xref: /openbmc/qemu/target/arm/cpregs.h (revision 7a1dc45af581d2b643cdbf33c01fd96271616fbd)
1  /*
2   * QEMU ARM CP Register access and descriptions
3   *
4   * Copyright (c) 2022 Linaro Ltd
5   *
6   * This program is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU General Public License
8   * as published by the Free Software Foundation; either version 2
9   * of the License, or (at your option) any later version.
10   *
11   * This program is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   * GNU General Public License for more details.
15   *
16   * You should have received a copy of the GNU General Public License
17   * along with this program; if not, see
18   * <http://www.gnu.org/licenses/gpl-2.0.html>
19   */
20  
21  #ifndef TARGET_ARM_CPREGS_H
22  #define TARGET_ARM_CPREGS_H
23  
24  #include "hw/registerfields.h"
25  #include "target/arm/kvm-consts.h"
26  
27  /*
28   * ARMCPRegInfo type field bits:
29   */
30  enum {
31      /*
32       * Register must be handled specially during translation.
33       * The method is one of the values below:
34       */
35      ARM_CP_SPECIAL_MASK          = 0x000f,
36      /* Special: no change to PE state: writes ignored, reads ignored. */
37      ARM_CP_NOP                   = 0x0001,
38      /* Special: sysreg is WFI, for v5 and v6. */
39      ARM_CP_WFI                   = 0x0002,
40      /* Special: sysreg is NZCV. */
41      ARM_CP_NZCV                  = 0x0003,
42      /* Special: sysreg is CURRENTEL. */
43      ARM_CP_CURRENTEL             = 0x0004,
44      /* Special: sysreg is DC ZVA or similar. */
45      ARM_CP_DC_ZVA                = 0x0005,
46      ARM_CP_DC_GVA                = 0x0006,
47      ARM_CP_DC_GZVA               = 0x0007,
48  
49      /* Flag: reads produce resetvalue; writes ignored. */
50      ARM_CP_CONST                 = 1 << 4,
51      /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
52      ARM_CP_64BIT                 = 1 << 5,
53      /*
54       * Flag: TB should not be ended after a write to this register
55       * (the default is that the TB ends after cp writes).
56       */
57      ARM_CP_SUPPRESS_TB_END       = 1 << 6,
58      /*
59       * Flag: Permit a register definition to override a previous definition
60       * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
61       * or the old must have the ARM_CP_OVERRIDE bit set.
62       */
63      ARM_CP_OVERRIDE              = 1 << 7,
64      /*
65       * Flag: Register is an alias view of some underlying state which is also
66       * visible via another register, and that the other register is handling
67       * migration and reset; registers marked ARM_CP_ALIAS will not be migrated
68       * but may have their state set by syncing of register state from KVM.
69       */
70      ARM_CP_ALIAS                 = 1 << 8,
71      /*
72       * Flag: Register does I/O and therefore its accesses need to be marked
73       * with translator_io_start() and also end the TB. In particular,
74       * registers which implement clocks or timers require this.
75       */
76      ARM_CP_IO                    = 1 << 9,
77      /*
78       * Flag: Register has no underlying state and does not support raw access
79       * for state saving/loading; it will not be used for either migration or
80       * KVM state synchronization. Typically this is for "registers" which are
81       * actually used as instructions for cache maintenance and so on.
82       */
83      ARM_CP_NO_RAW                = 1 << 10,
84      /*
85       * Flag: The read or write hook might raise an exception; the generated
86       * code will synchronize the CPU state before calling the hook so that it
87       * is safe for the hook to call raise_exception().
88       */
89      ARM_CP_RAISES_EXC            = 1 << 11,
90      /*
91       * Flag: Writes to the sysreg might change the exception level - typically
92       * on older ARM chips. For those cases we need to re-read the new el when
93       * recomputing the translation flags.
94       */
95      ARM_CP_NEWEL                 = 1 << 12,
96      /*
97       * Flag: Access check for this sysreg is identical to accessing FPU state
98       * from an instruction: use translation fp_access_check().
99       */
100      ARM_CP_FPU                   = 1 << 13,
101      /*
102       * Flag: Access check for this sysreg is identical to accessing SVE state
103       * from an instruction: use translation sve_access_check().
104       */
105      ARM_CP_SVE                   = 1 << 14,
106      /* Flag: Do not expose in gdb sysreg xml. */
107      ARM_CP_NO_GDB                = 1 << 15,
108      /*
109       * Flags: If EL3 but not EL2...
110       *   - UNDEF: discard the cpreg,
111       *   -  KEEP: retain the cpreg as is,
112       *   -  C_NZ: set const on the cpreg, but retain resetvalue,
113       *   -  else: set const on the cpreg, zero resetvalue, aka RES0.
114       * See rule RJFFP in section D1.1.3 of DDI0487H.a.
115       */
116      ARM_CP_EL3_NO_EL2_UNDEF      = 1 << 16,
117      ARM_CP_EL3_NO_EL2_KEEP       = 1 << 17,
118      ARM_CP_EL3_NO_EL2_C_NZ       = 1 << 18,
119      /*
120       * Flag: Access check for this sysreg is constrained by the
121       * ARM pseudocode function CheckSMEAccess().
122       */
123      ARM_CP_SME                   = 1 << 19,
124      /*
125       * Flag: one of the four EL2 registers which redirect to the
126       * equivalent EL1 register when FEAT_NV2 is enabled.
127       */
128      ARM_CP_NV2_REDIRECT          = 1 << 20,
129  };
130  
131  /*
132   * Interface for defining coprocessor registers.
