space_cache_init(MemoryRegionCache *cache,
3357 AddressSpace *as,
3358 hwaddr addr,
3359 hwaddr len,
3360 bool is_write)
3361 {
3362 AddressSpaceDispatch *d;
3363 hwaddr l;
3364 MemoryRegion *mr;
3365 Int128 diff;
3366
3367 assert(len > 0);
3368
3369 l = len;
3370 cache->fv = address_space_get_flatview(as);
3371 d = flatview_to_dispatch(cache->fv);
3372 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3373
3374 /*
3375 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3376 * Take that into account to compute how many bytes are there between
3377 * cache->xlat and the end of the section.
3378 */
3379 diff = int128_sub(cache->mrs.size,
3380 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3381 l = int128_get64(int128_min(diff, int128_make64(l)));
3382
3383 mr = cache->mrs.mr;
3384 memory_region_ref(mr);
3385 if (memory_access_is_direct(mr, is_write)) {
3386 /* We don't care about the memory attributes here as we're only
3387 * doing this if we found actual RAM, which behaves the same
3388 * regardless of attributes; so UNSPECIFIED is fine.
3389 */
3390 l = flatview_extend_translation(cache->fv, addr, len, mr,
3391 cache->xlat, l, is_write,
3392 MEMTXATTRS_UNSPECIFIED);
3393 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3394 is_write);
3395 } else {
3396 cache->ptr = NULL;
3397 }
3398
3399 cache->len = l;
3400 cache->is_write = is_write;
3401 return l;
3402 }
3403
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3404 void address_space_cache_invalidate(MemoryRegionCache *cache,
3405 hwaddr addr,
3406 hwaddr access_len)
3407 {
3408 assert(cache->is_write);
3409 if (likely(cache->ptr)) {
3410 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3411 }
3412 }
3413
address_space_cache_destroy(MemoryRegionCache * cache)3414 void address_space_cache_destroy(MemoryRegionCache *cache)
3415 {
3416 if (!cache->mrs.mr) {
3417 return;
3418 }
3419
3420 if (xen_enabled()) {
3421 xen_invalidate_map_cache_entry(cache->ptr);
3422 }
3423 memory_region_unref(cache->mrs.mr);
3424 flatview_unref(cache->fv);
3425 cache->mrs.mr = NULL;
3426 cache->fv = NULL;
3427 }
3428
3429 /* Called from RCU critical section. This function has the same
3430 * semantics as address_space_translate, but it only works on a
3431 * predefined range of a MemoryRegion that was mapped with
3432 * address_space_cache_init.
3433 */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3434 static inline MemoryRegion *address_space_translate_cached(
3435 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3436 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3437 {
3438 MemoryRegionSection section;
3439 MemoryRegion *mr;
3440 IOMMUMemoryRegion *iommu_mr;
3441 AddressSpace *target_as;
3442
3443 assert(!cache->ptr);
3444 *xlat = addr + cache->xlat;
3445
3446 mr = cache->mrs.mr;
3447 iommu_mr = memory_region_get_iommu(mr);
3448 if (!iommu_mr) {
3449 /* MMIO region. */
3450 return mr;
3451 }
3452
3453 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3454 NULL, is_write, true,
3455 &target_as, attrs);
3456 return section.mr;
3457 }
3458
3459 /* Called within RCU critical section. */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3460 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3461 const void *ptr,
3462 hwaddr len,
3463 hwaddr mr_addr,
3464 hwaddr l,
3465 MemoryRegion *mr)
3466 {
3467 MemTxResult result = MEMTX_OK;
3468 const uint8_t *buf = ptr;
3469
3470 for (;;) {
3471 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3472 mr);
3473
3474 len -= l;
3475 buf += l;
3476 mr_addr += l;
3477
3478 if (!len) {
3479 break;
3480 }
3481
3482 l = len;
3483 }
3484
3485 return result;
3486 }
3487
3488 /* Called within RCU critical section. */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3489 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3490 void *ptr, hwaddr len,
3491 hwaddr mr_addr, hwaddr l,
3492 MemoryRegion *mr)
3493 {
3494 MemTxResult result = MEMTX_OK;
3495 uint8_t *buf = ptr;
3496
3497 for (;;) {
3498 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3499 len -= l;
3500 buf += l;
3501 mr_addr += l;
3502
3503 if (!len) {
3504 break;
3505 }
3506 l = len;
3507 }
3508
3509 return result;
3510 }
3511
3512 /* Called from RCU critical section. address_space_read_cached uses this
3513 * out of line function when the target is an MMIO or IOMMU region.
