1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct sched_param;
67 struct seq_file;
68 struct sighand_struct;
69 struct signal_struct;
70 struct task_delay_info;
71 struct task_group;
72 struct user_event_mm;
73
74 /*
75 * Task state bitmask. NOTE! These bits are also
76 * encoded in fs/proc/array.c: get_task_state().
77 *
78 * We have two separate sets of flags: task->__state
79 * is about runnability, while task->exit_state are
80 * about the task exiting. Confusing, but this way
81 * modifying one set can't modify the other one by
82 * mistake.
83 */
84
85 /* Used in tsk->__state: */
86 #define TASK_RUNNING 0x00000000
87 #define TASK_INTERRUPTIBLE 0x00000001
88 #define TASK_UNINTERRUPTIBLE 0x00000002
89 #define __TASK_STOPPED 0x00000004
90 #define __TASK_TRACED 0x00000008
91 /* Used in tsk->exit_state: */
92 #define EXIT_DEAD 0x00000010
93 #define EXIT_ZOMBIE 0x00000020
94 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
95 /* Used in tsk->__state again: */
96 #define TASK_PARKED 0x00000040
97 #define TASK_DEAD 0x00000080
98 #define TASK_WAKEKILL 0x00000100
99 #define TASK_WAKING 0x00000200
100 #define TASK_NOLOAD 0x00000400
101 #define TASK_NEW 0x00000800
102 #define TASK_RTLOCK_WAIT 0x00001000
103 #define TASK_FREEZABLE 0x00002000
104 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
105 #define TASK_FROZEN 0x00008000
106 #define TASK_STATE_MAX 0x00010000
107
108 #define TASK_ANY (TASK_STATE_MAX-1)
109
110 /*
111 * DO NOT ADD ANY NEW USERS !
112 */
113 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
114
115 /* Convenience macros for the sake of set_current_state: */
116 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
117 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
118 #define TASK_TRACED __TASK_TRACED
119
120 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
121
122 /* Convenience macros for the sake of wake_up(): */
123 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
124
125 /* get_task_state(): */
126 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
127 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
128 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
129 TASK_PARKED)
130
131 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
132
133 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
134 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
135 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
136
137 /*
138 * Special states are those that do not use the normal wait-loop pattern. See
139 * the comment with set_special_state().
140 */
141 #define is_special_task_state(state) \
142 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
143
144 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
145 # define debug_normal_state_change(state_value) \
146 do { \
147 WARN_ON_ONCE(is_special_task_state(state_value)); \
148 current->task_state_change = _THIS_IP_; \
149 } while (0)
150
151 # define debug_special_state_change(state_value) \
152 do { \
153 WARN_ON_ONCE(!is_special_task_state(state_value)); \
154 current->task_state_change = _THIS_IP_; \
155 } while (0)
156
157 # define debug_rtlock_wait_set_state() \
158 do { \
159 current->saved_state_change = current->task_state_change;\
160 current->task_state_change = _THIS_IP_; \
161 } while (0)
162
163 # define debug_rtlock_wait_restore_state() \
164 do { \
165 current->task_state_change = current->saved_state_change;\
166 } while (0)
167
168 #else
169 # define debug_normal_state_change(cond) do { } while (0)
170 # define debug_special_state_change(cond) do { } while (0)
171 # define debug_rtlock_wait_set_state() do { } while (0)
172 # define debug_rtlock_wait_restore_state() do { } while (0)
173 #endif
174
175 /*
176 * set_current_state() includes a barrier so that the write of current->__state
177 * is correctly serialised wrt the caller's subsequent test of whether to
178 * actually sleep:
179 *
180 * for (;;) {
181 * set_current_state(TASK_UNINTERRUPTIBLE);
182 * if (CONDITION)
183 * break;
184 *
185 * schedule();
186 * }
187 * __set_current_state(TASK_RUNNING);
188 *
189 * If the caller does not need such serialisation (because, for instance, the
190 * CONDITION test and condition change and wakeup are under the same lock) then
191 * use __set_current_state().
192 *
193 * The above is typically ordered against the wakeup, which does:
194 *
195 * CONDITION = 1;
196 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
197 *
198 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
199 * accessing p->__state.
200 *
201 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
202 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
203 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
204 *
205 * However, with slightly different timing the wakeup TASK_RUNNING store can
206 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
207 * a problem either because that will result in one extra go around the loop
208 * and our @cond test will save the day.
209 *
210 * Also see the comments of try_to_wake_up().
211 */
212 #define __set_current_state(state_value) \
213 do { \
214 debug_normal_state_change((state_value)); \
215 WRITE_ONCE(current->__state, (state_value)); \
216 } while (0)
217
218 #define set_current_state(state_value) \
219 do { \
220 debug_normal_state_change((state_value)); \
221 smp_store_mb(current->__state, (state_value)); \
222 } while (0)
223
224 /*
225 * set_special_state() should be used for those states when the blocking task
226 * can not use the regular condition based wait-loop. In that case we must
227 * serialize against wakeups such that any possible in-flight TASK_RUNNING
228 * stores will not collide with our state change.
229 */
230 #define set_special_state(state_value) \
231 do { \
232 unsigned long flags; /* may shadow */ \
233 \
234 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
235 debug_special_state_change((state_value)); \
236 WRITE_ONCE(current->__state, (state_value)); \
237 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
238 } while (0)
239
240 /*
241 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
242 *
243 * RT's spin/rwlock substitutions are state preserving. The state of the
244 * task when blocking on the lock is saved in task_struct::saved_state and
245 * restored after the lock has been acquired. These operations are
246 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
247 * lock related wakeups while the task is blocked on the lock are
248 * redirected to operate on task_struct::saved_state to ensure that these
249 * are not dropped. On restore task_struct::saved_state is set to
250 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
251 *
252 * The lock operation looks like this:
253 *
254 * current_save_and_set_rtlock_wait_state();
255 * for (;;) {
256 * if (try_lock())
257 * break;
258 * raw_spin_unlock_irq(&lock->wait_lock);
259 * schedule_rtlock();
260 * raw_spin_lock_irq(&lock->wait_lock);
261 * set_current_state(TASK_RTLOCK_WAIT);
262 * }
263 * current_restore_rtlock_saved_state();
264 */
265 #define current_save_and_set_rtlock_wait_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(¤t->pi_lock); \
269 current->saved_state = current->__state; \
270 debug_rtlock_wait_set_state(); \
271 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
272 raw_spin_unlock(¤t->pi_lock); \
273 } while (0);
274
275 #define current_restore_rtlock_saved_state() \
276 do { \
277 lockdep_assert_irqs_disabled(); \
278 raw_spin_lock(¤t->pi_lock); \
279 debug_rtlock_wait_restore_state(); \
280 WRITE_ONCE(current->__state, current->saved_state); \
281 current->saved_state = TASK_RUNNING; \
282 raw_spin_unlock(¤t->pi_lock); \
283 } while (0);
284
285 #define get_current_state() READ_ONCE(current->__state)
286
287 /*
288 * Define the task command name length as enum, then it can be visible to
289 * BPF programs.