133   * Registers are defined in tables of arm_cp_reginfo structs
134   * which are passed to define_arm_cp_regs().
135   */
136  
137  /*
138   * When looking up a coprocessor register we look for it
139   * via an integer which encodes all of:
140   *  coprocessor number
141   *  Crn, Crm, opc1, opc2 fields
142   *  32 or 64 bit register (ie is it accessed via MRC/MCR
143   *    or via MRRC/MCRR?)
144   *  non-secure/secure bank (AArch32 only)
145   * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
146   * (In this case crn and opc2 should be zero.)
147   * For AArch64, there is no 32/64 bit size distinction;
148   * instead all registers have a 2 bit op0, 3 bit op1 and op2,
149   * and 4 bit CRn and CRm. The encoding patterns are chosen
150   * to be easy to convert to and from the KVM encodings, and also
151   * so that the hashtable can contain both AArch32 and AArch64
152   * registers (to allow for interprocessing where we might run
153   * 32 bit code on a 64 bit core).
154   */
155  /*
156   * This bit is private to our hashtable cpreg; in KVM register
157   * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
158   * in the upper bits of the 64 bit ID.
159   */
160  #define CP_REG_AA64_SHIFT 28
161  #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
162  
163  /*
164   * To enable banking of coprocessor registers depending on ns-bit we
165   * add a bit to distinguish between secure and non-secure cpregs in the
166   * hashtable.
167   */
168  #define CP_REG_NS_SHIFT 29
169  #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
170  
171  #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
172      ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
173       ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
174  
175  #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
176      (CP_REG_AA64_MASK |                                 \
177       ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
178       ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
179       ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
180       ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
181       ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
182       ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
183  
184  /*
185   * Convert a full 64 bit KVM register ID to the truncated 32 bit
186   * version used as a key for the coprocessor register hashtable
187   */
kvm_to_cpreg_id(uint64_t kvmid)188  static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
189  {
190      uint32_t cpregid = kvmid;
191      if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
192          cpregid |= CP_REG_AA64_MASK;
193      } else {
194          if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
195              cpregid |= (1 << 15);
196          }
197  
198          /*
199           * KVM is always non-secure so add the NS flag on AArch32 register
200           * entries.
201           */
202           cpregid |= 1 << CP_REG_NS_SHIFT;
203      }
204      return cpregid;
205  }
206  
207  /*
208   * Convert a truncated 32 bit hashtable key into the full
209   * 64 bit KVM register ID.
210   */
cpreg_to_kvm_id(uint32_t cpregid)211  static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
212  {
213      uint64_t kvmid;
214  
215      if (cpregid & CP_REG_AA64_MASK) {
216          kvmid = cpregid & ~CP_REG_AA64_MASK;
217          kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
218      } else {
219          kvmid = cpregid & ~(1 << 15);
220          if (cpregid & (1 << 15)) {
221              kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
222          } else {
223              kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
224          }
225      }
226      return kvmid;
227  }
228  
229  /*
230   * Valid values for ARMCPRegInfo state field, indicating which of
231   * the AArch32 and AArch64 execution states this register is visible in.
232   * If the reginfo doesn't explicitly specify then it is AArch32 only.
233   * If the reginfo is declared to be visible in both states then a second
234   * reginfo is synthesised for the AArch32 view of the AArch64 register,
235   * such that the AArch32 view is the lower 32 bits of the AArch64 one.
236   * Note that we rely on the values of these enums as we iterate through
237   * the various states in some places.
238   */
239  typedef enum {
240      ARM_CP_STATE_AA32 = 0,
241      ARM_CP_STATE_AA64 = 1,
242      ARM_CP_STATE_BOTH = 2,
243  } CPState;
244  
245  /*
246   * ARM CP register secure state flags.  These flags identify security state
247   * attributes for a given CP register entry.
248   * The existence of both or neither secure and non-secure flags indicates that
249   * the register has both a secure and non-secure hash entry.  A single one of
250   * these flags causes the register to only be hashed for the specified
251   * security state.
252   * Although definitions may have any combination of the S/NS bits, each
253   * registered entry will only have one to identify whether the entry is secure
254   * or non-secure.
255   */
256  typedef enum {
257      ARM_CP_SECSTATE_BOTH = 0,       /* define one cpreg for each secstate */
258      ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
259      ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
260  } CPSecureState;
261  
262  /*
263   * Access rights:
264   * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
265   * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
266   * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
267   * (ie any of the privileged modes in Secure state, or Monitor mode).
268   * If a register is accessible in one privilege level it's always accessible
269   * in higher privilege levels too. Since "Secure PL1" also follows this rule
270   * (ie anything visible in PL2 is visible in S-PL1, some things are only
271   * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
272   * terminology a little and call this PL3.
273   * In AArch64 things are somewhat simpler as the PLx bits line up exactly
274   * with the ELx exception levels.
275   *
276   * If access permissions for a register are more complex than can be
277   * described with these bits, then use a laxer set of restrictions, and
278   * do the more restrictive/complex check inside a helper function.
279   */
280  typedef enum {
281      PL3_R = 0x80,
282      PL3_W = 0x40,
283      PL2_R = 0x20 | PL3_R,
284      PL2_W = 0x10 | PL3_W,
285      PL1_R = 0x08 | PL2_R,
286      PL1_W = 0x04 | PL2_W,
287      PL0_R = 0x02 | PL1_R,
288      PL0_W = 0x01 | PL1_W,
289  
290      /*
291       * For user-mode some registers are accessible to EL0 via a kernel
292       * trap-and-emulate ABI. In this case we define the read permissions
293       * as actually being PL0_R. However some bits of any given register
294       * may still be masked.
