1 /*
2 * QEMU PowerPC PowerNV Processor Service Interface (PSI) model
3 *
4 * Copyright (c) 2015-2017, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/address-spaces.h"
22 #include "hw/irq.h"
23 #include "target/ppc/cpu.h"
24 #include "qemu/log.h"
25 #include "qemu/module.h"
26 #include "sysemu/reset.h"
27 #include "qapi/error.h"
28
29
30 #include "hw/ppc/fdt.h"
31 #include "hw/ppc/pnv.h"
32 #include "hw/ppc/pnv_xscom.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/ppc/pnv_psi.h"
35
36 #include <libfdt.h>
37
38 #define PSIHB_XSCOM_FIR_RW 0x00
39 #define PSIHB_XSCOM_FIR_AND 0x01
40 #define PSIHB_XSCOM_FIR_OR 0x02
41 #define PSIHB_XSCOM_FIRMASK_RW 0x03
42 #define PSIHB_XSCOM_FIRMASK_AND 0x04
43 #define PSIHB_XSCOM_FIRMASK_OR 0x05
44 #define PSIHB_XSCOM_FIRACT0 0x06
45 #define PSIHB_XSCOM_FIRACT1 0x07
46
47 /* Host Bridge Base Address Register */
48 #define PSIHB_XSCOM_BAR 0x0a
49 #define PSIHB_BAR_EN 0x0000000000000001ull
50
51 /* FSP Base Address Register */
52 #define PSIHB_XSCOM_FSPBAR 0x0b
53
54 /* PSI Host Bridge Control/Status Register */
55 #define PSIHB_XSCOM_CR 0x0e
56 #define PSIHB_CR_FSP_CMD_ENABLE 0x8000000000000000ull
57 #define PSIHB_CR_FSP_MMIO_ENABLE 0x4000000000000000ull
58 #define PSIHB_CR_FSP_IRQ_ENABLE 0x1000000000000000ull
59 #define PSIHB_CR_FSP_ERR_RSP_ENABLE 0x0800000000000000ull
60 #define PSIHB_CR_PSI_LINK_ENABLE 0x0400000000000000ull
61 #define PSIHB_CR_FSP_RESET 0x0200000000000000ull
62 #define PSIHB_CR_PSIHB_RESET 0x0100000000000000ull
63 #define PSIHB_CR_PSI_IRQ 0x0000800000000000ull
64 #define PSIHB_CR_FSP_IRQ 0x0000400000000000ull
65 #define PSIHB_CR_FSP_LINK_ACTIVE 0x0000200000000000ull
66 #define PSIHB_CR_IRQ_CMD_EXPECT 0x0000010000000000ull
67 /* and more ... */
68
69 /* PSIHB Status / Error Mask Register */
70 #define PSIHB_XSCOM_SEMR 0x0f
71
72 /* XIVR, to signal interrupts to the CEC firmware. more XIVR below. */
73 #define PSIHB_XSCOM_XIVR_FSP 0x10
74 #define PSIHB_XIVR_SERVER_SH 40
75 #define PSIHB_XIVR_SERVER_MSK (0xffffull << PSIHB_XIVR_SERVER_SH)
76 #define PSIHB_XIVR_PRIO_SH 32
77 #define PSIHB_XIVR_PRIO_MSK (0xffull << PSIHB_XIVR_PRIO_SH)
78 #define PSIHB_XIVR_SRC_SH 29
79 #define PSIHB_XIVR_SRC_MSK (0x7ull << PSIHB_XIVR_SRC_SH)
80 #define PSIHB_XIVR_PENDING 0x01000000ull
81
82 /* PSI Host Bridge Set Control/ Status Register */
83 #define PSIHB_XSCOM_SCR 0x12
84
85 /* PSI Host Bridge Clear Control/ Status Register */
86 #define PSIHB_XSCOM_CCR 0x13
87
88 /* DMA Upper Address Register */
89 #define PSIHB_XSCOM_DMA_UPADD 0x14
90
91 /* Interrupt Status */
92 #define PSIHB_XSCOM_IRQ_STAT 0x15
93 #define PSIHB_IRQ_STAT_OCC 0x0000001000000000ull
94 #define PSIHB_IRQ_STAT_FSI 0x0000000800000000ull
95 #define PSIHB_IRQ_STAT_LPCI2C 0x0000000400000000ull
96 #define PSIHB_IRQ_STAT_LOCERR 0x0000000200000000ull
97 #define PSIHB_IRQ_STAT_EXT 0x0000000100000000ull
98
99 /* remaining XIVR */
100 #define PSIHB_XSCOM_XIVR_OCC 0x16
101 #define PSIHB_XSCOM_XIVR_FSI 0x17
102 #define PSIHB_XSCOM_XIVR_LPCI2C 0x18
103 #define PSIHB_XSCOM_XIVR_LOCERR 0x19
104 #define PSIHB_XSCOM_XIVR_EXT 0x1a
105
106 /* Interrupt Requester Source Compare Register */
107 #define PSIHB_XSCOM_IRSN 0x1b
108 #define PSIHB_IRSN_COMP_SH 45
109 #define PSIHB_IRSN_COMP_MSK (0x7ffffull << PSIHB_IRSN_COMP_SH)
110 #define PSIHB_IRSN_IRQ_MUX 0x0000000800000000ull
111 #define PSIHB_IRSN_IRQ_RESET 0x0000000400000000ull
112 #define PSIHB_IRSN_DOWNSTREAM_EN 0x0000000200000000ull
113 #define PSIHB_IRSN_UPSTREAM_EN 0x0000000100000000ull
114 #define PSIHB_IRSN_COMPMASK_SH 13
115 #define PSIHB_IRSN_COMPMASK_MSK (0x7ffffull << PSIHB_IRSN_COMPMASK_SH)
116
117 #define PSIHB_BAR_MASK 0x0003fffffff00000ull
118 #define PSIHB_FSPBAR_MASK 0x0003ffff00000000ull
119
120 #define PSIHB9_BAR_MASK 0x00fffffffff00000ull
121 #define PSIHB9_FSPBAR_MASK 0x00ffffff00000000ull
122
123 /* mmio address to xscom address */
124 #define PSIHB_REG(addr) (((addr) >> 3) + PSIHB_XSCOM_BAR)
125
126 /* xscom address to mmio address */
127 #define PSIHB_MMIO(reg) ((reg - PSIHB_XSCOM_BAR) << 3)
128
pnv_psi_set_bar(PnvPsi * psi,uint64_t bar)129 static void pnv_psi_set_bar(PnvPsi *psi, uint64_t bar)
130 {
131 PnvPsiClass *ppc = PNV_PSI_GET_CLASS(psi);
132 MemoryRegion *sysmem = get_system_memory();
133 uint64_t old = psi->regs[PSIHB_XSCOM_BAR];
134
135 psi->regs[PSIHB_XSCOM_BAR] = bar & (ppc->bar_mask | PSIHB_BAR_EN);
136