290 */
291 enum {
292 TASK_COMM_LEN = 16,
293 };
294
295 extern void scheduler_tick(void);
296
297 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
298
299 extern long schedule_timeout(long timeout);
300 extern long schedule_timeout_interruptible(long timeout);
301 extern long schedule_timeout_killable(long timeout);
302 extern long schedule_timeout_uninterruptible(long timeout);
303 extern long schedule_timeout_idle(long timeout);
304 asmlinkage void schedule(void);
305 extern void schedule_preempt_disabled(void);
306 asmlinkage void preempt_schedule_irq(void);
307 #ifdef CONFIG_PREEMPT_RT
308 extern void schedule_rtlock(void);
309 #endif
310
311 extern int __must_check io_schedule_prepare(void);
312 extern void io_schedule_finish(int token);
313 extern long io_schedule_timeout(long timeout);
314 extern void io_schedule(void);
315
316 /**
317 * struct prev_cputime - snapshot of system and user cputime
318 * @utime: time spent in user mode
319 * @stime: time spent in system mode
320 * @lock: protects the above two fields
321 *
322 * Stores previous user/system time values such that we can guarantee
323 * monotonicity.
324 */
325 struct prev_cputime {
326 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
327 u64 utime;
328 u64 stime;
329 raw_spinlock_t lock;
330 #endif
331 };
332
333 enum vtime_state {
334 /* Task is sleeping or running in a CPU with VTIME inactive: */
335 VTIME_INACTIVE = 0,
336 /* Task is idle */
337 VTIME_IDLE,
338 /* Task runs in kernelspace in a CPU with VTIME active: */
339 VTIME_SYS,
340 /* Task runs in userspace in a CPU with VTIME active: */
341 VTIME_USER,
342 /* Task runs as guests in a CPU with VTIME active: */
343 VTIME_GUEST,
344 };
345
346 struct vtime {
347 seqcount_t seqcount;
348 unsigned long long starttime;
349 enum vtime_state state;
350 unsigned int cpu;
351 u64 utime;
352 u64 stime;
353 u64 gtime;
354 };
355
356 /*
357 * Utilization clamp constraints.
358 * @UCLAMP_MIN: Minimum utilization
359 * @UCLAMP_MAX: Maximum utilization
360 * @UCLAMP_CNT: Utilization clamp constraints count
361 */
362 enum uclamp_id {
363 UCLAMP_MIN = 0,
364 UCLAMP_MAX,
365 UCLAMP_CNT
366 };
367
368 #ifdef CONFIG_SMP
369 extern struct root_domain def_root_domain;
370 extern struct mutex sched_domains_mutex;
371 #endif
372
373 struct sched_info {
374 #ifdef CONFIG_SCHED_INFO
375 /* Cumulative counters: */
376
377 /* # of times we have run on this CPU: */
378 unsigned long pcount;
379
380 /* Time spent waiting on a runqueue: */
381 unsigned long long run_delay;
382
383 /* Timestamps: */
384
385 /* When did we last run on a CPU? */
386 unsigned long long last_arrival;
387
388 /* When were we last queued to run? */
389 unsigned long long last_queued;
390
391 #endif /* CONFIG_SCHED_INFO */
392 };
393
394 /*
395 * Integer metrics need fixed point arithmetic, e.g., sched/fair
396 * has a few: load, load_avg, util_avg, freq, and capacity.
397 *
398 * We define a basic fixed point arithmetic range, and then formalize
399 * all these metrics based on that basic range.
400 */
401 # define SCHED_FIXEDPOINT_SHIFT 10
402 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
403
404 /* Increase resolution of cpu_capacity calculations */
405 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
406 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
407
408 struct load_weight {
409 unsigned long weight;
410 u32 inv_weight;
411 };
412
413 /**
414 * struct util_est - Estimation utilization of FAIR tasks
415 * @enqueued: instantaneous estimated utilization of a task/cpu
416 * @ewma: the Exponential Weighted Moving Average (EWMA)
417 * utilization of a task
418 *
419 * Support data structure to track an Exponential Weighted Moving Average
420 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
421 * average each time a task completes an activation. Sample's weight is chosen
422 * so that the EWMA will be relatively insensitive to transient changes to the
423 * task's workload.
424 *
425 * The enqueued attribute has a slightly different meaning for tasks and cpus:
426 * - task: the task's util_avg at last task dequeue time
427 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
428 * Thus, the util_est.enqueued of a task represents the contribution on the
429 * estimated utilization of the CPU where that task is currently enqueued.
430 *
431 * Only for tasks we track a moving average of the past instantaneous
432 * estimated utilization. This allows to absorb sporadic drops in utilization
433 * of an otherwise almost periodic task.
434 *
435 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
436 * updates. When a task is dequeued, its util_est should not be updated if its
437 * util_avg has not been updated in the meantime.
438 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
439 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
440 * for a task) it is safe to use MSB.
441 */
442 struct util_est {
443 unsigned int enqueued;
444 unsigned int ewma;
445 #define UTIL_EST_WEIGHT_SHIFT 2
446 #define UTIL_AVG_UNCHANGED 0x80000000
447 } __attribute__((__aligned__(sizeof(u64))));
448
449 /*
450 * The load/runnable/util_avg accumulates an infinite geometric series
451 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
452 *
453 * [load_avg definition]
454 *
455 * load_avg = runnable% * scale_load_down(load)
456 *
457 * [runnable_avg definition]
458 *
459 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
460 *
461 * [util_avg definition]
462 *
463 * util_avg = running% * SCHED_CAPACITY_SCALE
464 *
465 * where runnable% is the time ratio that a sched_entity is runnable and
466 * running% the time ratio that a sched_entity is running.
467 *
468 * For cfs_rq, they are the aggregated values of all runnable and blocked
469 * sched_entities.
470 *
471 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
472 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
473 * for computing those signals (see update_rq_clock_pelt())
474 *
475 * N.B., the above ratios (runnable% and running%) themselves are in the
476 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
477 * to as large a range as necessary. This is for example reflected by
478 * util_avg's SCHED_CAPACITY_SCALE.
479 *
480 * [Overflow issue]
481 *
482 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
483 * with the highest load (=88761), always runnable on a single cfs_rq,
484 * and should not overflow as the number already hits PID_MAX_LIMIT.
485 *
486 * For all other cases (including 32-bit kernels), struct load_weight's
487 * weight will overflow first before we do, because:
488 *
489 * Max(load_avg) <= Max(load.weight)
490 *
491 * Then it is the load_weight's responsibility to consider overflow
492 * issues.
