xref: /openbmc/linux/drivers/pwm/pwm-lpss.c (revision 6c452cff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12 
13 #include <linux/bits.h>
14 #include <linux/delay.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/time.h>
21 
22 #define DEFAULT_SYMBOL_NAMESPACE PWM_LPSS
23 
24 #include "pwm-lpss.h"
25 
26 #define PWM				0x00000000
27 #define PWM_ENABLE			BIT(31)
28 #define PWM_SW_UPDATE			BIT(30)
29 #define PWM_BASE_UNIT_SHIFT		8
30 #define PWM_ON_TIME_DIV_MASK		GENMASK(7, 0)
31 
32 /* Size of each PWM register space if multiple */
33 #define PWM_SIZE			0x400
34 
35 /* BayTrail */
36 const struct pwm_lpss_boardinfo pwm_lpss_byt_info = {
37 	.clk_rate = 25000000,
38 	.npwm = 1,
39 	.base_unit_bits = 16,
40 };
41 EXPORT_SYMBOL_GPL(pwm_lpss_byt_info);
42 
43 /* Braswell */
44 const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = {
45 	.clk_rate = 19200000,
46 	.npwm = 1,
47 	.base_unit_bits = 16,
48 	.other_devices_aml_touches_pwm_regs = true,
49 };
50 EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info);
51 
52 /* Broxton */
53 const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = {
54 	.clk_rate = 19200000,
55 	.npwm = 4,
56 	.base_unit_bits = 22,
57 	.bypass = true,
58 };
59 EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info);
60 
61 /* Tangier */
62 const struct pwm_lpss_boardinfo pwm_lpss_tng_info = {
63 	.clk_rate = 19200000,
64 	.npwm = 4,
65 	.base_unit_bits = 22,
66 };
67 EXPORT_SYMBOL_GPL(pwm_lpss_tng_info);
68 
to_lpwm(struct pwm_chip * chip)69 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
70 {
71 	return container_of(chip, struct pwm_lpss_chip, chip);
72 }
73 
pwm_lpss_read(const struct pwm_device * pwm)74 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
75 {
76 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
77 
78 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
79 }
80 
pwm_lpss_write(const struct pwm_device * pwm,u32 value)81 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
82 {
83 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
84 
85 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
86 }
87 
pwm_lpss_wait_for_update(struct pwm_device * pwm)88 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
89 {
90 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
91 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
92 	const unsigned int ms = 500 * USEC_PER_MSEC;
93 	u32 val;
94 	int err;
95 
96 	/*
97 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
98 	 * configuration is written to the register. The bit is automatically
99 	 * cleared at the start of the next output cycle by the IP block.
100 	 *
101 	 * If one writes a new configuration to the register while it still has
102 	 * the bit enabled, PWM may freeze. That is, while one can still write
103 	 * to the register, it won't have an effect. Thus, we try to sleep long
104 	 * enough that the bit gets cleared and make sure the bit is not
105 	 * enabled while we update the configuration.
106 	 */
107 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
108 	if (err)
109 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
110 
111 	return err;
112 }
113 
pwm_lpss_is_updating(struct pwm_device * pwm)114 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
115 {
116 	if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
117 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE is still set, skipping update\n");
118 		return -EBUSY;
119 	}
120 
121 	return 0;
122 }
123 
pwm_lpss_prepare(struct pwm_lpss_chip * lpwm,struct pwm_device * pwm,int duty_ns,int period_ns)124 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
125 			     int duty_ns, int period_ns)
126 {
127 	unsigned long long on_time_div;
128 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
129 	unsigned long long base_unit, freq = NSEC_PER_SEC;
130 	u32 ctrl;
131 
132 	do_div(freq, period_ns);
133 
134 	/*
135 	 * The equation is:
136 	 * base_unit = round(base_unit_range * freq / c)
137 	 */
138 	base_unit_range = BIT(lpwm->info->base_unit_bits);
139 	freq *= base_unit_range;
140 
141 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
142 	/* base_unit must not be 0 and we also want to avoid overflowing it */
143 	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
144 
145 	on_time_div = 255ULL * duty_ns;
146 	do_div(on_time_div, period_ns);
147 	on_time_div = 255ULL - on_time_div;
148 
149 	ctrl = pwm_lpss_read(pwm);