137 /* Update MR, always remove it first */
138 if (old & PSIHB_BAR_EN) {
139 memory_region_del_subregion(sysmem, &psi->regs_mr);
140 }
141
142 /* Then add it back if needed */
143 if (bar & PSIHB_BAR_EN) {
144 uint64_t addr = bar & ppc->bar_mask;
145 memory_region_add_subregion(sysmem, addr, &psi->regs_mr);
146 }
147 }
148
pnv_psi_update_fsp_mr(PnvPsi * psi)149 static void pnv_psi_update_fsp_mr(PnvPsi *psi)
150 {
151 /* TODO: Update FSP MR if/when we support FSP BAR */
152 }
153
pnv_psi_set_cr(PnvPsi * psi,uint64_t cr)154 static void pnv_psi_set_cr(PnvPsi *psi, uint64_t cr)
155 {
156 uint64_t old = psi->regs[PSIHB_XSCOM_CR];
157
158 psi->regs[PSIHB_XSCOM_CR] = cr;
159
160 /* Check some bit changes */
161 if ((old ^ psi->regs[PSIHB_XSCOM_CR]) & PSIHB_CR_FSP_MMIO_ENABLE) {
162 pnv_psi_update_fsp_mr(psi);
163 }
164 }
165
pnv_psi_set_irsn(PnvPsi * psi,uint64_t val)166 static void pnv_psi_set_irsn(PnvPsi *psi, uint64_t val)
167 {
168 ICSState *ics = &PNV8_PSI(psi)->ics;
169
170 /* In this model we ignore the up/down enable bits for now
171 * as SW doesn't use them (other than setting them at boot).
172 * We ignore IRQ_MUX, its meaning isn't clear and we don't use
173 * it and finally we ignore reset (XXX fix that ?)
174 */
175 psi->regs[PSIHB_XSCOM_IRSN] = val & (PSIHB_IRSN_COMP_MSK |
176 PSIHB_IRSN_IRQ_MUX |
177 PSIHB_IRSN_IRQ_RESET |
178 PSIHB_IRSN_DOWNSTREAM_EN |
179 PSIHB_IRSN_UPSTREAM_EN);
180
181 /* We ignore the compare mask as well, our ICS emulation is too
182 * simplistic to make any use if it, and we extract the offset
183 * from the compare value
184 */
185 ics->offset = (val & PSIHB_IRSN_COMP_MSK) >> PSIHB_IRSN_COMP_SH;
186 }
187
188 /*
189 * FSP and PSI interrupts are muxed under the same number.
190 */
191 static const uint32_t xivr_regs[PSI_NUM_INTERRUPTS] = {
192 [PSIHB_IRQ_FSP] = PSIHB_XSCOM_XIVR_FSP,
193 [PSIHB_IRQ_OCC] = PSIHB_XSCOM_XIVR_OCC,
194 [PSIHB_IRQ_FSI] = PSIHB_XSCOM_XIVR_FSI,
195 [PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_XIVR_LPCI2C,
196 [PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_XIVR_LOCERR,
197 [PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_XIVR_EXT,
198 };
199
200 static const uint32_t stat_regs[PSI_NUM_INTERRUPTS] = {
201 [PSIHB_IRQ_FSP] = PSIHB_XSCOM_CR,
202 [PSIHB_IRQ_OCC] = PSIHB_XSCOM_IRQ_STAT,
203 [PSIHB_IRQ_FSI] = PSIHB_XSCOM_IRQ_STAT,
204 [PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_IRQ_STAT,
205 [PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_IRQ_STAT,
206 [PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_IRQ_STAT,
207 };
208
209 static const uint64_t stat_bits[PSI_NUM_INTERRUPTS] = {
210 [PSIHB_IRQ_FSP] = PSIHB_CR_FSP_IRQ,
211 [PSIHB_IRQ_OCC] = PSIHB_IRQ_STAT_OCC,
212 [PSIHB_IRQ_FSI] = PSIHB_IRQ_STAT_FSI,
213 [PSIHB_IRQ_LPC_I2C] = PSIHB_IRQ_STAT_LPCI2C,
214 [PSIHB_IRQ_LOCAL_ERR] = PSIHB_IRQ_STAT_LOCERR,
215 [PSIHB_IRQ_EXTERNAL] = PSIHB_IRQ_STAT_EXT,
216 };
217
pnv_psi_power8_set_irq(void * opaque,int irq,int state)218 static void pnv_psi_power8_set_irq(void *opaque, int irq, int state)
219 {
220 PnvPsi *psi = opaque;
221 uint32_t xivr_reg;
222 uint32_t stat_reg;
223 uint32_t src;
224 bool masked;
225
226 xivr_reg = xivr_regs[irq];
227 stat_reg = stat_regs[irq];
228
229 src = (psi->regs[xivr_reg] & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
230 if (state) {
231 psi->regs[stat_reg] |= stat_bits[irq];
232 /* TODO: optimization, check mask here. That means
233 * re-evaluating when unmasking
234 */
235 qemu_irq_raise(psi->qirqs[src]);
236 } else {
237 psi->regs[stat_reg] &= ~stat_bits[irq];
238
239 /* FSP and PSI are muxed so don't lower if either is still set */
240 if (stat_reg != PSIHB_XSCOM_CR ||
241 !(psi->regs[stat_reg] & (PSIHB_CR_PSI_IRQ | PSIHB_CR_FSP_IRQ))) {
242 qemu_irq_lower(psi->qirqs[src]);
243 } else {
244 state = true;
245 }
246 }
247
248 /* Note about the emulation of the pending bit: This isn't
249 * entirely correct. The pending bit should be cleared when the
250 * EOI has been received. However, we don't have callbacks on EOI
251 * (especially not under KVM) so no way to emulate that properly,
252 * so instead we just set that bit as the logical "output" of the
253 * XIVR (ie pending & !masked)
254 *
255 * CLG: We could define a new ICS object with a custom eoi()
256 * handler to clear the pending bit. But I am not sure this would
257 * be useful for the software anyhow.