493 */
494 struct sched_avg {
495 u64 last_update_time;
496 u64 load_sum;
497 u64 runnable_sum;
498 u32 util_sum;
499 u32 period_contrib;
500 unsigned long load_avg;
501 unsigned long runnable_avg;
502 unsigned long util_avg;
503 struct util_est util_est;
504 } ____cacheline_aligned;
505
506 struct sched_statistics {
507 #ifdef CONFIG_SCHEDSTATS
508 u64 wait_start;
509 u64 wait_max;
510 u64 wait_count;
511 u64 wait_sum;
512 u64 iowait_count;
513 u64 iowait_sum;
514
515 u64 sleep_start;
516 u64 sleep_max;
517 s64 sum_sleep_runtime;
518
519 u64 block_start;
520 u64 block_max;
521 s64 sum_block_runtime;
522
523 u64 exec_max;
524 u64 slice_max;
525
526 u64 nr_migrations_cold;
527 u64 nr_failed_migrations_affine;
528 u64 nr_failed_migrations_running;
529 u64 nr_failed_migrations_hot;
530 u64 nr_forced_migrations;
531
532 u64 nr_wakeups;
533 u64 nr_wakeups_sync;
534 u64 nr_wakeups_migrate;
535 u64 nr_wakeups_local;
536 u64 nr_wakeups_remote;
537 u64 nr_wakeups_affine;
538 u64 nr_wakeups_affine_attempts;
539 u64 nr_wakeups_passive;
540 u64 nr_wakeups_idle;
541
542 #ifdef CONFIG_SCHED_CORE
543 u64 core_forceidle_sum;
544 #endif
545 #endif /* CONFIG_SCHEDSTATS */
546 } ____cacheline_aligned;
547
548 struct sched_entity {
549 /* For load-balancing: */
550 struct load_weight load;
551 struct rb_node run_node;
552 u64 deadline;
553 u64 min_deadline;
554
555 struct list_head group_node;
556 unsigned int on_rq;
557
558 u64 exec_start;
559 u64 sum_exec_runtime;
560 u64 prev_sum_exec_runtime;
561 u64 vruntime;
562 s64 vlag;
563 u64 slice;
564
565 u64 nr_migrations;
566
567 #ifdef CONFIG_FAIR_GROUP_SCHED
568 int depth;
569 struct sched_entity *parent;
570 /* rq on which this entity is (to be) queued: */
571 struct cfs_rq *cfs_rq;
572 /* rq "owned" by this entity/group: */
573 struct cfs_rq *my_q;
574 /* cached value of my_q->h_nr_running */
575 unsigned long runnable_weight;
576 #endif
577
578 #ifdef CONFIG_SMP
579 /*
580 * Per entity load average tracking.
581 *
582 * Put into separate cache line so it does not
583 * collide with read-mostly values above.
584 */
585 struct sched_avg avg;
586 #endif
587 };
588
589 struct sched_rt_entity {
590 struct list_head run_list;
591 unsigned long timeout;
592 unsigned long watchdog_stamp;
593 unsigned int time_slice;
594 unsigned short on_rq;
595 unsigned short on_list;
596
597 struct sched_rt_entity *back;
598 #ifdef CONFIG_RT_GROUP_SCHED
599 struct sched_rt_entity *parent;
600 /* rq on which this entity is (to be) queued: */
601 struct rt_rq *rt_rq;
602 /* rq "owned" by this entity/group: */
603 struct rt_rq *my_q;
604 #endif
605 } __randomize_layout;
606
607 struct sched_dl_entity {
608 struct rb_node rb_node;
609
610 /*
611 * Original scheduling parameters. Copied here from sched_attr
612 * during sched_setattr(), they will remain the same until
613 * the next sched_setattr().
614 */
615 u64 dl_runtime; /* Maximum runtime for each instance */
616 u64 dl_deadline; /* Relative deadline of each instance */
617 u64 dl_period; /* Separation of two instances (period) */
618 u64 dl_bw; /* dl_runtime / dl_period */
619 u64 dl_density; /* dl_runtime / dl_deadline */
620
621 /*
622 * Actual scheduling parameters. Initialized with the values above,
623 * they are continuously updated during task execution. Note that
624 * the remaining runtime could be < 0 in case we are in overrun.
625 */
626 s64 runtime; /* Remaining runtime for this instance */
627 u64 deadline; /* Absolute deadline for this instance */
628 unsigned int flags; /* Specifying the scheduler behaviour */
629
630 /*
631 * Some bool flags:
632 *
633 * @dl_throttled tells if we exhausted the runtime. If so, the
634 * task has to wait for a replenishment to be performed at the
635 * next firing of dl_timer.
636 *
637 * @dl_yielded tells if task gave up the CPU before consuming
638 * all its available runtime during the last job.
639 *
640 * @dl_non_contending tells if the task is inactive while still
641 * contributing to the active utilization. In other words, it
642 * indicates if the inactive timer has been armed and its handler
643 * has not been executed yet. This flag is useful to avoid race
644 * conditions between the inactive timer handler and the wakeup
645 * code.
646 *
647 * @dl_overrun tells if the task asked to be informed about runtime
648 * overruns.
649 */
650 unsigned int dl_throttled : 1;
651 unsigned int dl_yielded : 1;
652 unsigned int dl_non_contending : 1;
653 unsigned int dl_overrun : 1;
654
655 /*
656 * Bandwidth enforcement timer. Each -deadline task has its
657 * own bandwidth to be enforced, thus we need one timer per task.
658 */
659 struct hrtimer dl_timer;
660
661 /*
662 * Inactive timer, responsible for decreasing the active utilization
663 * at the "0-lag time". When a -deadline task blocks, it contributes
664 * to GRUB's active utilization until the "0-lag time", hence a
665 * timer is needed to decrease the active utilization at the correct
666 * time.
667 */
668 struct hrtimer inactive_timer;
669
670 #ifdef CONFIG_RT_MUTEXES
671 /*
672 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
673 * pi_se points to the donor, otherwise points to the dl_se it belongs
674 * to (the original one/itself).
675 */
676 struct sched_dl_entity *pi_se;
677 #endif
678 };
679
680 #ifdef CONFIG_UCLAMP_TASK
681 /* Number of utilization clamp buckets (shorter alias) */
682 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
683
684 /*
685 * Utilization clamp for a scheduling entity
686 * @value: clamp value "assigned" to a se
687 * @bucket_id: bucket index corresponding to the "assigned" value
688 * @active: the se is currently refcounted in a rq's bucket
689 * @user_defined: the requested clamp value comes from user-space
690 *
691 * The bucket_id is the index of the clamp bucket matching the clamp value
692 * which is pre-computed and stored to avoid expensive integer divisions from
693 * the fast path.
694 *
695 * The active bit is set whenever a task has got an "effective" value assigned,
696 * which can be different from the clamp value "requested" from user-space.
697 * This allows to know a task is refcounted in the rq's bucket corresponding
698 * to the "effective" bucket_id.
699 *
700 * The user_defined bit is set whenever a task has got a task-specific clamp
701 * value requested from userspace, i.e. the system defaults apply to this task
702 * just as a restriction. This allows to relax default clamps when a less
703 * restrictive task-specific value has been requested, thus allowing to
704 * implement a "nice" semantic. For example, a task running with a 20%
705 * default boost can still drop its own boosting to 0%.
706 */
707 struct uclamp_se {
708 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
709 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
710 unsigned int active : 1;
711 unsigned int user_defined : 1;
712 };
713 #endif /* CONFIG_UCLAMP_TASK */
714
715 union rcu_special {
716 struct {
717 u8 blocked;
718 u8 need_qs;
719 u8 exp_hint; /* Hint for performance. */
720 u8 need_mb; /* Readers need smp_mb(). */
721 } b; /* Bits. */
722 u32 s; /* Set of bits. */
723 };
724
725 enum perf_event_task_context {
726 perf_invalid_context = -1,
727 perf_hw_context = 0,
728 perf_sw_context,
729 perf_nr_task_contexts,
730 };
731
732 struct wake_q_node {
733 struct wake_q_node *next;
734 };
735
736 struct kmap_ctrl {
737 #ifdef CONFIG_KMAP_LOCAL
738 int idx;
739 pte_t pteval[KM_MAX_IDX];
740 #endif
741 };
742
743 struct task_struct {
744 #ifdef CONFIG_THREAD_INFO_IN_TASK
745 /*
746 * For reasons of header soup (see current_thread_info()), this
747 * must be the first element of task_struct.
