xref: /openbmc/u-boot/drivers/clk/clk_stm32h7.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
4   * Author(s): Patrice Chotard, <patrice.chotard@st.com> for STMicroelectronics.
5   */
6  
7  #include <common.h>
8  #include <clk-uclass.h>
9  #include <dm.h>
10  #include <regmap.h>
11  #include <syscon.h>
12  #include <asm/io.h>
13  #include <dm/root.h>
14  
15  #include <dt-bindings/clock/stm32h7-clks.h>
16  
17  /* RCC CR specific definitions */
18  #define RCC_CR_HSION			BIT(0)
19  #define RCC_CR_HSIRDY			BIT(2)
20  
21  #define RCC_CR_HSEON			BIT(16)
22  #define RCC_CR_HSERDY			BIT(17)
23  #define RCC_CR_HSEBYP			BIT(18)
24  #define RCC_CR_PLL1ON			BIT(24)
25  #define RCC_CR_PLL1RDY			BIT(25)
26  
27  #define RCC_CR_HSIDIV_MASK		GENMASK(4, 3)
28  #define RCC_CR_HSIDIV_SHIFT		3
29  
30  #define RCC_CFGR_SW_MASK		GENMASK(2, 0)
31  #define RCC_CFGR_SW_HSI			0
32  #define RCC_CFGR_SW_CSI			1
33  #define RCC_CFGR_SW_HSE			2
34  #define RCC_CFGR_SW_PLL1		3
35  #define RCC_CFGR_TIMPRE			BIT(15)
36  
37  #define RCC_PLLCKSELR_PLLSRC_HSI	0
38  #define RCC_PLLCKSELR_PLLSRC_CSI	1
39  #define RCC_PLLCKSELR_PLLSRC_HSE	2
40  #define RCC_PLLCKSELR_PLLSRC_NO_CLK	3
41  
42  #define RCC_PLLCKSELR_PLLSRC_MASK	GENMASK(1, 0)
43  
44  #define RCC_PLLCKSELR_DIVM1_SHIFT	4
45  #define RCC_PLLCKSELR_DIVM1_MASK	GENMASK(9, 4)
46  
47  #define RCC_PLL1DIVR_DIVN1_MASK		GENMASK(8, 0)
48  
49  #define RCC_PLL1DIVR_DIVP1_SHIFT	9
50  #define RCC_PLL1DIVR_DIVP1_MASK		GENMASK(15, 9)
51  
52  #define RCC_PLL1DIVR_DIVQ1_SHIFT	16
53  #define RCC_PLL1DIVR_DIVQ1_MASK		GENMASK(22, 16)
54  
55  #define RCC_PLL1DIVR_DIVR1_SHIFT	24
56  #define RCC_PLL1DIVR_DIVR1_MASK		GENMASK(30, 24)
57  
58  #define RCC_PLL1FRACR_FRACN1_SHIFT	3
59  #define RCC_PLL1FRACR_FRACN1_MASK	GENMASK(15, 3)
60  
61  #define RCC_PLLCFGR_PLL1RGE_SHIFT	2
62  #define		PLL1RGE_1_2_MHZ		0
63  #define		PLL1RGE_2_4_MHZ		1
64  #define		PLL1RGE_4_8_MHZ		2
65  #define		PLL1RGE_8_16_MHZ	3
66  #define RCC_PLLCFGR_DIVP1EN		BIT(16)
67  #define RCC_PLLCFGR_DIVQ1EN		BIT(17)
68  #define RCC_PLLCFGR_DIVR1EN		BIT(18)
69  
70  #define RCC_D1CFGR_HPRE_MASK		GENMASK(3, 0)
71  #define RCC_D1CFGR_HPRE_DIVIDED		BIT(3)
72  #define RCC_D1CFGR_HPRE_DIVIDER		GENMASK(2, 0)
73  
74  #define RCC_D1CFGR_HPRE_DIV2		8
75  
76  #define RCC_D1CFGR_D1PPRE_SHIFT		4
77  #define RCC_D1CFGR_D1PPRE_DIVIDED	BIT(6)
78  #define RCC_D1CFGR_D1PPRE_DIVIDER	GENMASK(5, 4)
79  
80  #define RCC_D1CFGR_D1CPRE_SHIFT		8
81  #define RCC_D1CFGR_D1CPRE_DIVIDER	GENMASK(10, 8)
82  #define RCC_D1CFGR_D1CPRE_DIVIDED	BIT(11)
83  
84  #define RCC_D2CFGR_D2PPRE1_SHIFT	4
85  #define RCC_D2CFGR_D2PPRE1_DIVIDED	BIT(6)
86  #define RCC_D2CFGR_D2PPRE1_DIVIDER	GENMASK(5, 4)
87  
88  #define RCC_D2CFGR_D2PPRE2_SHIFT	8
89  #define RCC_D2CFGR_D2PPRE2_DIVIDED	BIT(10)
90  #define RCC_D2CFGR_D2PPRE2_DIVIDER	GENMASK(9, 8)
91  
92  #define RCC_D3CFGR_D3PPRE_SHIFT		4
93  #define RCC_D3CFGR_D3PPRE_DIVIDED	BIT(6)
94  #define RCC_D3CFGR_D3PPRE_DIVIDER	GENMASK(5, 4)
95  
96  #define RCC_D1CCIPR_FMCSRC_MASK		GENMASK(1, 0)
97  #define		FMCSRC_HCLKD1		0
98  #define		FMCSRC_PLL1_Q_CK	1
99  #define		FMCSRC_PLL2_R_CK	2
100  #define		FMCSRC_PER_CK		3
101  
102  #define RCC_D1CCIPR_QSPISRC_MASK	GENMASK(5, 4)
103  #define RCC_D1CCIPR_QSPISRC_SHIFT	4
104  #define		QSPISRC_HCLKD1		0
105  #define		QSPISRC_PLL1_Q_CK	1
106  #define		QSPISRC_PLL2_R_CK	2
107  #define		QSPISRC_PER_CK		3
108  
109  #define PWR_CR3				0x0c
110  #define PWR_CR3_SCUEN			BIT(2)
111  #define PWR_D3CR			0x18
112  #define PWR_D3CR_VOS_MASK		GENMASK(15, 14)