3514 */
3515 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3516 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3517 void *buf, hwaddr len)
3518 {
3519 hwaddr mr_addr, l;
3520 MemoryRegion *mr;
3521
3522 l = len;
3523 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3524 MEMTXATTRS_UNSPECIFIED);
3525 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3526 buf, len, mr_addr, l, mr);
3527 }
3528
3529 /* Called from RCU critical section. address_space_write_cached uses this
3530 * out of line function when the target is an MMIO or IOMMU region.
3531 */
3532 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3533 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3534 const void *buf, hwaddr len)
3535 {
3536 hwaddr mr_addr, l;
3537 MemoryRegion *mr;
3538
3539 l = len;
3540 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3541 MEMTXATTRS_UNSPECIFIED);
3542 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3543 buf, len, mr_addr, l, mr);
3544 }
3545
3546 #define ARG1_DECL MemoryRegionCache *cache
3547 #define ARG1 cache
3548 #define SUFFIX _cached_slow
3549 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3550 #define RCU_READ_LOCK() ((void)0)
3551 #define RCU_READ_UNLOCK() ((void)0)
3552 #include "memory_ldst.c.inc"
3553
3554 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3555 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3556 void *ptr, size_t len, bool is_write)
3557 {
3558 hwaddr phys_addr;
3559 vaddr l, page;
3560 uint8_t *buf = ptr;
3561
3562 cpu_synchronize_state(cpu);
3563 while (len > 0) {
3564 int asidx;
3565 MemTxAttrs attrs;
3566 MemTxResult res;
3567
3568 page = addr & TARGET_PAGE_MASK;
3569 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3570 asidx = cpu_asidx_from_attrs(cpu, attrs);
3571 /* if no physical page mapped, return an error */
3572 if (phys_addr == -1)
3573 return -1;
3574 l = (page + TARGET_PAGE_SIZE) - addr;
3575 if (l > len)
3576 l = len;
3577 phys_addr += (addr & ~TARGET_PAGE_MASK);
3578 if (is_write) {
3579 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3580 attrs, buf, l);
3581 } else {
3582 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3583 attrs, buf, l);
3584 }
3585 if (res != MEMTX_OK) {
3586 return -1;
3587 }
3588 len -= l;
3589 buf += l;
3590 addr += l;
3591 }
3592 return 0;
3593 }
3594
cpu_physical_memory_is_io(hwaddr phys_addr)3595 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3596 {
3597 MemoryRegion*mr;
3598 hwaddr l = 1;
3599
3600 RCU_READ_LOCK_GUARD();
3601 mr = address_space_translate(&address_space_memory,
3602 phys_addr, &phys_addr, &l, false,
3603 MEMTXATTRS_UNSPECIFIED);
3604
3605 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3606 }
3607
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3608 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3609 {
3610 RAMBlock *block;
3611 int ret = 0;
3612
3613 RCU_READ_LOCK_GUARD();
3614 RAMBLOCK_FOREACH(block) {
3615 ret = func(block, opaque);
3616 if (ret) {
3617 break;
3618 }
3619 }
3620 return ret;
3621 }
3622
3623 /*
3624 * Unmap pages of memory from start to start+length such that
3625 * they a) read as 0, b) Trigger whatever fault mechanism
3626 * the OS provides for postcopy.
3627 * The pages must be unmapped by the end of the function.
3628 * Returns: 0 on success, none-0 on failure
3629 *
3630 */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3631 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3632 {
3633 int ret = -1;
3634
3635 uint8_t *host_startaddr = rb->host + start;
3636
3637 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3638 error_report("%s: Unaligned start address: %p",
3639 __func__, host_startaddr);
3640 goto err;
3641 }
3642
3643 if ((start + length) <= rb->max_length) {
3644 bool need_madvise, need_fallocate;
3645 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3646 error_report("%s: Unaligned length: %zx", __func__, length);
3647 goto err;
3648 }
3649
3650 errno = ENOTSUP; /* If we are missing MADVISE etc */
3651
3652 /* The logic here is messy;
3653 * madvise DONTNEED fails for hugepages
3654 * fallocate works on hugepages and shmem
3655 * shared anonymous memory requires madvise REMOVE
3656 */
3657 need_madvise = (rb->page_size == qemu_real_host_page_size());
3658 need_fallocate = rb->fd != -1;
3659 if (need_fallocate) {
3660 /* For a file, this causes the area of the file to be zero'd
3661 * if read, and for hugetlbfs also causes it to be unmapped
3662 * so a userfault will trigger.
3663 */
3664 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3665 /*
3666 * fallocate() will fail with readonly files. Let's print a
3667 * proper error message.