748 */
749 struct thread_info thread_info;
750 #endif
751 unsigned int __state;
752
753 #ifdef CONFIG_PREEMPT_RT
754 /* saved state for "spinlock sleepers" */
755 unsigned int saved_state;
756 #endif
757
758 /*
759 * This begins the randomizable portion of task_struct. Only
760 * scheduling-critical items should be added above here.
761 */
762 randomized_struct_fields_start
763
764 void *stack;
765 refcount_t usage;
766 /* Per task flags (PF_*), defined further below: */
767 unsigned int flags;
768 unsigned int ptrace;
769
770 #ifdef CONFIG_SMP
771 int on_cpu;
772 struct __call_single_node wake_entry;
773 unsigned int wakee_flips;
774 unsigned long wakee_flip_decay_ts;
775 struct task_struct *last_wakee;
776
777 /*
778 * recent_used_cpu is initially set as the last CPU used by a task
779 * that wakes affine another task. Waker/wakee relationships can
780 * push tasks around a CPU where each wakeup moves to the next one.
781 * Tracking a recently used CPU allows a quick search for a recently
782 * used CPU that may be idle.
783 */
784 int recent_used_cpu;
785 int wake_cpu;
786 #endif
787 int on_rq;
788
789 int prio;
790 int static_prio;
791 int normal_prio;
792 unsigned int rt_priority;
793
794 struct sched_entity se;
795 struct sched_rt_entity rt;
796 struct sched_dl_entity dl;
797 const struct sched_class *sched_class;
798
799 #ifdef CONFIG_SCHED_CORE
800 struct rb_node core_node;
801 unsigned long core_cookie;
802 unsigned int core_occupation;
803 #endif
804
805 #ifdef CONFIG_CGROUP_SCHED
806 struct task_group *sched_task_group;
807 #endif
808
809 #ifdef CONFIG_UCLAMP_TASK
810 /*
811 * Clamp values requested for a scheduling entity.
812 * Must be updated with task_rq_lock() held.
813 */
814 struct uclamp_se uclamp_req[UCLAMP_CNT];
815 /*
816 * Effective clamp values used for a scheduling entity.
817 * Must be updated with task_rq_lock() held.
818 */
819 struct uclamp_se uclamp[UCLAMP_CNT];
820 #endif
821
822 struct sched_statistics stats;
823
824 #ifdef CONFIG_PREEMPT_NOTIFIERS
825 /* List of struct preempt_notifier: */
826 struct hlist_head preempt_notifiers;
827 #endif
828
829 #ifdef CONFIG_BLK_DEV_IO_TRACE
830 unsigned int btrace_seq;
831 #endif
832
833 unsigned int policy;
834 int nr_cpus_allowed;
835 const cpumask_t *cpus_ptr;
836 cpumask_t *user_cpus_ptr;
837 cpumask_t cpus_mask;
838 void *migration_pending;
839 #ifdef CONFIG_SMP
840 unsigned short migration_disabled;
841 #endif
842 unsigned short migration_flags;
843
844 #ifdef CONFIG_PREEMPT_RCU
845 int rcu_read_lock_nesting;
846 union rcu_special rcu_read_unlock_special;
847 struct list_head rcu_node_entry;
848 struct rcu_node *rcu_blocked_node;
849 #endif /* #ifdef CONFIG_PREEMPT_RCU */
850
851 #ifdef CONFIG_TASKS_RCU
852 unsigned long rcu_tasks_nvcsw;
853 u8 rcu_tasks_holdout;
854 u8 rcu_tasks_idx;
855 int rcu_tasks_idle_cpu;
856 struct list_head rcu_tasks_holdout_list;
857 int rcu_tasks_exit_cpu;
858 struct list_head rcu_tasks_exit_list;
859 #endif /* #ifdef CONFIG_TASKS_RCU */
860
861 #ifdef CONFIG_TASKS_TRACE_RCU
862 int trc_reader_nesting;
863 int trc_ipi_to_cpu;
864 union rcu_special trc_reader_special;
865 struct list_head trc_holdout_list;
866 struct list_head trc_blkd_node;
867 int trc_blkd_cpu;
868 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
869
870 struct sched_info sched_info;
871
872 struct list_head tasks;
873 #ifdef CONFIG_SMP
874 struct plist_node pushable_tasks;
875 struct rb_node pushable_dl_tasks;
876 #endif
877
878 struct mm_struct *mm;
879 struct mm_struct *active_mm;
880
881 int exit_state;
882 int exit_code;
883 int exit_signal;
884 /* The signal sent when the parent dies: */
885 int pdeath_signal;
886 /* JOBCTL_*, siglock protected: */
887 unsigned long jobctl;
888
889 /* Used for emulating ABI behavior of previous Linux versions: */
890 unsigned int personality;
891
892 /* Scheduler bits, serialized by scheduler locks: */
893 unsigned sched_reset_on_fork:1;
894 unsigned sched_contributes_to_load:1;
895 unsigned sched_migrated:1;
896
897 /* Force alignment to the next boundary: */
898 unsigned :0;
899
900 /* Unserialized, strictly 'current' */
901
902 /*
903 * This field must not be in the scheduler word above due to wakelist
904 * queueing no longer being serialized by p->on_cpu. However:
905 *
906 * p->XXX = X; ttwu()
907 * schedule() if (p->on_rq && ..) // false
908 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
909 * deactivate_task() ttwu_queue_wakelist())
910 * p->on_rq = 0; p->sched_remote_wakeup = Y;
911 *
912 * guarantees all stores of 'current' are visible before
913 * ->sched_remote_wakeup gets used, so it can be in this word.