150 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
151 	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
152 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
153 	ctrl |= on_time_div;
154 
155 	pwm_lpss_write(pwm, ctrl);
156 	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
157 }
158 
pwm_lpss_cond_enable(struct pwm_device * pwm,bool cond)159 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
160 {
161 	if (cond)
162 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
163 }
164 
pwm_lpss_prepare_enable(struct pwm_lpss_chip * lpwm,struct pwm_device * pwm,const struct pwm_state * state)165 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
166 				   struct pwm_device *pwm,
167 				   const struct pwm_state *state)
168 {
169 	int ret;
170 
171 	ret = pwm_lpss_is_updating(pwm);
172 	if (ret)
173 		return ret;
174 
175 	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
176 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
177 	ret = pwm_lpss_wait_for_update(pwm);
178 	if (ret)
179 		return ret;
180 
181 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
182 	return 0;
183 }
184 
pwm_lpss_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)185 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
186 			  const struct pwm_state *state)
187 {
188 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
189 	int ret = 0;
190 
191 	if (state->enabled) {
192 		if (!pwm_is_enabled(pwm)) {
193 			pm_runtime_get_sync(chip->dev);
194 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
195 			if (ret)
196 				pm_runtime_put(chip->dev);
197 		} else {
198 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
199 		}
200 	} else if (pwm_is_enabled(pwm)) {
201 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
202 		pm_runtime_put(chip->dev);
203 	}
204 
205 	return ret;
206 }
207 
pwm_lpss_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)208 static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
209 			      struct pwm_state *state)
210 {
211 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
212 	unsigned long base_unit_range;
213 	unsigned long long base_unit, freq, on_time_div;
214 	u32 ctrl;
215 
216 	pm_runtime_get_sync(chip->dev);
217 
218 	base_unit_range = BIT(lpwm->info->base_unit_bits);
219 
220 	ctrl = pwm_lpss_read(pwm);
221 	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
222 	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
223 
224 	freq = base_unit * lpwm->info->clk_rate;
225 	do_div(freq, base_unit_range);
226 	if (freq == 0)
227 		state->period = NSEC_PER_SEC;
228 	else
229 		state->period = NSEC_PER_SEC / (unsigned long)freq;
230 
231 	on_time_div *= state->period;
232 	do_div(on_time_div, 255);
233 	state->duty_cycle = on_time_div;
234 
235 	state->polarity = PWM_POLARITY_NORMAL;
236 	state->enabled = !!(ctrl & PWM_ENABLE);
237 
238 	pm_runtime_put(chip->dev);
239 
240 	return 0;
241 }
242 
243 static const struct pwm_ops pwm_lpss_ops = {
244 	.apply = pwm_lpss_apply,
245 	.get_state = pwm_lpss_get_state,
246 	.owner = THIS_MODULE,
247 };
248 
devm_pwm_lpss_probe(struct device * dev,void __iomem * base,const struct pwm_lpss_boardinfo * info)249 struct pwm_lpss_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base,
250 					  const struct pwm_lpss_boardinfo *info)
251 {
252 	struct pwm_lpss_chip *lpwm;
253 	unsigned long c;
254 	int i, ret;
255 	u32 ctrl;
256 
257 	if (WARN_ON(info->npwm > LPSS_MAX_PWMS))
258 		return ERR_PTR(-ENODEV);
259 
260 	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
261 	if (!lpwm)
262 		return ERR_PTR(-ENOMEM);
263 
264 	lpwm->regs = base;
265 	lpwm->info = info;
266 
267 	c = lpwm->info->clk_rate;
268 	if (!c)
269 		return ERR_PTR(-EINVAL);
270 
271 	lpwm->chip.dev = dev;
272 	lpwm->chip.ops = &pwm_lpss_ops;
273 	lpwm->chip.npwm = info->npwm;
274 
275 	ret = devm_pwmchip_add(dev, &lpwm->chip);
276 	if (ret) {
277 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
278 		return ERR_PTR(ret);
279 	}
280 
281 	for (i = 0; i < lpwm->info->npwm; i++) {
282 		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
283 		if (ctrl & PWM_ENABLE)
284 			pm_runtime_get(dev);
285 	}
286 
287 	return lpwm;
288 }
289 EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe);
290 
291 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
292 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
293 MODULE_LICENSE("GPL v2");
294