258 */
259 masked = (psi->regs[xivr_reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK;
260 if (state && !masked) {
261 psi->regs[xivr_reg] |= PSIHB_XIVR_PENDING;
262 } else {
263 psi->regs[xivr_reg] &= ~PSIHB_XIVR_PENDING;
264 }
265 }
266
pnv_psi_set_xivr(PnvPsi * psi,uint32_t reg,uint64_t val)267 static void pnv_psi_set_xivr(PnvPsi *psi, uint32_t reg, uint64_t val)
268 {
269 ICSState *ics = &PNV8_PSI(psi)->ics;
270 uint16_t server;
271 uint8_t prio;
272 uint8_t src;
273
274 psi->regs[reg] = (psi->regs[reg] & PSIHB_XIVR_PENDING) |
275 (val & (PSIHB_XIVR_SERVER_MSK |
276 PSIHB_XIVR_PRIO_MSK |
277 PSIHB_XIVR_SRC_MSK));
278 val = psi->regs[reg];
279 server = (val & PSIHB_XIVR_SERVER_MSK) >> PSIHB_XIVR_SERVER_SH;
280 prio = (val & PSIHB_XIVR_PRIO_MSK) >> PSIHB_XIVR_PRIO_SH;
281 src = (val & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
282
283 if (src >= PSI_NUM_INTERRUPTS) {
284 qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", src);
285 return;
286 }
287
288 /* Remove pending bit if the IRQ is masked */
289 if ((psi->regs[reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK) {
290 psi->regs[reg] &= ~PSIHB_XIVR_PENDING;
291 }
292
293 /* The low order 2 bits are the link pointer (Type II interrupts).
294 * Shift back to get a valid IRQ server.
295 */
296 server >>= 2;
297
298 /* Now because of source remapping, weird things can happen
299 * if you change the source number dynamically, our simple ICS
300 * doesn't deal with remapping. So we just poke a different
301 * ICS entry based on what source number was written. This will
302 * do for now but a more accurate implementation would instead
303 * use a fixed server/prio and a remapper of the generated irq.
304 */
305 ics_write_xive(ics, src, server, prio, prio);
306 }
307
pnv_psi_reg_read(PnvPsi * psi,uint32_t offset,bool mmio)308 static uint64_t pnv_psi_reg_read(PnvPsi *psi, uint32_t offset, bool mmio)
309 {
310 uint64_t val = 0xffffffffffffffffull;
311
312 switch (offset) {
313 case PSIHB_XSCOM_FIR_RW:
314 case PSIHB_XSCOM_FIRACT0:
315 case PSIHB_XSCOM_FIRACT1:
316 case PSIHB_XSCOM_BAR:
317 case PSIHB_XSCOM_FSPBAR:
318 case PSIHB_XSCOM_CR:
319 case PSIHB_XSCOM_XIVR_FSP:
320 case PSIHB_XSCOM_XIVR_OCC:
321 case PSIHB_XSCOM_XIVR_FSI:
322 case PSIHB_XSCOM_XIVR_LPCI2C:
323 case PSIHB_XSCOM_XIVR_LOCERR:
324 case PSIHB_XSCOM_XIVR_EXT:
325 case PSIHB_XSCOM_IRQ_STAT:
326 case PSIHB_XSCOM_SEMR:
327 case PSIHB_XSCOM_DMA_UPADD:
328 case PSIHB_XSCOM_IRSN:
329 val = psi->regs[offset];
330 break;
331 default:
332 qemu_log_mask(LOG_UNIMP, "PSI: read at 0x%" PRIx32 "\n", offset);
333 }
334 return val;
335 }
336
pnv_psi_reg_write(PnvPsi * psi,uint32_t offset,uint64_t val,bool mmio)337 static void pnv_psi_reg_write(PnvPsi *psi, uint32_t offset, uint64_t val,
338 bool mmio)
339 {
340 switch (offset) {
341 case PSIHB_XSCOM_FIR_RW:
342 case PSIHB_XSCOM_FIRACT0:
343 case PSIHB_XSCOM_FIRACT1:
344 case PSIHB_XSCOM_SEMR:
345 case PSIHB_XSCOM_DMA_UPADD:
346 psi->regs[offset] = val;
347 break;
348 case PSIHB_XSCOM_FIR_OR:
349 psi->regs[PSIHB_XSCOM_FIR_RW] |= val;
350 break;
351 case PSIHB_XSCOM_FIR_AND:
352 psi->regs[PSIHB_XSCOM_FIR_RW] &= val;
353 break;
354 case PSIHB_XSCOM_BAR:
355 /* Only XSCOM can write this one */
356 if (!mmio) {
357 pnv_psi_set_bar(psi, val);
358 } else {
359 qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of BAR\n");
360 }
361 break;
362 case PSIHB_XSCOM_FSPBAR:
363 psi->regs[PSIHB_XSCOM_FSPBAR] = val & PSIHB_FSPBAR_MASK;
364 pnv_psi_update_fsp_mr(psi);
365 break;
366 case PSIHB_XSCOM_CR:
367 pnv_psi_set_cr(psi, val);
368 break;
369 case PSIHB_XSCOM_SCR:
370 pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] | val);
371 break;
372 case PSIHB_XSCOM_CCR:
373 pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] & ~val);
374 break;
375 case PSIHB_XSCOM_XIVR_FSP:
376 case PSIHB_XSCOM_XIVR_OCC:
377 case PSIHB_XSCOM_XIVR_FSI:
378 case PSIHB_XSCOM_XIVR_LPCI2C:
379 case PSIHB_XSCOM_XIVR_LOCERR:
380 case PSIHB_XSCOM_XIVR_EXT:
381 pnv_psi_set_xivr(psi, offset, val);
382 break;
383 case PSIHB_XSCOM_IRQ_STAT:
384 /* Read only */
385 qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of IRQ_STAT\n");
386 break;
387 case PSIHB_XSCOM_IRSN:
388 pnv_psi_set_irsn(psi, val);
389 break;
390 default:
391 qemu_log_mask(LOG_UNIMP, "PSI: write at 0x%" PRIx32 "\n", offset);
392 }
393 }
394
395 /*
396 * The values of the registers when accessed through the MMIO region
397 * follow the relation : xscom = (mmio + 0x50) >> 3
398 */
pnv_psi_mmio_read(void * opaque,hwaddr addr,unsigned size)399 static uint64_t pnv_psi_mmio_read(void *opaque, hwaddr addr, unsigned size)
400 {
401 return pnv_psi_reg_read(opaque, PSIHB_REG(addr), true);
402 }
403
pnv_psi_mmio_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)404 static void pnv_psi_mmio_write(void *opaque, hwaddr addr,
405 uint64_t val, unsigned size)
406 {
407 pnv_psi_reg_write(opaque, PSIHB_REG(addr), val, true);
408 }
409
410 static const MemoryRegionOps psi_mmio_ops = {
411 .read = pnv_psi_mmio_read,
412 .write = pnv_psi_mmio_write,
413 .endianness = DEVICE_BIG_ENDIAN,
414 .valid = {
415 .min_access_size = 8,
416 .max_access_size = 8,
417 },
418 .impl = {
419 .min_access_size = 8,
420 .max_access_size = 8,
421 },
422 };
423
pnv_psi_xscom_read(void * opaque,hwaddr addr,unsigned size)424 static uint64_t pnv_psi_xscom_read(void *opaque, hwaddr addr, unsigned size)
425 {
426 return pnv_psi_reg_read(opaque, addr >> 3, false);
427 }
428
pnv_psi_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)429 static void pnv_psi_xscom_write(void *opaque, hwaddr addr,
430 uint64_t val, unsigned size)
431 {
432 pnv_psi_reg_write(opaque, addr >> 3, val, false);
433 }
434
435 static const MemoryRegionOps pnv_psi_xscom_ops = {
436 .read = pnv_psi_xscom_read,
437 .write = pnv_psi_xscom_write,
438 .endianness = DEVICE_BIG_ENDIAN,
439 .valid = {
440 .min_access_size = 8,
441 .max_access_size = 8,
442 },
443 .impl = {
444 .min_access_size = 8,
445 .max_access_size = 8,
446 }
447 };
448
pnv_psi_reset(DeviceState * dev)449 static void pnv_psi_reset(DeviceState *dev)
450 {
451 PnvPsi *psi = PNV_PSI(dev);
452
453 memset(psi->regs, 0x0, sizeof(psi->regs));
454
455 psi->regs[PSIHB_XSCOM_BAR] = psi->bar | PSIHB_BAR_EN;
456 }
457
pnv_psi_reset_handler(void * dev)458 static void pnv_psi_reset_handler(void *dev)
459 {
460 device_cold_reset(DEVICE(dev));
461 }
462
pnv_psi_realize(DeviceState * dev,Error ** errp)463 static void pnv_psi_realize(DeviceState *dev, Error **errp)
464 {
465 PnvPsi *psi = PNV_PSI(dev);
466
467 /* Default BAR for MMIO region */
468 pnv_psi_set_bar(psi, psi->bar | PSIHB_BAR_EN);
469
470 qemu_register_reset(pnv_psi_reset_handler, dev);
471 }
472
pnv_psi_power8_instance_init(Object * obj)473 static void pnv_psi_power8_instance_init(Object *obj)
474 {
475 Pnv8Psi *psi8 = PNV8_PSI(obj);
476
477 object_initialize_child(obj, "ics-psi", &psi8->ics, TYPE_ICS);
478 object_property_add_alias(obj, ICS_PROP_XICS, OBJECT(&psi8->ics),
479 ICS_PROP_XICS);
480 }
481
482 static const uint8_t irq_to_xivr[] = {
483 PSIHB_XSCOM_XIVR_FSP,
484 PSIHB_XSCOM_XIVR_OCC,
485 PSIHB_XSCOM_XIVR_FSI,
486 PSIHB_XSCOM_XIVR_LPCI2C,
487 PSIHB_XSCOM_XIVR_LOCERR,
488 PSIHB_XSCOM_XIVR_EXT,
489 };
490
pnv_psi_power8_realize(DeviceState * dev,Error ** errp)491 static void pnv_psi_power8_realize(DeviceState *dev, Error **errp)
492 {
493 PnvPsi *psi = PNV_PSI(dev);
494 ICSState *ics = &PNV8_PSI(psi)->ics;
495 unsigned int i;
496
497 /* Create PSI interrupt control source */
498 if (!object_property_set_int(OBJECT(ics), "nr-irqs", PSI_NUM_INTERRUPTS,
499 errp)) {
500 return;
501 }
502 if (!qdev_realize(DEVICE(ics), NULL, errp)) {
503 return;
504 }
505
506 for (i = 0; i < ics->nr_irqs; i++) {
507 ics_set_irq_type(ics, i, true);