295       */
296  #ifdef CONFIG_USER_ONLY
297      PL0U_R = PL0_R,
298  #else
299      PL0U_R = PL1_R,
300  #endif
301  
302      PL3_RW = PL3_R | PL3_W,
303      PL2_RW = PL2_R | PL2_W,
304      PL1_RW = PL1_R | PL1_W,
305      PL0_RW = PL0_R | PL0_W,
306  } CPAccessRights;
307  
308  typedef enum CPAccessResult {
309      /* Access is permitted */
310      CP_ACCESS_OK = 0,
311  
312      /*
313       * Combined with one of the following, the low 2 bits indicate the
314       * target exception level.  If 0, the exception is taken to the usual
315       * target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
316       */
317      CP_ACCESS_EL_MASK = 3,
318  
319      /*
320       * Access fails due to a configurable trap or enable which would
321       * result in a categorized exception syndrome giving information about
322       * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
323       * 0xc or 0x18).
324       */
325      CP_ACCESS_TRAP = (1 << 2),
326      CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
327      CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
328  
329      /*
330       * Access fails and results in an exception syndrome 0x0 ("uncategorized").
331       * Note that this is not a catch-all case -- the set of cases which may
332       * result in this failure is specifically defined by the architecture.
333       * This trap is always to the usual target EL, never directly to a
334       * specified target EL.
335       */
336      CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
337  } CPAccessResult;
338  
339  /* Indexes into fgt_read[] */
340  #define FGTREG_HFGRTR 0
341  #define FGTREG_HDFGRTR 1
342  /* Indexes into fgt_write[] */
343  #define FGTREG_HFGWTR 0
344  #define FGTREG_HDFGWTR 1
345  /* Indexes into fgt_exec[] */
346  #define FGTREG_HFGITR 0
347  
348  FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1)
349  FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1)
350  FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1)
351  FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1)
352  FIELD(HFGRTR_EL2, APDAKEY, 4, 1)
353  FIELD(HFGRTR_EL2, APDBKEY, 5, 1)
354  FIELD(HFGRTR_EL2, APGAKEY, 6, 1)
355  FIELD(HFGRTR_EL2, APIAKEY, 7, 1)
356  FIELD(HFGRTR_EL2, APIBKEY, 8, 1)
357  FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1)
358  FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1)
359  FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1)
360  FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1)
361  FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1)
362  FIELD(HFGRTR_EL2, CTR_EL0, 14, 1)
363  FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1)
364  FIELD(HFGRTR_EL2, ESR_EL1, 16, 1)
365  FIELD(HFGRTR_EL2, FAR_EL1, 17, 1)
366  FIELD(HFGRTR_EL2, ISR_EL1, 18, 1)
367  FIELD(HFGRTR_EL2, LORC_EL1, 19, 1)
368  FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1)
369  FIELD(HFGRTR_EL2, LORID_EL1, 21, 1)
370  FIELD(HFGRTR_EL2, LORN_EL1, 22, 1)
371  FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1)
372  FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1)
373  FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1)
374  FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1)
375  FIELD(HFGRTR_EL2, PAR_EL1, 27, 1)
376  FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1)
377  FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1)
378  FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1)
379  FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1)
380  FIELD(HFGRTR_EL2, TCR_EL1, 32, 1)
381  FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1)
382  FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1)
383  FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1)
384  FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1)
385  FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1)
386  FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1)
387  FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1)
388  FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1)
389  FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1)
390  FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1)
391  FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1)
392  FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1)
393  FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1)
394  FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1)
395  FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1)
396  FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1)
397  FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1)
398  FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1)
399  /* 51-53: RES0 */
400  FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1)
401  FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1)
402  /* 56-63: RES0 */
403  
404  /* These match HFGRTR but bits for RO registers are RES0 */
405  FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1)
406  FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1)
407  FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1)
408  FIELD(HFGWTR_EL2, APDAKEY, 4, 1)
409  FIELD(HFGWTR_EL2, APDBKEY, 5, 1)
410  FIELD(HFGWTR_EL2, APGAKEY, 6, 1)
411  FIELD(HFGWTR_EL2, APIAKEY, 7, 1)
412  FIELD(HFGWTR_EL2, APIBKEY, 8, 1)
413  FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1)
414  FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1)
415  FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1)
416  FIELD(HFGWTR_EL2, ESR_EL1, 16, 1)
417  FIELD(HFGWTR_EL2, FAR_EL1, 17, 1)
418  FIELD(HFGWTR_EL2, LORC_EL1, 19, 1)
419  FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1)
420  FIELD(HFGWTR_EL2, LORN_EL1, 22, 1)
421  FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1)
422  FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1)
423  FIELD(HFGWTR_EL2, PAR_EL1, 27, 1)
424  FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1)
425  FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1)
426  FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1)
427  FIELD(HFGWTR_EL2, TCR_EL1, 32, 1)
428  FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1)
429  FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1)
430  FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1)
431  FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1)
432  FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1)
433  FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1)
434  FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1)
435  FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1)
436  FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1)
437  FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1)
438  FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1)
439  FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1)
440  FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1)
441  FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1)
442  FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1)
443  FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1)
444  FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1)
445  
446  FIELD(HFGITR_EL2, ICIALLUIS, 0, 1)
447  FIELD(HFGITR_EL2, ICIALLU, 1, 1)
448  FIELD(HFGITR_EL2, ICIVAU, 2, 1)
449  FIELD(HFGITR_EL2, DCIVAC, 3, 1)
450  FIELD(HFGITR_EL2, DCISW, 4, 1)
451  FIELD(HFGITR_EL2, DCCSW, 5, 1)
452  FIELD(HFGITR_EL2, DCCISW, 6, 1)
453  FIELD(HFGITR_EL2, DCCVAU, 7, 1)
454  FIELD(HFGITR_EL2, DCCVAP, 8, 1)
455  FIELD(HFGITR_EL2, DCCVADP, 9, 1)
456  FIELD(HFGITR_EL2, DCCIVAC, 10, 1)
457  FIELD(HFGITR_EL2, DCZVA, 11, 1)
458  FIELD(HFGITR_EL2, ATS1E1R, 12, 1)
459  FIELD(HFGITR_EL2, ATS1E1W, 13, 1)
460  FIELD(HFGITR_EL2, ATS1E0R, 14, 1)
461  FIELD(HFGITR_EL2, ATS1E0W, 15, 1)
462  FIELD(HFGITR_EL2, ATS1E1RP, 16, 1)
463  FIELD(HFGITR_EL2, ATS1E1WP, 17, 1)
464  FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1)
465  FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1)
466  FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1)
467  FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1)
468  FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1)
469  FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1)
470  FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1)
471  FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1)
472  FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1)
473  FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1)
474  FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1)
475  FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1)
476  FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1)
477  FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1)