113  #define PWR_D3CR_VOS_SHIFT		14
114  #define		VOS_SCALE_3		1
115  #define		VOS_SCALE_2		2
116  #define		VOS_SCALE_1		3
117  #define PWR_D3CR_VOSREADY		BIT(13)
118  
119  struct stm32_rcc_regs {
120  	u32 cr;		/* 0x00 Source Control Register */
121  	u32 icscr;	/* 0x04 Internal Clock Source Calibration Register */
122  	u32 crrcr;	/* 0x08 Clock Recovery RC Register */
123  	u32 reserved1;	/* 0x0c reserved */
124  	u32 cfgr;	/* 0x10 Clock Configuration Register */
125  	u32 reserved2;	/* 0x14 reserved */
126  	u32 d1cfgr;	/* 0x18 Domain 1 Clock Configuration Register */
127  	u32 d2cfgr;	/* 0x1c Domain 2 Clock Configuration Register */
128  	u32 d3cfgr;	/* 0x20 Domain 3 Clock Configuration Register */
129  	u32 reserved3;	/* 0x24 reserved */
130  	u32 pllckselr;	/* 0x28 PLLs Clock Source Selection Register */
131  	u32 pllcfgr;	/* 0x2c PLLs Configuration Register */
132  	u32 pll1divr;	/* 0x30 PLL1 Dividers Configuration Register */
133  	u32 pll1fracr;	/* 0x34 PLL1 Fractional Divider Register */
134  	u32 pll2divr;	/* 0x38 PLL2 Dividers Configuration Register */
135  	u32 pll2fracr;	/* 0x3c PLL2 Fractional Divider Register */
136  	u32 pll3divr;	/* 0x40 PLL3 Dividers Configuration Register */
137  	u32 pll3fracr;	/* 0x44 PLL3 Fractional Divider Register */
138  	u32 reserved4;	/* 0x48 reserved */
139  	u32 d1ccipr;	/* 0x4c Domain 1 Kernel Clock Configuration Register */
140  	u32 d2ccip1r;	/* 0x50 Domain 2 Kernel Clock Configuration Register */
141  	u32 d2ccip2r;	/* 0x54 Domain 2 Kernel Clock Configuration Register */
142  	u32 d3ccipr;	/* 0x58 Domain 3 Kernel Clock Configuration Register */
143  	u32 reserved5;	/* 0x5c reserved */
144  	u32 cier;	/* 0x60 Clock Source Interrupt Enable Register */
145  	u32 cifr;	/* 0x64 Clock Source Interrupt Flag Register */
146  	u32 cicr;	/* 0x68 Clock Source Interrupt Clear Register */
147  	u32 reserved6;	/* 0x6c reserved */
148  	u32 bdcr;	/* 0x70 Backup Domain Control Register */
149  	u32 csr;	/* 0x74 Clock Control and Status Register */
150  	u32 reserved7;	/* 0x78 reserved */
151  
152  	u32 ahb3rstr;	/* 0x7c AHB3 Peripheral Reset Register */
153  	u32 ahb1rstr;	/* 0x80 AHB1 Peripheral Reset Register */
154  	u32 ahb2rstr;	/* 0x84 AHB2 Peripheral Reset Register */
155  	u32 ahb4rstr;	/* 0x88 AHB4 Peripheral Reset Register */
156  
157  	u32 apb3rstr;	/* 0x8c APB3 Peripheral Reset Register */
158  	u32 apb1lrstr;	/* 0x90 APB1 low Peripheral Reset Register */
159  	u32 apb1hrstr;	/* 0x94 APB1 high Peripheral Reset Register */
160  	u32 apb2rstr;	/* 0x98 APB2 Clock Register */
161  	u32 apb4rstr;	/* 0x9c APB4 Clock Register */
162  
163  	u32 gcr;	/* 0xa0 Global Control Register */
164  	u32 reserved8;	/* 0xa4 reserved */
165  	u32 d3amr;	/* 0xa8 D3 Autonomous mode Register */
166  	u32 reserved9[9];/* 0xac to 0xcc reserved */
167  	u32 rsr;	/* 0xd0 Reset Status Register */
168  	u32 ahb3enr;	/* 0xd4 AHB3 Clock Register */
169  	u32 ahb1enr;	/* 0xd8 AHB1 Clock Register */
170  	u32 ahb2enr;	/* 0xdc AHB2 Clock Register */
171  	u32 ahb4enr;	/* 0xe0 AHB4 Clock Register */
172  
173  	u32 apb3enr;	/* 0xe4 APB3 Clock Register */
174  	u32 apb1lenr;	/* 0xe8 APB1 low Clock Register */
175  	u32 apb1henr;	/* 0xec APB1 high Clock Register */
176  	u32 apb2enr;	/* 0xf0 APB2 Clock Register */
177  	u32 apb4enr;	/* 0xf4 APB4 Clock Register */
178  };
179  
180  #define RCC_AHB3ENR	offsetof(struct stm32_rcc_regs, ahb3enr)
181  #define RCC_AHB1ENR	offsetof(struct stm32_rcc_regs, ahb1enr)
182  #define RCC_AHB2ENR	offsetof(struct stm32_rcc_regs, ahb2enr)