508 }
509
510 qdev_init_gpio_in(dev, pnv_psi_power8_set_irq, ics->nr_irqs);
511
512 psi->qirqs = qemu_allocate_irqs(ics_set_irq, ics, ics->nr_irqs);
513
514 /* XSCOM region for PSI registers */
515 pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_xscom_ops,
516 psi, "xscom-psi", PNV_XSCOM_PSIHB_SIZE);
517
518 /* Initialize MMIO region */
519 memory_region_init_io(&psi->regs_mr, OBJECT(dev), &psi_mmio_ops, psi,
520 "psihb", PNV_PSIHB_SIZE);
521
522 /* Default sources in XIVR */
523 for (i = 0; i < PSI_NUM_INTERRUPTS; i++) {
524 uint8_t xivr = irq_to_xivr[i];
525 psi->regs[xivr] = PSIHB_XIVR_PRIO_MSK |
526 ((uint64_t) i << PSIHB_XIVR_SRC_SH);
527 }
528
529 pnv_psi_realize(dev, errp);
530 }
531
pnv_psi_dt_xscom(PnvXScomInterface * dev,void * fdt,int xscom_offset)532 static int pnv_psi_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
533 {
534 PnvPsiClass *ppc = PNV_PSI_GET_CLASS(dev);
535 char *name;
536 int offset;
537 uint32_t reg[] = {
538 cpu_to_be32(ppc->xscom_pcba),
539 cpu_to_be32(ppc->xscom_size)
540 };
541
542 name = g_strdup_printf("psihb@%x", ppc->xscom_pcba);
543 offset = fdt_add_subnode(fdt, xscom_offset, name);
544 _FDT(offset);
545 g_free(name);
546
547 _FDT(fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)));
548 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 2));
549 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1));
550 _FDT(fdt_setprop(fdt, offset, "compatible", ppc->compat,
551 ppc->compat_size));
552 return 0;
553 }
554
555 static Property pnv_psi_properties[] = {
556 DEFINE_PROP_UINT64("bar", PnvPsi, bar, 0),
557 DEFINE_PROP_UINT64("fsp-bar", PnvPsi, fsp_bar, 0),
558 DEFINE_PROP_END_OF_LIST(),
559 };
560
pnv_psi_power8_class_init(ObjectClass * klass,void * data)561 static void pnv_psi_power8_class_init(ObjectClass *klass, void *data)
562 {
563 DeviceClass *dc = DEVICE_CLASS(klass);
564 PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
565 static const char compat[] = "ibm,power8-psihb-x\0ibm,psihb-x";
566
567 dc->desc = "PowerNV PSI Controller POWER8";
568 dc->realize = pnv_psi_power8_realize;
569
570 ppc->xscom_pcba = PNV_XSCOM_PSIHB_BASE;
571 ppc->xscom_size = PNV_XSCOM_PSIHB_SIZE;
572 ppc->bar_mask = PSIHB_BAR_MASK;
573 ppc->compat = compat;
574 ppc->compat_size = sizeof(compat);
575 }
576
577 static const TypeInfo pnv_psi_power8_info = {
578 .name = TYPE_PNV8_PSI,
579 .parent = TYPE_PNV_PSI,
580 .instance_size = sizeof(Pnv8Psi),
581 .instance_init = pnv_psi_power8_instance_init,
582 .class_init = pnv_psi_power8_class_init,
583 };
584
585
586 /* Common registers */
587
588 #define PSIHB9_CR 0x20
589 #define PSIHB9_SEMR 0x28
590
591 /* P9 registers */
592
593 #define PSIHB9_INTERRUPT_CONTROL 0x58
594 #define PSIHB9_IRQ_METHOD PPC_BIT(0)
595 #define PSIHB9_IRQ_RESET PPC_BIT(1)
596 #define PSIHB9_ESB_CI_BASE 0x60
597 #define PSIHB9_ESB_CI_ADDR_MASK PPC_BITMASK(8, 47)
598 #define PSIHB9_ESB_CI_VALID PPC_BIT(63)
599 #define PSIHB9_ESB_NOTIF_ADDR 0x68
600 #define PSIHB9_ESB_NOTIF_ADDR_MASK PPC_BITMASK(8, 60)
601 #define PSIHB9_ESB_NOTIF_VALID PPC_BIT(63)
602 #define PSIHB9_IVT_OFFSET 0x70
603 #define PSIHB9_IVT_OFF_SHIFT 32
604
605 #define PSIHB9_IRQ_LEVEL 0x78 /* assertion */
606 #define PSIHB9_IRQ_LEVEL_PSI PPC_BIT(0)
607 #define PSIHB9_IRQ_LEVEL_OCC PPC_BIT(1)
608 #define PSIHB9_IRQ_LEVEL_FSI PPC_BIT(2)
609 #define PSIHB9_IRQ_LEVEL_LPCHC PPC_BIT(3)
610 #define PSIHB9_IRQ_LEVEL_LOCAL_ERR PPC_BIT(4)
611 #define PSIHB9_IRQ_LEVEL_GLOBAL_ERR PPC_BIT(5)
612 #define PSIHB9_IRQ_LEVEL_TPM PPC_BIT(6)
613 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ1 PPC_BIT(7)
614 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ2 PPC_BIT(8)
615 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ3 PPC_BIT(9)
616 #define PSIHB9_IRQ_LEVEL_LPC_SIRQ4 PPC_BIT(10)
617 #define PSIHB9_IRQ_LEVEL_SBE_I2C PPC_BIT(11)
618 #define PSIHB9_IRQ_LEVEL_DIO PPC_BIT(12)