914 */
915 unsigned sched_remote_wakeup:1;
916
917 /* Bit to tell LSMs we're in execve(): */
918 unsigned in_execve:1;
919 unsigned in_iowait:1;
920 #ifndef TIF_RESTORE_SIGMASK
921 unsigned restore_sigmask:1;
922 #endif
923 #ifdef CONFIG_MEMCG
924 unsigned in_user_fault:1;
925 #endif
926 #ifdef CONFIG_LRU_GEN
927 /* whether the LRU algorithm may apply to this access */
928 unsigned in_lru_fault:1;
929 #endif
930 #ifdef CONFIG_COMPAT_BRK
931 unsigned brk_randomized:1;
932 #endif
933 #ifdef CONFIG_CGROUPS
934 /* disallow userland-initiated cgroup migration */
935 unsigned no_cgroup_migration:1;
936 /* task is frozen/stopped (used by the cgroup freezer) */
937 unsigned frozen:1;
938 #endif
939 #ifdef CONFIG_BLK_CGROUP
940 unsigned use_memdelay:1;
941 #endif
942 #ifdef CONFIG_PSI
943 /* Stalled due to lack of memory */
944 unsigned in_memstall:1;
945 #endif
946 #ifdef CONFIG_PAGE_OWNER
947 /* Used by page_owner=on to detect recursion in page tracking. */
948 unsigned in_page_owner:1;
949 #endif
950 #ifdef CONFIG_EVENTFD
951 /* Recursion prevention for eventfd_signal() */
952 unsigned in_eventfd:1;
953 #endif
954 #ifdef CONFIG_IOMMU_SVA
955 unsigned pasid_activated:1;
956 #endif
957 #ifdef CONFIG_CPU_SUP_INTEL
958 unsigned reported_split_lock:1;
959 #endif
960 #ifdef CONFIG_TASK_DELAY_ACCT
961 /* delay due to memory thrashing */
962 unsigned in_thrashing:1;
963 #endif
964
965 unsigned long atomic_flags; /* Flags requiring atomic access. */
966
967 struct restart_block restart_block;
968
969 pid_t pid;
970 pid_t tgid;
971
972 #ifdef CONFIG_STACKPROTECTOR
973 /* Canary value for the -fstack-protector GCC feature: */
974 unsigned long stack_canary;
975 #endif
976 /*
977 * Pointers to the (original) parent process, youngest child, younger sibling,
978 * older sibling, respectively. (p->father can be replaced with
979 * p->real_parent->pid)
980 */
981
982 /* Real parent process: */
983 struct task_struct __rcu *real_parent;
984
985 /* Recipient of SIGCHLD, wait4() reports: */
986 struct task_struct __rcu *parent;
987
988 /*
989 * Children/sibling form the list of natural children:
990 */
991 struct list_head children;
992 struct list_head sibling;
993 struct task_struct *group_leader;
994
995 /*
996 * 'ptraced' is the list of tasks this task is using ptrace() on.
997 *
998 * This includes both natural children and PTRACE_ATTACH targets.
999 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1000 */
1001 struct list_head ptraced;
1002 struct list_head ptrace_entry;
1003
1004 /* PID/PID hash table linkage. */
1005 struct pid *thread_pid;
1006 struct hlist_node pid_links[PIDTYPE_MAX];
1007 struct list_head thread_group;
1008 struct list_head thread_node;
1009
1010 struct completion *vfork_done;
1011
1012 /* CLONE_CHILD_SETTID: */
1013 int __user *set_child_tid;
1014
1015 /* CLONE_CHILD_CLEARTID: */
1016 int __user *clear_child_tid;
1017
1018 /* PF_KTHREAD | PF_IO_WORKER */
1019 void *worker_private;
1020
1021 u64 utime;
1022 u64 stime;
1023 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1024 u64 utimescaled;
1025 u64 stimescaled;
1026 #endif
1027 u64 gtime;
1028 struct prev_cputime prev_cputime;
1029 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1030 struct vtime vtime;
1031 #endif
1032
1033 #ifdef CONFIG_NO_HZ_FULL
1034 atomic_t tick_dep_mask;
1035 #endif
1036 /* Context switch counts: */
1037 unsigned long nvcsw;
1038 unsigned long nivcsw;
1039
1040 /* Monotonic time in nsecs: */
1041 u64 start_time;
1042
1043 /* Boot based time in nsecs: */
1044 u64 start_boottime;
1045
1046 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1047 unsigned long min_flt;
1048 unsigned long maj_flt;
1049
1050 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1051 struct posix_cputimers posix_cputimers;
1052
1053 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1054 struct posix_cputimers_work posix_cputimers_work;
1055 #endif
1056
1057 /* Process credentials: */
1058
1059 /* Tracer's credentials at attach: */
1060 const struct cred __rcu *ptracer_cred;
1061
1062 /* Objective and real subjective task credentials (COW): */
1063 const struct cred __rcu *real_cred;
1064
1065 /* Effective (overridable) subjective task credentials (COW): */
1066 const struct cred __rcu *cred;
1067
1068 #ifdef CONFIG_KEYS
1069 /* Cached requested key. */
1070 struct key *cached_requested_key;
1071 #endif
1072
1073 /*
1074 * executable name, excluding path.
1075 *
1076 * - normally initialized setup_new_exec()
1077 * - access it with [gs]et_task_comm()
1078 * - lock it with task_lock()
1079 */
1080 char comm[TASK_COMM_LEN];
1081
1082 struct nameidata *nameidata;
1083
1084 #ifdef CONFIG_SYSVIPC
1085 struct sysv_sem sysvsem;
1086 struct sysv_shm sysvshm;
1087 #endif
1088 #ifdef CONFIG_DETECT_HUNG_TASK
1089 unsigned long last_switch_count;
1090 unsigned long last_switch_time;
1091 #endif
1092 /* Filesystem information: */
1093 struct fs_struct *fs;
1094
1095 /* Open file information: */
1096 struct files_struct *files;
1097
1098 #ifdef CONFIG_IO_URING
1099 struct io_uring_task *io_uring;
1100 #endif
1101
1102 /* Namespaces: */
1103 struct nsproxy *nsproxy;
1104
1105 /* Signal handlers: */
1106 struct signal_struct *signal;
1107 struct sighand_struct __rcu *sighand;
1108 sigset_t blocked;
1109 sigset_t real_blocked;
1110 /* Restored if set_restore_sigmask() was used: */
1111 sigset_t saved_sigmask;
1112 struct sigpending pending;
1113 unsigned long sas_ss_sp;
1114 size_t sas_ss_size;
1115 unsigned int sas_ss_flags;
1116
1117 struct callback_head *task_works;
1118
1119 #ifdef CONFIG_AUDIT
1120 #ifdef CONFIG_AUDITSYSCALL
1121 struct audit_context *audit_context;
1122 #endif
1123 kuid_t loginuid;
1124 unsigned int sessionid;
1125 #endif
1126 struct seccomp seccomp;
1127 struct syscall_user_dispatch syscall_dispatch;
1128
1129 /* Thread group tracking: */
1130 u64 parent_exec_id;
1131 u64 self_exec_id;
1132
1133 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1134 spinlock_t alloc_lock;
1135
1136 /* Protection of the PI data structures: */
1137 raw_spinlock_t pi_lock;
1138
1139 struct wake_q_node wake_q;
1140
1141 #ifdef CONFIG_RT_MUTEXES
1142 /* PI waiters blocked on a rt_mutex held by this task: */
1143 struct rb_root_cached pi_waiters;
1144 /* Updated under owner's pi_lock and rq lock */
1145 struct task_struct *pi_top_task;
1146 /* Deadlock detection and priority inheritance handling: */
1147 struct rt_mutex_waiter *pi_blocked_on;