478  FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1)
479  FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1)
480  FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1)
481  FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1)
482  FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1)
483  FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1)
484  FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1)
485  FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1)
486  FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1)
487  FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1)
488  FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1)
489  FIELD(HFGITR_EL2, TLBIVAE1, 43, 1)
490  FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1)
491  FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1)
492  FIELD(HFGITR_EL2, TLBIVALE1, 46, 1)
493  FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1)
494  FIELD(HFGITR_EL2, CFPRCTX, 48, 1)
495  FIELD(HFGITR_EL2, DVPRCTX, 49, 1)
496  FIELD(HFGITR_EL2, CPPRCTX, 50, 1)
497  FIELD(HFGITR_EL2, ERET, 51, 1)
498  FIELD(HFGITR_EL2, SVC_EL0, 52, 1)
499  FIELD(HFGITR_EL2, SVC_EL1, 53, 1)
500  FIELD(HFGITR_EL2, DCCVAC, 54, 1)
501  FIELD(HFGITR_EL2, NBRBINJ, 55, 1)
502  FIELD(HFGITR_EL2, NBRBIALL, 56, 1)
503  
504  FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1)
505  FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1)
506  FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1)
507  FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1)
508  FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1)
509  FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1)
510  FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1)
511  FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1)
512  /* 8: RES0: OSLAR_EL1 is WO */
513  FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1)
514  FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1)
515  FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1)
516  FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1)
517  FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1)
518  FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1)
519  FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1)
520  FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1)
521  FIELD(HDFGRTR_EL2, PMINTEN, 17, 1)
522  FIELD(HDFGRTR_EL2, PMOVS, 18, 1)
523  FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1)
524  /* 20: RES0: PMSWINC_EL0 is WO */
525  /* 21: RES0: PMCR_EL0 is WO */
526  FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1)
527  FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1)
528  FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1)
529  FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1)
530  FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1)
531  FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1)
532  FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1)
533  FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1)
534  FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1)
535  FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1)
536  FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1)
537  FIELD(HDFGRTR_EL2, TRC, 33, 1)
538  FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1)
539  FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1)
540  FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1)
541  FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1)
542  /* 38, 39: RES0 */
543  FIELD(HDFGRTR_EL2, TRCID, 40, 1)
544  FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1)
545  /* 42: RES0: TRCOSLAR is WO */
546  FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1)
547  FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1)
548  FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1)
549  FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1)
550  FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1)
551  FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1)
552  /* 49: RES0: TRFCR_EL1 is WO */
553  FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1)
554  FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1)
555  FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1)
556  FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1)
557  FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1)
558  FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1)
559  FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1)
560  FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1)
561  FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1)
562  FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1)
563  FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1)
564  FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1)
565  FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1)
566  FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1)
567  
568  /*
569   * These match HDFGRTR_EL2, but bits for RO registers are RES0.
570   * A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0.
571   */
572  FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1)
573  FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1)
574  FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1)
575  FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1)
576  FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1)
577  FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1)
578  FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1)
579  FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1)
580  FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1)
581  FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1)
582  FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1)
583  FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1)
584  FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1)
585  FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1)
586  FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1)
587  FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1)
588  FIELD(HDFGWTR_EL2, PMINTEN, 17, 1)
589  FIELD(HDFGWTR_EL2, PMOVS, 18, 1)
590  FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1)
591  FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1)
592  FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1)
593  FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1)
594  FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1)
595  FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1)
596  FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1)
597  FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1)
598  FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1)
599  FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1)
600  FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1)
601  FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1)
602  FIELD(HDFGWTR_EL2, TRC, 33, 1)
603  FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1)
604  FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1)
605  FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1)
606  FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1)
607  FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1)
608  FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1)
609  FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1)
610  FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1)
611  FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1)
612  FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1)
613  FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1)
614  FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1)
615  FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1)
616  FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1)
617  FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1)
618  FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1)
619  FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1)
620  FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1)
621  FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1)
622  FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1)
623  
624  /* Which fine-grained trap bit register to check, if any */
625  FIELD(FGT, TYPE, 10, 3)
626  FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */
627  FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */
628  FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */
629  
630  /*
631   * Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt
632   * fields. We assume for brevity's sake that there are no duplicated
633   * bit names across the various FGT registers.