619 #define PSIHB9_IRQ_LEVEL_PSU PPC_BIT(13)
620 #define PSIHB9_IRQ_LEVEL_I2C_C PPC_BIT(14)
621 #define PSIHB9_IRQ_LEVEL_I2C_D PPC_BIT(15)
622 #define PSIHB9_IRQ_LEVEL_I2C_E PPC_BIT(16)
623 #define PSIHB9_IRQ_LEVEL_SBE PPC_BIT(19)
624
625 #define PSIHB9_IRQ_STAT 0x80 /* P bit */
626 #define PSIHB9_IRQ_STAT_PSI PPC_BIT(0)
627 #define PSIHB9_IRQ_STAT_OCC PPC_BIT(1)
628 #define PSIHB9_IRQ_STAT_FSI PPC_BIT(2)
629 #define PSIHB9_IRQ_STAT_LPCHC PPC_BIT(3)
630 #define PSIHB9_IRQ_STAT_LOCAL_ERR PPC_BIT(4)
631 #define PSIHB9_IRQ_STAT_GLOBAL_ERR PPC_BIT(5)
632 #define PSIHB9_IRQ_STAT_TPM PPC_BIT(6)
633 #define PSIHB9_IRQ_STAT_LPC_SIRQ1 PPC_BIT(7)
634 #define PSIHB9_IRQ_STAT_LPC_SIRQ2 PPC_BIT(8)
635 #define PSIHB9_IRQ_STAT_LPC_SIRQ3 PPC_BIT(9)
636 #define PSIHB9_IRQ_STAT_LPC_SIRQ4 PPC_BIT(10)
637 #define PSIHB9_IRQ_STAT_SBE_I2C PPC_BIT(11)
638 #define PSIHB9_IRQ_STAT_DIO PPC_BIT(12)
639 #define PSIHB9_IRQ_STAT_PSU PPC_BIT(13)
640
641 /* P10 register extensions */
642
643 #define PSIHB10_CR PSIHB9_CR
644 #define PSIHB10_CR_STORE_EOI PPC_BIT(12)
645
646 #define PSIHB10_ESB_CI_BASE PSIHB9_ESB_CI_BASE
647 #define PSIHB10_ESB_CI_64K PPC_BIT(1)
648
pnv_psi_notify(XiveNotifier * xf,uint32_t srcno,bool pq_checked)649 static void pnv_psi_notify(XiveNotifier *xf, uint32_t srcno, bool pq_checked)
650 {
651 PnvPsi *psi = PNV_PSI(xf);
652 uint64_t notif_port = psi->regs[PSIHB_REG(PSIHB9_ESB_NOTIF_ADDR)];
653 bool valid = notif_port & PSIHB9_ESB_NOTIF_VALID;
654 uint64_t notify_addr = notif_port & ~PSIHB9_ESB_NOTIF_VALID;
655
656 uint32_t offset =
657 (psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
658 uint64_t data = offset | srcno;
659 MemTxResult result;
660
661 if (pq_checked) {
662 data |= XIVE_TRIGGER_PQ;
663 }
664
665 if (!valid) {
666 return;
667 }
668
669 address_space_stq_be(&address_space_memory, notify_addr, data,
670 MEMTXATTRS_UNSPECIFIED, &result);
671 if (result != MEMTX_OK) {
672 qemu_log_mask(LOG_GUEST_ERROR, "%s: trigger failed @%"
673 HWADDR_PRIx "\n", __func__, notif_port);
674 return;
675 }
676 }
677
pnv_psi_p9_mmio_read(void * opaque,hwaddr addr,unsigned size)678 static uint64_t pnv_psi_p9_mmio_read(void *opaque, hwaddr addr, unsigned size)
679 {
680 PnvPsi *psi = PNV_PSI(opaque);
681 uint32_t reg = PSIHB_REG(addr);
682 uint64_t val = -1;
683
684 switch (addr) {
685 case PSIHB9_CR:
686 case PSIHB9_SEMR:
687 /* FSP stuff */
688 case PSIHB9_INTERRUPT_CONTROL:
689 case PSIHB9_ESB_CI_BASE:
690 case PSIHB9_ESB_NOTIF_ADDR:
691 case PSIHB9_IVT_OFFSET:
692 val = psi->regs[reg];
693 break;
694 default:
695 qemu_log_mask(LOG_GUEST_ERROR, "PSI: read at 0x%" PRIx64 "\n", addr);
696 }
697
698 return val;
699 }
700
pnv_psi_p9_mmio_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)701 static void pnv_psi_p9_mmio_write(void *opaque, hwaddr addr,
702 uint64_t val, unsigned size)
703 {
704 PnvPsi *psi = PNV_PSI(opaque);
705 Pnv9Psi *psi9 = PNV9_PSI(psi);
706 uint32_t reg = PSIHB_REG(addr);
707 MemoryRegion *sysmem = get_system_memory();
708
709 switch (addr) {
710 case PSIHB9_CR:
711 if (val & PSIHB10_CR_STORE_EOI) {
712 psi9->source.esb_flags |= XIVE_SRC_STORE_EOI;
713 } else {
714 psi9->source.esb_flags &= ~XIVE_SRC_STORE_EOI;
715 }
716 break;
717
718 case PSIHB9_SEMR:
719 /* FSP stuff */
720 break;
721 case PSIHB9_INTERRUPT_CONTROL:
722 if (val & PSIHB9_IRQ_RESET) {
723 device_cold_reset(DEVICE(&psi9->source));
724 }
725 psi->regs[reg] = val;
726 break;
727
728 case PSIHB9_ESB_CI_BASE:
729 if (val & PSIHB10_ESB_CI_64K) {
730 psi9->source.esb_shift = XIVE_ESB_64K;
731 } else {
732 psi9->source.esb_shift = XIVE_ESB_4K;
733 }
734 if (!(val & PSIHB9_ESB_CI_VALID)) {
735 if (psi->regs[reg] & PSIHB9_ESB_CI_VALID) {
736 memory_region_del_subregion(sysmem, &psi9->source.esb_mmio);
737 }
738 } else {
739 if (!(psi->regs[reg] & PSIHB9_ESB_CI_VALID)) {
740 hwaddr esb_addr =