1148 #endif
1149
1150 #ifdef CONFIG_DEBUG_MUTEXES
1151 /* Mutex deadlock detection: */
1152 struct mutex_waiter *blocked_on;
1153 #endif
1154
1155 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1156 int non_block_count;
1157 #endif
1158
1159 #ifdef CONFIG_TRACE_IRQFLAGS
1160 struct irqtrace_events irqtrace;
1161 unsigned int hardirq_threaded;
1162 u64 hardirq_chain_key;
1163 int softirqs_enabled;
1164 int softirq_context;
1165 int irq_config;
1166 #endif
1167 #ifdef CONFIG_PREEMPT_RT
1168 int softirq_disable_cnt;
1169 #endif
1170
1171 #ifdef CONFIG_LOCKDEP
1172 # define MAX_LOCK_DEPTH 48UL
1173 u64 curr_chain_key;
1174 int lockdep_depth;
1175 unsigned int lockdep_recursion;
1176 struct held_lock held_locks[MAX_LOCK_DEPTH];
1177 #endif
1178
1179 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1180 unsigned int in_ubsan;
1181 #endif
1182
1183 /* Journalling filesystem info: */
1184 void *journal_info;
1185
1186 /* Stacked block device info: */
1187 struct bio_list *bio_list;
1188
1189 /* Stack plugging: */
1190 struct blk_plug *plug;
1191
1192 /* VM state: */
1193 struct reclaim_state *reclaim_state;
1194
1195 struct io_context *io_context;
1196
1197 #ifdef CONFIG_COMPACTION
1198 struct capture_control *capture_control;
1199 #endif
1200 /* Ptrace state: */
1201 unsigned long ptrace_message;
1202 kernel_siginfo_t *last_siginfo;
1203
1204 struct task_io_accounting ioac;
1205 #ifdef CONFIG_PSI
1206 /* Pressure stall state */
1207 unsigned int psi_flags;
1208 #endif
1209 #ifdef CONFIG_TASK_XACCT
1210 /* Accumulated RSS usage: */
1211 u64 acct_rss_mem1;
1212 /* Accumulated virtual memory usage: */
1213 u64 acct_vm_mem1;
1214 /* stime + utime since last update: */
1215 u64 acct_timexpd;
1216 #endif
1217 #ifdef CONFIG_CPUSETS
1218 /* Protected by ->alloc_lock: */
1219 nodemask_t mems_allowed;
1220 /* Sequence number to catch updates: */
1221 seqcount_spinlock_t mems_allowed_seq;
1222 int cpuset_mem_spread_rotor;
1223 int cpuset_slab_spread_rotor;
1224 #endif
1225 #ifdef CONFIG_CGROUPS
1226 /* Control Group info protected by css_set_lock: */
1227 struct css_set __rcu *cgroups;
1228 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1229 struct list_head cg_list;
1230 #endif
1231 #ifdef CONFIG_X86_CPU_RESCTRL
1232 u32 closid;
1233 u32 rmid;
1234 #endif
1235 #ifdef CONFIG_FUTEX
1236 struct robust_list_head __user *robust_list;
1237 #ifdef CONFIG_COMPAT
1238 struct compat_robust_list_head __user *compat_robust_list;
1239 #endif
1240 struct list_head pi_state_list;
1241 struct futex_pi_state *pi_state_cache;
1242 struct mutex futex_exit_mutex;
1243 unsigned int futex_state;
1244 #endif
1245 #ifdef CONFIG_PERF_EVENTS
1246 struct perf_event_context *perf_event_ctxp;
1247 struct mutex perf_event_mutex;
1248 struct list_head perf_event_list;
1249 #endif
1250 #ifdef CONFIG_DEBUG_PREEMPT
1251 unsigned long preempt_disable_ip;
1252 #endif
1253 #ifdef CONFIG_NUMA
1254 /* Protected by alloc_lock: */
1255 struct mempolicy *mempolicy;
1256 short il_prev;
1257 short pref_node_fork;
1258 #endif
1259 #ifdef CONFIG_NUMA_BALANCING
1260 int numa_scan_seq;
1261 unsigned int numa_scan_period;
1262 unsigned int numa_scan_period_max;
1263 int numa_preferred_nid;
1264 unsigned long numa_migrate_retry;
1265 /* Migration stamp: */
1266 u64 node_stamp;
1267 u64 last_task_numa_placement;
1268 u64 last_sum_exec_runtime;
1269 struct callback_head numa_work;
1270
1271 /*
1272 * This pointer is only modified for current in syscall and
1273 * pagefault context (and for tasks being destroyed), so it can be read
1274 * from any of the following contexts:
1275 * - RCU read-side critical section
1276 * - current->numa_group from everywhere
1277 * - task's runqueue locked, task not running
1278 */
1279 struct numa_group __rcu *numa_group;
1280
1281 /*
1282 * numa_faults is an array split into four regions:
1283 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1284 * in this precise order.
1285 *
1286 * faults_memory: Exponential decaying average of faults on a per-node
1287 * basis. Scheduling placement decisions are made based on these
1288 * counts. The values remain static for the duration of a PTE scan.
1289 * faults_cpu: Track the nodes the process was running on when a NUMA
1290 * hinting fault was incurred.
1291 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1292 * during the current scan window. When the scan completes, the counts
1293 * in faults_memory and faults_cpu decay and these values are copied.
1294 */
1295 unsigned long *numa_faults;
1296 unsigned long total_numa_faults;
1297
1298 /*
1299 * numa_faults_locality tracks if faults recorded during the last
1300 * scan window were remote/local or failed to migrate. The task scan
1301 * period is adapted based on the locality of the faults with different
1302 * weights depending on whether they were shared or private faults
1303 */
1304 unsigned long numa_faults_locality[3];
1305
1306 unsigned long numa_pages_migrated;
1307 #endif /* CONFIG_NUMA_BALANCING */
1308
1309 #ifdef CONFIG_RSEQ
1310 struct rseq __user *rseq;
1311 u32 rseq_len;
1312 u32 rseq_sig;
1313 /*
1314 * RmW on rseq_event_mask must be performed atomically
1315 * with respect to preemption.
1316 */
1317 unsigned long rseq_event_mask;
1318 #endif
1319
1320 #ifdef CONFIG_SCHED_MM_CID
1321 int mm_cid; /* Current cid in mm */
1322 int last_mm_cid; /* Most recent cid in mm */
1323 int migrate_from_cpu;
1324 int mm_cid_active; /* Whether cid bitmap is active */
1325 struct callback_head cid_work;
1326 #endif
1327
1328 struct tlbflush_unmap_batch tlb_ubc;
1329
1330 /* Cache last used pipe for splice(): */
1331 struct pipe_inode_info *splice_pipe;
1332
1333 struct page_frag task_frag;
1334
1335 #ifdef CONFIG_TASK_DELAY_ACCT
1336 struct task_delay_info *delays;
1337 #endif
1338
1339 #ifdef CONFIG_FAULT_INJECTION
1340 int make_it_fail;
1341 unsigned int fail_nth;
1342 #endif
1343 /*
1344 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1345 * balance_dirty_pages() for a dirty throttling pause:
1346 */
1347 int nr_dirtied;
1348 int nr_dirtied_pause;
1349 /* Start of a write-and-pause period: */
1350 unsigned long dirty_paused_when;
1351
1352 #ifdef CONFIG_LATENCYTOP
1353 int latency_record_count;
1354 struct latency_record latency_record[LT_SAVECOUNT];
1355 #endif
1356 /*
1357 * Time slack values; these are used to round up poll() and
1358 * select() etc timeout values. These are in nanoseconds.