3668 */
3669 if (rb->flags & RAM_READONLY_FD) {
3670 error_report("%s: Discarding RAM with readonly files is not"
3671 " supported", __func__);
3672 goto err;
3673
3674 }
3675 /*
3676 * We'll discard data from the actual file, even though we only
3677 * have a MAP_PRIVATE mapping, possibly messing with other
3678 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3679 * change that behavior whithout violating the promised
3680 * semantics of ram_block_discard_range().
3681 *
3682 * Only warn, because it works as long as nobody else uses that
3683 * file.
3684 */
3685 if (!qemu_ram_is_shared(rb)) {
3686 warn_report_once("%s: Discarding RAM"
3687 " in private file mappings is possibly"
3688 " dangerous, because it will modify the"
3689 " underlying file and will affect other"
3690 " users of the file", __func__);
3691 }
3692
3693 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3694 start, length);
3695 if (ret) {
3696 ret = -errno;
3697 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3698 __func__, rb->idstr, start, length, ret);
3699 goto err;
3700 }
3701 #else
3702 ret = -ENOSYS;
3703 error_report("%s: fallocate not available/file"
3704 "%s:%" PRIx64 " +%zx (%d)",
3705 __func__, rb->idstr, start, length, ret);
3706 goto err;
3707 #endif
3708 }
3709 if (need_madvise) {
3710 /* For normal RAM this causes it to be unmapped,
3711 * for shared memory it causes the local mapping to disappear
3712 * and to fall back on the file contents (which we just
3713 * fallocate'd away).
3714 */
3715 #if defined(CONFIG_MADVISE)
3716 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3717 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3718 } else {
3719 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3720 }
3721 if (ret) {
3722 ret = -errno;
3723 error_report("%s: Failed to discard range "
3724 "%s:%" PRIx64 " +%zx (%d)",
3725 __func__, rb->idstr, start, length, ret);
3726 goto err;
3727 }
3728 #else
3729 ret = -ENOSYS;
3730 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3731 __func__, rb->idstr, start, length, ret);
3732 goto err;
3733 #endif
3734 }
3735 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3736 need_madvise, need_fallocate, ret);
3737 } else {
3738 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3739 __func__, rb->idstr, start, length, rb->max_length);
3740 }
3741
3742 err:
3743 return ret;
3744 }
3745
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3746 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3747 size_t length)
3748 {
3749 int ret = -1;
3750
3751 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3752 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3753 start, length);
3754
3755 if (ret) {
3756 ret = -errno;
3757 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3758 __func__, rb->idstr, start, length, ret);
3759 }
3760 #else
3761 ret = -ENOSYS;
3762 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3763 __func__, rb->idstr, start, length, ret);
3764 #endif
3765
3766 return ret;
3767 }
3768
ramblock_is_pmem(RAMBlock * rb)3769 bool ramblock_is_pmem(RAMBlock *rb)
3770 {
3771 return rb->flags & RAM_PMEM;
3772 }
3773
mtree_print_phys_entries(int start,int end,int skip,int ptr)3774 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3775 {
3776 if (start == end - 1) {
3777 qemu_printf("\t%3d ", start);
3778 } else {
3779 qemu_printf("\t%3d..%-3d ", start, end - 1);
3780 }
3781 qemu_printf(" skip=%d ", skip);
3782 if (ptr == PHYS_MAP_NODE_NIL) {
3783 qemu_printf(" ptr=NIL");
3784 } else if (!skip) {
3785 qemu_printf(" ptr=#%d", ptr);
3786 } else {
3787 qemu_printf(" ptr=[%d]", ptr);
3788 }
3789 qemu_printf("\n");
3790 }
3791
3792 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3793 int128_sub((size), int128_one())) : 0)
3794
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3795 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3796 {
3797 int i;
3798
3799 qemu_printf(" Dispatch\n");
3800 qemu_printf(" Physical sections\n");
3801
3802 for (i = 0; i < d->map.sections_nb; ++i) {
3803 MemoryRegionSection *s = d->map.sections + i;
3804 const char *names[] = { " [unassigned]", " [not dirty]",
3805 " [ROM]", " [watch]" };
3806
3807 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3808 " %s%s%s%s%s",
3809 i,
3810 s->offset_within_address_space,
3811 s->offset_within_address_space + MR_SIZE(s->size),
3812 s->mr->name ? s->mr->name : "(noname)",
3813 i < ARRAY_SIZE(names) ? names[i] : "",
3814 s->mr == root ? " [ROOT]" : "",
3815 s == d->mru_section ? " [MRU]" : "",
3816 s->mr->is_iommu ? " [iommu]" : "");
3817
3818 if (s->mr->alias) {
3819 qemu_printf(" alias=%s", s->mr->alias->name ?