183  #define RCC_AHB4ENR	offsetof(struct stm32_rcc_regs, ahb4enr)
184  #define RCC_APB3ENR	offsetof(struct stm32_rcc_regs, apb3enr)
185  #define RCC_APB1LENR	offsetof(struct stm32_rcc_regs, apb1lenr)
186  #define RCC_APB1HENR	offsetof(struct stm32_rcc_regs, apb1henr)
187  #define RCC_APB2ENR	offsetof(struct stm32_rcc_regs, apb2enr)
188  #define RCC_APB4ENR	offsetof(struct stm32_rcc_regs, apb4enr)
189  
190  struct clk_cfg {
191  	u32 gate_offset;
192  	u8  gate_bit_idx;
193  	const char *name;
194  };
195  
196  /*
197   * the way all these entries are sorted in this array could seem
198   * unlogical, but we are dependant of kernel DT_bindings,
199   * where clocks are separate in 2 banks, peripheral clocks and
200   * kernel clocks.
201   */
202  
203  static const struct clk_cfg clk_map[] = {
204  	{RCC_AHB3ENR,  31, "d1sram1"},	/* peripheral clocks */
205  	{RCC_AHB3ENR,  30, "itcm"},
206  	{RCC_AHB3ENR,  29, "dtcm2"},
207  	{RCC_AHB3ENR,  28, "dtcm1"},
208  	{RCC_AHB3ENR,   8, "flitf"},
209  	{RCC_AHB3ENR,   5, "jpgdec"},
210  	{RCC_AHB3ENR,   4, "dma2d"},
211  	{RCC_AHB3ENR,   0, "mdma"},
212  	{RCC_AHB1ENR,  28, "usb2ulpi"},
213  	{RCC_AHB1ENR,  17, "eth1rx"},
214  	{RCC_AHB1ENR,  16, "eth1tx"},
215  	{RCC_AHB1ENR,  15, "eth1mac"},
216  	{RCC_AHB1ENR,  14, "art"},
217  	{RCC_AHB1ENR,  26, "usb1ulpi"},
218  	{RCC_AHB1ENR,   1, "dma2"},
219  	{RCC_AHB1ENR,   0, "dma1"},
220  	{RCC_AHB2ENR,  31, "d2sram3"},
221  	{RCC_AHB2ENR,  30, "d2sram2"},
222  	{RCC_AHB2ENR,  29, "d2sram1"},
223  	{RCC_AHB2ENR,   5, "hash"},
224  	{RCC_AHB2ENR,   4, "crypt"},
225  	{RCC_AHB2ENR,   0, "camitf"},
226  	{RCC_AHB4ENR,  28, "bkpram"},
227  	{RCC_AHB4ENR,  25, "hsem"},
228  	{RCC_AHB4ENR,  21, "bdma"},
229  	{RCC_AHB4ENR,  19, "crc"},
230  	{RCC_AHB4ENR,  10, "gpiok"},
231  	{RCC_AHB4ENR,   9, "gpioj"},
232  	{RCC_AHB4ENR,   8, "gpioi"},
233  	{RCC_AHB4ENR,   7, "gpioh"},
234  	{RCC_AHB4ENR,   6, "gpiog"},
235  	{RCC_AHB4ENR,   5, "gpiof"},
236  	{RCC_AHB4ENR,   4, "gpioe"},
237  	{RCC_AHB4ENR,   3, "gpiod"},
238  	{RCC_AHB4ENR,   2, "gpioc"},
239  	{RCC_AHB4ENR,   1, "gpiob"},
240  	{RCC_AHB4ENR,   0, "gpioa"},
241  	{RCC_APB3ENR,   6, "wwdg1"},
242  	{RCC_APB1LENR, 29, "dac12"},
243  	{RCC_APB1LENR, 11, "wwdg2"},
244  	{RCC_APB1LENR,  8, "tim14"},
245  	{RCC_APB1LENR,  7, "tim13"},
246  	{RCC_APB1LENR,  6, "tim12"},
247  	{RCC_APB1LENR,  5, "tim7"},
248  	{RCC_APB1LENR,  4, "tim6"},
249  	{RCC_APB1LENR,  3, "tim5"},
250  	{RCC_APB1LENR,  2, "tim4"},
251  	{RCC_APB1LENR,  1, "tim3"},
252  	{RCC_APB1LENR,  0, "tim2"},
253  	{RCC_APB1HENR,  5, "mdios"},
254  	{RCC_APB1HENR,  4, "opamp"},
255  	{RCC_APB1HENR,  1, "crs"},
256  	{RCC_APB2ENR,  18, "tim17"},
257  	{RCC_APB2ENR,  17, "tim16"},
258  	{RCC_APB2ENR,  16, "tim15"},
259  	{RCC_APB2ENR,   1, "tim8"},
260  	{RCC_APB2ENR,   0, "tim1"},
261  	{RCC_APB4ENR,  26, "tmpsens"},
262  	{RCC_APB4ENR,  16, "rtcapb"},
263  	{RCC_APB4ENR,  15, "vref"},
264  	{RCC_APB4ENR,  14, "comp12"},
265  	{RCC_APB4ENR,   1, "syscfg"},
266  	{RCC_AHB3ENR,  16, "sdmmc1"},	/* kernel clocks */
267  	{RCC_AHB3ENR,  14, "quadspi"},
268  	{RCC_AHB3ENR,  12, "fmc"},
269  	{RCC_AHB1ENR,  27, "usb2otg"},
270  	{RCC_AHB1ENR,  25, "usb1otg"},
271  	{RCC_AHB1ENR,   5, "adc12"},
272  	{RCC_AHB2ENR,   9, "sdmmc2"},
273  	{RCC_AHB2ENR,   6, "rng"},
274  	{RCC_AHB4ENR,  24, "adc3"},
275  	{RCC_APB3ENR,   4, "dsi"},
276  	{RCC_APB3ENR,   3, "ltdc"},
277  	{RCC_APB1LENR, 31, "usart8"},
278  	{RCC_APB1LENR, 30, "usart7"},
279  	{RCC_APB1LENR, 27, "hdmicec"},