741 val & ~(PSIHB9_ESB_CI_VALID | PSIHB10_ESB_CI_64K);
742 memory_region_add_subregion(sysmem, esb_addr,
743 &psi9->source.esb_mmio);
744 }
745 }
746 psi->regs[reg] = val;
747 break;
748
749 case PSIHB9_ESB_NOTIF_ADDR:
750 psi->regs[reg] = val;
751 break;
752 case PSIHB9_IVT_OFFSET:
753 psi->regs[reg] = val;
754 break;
755 default:
756 qemu_log_mask(LOG_GUEST_ERROR, "PSI: write at 0x%" PRIx64 "\n", addr);
757 }
758 }
759
760 static const MemoryRegionOps pnv_psi_p9_mmio_ops = {
761 .read = pnv_psi_p9_mmio_read,
762 .write = pnv_psi_p9_mmio_write,
763 .endianness = DEVICE_BIG_ENDIAN,
764 .valid = {
765 .min_access_size = 8,
766 .max_access_size = 8,
767 },
768 .impl = {
769 .min_access_size = 8,
770 .max_access_size = 8,
771 },
772 };
773
pnv_psi_p9_xscom_read(void * opaque,hwaddr addr,unsigned size)774 static uint64_t pnv_psi_p9_xscom_read(void *opaque, hwaddr addr, unsigned size)
775 {
776 uint32_t reg = addr >> 3;
777 uint64_t val = -1;
778
779 if (reg < PSIHB_XSCOM_BAR) {
780 /* FIR, not modeled */
781 qemu_log_mask(LOG_UNIMP, "PSI: xscom read at 0x%08x\n", reg);
782 } else {
783 val = pnv_psi_p9_mmio_read(opaque, PSIHB_MMIO(reg), size);
784 }
785 return val;
786 }
787
pnv_psi_p9_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)788 static void pnv_psi_p9_xscom_write(void *opaque, hwaddr addr,
789 uint64_t val, unsigned size)
790 {
791 PnvPsi *psi = PNV_PSI(opaque);
792 uint32_t reg = addr >> 3;
793
794 if (reg < PSIHB_XSCOM_BAR) {
795 /* FIR, not modeled */
796 qemu_log_mask(LOG_UNIMP, "PSI: xscom write at 0x%08x\n", reg);
797 } else if (reg == PSIHB_XSCOM_BAR) {
798 pnv_psi_set_bar(psi, val);
799 } else {
800 pnv_psi_p9_mmio_write(opaque, PSIHB_MMIO(reg), val, size);
801 }
802 }
803
804 static const MemoryRegionOps pnv_psi_p9_xscom_ops = {
805 .read = pnv_psi_p9_xscom_read,
806 .write = pnv_psi_p9_xscom_write,
807 .endianness = DEVICE_BIG_ENDIAN,
808 .valid = {
809 .min_access_size = 8,
810 .max_access_size = 8,
811 },
812 .impl = {
813 .min_access_size = 8,
814 .max_access_size = 8,
815 }
816 };
817
pnv_psi_power9_set_irq(void * opaque,int irq,int state)818 static void pnv_psi_power9_set_irq(void *opaque, int irq, int state)
819 {
820 PnvPsi *psi = opaque;
821 uint64_t irq_method = psi->regs[PSIHB_REG(PSIHB9_INTERRUPT_CONTROL)];
822
823 if (irq_method & PSIHB9_IRQ_METHOD) {
824 qemu_log_mask(LOG_GUEST_ERROR, "PSI: LSI IRQ method no supported\n");
825 return;
826 }
827
828 /* Update LSI levels */
829 if (state) {
830 psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] |= PPC_BIT(irq);
831 } else {
832 psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] &= ~PPC_BIT(irq);
833 }
834
835 qemu_set_irq(psi->qirqs[irq], state);
836 }
837
pnv_psi_power9_reset(DeviceState * dev)838 static void pnv_psi_power9_reset(DeviceState *dev)
839 {
840 Pnv9Psi *psi = PNV9_PSI(dev);
841
842 pnv_psi_reset(dev);
843
844 if (memory_region_is_mapped(&psi->source.esb_mmio)) {
845 memory_region_del_subregion(get_system_memory(), &psi->source.esb_mmio);
846 }
847 }
848
pnv_psi_power9_instance_init(Object * obj)849 static void pnv_psi_power9_instance_init(Object *obj)
850 {
851 Pnv9Psi *psi = PNV9_PSI(obj);
852
853 object_initialize_child(obj, "source", &psi->source, TYPE_XIVE_SOURCE);
854 object_property_add_alias(obj, "shift", OBJECT(&psi->source), "shift");
855 }
856
pnv_psi_power9_realize(DeviceState * dev,Error ** errp)857 static void pnv_psi_power9_realize(DeviceState *dev, Error **errp)
858 {
859 PnvPsi *psi = PNV_PSI(dev);
860 XiveSource *xsrc = &PNV9_PSI(psi)->source;
861 int i;
862
863 object_property_set_int(OBJECT(xsrc), "nr-irqs", PSIHB9_NUM_IRQS,
864 &error_fatal);
865 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(psi), &error_abort);
866 object_property_set_int(OBJECT(xsrc), "reset-pq", XIVE_ESB_RESET,
867 &error_abort);
868 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
869 return;
870 }
871