634   */
635  #define DO_BIT(REG, BITNAME)                                    \
636      FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT
637  
638  /* Some bits have reversed sense, so 0 means trap and 1 means not */
639  #define DO_REV_BIT(REG, BITNAME)                                        \
640      FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT
641  
642  typedef enum FGTBit {
643      /*
644       * These bits tell us which register arrays to use:
645       * if FGT_R is set then reads are checked against fgt_read[];
646       * if FGT_W is set then writes are checked against fgt_write[];
647       * if FGT_EXEC is set then all accesses are checked against fgt_exec[].
648       *
649       * For almost all bits in the R/W register pairs, the bit exists in
650       * both registers for a RW register, in HFGRTR/HDFGRTR for a RO register
651       * with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa
652       * for a WO register. There are unfortunately a couple of exceptions
653       * (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but
654       * the FGT system only allows trapping of writes, not reads.
655       *
656       * Note that we arrange these bits so that a 0 FGTBit means "no trap".
657       */
658      FGT_R = 1 << R_FGT_TYPE_SHIFT,
659      FGT_W = 2 << R_FGT_TYPE_SHIFT,
660      FGT_EXEC = 4 << R_FGT_TYPE_SHIFT,
661      FGT_RW = FGT_R | FGT_W,
662      /* Bit to identify whether trap bit is reversed sense */
663      FGT_REV = R_FGT_REV_MASK,
664  
665      /*
666       * If a bit exists in HFGRTR/HDFGRTR then either the register being
667       * trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either
668       * want to trap for both reads and writes or else it's harmless to mark
669       * it as trap-on-writes.
670       * If a bit exists only in HFGWTR/HDFGWTR then either the register being
671       * trapped is WO, or else it is one of the two oddball special cases
672       * which are RW but have only a write trap. We mark these as only
673       * FGT_W so we get the right behaviour for those special cases.
674       * (If a bit was added in future that provided only a read trap for an
675       * RW register we'd need to do something special to get the FGT_R bit
676       * only. But this seems unlikely to happen.)
677       *
678       * So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if
679       * the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR.
680       */
681      FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT),
682      FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT),
683      FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT),
684      FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT),
685      FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT),
686  
687      /* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */
688      DO_BIT(HFGRTR, AFSR0_EL1),
689      DO_BIT(HFGRTR, AFSR1_EL1),
690      DO_BIT(HFGRTR, AIDR_EL1),
691      DO_BIT(HFGRTR, AMAIR_EL1),
692      DO_BIT(HFGRTR, APDAKEY),
693      DO_BIT(HFGRTR, APDBKEY),
694      DO_BIT(HFGRTR, APGAKEY),
695      DO_BIT(HFGRTR, APIAKEY),
696      DO_BIT(HFGRTR, APIBKEY),
697      DO_BIT(HFGRTR, CCSIDR_EL1),
698      DO_BIT(HFGRTR, CLIDR_EL1),
699      DO_BIT(HFGRTR, CONTEXTIDR_EL1),
700      DO_BIT(HFGRTR, CPACR_EL1),
701      DO_BIT(HFGRTR, CSSELR_EL1),
702      DO_BIT(HFGRTR, CTR_EL0),
703      DO_BIT(HFGRTR, DCZID_EL0),
704      DO_BIT(HFGRTR, ESR_EL1),
705      DO_BIT(HFGRTR, FAR_EL1),
706      DO_BIT(HFGRTR, ISR_EL1),
707      DO_BIT(HFGRTR, LORC_EL1),
708      DO_BIT(HFGRTR, LOREA_EL1),
709      DO_BIT(HFGRTR, LORID_EL1),
710      DO_BIT(HFGRTR, LORN_EL1),
711      DO_BIT(HFGRTR, LORSA_EL1),
712      DO_BIT(HFGRTR, MAIR_EL1),
713      DO_BIT(HFGRTR, MIDR_EL1),
714      DO_BIT(HFGRTR, MPIDR_EL1),
715      DO_BIT(HFGRTR, PAR_EL1),
716      DO_BIT(HFGRTR, REVIDR_EL1),
717      DO_BIT(HFGRTR, SCTLR_EL1),
718      DO_BIT(HFGRTR, SCXTNUM_EL1),
719      DO_BIT(HFGRTR, SCXTNUM_EL0),
720      DO_BIT(HFGRTR, TCR_EL1),
721      DO_BIT(HFGRTR, TPIDR_EL1),
722      DO_BIT(HFGRTR, TPIDRRO_EL0),
723      DO_BIT(HFGRTR, TPIDR_EL0),
724      DO_BIT(HFGRTR, TTBR0_EL1),
725      DO_BIT(HFGRTR, TTBR1_EL1),
726      DO_BIT(HFGRTR, VBAR_EL1),
727      DO_BIT(HFGRTR, ICC_IGRPENN_EL1),
728      DO_BIT(HFGRTR, ERRIDR_EL1),
729      DO_REV_BIT(HFGRTR, NSMPRI_EL1),
730      DO_REV_BIT(HFGRTR, NTPIDR2_EL0),
731  
732      /* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */
733      DO_BIT(HDFGRTR, DBGBCRN_EL1),
734      DO_BIT(HDFGRTR, DBGBVRN_EL1),
735      DO_BIT(HDFGRTR, DBGWCRN_EL1),
736      DO_BIT(HDFGRTR, DBGWVRN_EL1),
737      DO_BIT(HDFGRTR, MDSCR_EL1),
738      DO_BIT(HDFGRTR, DBGCLAIM),
739      DO_BIT(HDFGWTR, OSLAR_EL1),
740      DO_BIT(HDFGRTR, OSLSR_EL1),
741      DO_BIT(HDFGRTR, OSECCR_EL1),
742      DO_BIT(HDFGRTR, OSDLR_EL1),
743      DO_BIT(HDFGRTR, PMEVCNTRN_EL0),
744      DO_BIT(HDFGRTR, PMEVTYPERN_EL0),
745      DO_BIT(HDFGRTR, PMCCFILTR_EL0),
746      DO_BIT(HDFGRTR, PMCCNTR_EL0),
747      DO_BIT(HDFGRTR, PMCNTEN),
748      DO_BIT(HDFGRTR, PMINTEN),
749      DO_BIT(HDFGRTR, PMOVS),
750      DO_BIT(HDFGRTR, PMSELR_EL0),
751      DO_BIT(HDFGWTR, PMSWINC_EL0),
752      DO_BIT(HDFGWTR, PMCR_EL0),
753      DO_BIT(HDFGRTR, PMMIR_EL1),
754      DO_BIT(HDFGRTR, PMCEIDN_EL0),
755  
756      /* Trap bits in HFGITR_EL2, starting from bit 0 */
757      DO_BIT(HFGITR, ICIALLUIS),
758      DO_BIT(HFGITR, ICIALLU),
759      DO_BIT(HFGITR, ICIVAU),
760      DO_BIT(HFGITR, DCIVAC),
761      DO_BIT(HFGITR, DCISW),
762      DO_BIT(HFGITR, DCCSW),
763      DO_BIT(HFGITR, DCCISW),
764      DO_BIT(HFGITR, DCCVAU),
765      DO_BIT(HFGITR, DCCVAP),
766      DO_BIT(HFGITR, DCCVADP),
767      DO_BIT(HFGITR, DCCIVAC),
768      DO_BIT(HFGITR, DCZVA),
769      DO_BIT(HFGITR, ATS1E1R),
770      DO_BIT(HFGITR, ATS1E1W),
771      DO_BIT(HFGITR, ATS1E0R),
772      DO_BIT(HFGITR, ATS1E0W),
773      DO_BIT(HFGITR, ATS1E1RP),
774      DO_BIT(HFGITR, ATS1E1WP),
775      DO_BIT(HFGITR, TLBIVMALLE1OS),
776      DO_BIT(HFGITR, TLBIVAE1OS),
777      DO_BIT(HFGITR, TLBIASIDE1OS),
778      DO_BIT(HFGITR, TLBIVAAE1OS),
779      DO_BIT(HFGITR, TLBIVALE1OS),
780      DO_BIT(HFGITR, TLBIVAALE1OS),
781      DO_BIT(HFGITR, TLBIRVAE1OS),
782      DO_BIT(HFGITR, TLBIRVAAE1OS),
783      DO_BIT(HFGITR, TLBIRVALE1OS),
784      DO_BIT(HFGITR, TLBIRVAALE1OS),
785      DO_BIT(HFGITR, TLBIVMALLE1IS),
786      DO_BIT(HFGITR, TLBIVAE1IS),
787      DO_BIT(HFGITR, TLBIASIDE1IS),
788      DO_BIT(HFGITR, TLBIVAAE1IS),
789      DO_BIT(HFGITR, TLBIVALE1IS),
790      DO_BIT(HFGITR, TLBIVAALE1IS),
791      DO_BIT(HFGITR, TLBIRVAE1IS),
792      DO_BIT(HFGITR, TLBIRVAAE1IS),
793      DO_BIT(HFGITR, TLBIRVALE1IS),
794      DO_BIT(HFGITR, TLBIRVAALE1IS),
795      DO_BIT(HFGITR, TLBIRVAE1),
796      DO_BIT(HFGITR, TLBIRVAAE1),
797      DO_BIT(HFGITR, TLBIRVALE1),
798      DO_BIT(HFGITR, TLBIRVAALE1),
799      DO_BIT(HFGITR, TLBIVMALLE1),
800      DO_BIT(HFGITR, TLBIVAE1),
801      DO_BIT(HFGITR, TLBIASIDE1),
802      DO_BIT(HFGITR, TLBIVAAE1),
803      DO_BIT(HFGITR, TLBIVALE1),
804      DO_BIT(HFGITR, TLBIVAALE1),
805      DO_BIT(HFGITR, CFPRCTX),
806      DO_BIT(HFGITR, DVPRCTX),
807      DO_BIT(HFGITR, CPPRCTX),
808      DO_BIT(HFGITR, DCCVAC),
809  } FGTBit;
810  
811  #undef DO_BIT
812  #undef DO_REV_BIT
813  
814  typedef struct ARMCPRegInfo ARMCPRegInfo;
815  
816  /*
817   * Access functions for coprocessor registers. These cannot fail and
818   * may not raise exceptions.
819   */
820  typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
821  typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
822                         uint64_t value);
823  /* Access permission check functions for coprocessor registers. */
824  typedef CPAccessResult CPAccessFn(CPUARMState *env,
825                                    const ARMCPRegInfo *opaque,
826                                    bool isread);
827  /* Hook function for register reset */
828  typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
829  
830  #define CP_ANY 0xff
831  
832  /* Flags in the high bits of nv2_redirect_offset */
833  #define NV2_REDIR_NV1 0x4000 /* Only redirect when HCR_EL2.NV1 == 1 */
834  #define NV2_REDIR_NO_NV1 0x8000 /* Only redirect when HCR_EL2.NV1 == 0 */
835  #define NV2_REDIR_FLAG_MASK 0xc000
836  
837  /* Definition of an ARM coprocessor register */
838  struct ARMCPRegInfo {
839      /* Name of register (useful mainly for debugging, need not be unique) */
840      const char *name;
841      /*
842       * Location of register: coprocessor number and (crn,crm,opc1,opc2)
843       * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
844       * 'wildcard' field -- any value of that field in the MRC/MCR insn
845       * will be decoded to this register. The register read and write
846       * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
847       * used by the program, so it is possible to register a wildcard and
848       * then behave differently on read/write if necessary.