280  	{RCC_APB1LENR, 23, "i2c3"},
281  	{RCC_APB1LENR, 22, "i2c2"},
282  	{RCC_APB1LENR, 21, "i2c1"},
283  	{RCC_APB1LENR, 20, "uart5"},
284  	{RCC_APB1LENR, 19, "uart4"},
285  	{RCC_APB1LENR, 18, "usart3"},
286  	{RCC_APB1LENR, 17, "usart2"},
287  	{RCC_APB1LENR, 16, "spdifrx"},
288  	{RCC_APB1LENR, 15, "spi3"},
289  	{RCC_APB1LENR, 14, "spi2"},
290  	{RCC_APB1LENR,  9, "lptim1"},
291  	{RCC_APB1HENR,  8, "fdcan"},
292  	{RCC_APB1HENR,  2, "swp"},
293  	{RCC_APB2ENR,  29, "hrtim"},
294  	{RCC_APB2ENR,  28, "dfsdm1"},
295  	{RCC_APB2ENR,  24, "sai3"},
296  	{RCC_APB2ENR,  23, "sai2"},
297  	{RCC_APB2ENR,  22, "sai1"},
298  	{RCC_APB2ENR,  20, "spi5"},
299  	{RCC_APB2ENR,  13, "spi4"},
300  	{RCC_APB2ENR,  12, "spi1"},
301  	{RCC_APB2ENR,   5, "usart6"},
302  	{RCC_APB2ENR,   4, "usart1"},
303  	{RCC_APB4ENR,  21, "sai4a"},
304  	{RCC_APB4ENR,  21, "sai4b"},
305  	{RCC_APB4ENR,  12, "lptim5"},
306  	{RCC_APB4ENR,  11, "lptim4"},
307  	{RCC_APB4ENR,  10, "lptim3"},
308  	{RCC_APB4ENR,   9, "lptim2"},
309  	{RCC_APB4ENR,   7, "i2c4"},
310  	{RCC_APB4ENR,   5,  "spi6"},
311  	{RCC_APB4ENR,   3, "lpuart1"},
312  };
313  
314  struct stm32_clk {
315  	struct stm32_rcc_regs *rcc_base;
316  	struct regmap *pwr_regmap;
317  };
318  
319  struct pll_psc {
320  	u8	divm;
321  	u16	divn;
322  	u8	divp;
323  	u8	divq;
324  	u8	divr;
325  };
326  
327  /*
328   * OSC_HSE = 25 MHz
329   * VCO = 500MHz
330   * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
331   */
332  struct pll_psc sys_pll_psc = {
333  	.divm = 4,
334  	.divn = 80,
335  	.divp = 2,
336  	.divq = 2,
337  	.divr = 2,
338  };
339  
340  enum apb {
341  	APB1,
342  	APB2,
343  };
344  
configure_clocks(struct udevice * dev)345  int configure_clocks(struct udevice *dev)
346  {
347  	struct stm32_clk *priv = dev_get_priv(dev);
348  	struct stm32_rcc_regs *regs = priv->rcc_base;
349  	uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
350  	uint32_t pllckselr = 0;
351  	uint32_t pll1divr = 0;
352  	uint32_t pllcfgr = 0;
353  
354  	/* Switch on HSI */
355  	setbits_le32(&regs->cr, RCC_CR_HSION);
356  	while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
357  		;
358  
359  	/* Reset CFGR, now HSI is the default system clock */
360  	writel(0, &regs->cfgr);
361  
362  	/* Set all kernel domain clock registers to reset value*/
363  	writel(0x0, &regs->d1ccipr);
364  	writel(0x0, &regs->d2ccip1r);
365  	writel(0x0, &regs->d2ccip2r);
366  
367  	/* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
368  	clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
369  			VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
370  	/* Lock supply configuration update */
371  	clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
372  	while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
373  		;
374  
375  	/* disable HSE to configure it  */
376  	clrbits_le32(&regs->cr, RCC_CR_HSEON);
377  	while ((readl(&regs->cr) & RCC_CR_HSERDY))
378  		;
379  
380  	/* clear HSE bypass and set it ON */
381  	clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
382  	/* Switch on HSE */
383  	setbits_le32(&regs->cr, RCC_CR_HSEON);
384  	while (!(readl(&regs->cr) & RCC_CR_HSERDY))
385  		;
386  
387  	/* pll setup, disable it */
388  	clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
389  	while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
390  		;
391  
392  	/* Select HSE as PLL clock source */
393  	pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
394  	pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