3820 s->mr->alias->name : "noname");
3821 }
3822 qemu_printf("\n");
3823 }
3824
3825 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3826 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3827 for (i = 0; i < d->map.nodes_nb; ++i) {
3828 int j, jprev;
3829 PhysPageEntry prev;
3830 Node *n = d->map.nodes + i;
3831
3832 qemu_printf(" [%d]\n", i);
3833
3834 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3835 PhysPageEntry *pe = *n + j;
3836
3837 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3838 continue;
3839 }
3840
3841 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3842
3843 jprev = j;
3844 prev = *pe;
3845 }
3846
3847 if (jprev != ARRAY_SIZE(*n)) {
3848 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3849 }
3850 }
3851 }
3852
3853 /* Require any discards to work. */
3854 static unsigned int ram_block_discard_required_cnt;
3855 /* Require only coordinated discards to work. */
3856 static unsigned int ram_block_coordinated_discard_required_cnt;
3857 /* Disable any discards. */
3858 static unsigned int ram_block_discard_disabled_cnt;
3859 /* Disable only uncoordinated discards. */
3860 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3861 static QemuMutex ram_block_discard_disable_mutex;
3862
ram_block_discard_disable_mutex_lock(void)3863 static void ram_block_discard_disable_mutex_lock(void)
3864 {
3865 static gsize initialized;
3866
3867 if (g_once_init_enter(&initialized)) {
3868 qemu_mutex_init(&ram_block_discard_disable_mutex);
3869 g_once_init_leave(&initialized, 1);
3870 }
3871 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3872 }
3873
ram_block_discard_disable_mutex_unlock(void)3874 static void ram_block_discard_disable_mutex_unlock(void)
3875 {
3876 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3877 }
3878
ram_block_discard_disable(bool state)3879 int ram_block_discard_disable(bool state)
3880 {
3881 int ret = 0;
3882
3883 ram_block_discard_disable_mutex_lock();
3884 if (!state) {
3885 ram_block_discard_disabled_cnt--;
3886 } else if (ram_block_discard_required_cnt ||
3887 ram_block_coordinated_discard_required_cnt) {
3888 ret = -EBUSY;
3889 } else {
3890 ram_block_discard_disabled_cnt++;
3891 }
3892 ram_block_discard_disable_mutex_unlock();
3893 return ret;
3894 }
3895
ram_block_uncoordinated_discard_disable(bool state)3896 int ram_block_uncoordinated_discard_disable(bool state)
3897 {
3898 int ret = 0;
3899
3900 ram_block_discard_disable_mutex_lock();
3901 if (!state) {
3902 ram_block_uncoordinated_discard_disabled_cnt--;
3903 } else if (ram_block_discard_required_cnt) {
3904 ret = -EBUSY;
3905 } else {
3906 ram_block_uncoordinated_discard_disabled_cnt++;
3907 }
3908 ram_block_discard_disable_mutex_unlock();
3909 return ret;
3910 }
3911
ram_block_discard_require(bool state)3912 int ram_block_discard_require(bool state)
3913 {
3914 int ret = 0;
3915
3916 ram_block_discard_disable_mutex_lock();
3917 if (!state) {
3918 ram_block_discard_required_cnt--;
3919 } else if (ram_block_discard_disabled_cnt ||
3920 ram_block_uncoordinated_discard_disabled_cnt) {
3921 ret = -EBUSY;
3922 } else {
3923 ram_block_discard_required_cnt++;
3924 }
3925 ram_block_discard_disable_mutex_unlock();
3926 return ret;
3927 }
3928
ram_block_coordinated_discard_require(bool state)3929 int ram_block_coordinated_discard_require(bool state)
3930 {
3931 int ret = 0;
3932
3933 ram_block_discard_disable_mutex_lock();
3934 if (!state) {
3935 ram_block_coordinated_discard_required_cnt--;
3936 } else if (ram_block_discard_disabled_cnt) {
3937 ret = -EBUSY;
3938 } else {
3939 ram_block_coordinated_discard_required_cnt++;
3940 }
3941 ram_block_discard_disable_mutex_unlock();
3942 return ret;
3943 }
3944
ram_block_discard_is_disabled(void)3945 bool ram_block_discard_is_disabled(void)
3946 {
3947 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3948 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3949 }
3950
ram_block_discard_is_required(void)3951 bool ram_block_discard_is_required(void)
3952 {
3953 return qatomic_read(&ram_block_discard_required_cnt) ||
3954 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3955 }
3956