849       * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
850       * must both be zero.
851       * For AArch64-visible registers, opc0 is also used.
852       * Since there are no "coprocessors" in AArch64, cp is purely used as a
853       * way to distinguish (for KVM's benefit) guest-visible system registers
854       * from demuxed ones provided to preserve the "no side effects on
855       * KVM register read/write from QEMU" semantics. cp==0x13 is guest
856       * visible (to match KVM's encoding); cp==0 will be converted to
857       * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
858       */
859      uint8_t cp;
860      uint8_t crn;
861      uint8_t crm;
862      uint8_t opc0;
863      uint8_t opc1;
864      uint8_t opc2;
865      /* Execution state in which this register is visible: ARM_CP_STATE_* */
866      CPState state;
867      /* Register type: ARM_CP_* bits/values */
868      int type;
869      /* Access rights: PL*_[RW] */
870      CPAccessRights access;
871      /* Security state: ARM_CP_SECSTATE_* bits/values */
872      CPSecureState secure;
873      /*
874       * Which fine-grained trap register bit to check, if any. This
875       * value encodes both the trap register and bit within it.
876       */
877      FGTBit fgt;
878  
879      /*
880       * Offset from VNCR_EL2 when FEAT_NV2 redirects access to memory;
881       * may include an NV2_REDIR_* flag.
882       */
883      uint32_t nv2_redirect_offset;
884  
885      /*
886       * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
887       * this register was defined: can be used to hand data through to the
888       * register read/write functions, since they are passed the ARMCPRegInfo*.
889       */
890      void *opaque;
891      /*
892       * Value of this register, if it is ARM_CP_CONST. Otherwise, if
893       * fieldoffset is non-zero, the reset value of the register.
894       */
895      uint64_t resetvalue;
896      /*
897       * Offset of the field in CPUARMState for this register.
898       * This is not needed if either:
899       *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
900       *  2. both readfn and writefn are specified
901       */
902      ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
903  
904      /*
905       * Offsets of the secure and non-secure fields in CPUARMState for the
906       * register if it is banked.  These fields are only used during the static
907       * registration of a register.  During hashing the bank associated
908       * with a given security state is copied to fieldoffset which is used from
909       * there on out.
910       *
911       * It is expected that register definitions use either fieldoffset or
912       * bank_fieldoffsets in the definition but not both.  It is also expected
913       * that both bank offsets are set when defining a banked register.  This
914       * use indicates that a register is banked.
915       */
916      ptrdiff_t bank_fieldoffsets[2];
917  
918      /*
919       * Function for making any access checks for this register in addition to
920       * those specified by the 'access' permissions bits. If NULL, no extra
921       * checks required. The access check is performed at runtime, not at
922       * translate time.
923       */
924      CPAccessFn *accessfn;
925      /*
926       * Function for handling reads of this register. If NULL, then reads
927       * will be done by loading from the offset into CPUARMState specified
928       * by fieldoffset.
929       */
930      CPReadFn *readfn;
931      /*
932       * Function for handling writes of this register. If NULL, then writes
933       * will be done by writing to the offset into CPUARMState specified
934       * by fieldoffset.
935       */
936      CPWriteFn *writefn;
937      /*
938       * Function for doing a "raw" read; used when we need to copy
939       * coprocessor state to the kernel for KVM or out for
940       * migration. This only needs to be provided if there is also a
941       * readfn and it has side effects (for instance clear-on-read bits).
942       */
943      CPReadFn *raw_readfn;
944      /*
945       * Function for doing a "raw" write; used when we need to copy KVM
946       * kernel coprocessor state into userspace, or for inbound
947       * migration. This only needs to be provided if there is also a
948       * writefn and it masks out "unwritable" bits or has write-one-to-clear
949       * or similar behaviour.
950       */
951      CPWriteFn *raw_writefn;
952      /*
953       * Function for resetting the register. If NULL, then reset will be done
954       * by writing resetvalue to the field specified in fieldoffset. If
955       * fieldoffset is 0 then no reset will be done.
956       */
957      CPResetFn *resetfn;
958  
959      /*
960       * "Original" readfn, writefn, accessfn.
961       * For ARMv8.1-VHE register aliases, we overwrite the read/write
962       * accessor functions of various EL1/EL0 to perform the runtime
963       * check for which sysreg should actually be modified, and then
964       * forwards the operation.  Before overwriting the accessors,
965       * the original function is copied here, so that accesses that
966       * really do go to the EL1/EL0 version proceed normally.
967       * (The corresponding EL2 register is linked via opaque.)
968       */
969      CPReadFn *orig_readfn;
970      CPWriteFn *orig_writefn;
971      CPAccessFn *orig_accessfn;
972  };
973  
974  /*
975   * Macros which are lvalues for the field in CPUARMState for the
976   * ARMCPRegInfo *ri.