395  	writel(pllckselr, &regs->pllckselr);
396  
397  	pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
398  	pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
399  	pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
400  	pll1divr |= (sys_pll_psc.divn - 1);
401  	writel(pll1divr, &regs->pll1divr);
402  
403  	pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
404  	pllcfgr |= RCC_PLLCFGR_DIVP1EN;
405  	pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
406  	pllcfgr |= RCC_PLLCFGR_DIVR1EN;
407  	writel(pllcfgr, &regs->pllcfgr);
408  
409  	/* pll setup, enable it */
410  	setbits_le32(&regs->cr, RCC_CR_PLL1ON);
411  
412  	/* set HPRE (/2) DI clk --> 125MHz */
413  	clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
414  			RCC_D1CFGR_HPRE_DIV2);
415  
416  	/*  select PLL1 as system clock source (sys_ck)*/
417  	clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
418  	while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
419  		;
420  
421  	/* sdram: use pll1_q as fmc_k clk */
422  	clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
423  			FMCSRC_PLL1_Q_CK);
424  
425  	return 0;
426  }
427  
stm32_get_HSI_divider(struct stm32_rcc_regs * regs)428  static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
429  {
430  	u32 divider;
431  
432  	/* get HSI divider value */
433  	divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
434  	divider = divider >> RCC_CR_HSIDIV_SHIFT;
435  
436  	return divider;
437  };
438  
439  enum pllsrc {
440  	HSE,
441  	LSE,
442  	HSI,
443  	CSI,
444  	I2S,
445  	TIMER,
446  	PLLSRC_NB,
447  };
448  
449  static const char * const pllsrc_name[PLLSRC_NB] = {
450  	[HSE] = "clk-hse",
451  	[LSE] = "clk-lse",
452  	[HSI] = "clk-hsi",
453  	[CSI] = "clk-csi",
454  	[I2S] = "clk-i2s",
455  	[TIMER] = "timer-clk"
456  };
457  
stm32_get_rate(struct stm32_rcc_regs * regs,enum pllsrc pllsrc)458  static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
459  {
460  	struct clk clk;
461  	struct udevice *fixed_clock_dev = NULL;
462  	u32 divider;
463  	int ret;
464  	const char *name = pllsrc_name[pllsrc];
465  
466  	debug("%s name %s\n", __func__, name);
467  
468  	clk.id = 0;
469  	ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
470  	if (ret) {
471  		pr_err("Can't find clk %s (%d)", name, ret);
472  		return 0;
473  	}
474  
475  	ret = clk_request(fixed_clock_dev, &clk);
476  	if (ret) {
477  		pr_err("Can't request %s clk (%d)", name, ret);
478  		return 0;
479  	}
480  
481  	divider = 0;
482  	if (pllsrc == HSI)
483  		divider = stm32_get_HSI_divider(regs);
484  
485  	debug("%s divider %d rate %ld\n", __func__,
486  	      divider, clk_get_rate(&clk));
487  
488  	return clk_get_rate(&clk) >> divider;
489  };
490  
491  enum pll1_output {
492  	PLL1_P_CK,
493  	PLL1_Q_CK,
494  	PLL1_R_CK,
495  };
496  
stm32_get_PLL1_rate(struct stm32_rcc_regs * regs,enum pll1_output output)497  static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
498  			       enum pll1_output output)
499  {
500  	ulong pllsrc = 0;
501  	u32 divm1, divn1, divp1, divq1, divr1, fracn1;
502  	ulong vco, rate;
503  
504  	/* get the PLLSRC */
505  	switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
506  	case RCC_PLLCKSELR_PLLSRC_HSI:
507  		pllsrc = stm32_get_rate(regs, HSI);
508  		break;
509  	case RCC_PLLCKSELR_PLLSRC_CSI:
510  		pllsrc = stm32_get_rate(regs, CSI);
511  		break;
512  	case RCC_PLLCKSELR_PLLSRC_HSE:
513  		pllsrc = stm32_get_rate(regs, HSE);
514  		break;