872 for (i = 0; i < xsrc->nr_irqs; i++) {
873 xive_source_irq_set_lsi(xsrc, i);
874 }
875
876 psi->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
877
878 qdev_init_gpio_in(dev, pnv_psi_power9_set_irq, xsrc->nr_irqs);
879
880 /* XSCOM region for PSI registers */
881 pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_p9_xscom_ops,
882 psi, "xscom-psi", PNV9_XSCOM_PSIHB_SIZE);
883
884 /* MMIO region for PSI registers */
885 memory_region_init_io(&psi->regs_mr, OBJECT(dev), &pnv_psi_p9_mmio_ops, psi,
886 "psihb", PNV9_PSIHB_SIZE);
887
888 pnv_psi_realize(dev, errp);
889 }
890
pnv_psi_power9_class_init(ObjectClass * klass,void * data)891 static void pnv_psi_power9_class_init(ObjectClass *klass, void *data)
892 {
893 DeviceClass *dc = DEVICE_CLASS(klass);
894 PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
895 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
896 static const char compat[] = "ibm,power9-psihb-x\0ibm,psihb-x";
897
898 dc->desc = "PowerNV PSI Controller POWER9";
899 dc->realize = pnv_psi_power9_realize;
900 dc->reset = pnv_psi_power9_reset;
901
902 ppc->xscom_pcba = PNV9_XSCOM_PSIHB_BASE;
903 ppc->xscom_size = PNV9_XSCOM_PSIHB_SIZE;
904 ppc->bar_mask = PSIHB9_BAR_MASK;
905 ppc->compat = compat;
906 ppc->compat_size = sizeof(compat);
907
908 xfc->notify = pnv_psi_notify;
909 }
910
911 static const TypeInfo pnv_psi_power9_info = {
912 .name = TYPE_PNV9_PSI,
913 .parent = TYPE_PNV_PSI,
914 .instance_size = sizeof(Pnv9Psi),
915 .instance_init = pnv_psi_power9_instance_init,
916 .class_init = pnv_psi_power9_class_init,
917 .interfaces = (InterfaceInfo[]) {
918 { TYPE_XIVE_NOTIFIER },
919 { },
920 },
921 };
922
pnv_psi_power10_class_init(ObjectClass * klass,void * data)923 static void pnv_psi_power10_class_init(ObjectClass *klass, void *data)
924 {
925 DeviceClass *dc = DEVICE_CLASS(klass);
926 PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
927 static const char compat[] = "ibm,power10-psihb-x\0ibm,psihb-x";
928
929 dc->desc = "PowerNV PSI Controller POWER10";
930
931 ppc->xscom_pcba = PNV10_XSCOM_PSIHB_BASE;
932 ppc->xscom_size = PNV10_XSCOM_PSIHB_SIZE;
933 ppc->compat = compat;
934 ppc->compat_size = sizeof(compat);
935 }
936
937 static const TypeInfo pnv_psi_power10_info = {
938 .name = TYPE_PNV10_PSI,
939 .parent = TYPE_PNV9_PSI,
940 .class_init = pnv_psi_power10_class_init,
941 };
942
pnv_psi_class_init(ObjectClass * klass,void * data)943 static void pnv_psi_class_init(ObjectClass *klass, void *data)
944 {
945 DeviceClass *dc = DEVICE_CLASS(klass);
946 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
947
948 xdc->dt_xscom = pnv_psi_dt_xscom;
949
950 dc->desc = "PowerNV PSI Controller";
951 device_class_set_props(dc, pnv_psi_properties);
952 dc->reset = pnv_psi_reset;
953 dc->user_creatable = false;
954 }
955
956 static const TypeInfo pnv_psi_info = {
957 .name = TYPE_PNV_PSI,
958 .parent = TYPE_DEVICE,
959 .instance_size = sizeof(PnvPsi),
960 .class_init = pnv_psi_class_init,
961 .class_size = sizeof(PnvPsiClass),
962 .abstract = true,
963 .interfaces = (InterfaceInfo[]) {
964 { TYPE_PNV_XSCOM_INTERFACE },
965 { }
966 }
967 };
968
pnv_psi_register_types(void)969 static void pnv_psi_register_types(void)
970 {
971 type_register_static(&pnv_psi_info);
972 type_register_static(&pnv_psi_power8_info);
973 type_register_static(&pnv_psi_power9_info);
974 type_register_static(&pnv_psi_power10_info);
975 }
976
977 type_init(pnv_psi_register_types);
978
pnv_psi_pic_print_info(Pnv9Psi * psi9,GString * buf)979 void pnv_psi_pic_print_info(Pnv9Psi *psi9, GString *buf)
980 {
981 PnvPsi *psi = PNV_PSI(psi9);
982
983 uint32_t offset =
984 (psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
985
986 g_string_append_printf(buf, "PSIHB Source %08x .. %08x\n",
987 offset, offset + psi9->source.nr_irqs - 1);
988 xive_source_pic_print_info(&psi9->source, offset, buf);
989 }
990