977   */
978  #define CPREG_FIELD32(env, ri) \
979      (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
980  #define CPREG_FIELD64(env, ri) \
981      (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
982  
983  void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
984                                         void *opaque);
985  
define_one_arm_cp_reg(ARMCPU * cpu,const ARMCPRegInfo * regs)986  static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
987  {
988      define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
989  }
990  
991  void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
992                                          void *opaque, size_t len);
993  
994  #define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE)               \
995      do {                                                                \
996          QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
997          define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE,           \
998                                             ARRAY_SIZE(REGS));           \
999      } while (0)
1000  
1001  #define define_arm_cp_regs(CPU, REGS) \
1002      define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
1003  
1004  const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1005  
1006  /*
1007   * Definition of an ARM co-processor register as viewed from
1008   * userspace. This is used for presenting sanitised versions of
1009   * registers to userspace when emulating the Linux AArch64 CPU
1010   * ID/feature ABI (advertised as HWCAP_CPUID).
1011   */
1012  typedef struct ARMCPRegUserSpaceInfo {
1013      /* Name of register */
1014      const char *name;
1015  
1016      /* Is the name actually a glob pattern */
1017      bool is_glob;
1018  
1019      /* Only some bits are exported to user space */
1020      uint64_t exported_bits;
1021  
1022      /* Fixed bits are applied after the mask */
1023      uint64_t fixed_bits;
1024  } ARMCPRegUserSpaceInfo;
1025  
1026  void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
1027                                   const ARMCPRegUserSpaceInfo *mods,
1028                                   size_t mods_len);
1029  
1030  #define modify_arm_cp_regs(REGS, MODS)                                  \
1031      do {                                                                \
1032          QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
1033          QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0);                       \
1034          modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS),             \
1035                                      MODS, ARRAY_SIZE(MODS));            \
1036      } while (0)
1037  
1038  /* CPWriteFn that can be used to implement writes-ignored behaviour */
1039  void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1040                           uint64_t value);
1041  /* CPReadFn that can be used for read-as-zero behaviour */
1042  uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1043  
1044  /* CPWriteFn that just writes the value to ri->fieldoffset */
1045  void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value);
1046  
1047  /*
1048   * CPResetFn that does nothing, for use if no reset is required even
1049   * if fieldoffset is non zero.
1050   */
1051  void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1052  
1053  /*
1054   * Return true if this reginfo struct's field in the cpu state struct
1055   * is 64 bits wide.
1056   */
cpreg_field_is_64bit(const ARMCPRegInfo * ri)1057  static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1058  {
1059      return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1060  }
1061  
cp_access_ok(int current_el,const ARMCPRegInfo * ri,int isread)1062  static inline bool cp_access_ok(int current_el,
1063                                  const ARMCPRegInfo *ri, int isread)
1064  {
1065      return (ri->access >> ((current_el * 2) + isread)) & 1;
1066  }
1067  
1068  /* Raw read of a coprocessor register (as needed for migration, etc) */
1069  uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1070  
1071  /*
1072   * Return true if the cp register encoding is in the "feature ID space" as
1073   * defined by FEAT_IDST (and thus should be reported with ER_ELx.EC
1074   * as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED).
1075   */
arm_cpreg_encoding_in_idspace(uint8_t opc0,uint8_t opc1,uint8_t opc2,uint8_t crn,uint8_t crm)1076  static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1,
1077                                                   uint8_t opc2,
1078                                                   uint8_t crn, uint8_t crm)
1079  {
1080      return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) &&
1081          crn == 0 && crm < 8;
1082  }
1083  
1084  /*
1085   * As arm_cpreg_encoding_in_idspace(), but take the encoding from an
1086   * ARMCPRegInfo.
1087   */
arm_cpreg_in_idspace(const ARMCPRegInfo * ri)1088  static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri)
1089  {
1090      return ri->state == ARM_CP_STATE_AA64 &&
1091          arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2,
1092                                        ri->crn, ri->crm);
1093  }
1094  
1095  #ifdef CONFIG_USER_ONLY
define_cortex_a72_a57_a53_cp_reginfo(ARMCPU * cpu)1096  static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1097  #else
1098  void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1099  #endif
1100  
1101  CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool);
1102  
1103  /**
1104   * arm_cpreg_trap_in_nv: Return true if cpreg traps in nested virtualization
1105   *
1106   * Return true if this cpreg is one which should be trapped to EL2 if
1107   * it is executed at EL1 when nested virtualization is enabled via HCR_EL2.NV.
1108   */
arm_cpreg_traps_in_nv(const ARMCPRegInfo * ri)1109  static inline bool arm_cpreg_traps_in_nv(const ARMCPRegInfo *ri)
1110  {
1111      /*
1112       * The Arm ARM defines the registers to be trapped in terms of
1113       * their names (I_TZTZL). However the underlying principle is "if
1114       * it would UNDEF at EL1 but work at EL2 then it should trap", and
1115       * the way the encoding of sysregs and system instructions is done
1116       * means that the right set of registers is exactly those where
1117       * the opc1 field is 4 or 5. (You can see this also in the assert
1118       * we do that the opc1 field and the permissions mask line up in
1119       * define_one_arm_cp_reg_with_opaque().)
1120       * Checking the opc1 field is easier for us and avoids the problem
1121       * that we do not consistently use the right architectural names
1122       * for all sysregs, since we treat the name field as largely for debug.
1123       *
1124       * However we do this check, it is going to be at least potentially
1125       * fragile to future new sysregs, but this seems the least likely
1126       * to break.
1127       *
1128       * In particular, note that the released sysreg XML defines that
1129       * the FEAT_MEC sysregs and instructions do not follow this FEAT_NV
1130       * trapping rule, so we will need to add an ARM_CP_* flag to indicate
1131       * "register does not trap on NV" to handle those if/when we implement
1132       * FEAT_MEC.
1133       */
1134      return ri->opc1 == 4 || ri->opc1 == 5;
1135  }
1136  
1137  #endif /* TARGET_ARM_CPREGS_H */
1138