515  	case RCC_PLLCKSELR_PLLSRC_NO_CLK:
516  		/* shouldn't happen */
517  		pr_err("wrong value for RCC_PLLCKSELR register\n");
518  		pllsrc = 0;
519  		break;
520  	}
521  
522  	/* pllsrc = 0 ? no need to go ahead */
523  	if (!pllsrc)
524  		return pllsrc;
525  
526  	/* get divm1, divp1, divn1 and divr1 */
527  	divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
528  	divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
529  
530  	divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
531  
532  	divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
533  	divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
534  
535  	divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
536  	divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
537  
538  	divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
539  	divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
540  
541  	fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
542  	fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
543  
544  	vco = (pllsrc / divm1) * divn1;
545  	rate = (pllsrc * fracn1) / (divm1 * 8192);
546  
547  	debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
548  	      __func__, divm1, divn1, divp1, divq1, divr1);
549  	debug("%s fracn1 = %d vco = %ld rate = %ld\n",
550  	      __func__, fracn1, vco, rate);
551  
552  	switch (output) {
553  	case PLL1_P_CK:
554  		return (vco + rate) / divp1;
555  		break;
556  	case PLL1_Q_CK:
557  		return (vco + rate) / divq1;
558  		break;
559  
560  	case PLL1_R_CK:
561  		return (vco + rate) / divr1;
562  		break;
563  	}
564  
565  	return -EINVAL;
566  }
567  
stm32_get_apb_psc(struct stm32_rcc_regs * regs,enum apb apb)568  static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
569  {
570  	u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
571  	u32 d2cfgr = readl(&regs->d2cfgr);
572  
573  	if (apb == APB1) {
574  		if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
575  			/* get D2 domain APB1 prescaler */
576  			return prescaler_table[
577  				((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
578  				>> RCC_D2CFGR_D2PPRE1_SHIFT)];
579  	} else  { /* APB2 */
580  		if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
581  			/* get D2 domain APB2 prescaler */
582  			return prescaler_table[
583  				((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
584  				>> RCC_D2CFGR_D2PPRE2_SHIFT)];
585  	}
586  
587  	return 1;
588  };
589  
stm32_get_timer_rate(struct stm32_clk * priv,u32 sysclk,enum apb apb)590  static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
591  				enum apb apb)
592  {
593  	struct stm32_rcc_regs *regs = priv->rcc_base;
594  u32 psc = stm32_get_apb_psc(regs, apb);
595  
596  	if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
597  		/*
598  		 * if APB prescaler is configured to a
599  		 * division factor of 1, 2 or 4
600  		 */
601  		switch (psc) {
602  		case 1:
603  		case 2:
604  		case 4:
605  			return sysclk;
606  		case 8:
607  			return sysclk / 2;
608  		case 16:
609  			return sysclk / 4;
610  		default:
611  			pr_err("unexpected prescaler value (%d)\n", psc);
612  			return 0;
613  		}
614  	else
615  		switch (psc) {
616  		case 1:
617  			return sysclk;
618  		case 2:
619  		case 4:
620  		case 8:
621  		case 16:
622  			return sysclk / psc;
623  		default:
624  			pr_err("unexpected prescaler value (%d)\n", psc);
625  			return 0;
626  		}
627  };
628  
stm32_clk_get_rate(struct clk * clk)629  static ulong stm32_clk_get_rate(struct clk *clk)