1359 */
1360 u64 timer_slack_ns;
1361 u64 default_timer_slack_ns;
1362
1363 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1364 unsigned int kasan_depth;
1365 #endif
1366
1367 #ifdef CONFIG_KCSAN
1368 struct kcsan_ctx kcsan_ctx;
1369 #ifdef CONFIG_TRACE_IRQFLAGS
1370 struct irqtrace_events kcsan_save_irqtrace;
1371 #endif
1372 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1373 int kcsan_stack_depth;
1374 #endif
1375 #endif
1376
1377 #ifdef CONFIG_KMSAN
1378 struct kmsan_ctx kmsan_ctx;
1379 #endif
1380
1381 #if IS_ENABLED(CONFIG_KUNIT)
1382 struct kunit *kunit_test;
1383 #endif
1384
1385 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1386 /* Index of current stored address in ret_stack: */
1387 int curr_ret_stack;
1388 int curr_ret_depth;
1389
1390 /* Stack of return addresses for return function tracing: */
1391 struct ftrace_ret_stack *ret_stack;
1392
1393 /* Timestamp for last schedule: */
1394 unsigned long long ftrace_timestamp;
1395
1396 /*
1397 * Number of functions that haven't been traced
1398 * because of depth overrun:
1399 */
1400 atomic_t trace_overrun;
1401
1402 /* Pause tracing: */
1403 atomic_t tracing_graph_pause;
1404 #endif
1405
1406 #ifdef CONFIG_TRACING
1407 /* Bitmask and counter of trace recursion: */
1408 unsigned long trace_recursion;
1409 #endif /* CONFIG_TRACING */
1410
1411 #ifdef CONFIG_KCOV
1412 /* See kernel/kcov.c for more details. */
1413
1414 /* Coverage collection mode enabled for this task (0 if disabled): */
1415 unsigned int kcov_mode;
1416
1417 /* Size of the kcov_area: */
1418 unsigned int kcov_size;
1419
1420 /* Buffer for coverage collection: */
1421 void *kcov_area;
1422
1423 /* KCOV descriptor wired with this task or NULL: */
1424 struct kcov *kcov;
1425
1426 /* KCOV common handle for remote coverage collection: */
1427 u64 kcov_handle;
1428
1429 /* KCOV sequence number: */
1430 int kcov_sequence;
1431
1432 /* Collect coverage from softirq context: */
1433 unsigned int kcov_softirq;
1434 #endif
1435
1436 #ifdef CONFIG_MEMCG
1437 struct mem_cgroup *memcg_in_oom;
1438 gfp_t memcg_oom_gfp_mask;
1439 int memcg_oom_order;
1440
1441 /* Number of pages to reclaim on returning to userland: */
1442 unsigned int memcg_nr_pages_over_high;
1443
1444 /* Used by memcontrol for targeted memcg charge: */
1445 struct mem_cgroup *active_memcg;
1446 #endif
1447
1448 #ifdef CONFIG_BLK_CGROUP
1449 struct gendisk *throttle_disk;
1450 #endif
1451
1452 #ifdef CONFIG_UPROBES
1453 struct uprobe_task *utask;
1454 #endif
1455 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1456 unsigned int sequential_io;
1457 unsigned int sequential_io_avg;
1458 #endif
1459 struct kmap_ctrl kmap_ctrl;
1460 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1461 unsigned long task_state_change;
1462 # ifdef CONFIG_PREEMPT_RT
1463 unsigned long saved_state_change;
1464 # endif
1465 #endif
1466 struct rcu_head rcu;
1467 refcount_t rcu_users;
1468 int pagefault_disabled;
1469 #ifdef CONFIG_MMU
1470 struct task_struct *oom_reaper_list;
1471 struct timer_list oom_reaper_timer;
1472 #endif
1473 #ifdef CONFIG_VMAP_STACK
1474 struct vm_struct *stack_vm_area;
1475 #endif
1476 #ifdef CONFIG_THREAD_INFO_IN_TASK
1477 /* A live task holds one reference: */
1478 refcount_t stack_refcount;
1479 #endif
1480 #ifdef CONFIG_LIVEPATCH
1481 int patch_state;
1482 #endif
1483 #ifdef CONFIG_SECURITY
1484 /* Used by LSM modules for access restriction: */
1485 void *security;
1486 #endif
1487 #ifdef CONFIG_BPF_SYSCALL
1488 /* Used by BPF task local storage */
1489 struct bpf_local_storage __rcu *bpf_storage;
1490 /* Used for BPF run context */
1491 struct bpf_run_ctx *bpf_ctx;
1492 #endif
1493
1494 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1495 unsigned long lowest_stack;
1496 unsigned long prev_lowest_stack;
1497 #endif
1498
1499 #ifdef CONFIG_X86_MCE
1500 void __user *mce_vaddr;
1501 __u64 mce_kflags;
1502 u64 mce_addr;
1503 __u64 mce_ripv : 1,
1504 mce_whole_page : 1,
1505 __mce_reserved : 62;
1506 struct callback_head mce_kill_me;
1507 int mce_count;
1508 #endif
1509
1510 #ifdef CONFIG_KRETPROBES
1511 struct llist_head kretprobe_instances;
1512 #endif
1513 #ifdef CONFIG_RETHOOK
1514 struct llist_head rethooks;
1515 #endif
1516
1517 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1518 /*
1519 * If L1D flush is supported on mm context switch
1520 * then we use this callback head to queue kill work
1521 * to kill tasks that are not running on SMT disabled
1522 * cores
1523 */
1524 struct callback_head l1d_flush_kill;
1525 #endif
1526
1527 #ifdef CONFIG_RV
1528 /*
1529 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1530 * If we find justification for more monitors, we can think
1531 * about adding more or developing a dynamic method. So far,
1532 * none of these are justified.
1533 */
1534 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1535 #endif
1536
1537 #ifdef CONFIG_USER_EVENTS
1538 struct user_event_mm *user_event_mm;
1539 #endif
1540
1541 /*
1542 * New fields for task_struct should be added above here, so that
1543 * they are included in the randomized portion of task_struct.
1544 */
1545 randomized_struct_fields_end
1546
1547 /* CPU-specific state of this task: */
1548 struct thread_struct thread;
1549
1550 /*
1551 * WARNING: on x86, 'thread_struct' contains a variable-sized
1552 * structure. It *MUST* be at the end of 'task_struct'.
1553 *
1554 * Do not put anything below here!
1555 */
1556 };
1557
task_pid(struct task_struct * task)1558 static inline struct pid *task_pid(struct task_struct *task)
1559 {
1560 return task->thread_pid;
1561 }
1562
1563 /*
1564 * the helpers to get the task's different pids as they are seen
1565 * from various namespaces
1566 *
1567 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1568 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1569 * current.
1570 * task_xid_nr_ns() : id seen from the ns specified;
1571 *
1572 * see also pid_nr() etc in include/linux/pid.h
1573 */
1574 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1575
task_pid_nr(struct task_struct * tsk)1576 static inline pid_t task_pid_nr(struct task_struct *tsk)
1577 {
1578 return tsk->pid;
1579 }
1580
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1581 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1582 {
1583 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1584 }
1585
task_pid_vnr(struct task_struct * tsk)1586 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1587 {
1588 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1589 }
1590
1591
task_tgid_nr(struct task_struct * tsk)1592 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1593 {
1594 return tsk->tgid;
1595 }
1596
1597 /**
1598 * pid_alive - check that a task structure is not stale
1599 * @p: Task structure to be checked.
1600 *
1601 * Test if a process is not yet dead (at most zombie state)
1602 * If pid_alive fails, then pointers within the task structure
1603 * can be stale and must not be dereferenced.