630  {
631  	struct stm32_clk *priv = dev_get_priv(clk->dev);
632  	struct stm32_rcc_regs *regs = priv->rcc_base;
633  	ulong sysclk = 0;
634  	u32 gate_offset;
635  	u32 d1cfgr, d3cfgr;
636  	/* prescaler table lookups for clock computation */
637  	u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
638  	u8 source, idx;
639  
640  	/*
641  	 * get system clock (sys_ck) source
642  	 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
643  	 */
644  	source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
645  	switch (source) {
646  	case RCC_CFGR_SW_PLL1:
647  		sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
648  		break;
649  	case RCC_CFGR_SW_HSE:
650  		sysclk = stm32_get_rate(regs, HSE);
651  		break;
652  
653  	case RCC_CFGR_SW_CSI:
654  		sysclk = stm32_get_rate(regs, CSI);
655  		break;
656  
657  	case RCC_CFGR_SW_HSI:
658  		sysclk = stm32_get_rate(regs, HSI);
659  		break;
660  	}
661  
662  	/* sysclk = 0 ? no need to go ahead */
663  	if (!sysclk)
664  		return sysclk;
665  
666  	debug("%s system clock: source = %d freq = %ld\n",
667  	      __func__, source, sysclk);
668  
669  	d1cfgr = readl(&regs->d1cfgr);
670  
671  	if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
672  		/* get D1 domain Core prescaler */
673  		idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
674  		      RCC_D1CFGR_D1CPRE_SHIFT;
675  		sysclk = sysclk / prescaler_table[idx];
676  	}
677  
678  	if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
679  		/* get D1 domain AHB prescaler */
680  		idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
681  		sysclk = sysclk / prescaler_table[idx];
682  	}
683  
684  	gate_offset = clk_map[clk->id].gate_offset;
685  
686  	debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
687  	      __func__, clk->id, gate_offset, sysclk);
688  
689  	switch (gate_offset) {
690  	case RCC_AHB3ENR:
691  	case RCC_AHB1ENR:
692  	case RCC_AHB2ENR:
693  	case RCC_AHB4ENR:
694  		return sysclk;
695  		break;
696  
697  	case RCC_APB3ENR:
698  		if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
699  			/* get D1 domain APB3 prescaler */
700  			idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
701  			      RCC_D1CFGR_D1PPRE_SHIFT;
702  			sysclk = sysclk / prescaler_table[idx];
703  		}
704  
705  		debug("%s system clock: freq after APB3 prescaler = %ld\n",
706  		      __func__, sysclk);
707  
708  		return sysclk;
709  		break;
710  
711  	case RCC_APB4ENR:
712  		d3cfgr = readl(&regs->d3cfgr);
713  		if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
714  			/* get D3 domain APB4 prescaler */
715  			idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
716  			      RCC_D3CFGR_D3PPRE_SHIFT;
717  			sysclk = sysclk / prescaler_table[idx];
718  		}
719  
720  		debug("%s system clock: freq after APB4 prescaler = %ld\n",
721  		      __func__, sysclk);
722  
723  		return sysclk;
724  		break;
725  
726  	case RCC_APB1LENR:
727  	case RCC_APB1HENR:
728  		/* special case for GPT timers */
729  		switch (clk->id) {
730  		case TIM14_CK:
731  		case TIM13_CK:
732  		case TIM12_CK:
733  		case TIM7_CK:
734  		case TIM6_CK:
735  		case TIM5_CK:
736  		case TIM4_CK:
737  		case TIM3_CK:
738  		case TIM2_CK:
739  			return stm32_get_timer_rate(priv, sysclk, APB1);
740  		}
741  
742  		debug("%s system clock: freq after APB1 prescaler = %ld\n",
743  		      __func__, sysclk);
744  
745  		return (sysclk / stm32_get_apb_psc(regs, APB1));
746  		break;
747  
748  	case RCC_APB2ENR:
749  		/* special case for timers */
750  		switch (clk->id) {
751  		case TIM17_CK:
752  		case TIM16_CK:
753  		case TIM15_CK:
754  		case TIM8_CK:
755  		case TIM1_CK:
756  			return stm32_get_timer_rate(priv, sysclk, APB2);
757  		}
758  
759  		debug("%s system clock: freq after APB2 prescaler = %ld\n",
760  		      __func__, sysclk);
761  
762  		return (sysclk / stm32_get_apb_psc(regs, APB2));
763  
764  		break;
765  
766  	default:
767  		pr_err("unexpected gate_offset value (0x%x)\n", gate_offset);
768  		return -EINVAL;
769  		break;
770  	}
771  }
772  
stm32_clk_enable(struct clk * clk)773  static int stm32_clk_enable(struct clk *clk)
774  {
775  	struct stm32_clk *priv = dev_get_priv(clk->dev);
776  	struct stm32_rcc_regs *regs = priv->rcc_base;
777  	u32 gate_offset;
778  	u32 gate_bit_index;
779  	unsigned long clk_id = clk->id;
780  
781  	gate_offset = clk_map[clk_id].gate_offset;
782  	gate_bit_index = clk_map[clk_id].gate_bit_idx;
783  
784  	debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
785  	      __func__, clk->id, gate_offset, gate_bit_index,
786  	      clk_map[clk_id].name);
787  
788  	setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
789  
790  	return 0;
791  }
792  
stm32_clk_probe(struct udevice * dev)793  static int stm32_clk_probe(struct udevice *dev)
794  {
795  	struct stm32_clk *priv = dev_get_priv(dev);
796  	struct udevice *syscon;
797  	fdt_addr_t addr;
798  	int err;
799  
800  	addr = dev_read_addr(dev);
801  	if (addr == FDT_ADDR_T_NONE)
802  		return -EINVAL;
803  
804  	priv->rcc_base = (struct stm32_rcc_regs *)addr;
805  
806  	/* get corresponding syscon phandle */
807  	err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
808  					   "st,syscfg", &syscon);
809  
810  	if (err) {
811  		pr_err("unable to find syscon device\n");
812  		return err;
813  	}
814  
815  	priv->pwr_regmap = syscon_get_regmap(syscon);
816  	if (!priv->pwr_regmap) {
817  		pr_err("unable to find regmap\n");
818  		return -ENODEV;
819  	}
820  
821  	configure_clocks(dev);
822  
823  	return 0;
824  }
825  
stm32_clk_of_xlate(struct clk * clk,struct ofnode_phandle_args * args)826  static int stm32_clk_of_xlate(struct clk *clk,
827  			struct ofnode_phandle_args *args)
828  {
829  	if (args->args_count != 1) {
830  		debug("Invaild args_count: %d\n", args->args_count);
831  		return -EINVAL;
832  	}
833  
834  	if (args->args_count) {
835  		clk->id = args->args[0];
836  		/*
837  		 * this computation convert DT clock index which is used to
838  		 * point into 2 separate clock arrays (peripheral and kernel
839  		 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
840  		 * into index to point into only one array where peripheral
841  		 * and kernel clocks are consecutive
842  		 */
843  		if (clk->id >= KERN_BANK) {
844  			clk->id -= KERN_BANK;
845  			clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
846  		} else {
847  			clk->id -= PERIF_BANK;
848  		}
849  	} else {
850  		clk->id = 0;
851  	}
852  
853  	debug("%s clk->id %ld\n", __func__, clk->id);
854  
855  	return 0;
856  }
857  
858  static struct clk_ops stm32_clk_ops = {
859  	.of_xlate	= stm32_clk_of_xlate,
860  	.enable		= stm32_clk_enable,
861  	.get_rate	= stm32_clk_get_rate,
862  };
863  
864  U_BOOT_DRIVER(stm32h7_clk) = {
865  	.name			= "stm32h7_rcc_clock",
866  	.id			= UCLASS_CLK,
867  	.ops			= &stm32_clk_ops,
868  	.probe			= stm32_clk_probe,
869  	.priv_auto_alloc_size	= sizeof(struct stm32_clk),
870  	.flags			= DM_FLAG_PRE_RELOC,
871  };
872