1604 *
1605 * Return: 1 if the process is alive. 0 otherwise.
1606 */
pid_alive(const struct task_struct * p)1607 static inline int pid_alive(const struct task_struct *p)
1608 {
1609 return p->thread_pid != NULL;
1610 }
1611
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1612 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1613 {
1614 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1615 }
1616
task_pgrp_vnr(struct task_struct * tsk)1617 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1618 {
1619 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1620 }
1621
1622
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1623 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1624 {
1625 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1626 }
1627
task_session_vnr(struct task_struct * tsk)1628 static inline pid_t task_session_vnr(struct task_struct *tsk)
1629 {
1630 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1631 }
1632
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1633 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1634 {
1635 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1636 }
1637
task_tgid_vnr(struct task_struct * tsk)1638 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1639 {
1640 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1641 }
1642
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1643 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1644 {
1645 pid_t pid = 0;
1646
1647 rcu_read_lock();
1648 if (pid_alive(tsk))
1649 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1650 rcu_read_unlock();
1651
1652 return pid;
1653 }
1654
task_ppid_nr(const struct task_struct * tsk)1655 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1656 {
1657 return task_ppid_nr_ns(tsk, &init_pid_ns);
1658 }
1659
1660 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1661 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1662 {
1663 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1664 }
1665
1666 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1667 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1668
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1669 static inline unsigned int __task_state_index(unsigned int tsk_state,
1670 unsigned int tsk_exit_state)
1671 {
1672 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1673
1674 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1675
1676 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1677 state = TASK_REPORT_IDLE;
1678
1679 /*
1680 * We're lying here, but rather than expose a completely new task state
1681 * to userspace, we can make this appear as if the task has gone through
1682 * a regular rt_mutex_lock() call.
1683 */
1684 if (tsk_state & TASK_RTLOCK_WAIT)
1685 state = TASK_UNINTERRUPTIBLE;
1686
1687 return fls(state);
1688 }
1689
task_state_index(struct task_struct * tsk)1690 static inline unsigned int task_state_index(struct task_struct *tsk)
1691 {
1692 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1693 }
1694
task_index_to_char(unsigned int state)1695 static inline char task_index_to_char(unsigned int state)
1696 {
1697 static const char state_char[] = "RSDTtXZPI";
1698
1699 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1700
1701 return state_char[state];
1702 }
1703
task_state_to_char(struct task_struct * tsk)1704 static inline char task_state_to_char(struct task_struct *tsk)
1705 {
1706 return task_index_to_char(task_state_index(tsk));
1707 }
1708
1709 /**
1710 * is_global_init - check if a task structure is init. Since init
1711 * is free to have sub-threads we need to check tgid.
1712 * @tsk: Task structure to be checked.
1713 *
1714 * Check if a task structure is the first user space task the kernel created.
1715 *
1716 * Return: 1 if the task structure is init. 0 otherwise.
1717 */
is_global_init(struct task_struct * tsk)1718 static inline int is_global_init(struct task_struct *tsk)
1719 {
1720 return task_tgid_nr(tsk) == 1;
1721 }
1722
1723 extern struct pid *cad_pid;
1724
1725 /*
1726 * Per process flags
1727 */
1728 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1729 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1730 #define PF_EXITING 0x00000004 /* Getting shut down */
1731 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1732 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1733 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1734 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1735 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1736 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1737 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1738 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1739 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1740 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1741 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1742 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1743 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1744 #define PF__HOLE__00010000 0x00010000
1745 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1746 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1747 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1748 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1749 * I am cleaning dirty pages from some other bdi. */
1750 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1751 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1752 #define PF__HOLE__00800000 0x00800000
1753 #define PF__HOLE__01000000 0x01000000
1754 #define PF__HOLE__02000000 0x02000000
1755 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1756 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1757 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1758 #define PF__HOLE__20000000 0x20000000
1759 #define PF__HOLE__40000000 0x40000000
1760 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1761
1762 /*
1763 * Only the _current_ task can read/write to tsk->flags, but other
1764 * tasks can access tsk->flags in readonly mode for example
1765 * with tsk_used_math (like during threaded core dumping).
1766 * There is however an exception to this rule during ptrace
1767 * or during fork: the ptracer task is allowed to write to the
1768 * child->flags of its traced child (same goes for fork, the parent
1769 * can write to the child->flags), because we're guaranteed the
1770 * child is not running and in turn not changing child->flags
1771 * at the same time the parent does it.
1772 */
1773 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1774 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1775 #define clear_used_math() clear_stopped_child_used_math(current)
1776 #define set_used_math() set_stopped_child_used_math(current)
1777
1778 #define conditional_stopped_child_used_math(condition, child) \
1779 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1780
1781 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1782
1783 #define copy_to_stopped_child_used_math(child) \
1784 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1785
1786 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1787 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1788 #define used_math() tsk_used_math(current)
1789
is_percpu_thread(void)1790 static __always_inline bool is_percpu_thread(void)
1791 {
1792 #ifdef CONFIG_SMP
1793 return (current->flags & PF_NO_SETAFFINITY) &&
1794 (current->nr_cpus_allowed == 1);
1795 #else
1796 return true;
1797 #endif
1798 }
1799
1800 /* Per-process atomic flags. */
1801 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1802 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1803 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1804 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1805 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1806 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1807 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1808 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1809
1810 #define TASK_PFA_TEST(name, func) \
1811 static inline bool task_##func(struct task_struct *p) \
1812 { return test_bit(PFA_##name, &p->atomic_flags); }
1813
1814 #define TASK_PFA_SET(name, func) \
1815 static inline void task_set_##func(struct task_struct *p) \
1816 { set_bit(PFA_##name, &p->atomic_flags); }
1817
1818 #define TASK_PFA_CLEAR(name, func) \
1819 static inline void task_clear_##func(struct task_struct *p) \
1820 { clear_bit(PFA_##name, &p->atomic_flags); }
1821
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1822 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1823 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1824
1825 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1826 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1827 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1828
1829 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1830 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1831 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1832
1833 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1834 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1835 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1836
1837 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1838 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1839 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1840
1841 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1842 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1843
1844 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1845 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1846 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1847
1848 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1849 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1850
1851 static inline void
1852 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1853 {
1854 current->flags &= ~flags;
1855 current->flags |= orig_flags & flags;
1856 }
1857
1858 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1859 extern int task_can_attach(struct task_struct *p);
1860 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1861 extern void dl_bw_free(int cpu, u64 dl_bw);
1862 #ifdef CONFIG_SMP
1863
1864 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1865 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1866
1867 /**
1868 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1869 * @p: the task
1870 * @new_mask: CPU affinity mask
1871 *
1872 * Return: zero if successful, or a negative error code
1873 */
1874 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1875 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1876 extern void release_user_cpus_ptr(struct task_struct *p);
1877 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1878 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1879 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1880 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1881 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1882 {
1883 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1884 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1885 {
1886 if (!cpumask_test_cpu(0, new_mask))
1887 return -EINVAL;
1888 return 0;
1889 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1890 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1891 {
1892 if (src->user_cpus_ptr)
1893 return -EINVAL;
1894 return 0;
1895 }
release_user_cpus_ptr(struct task_struct * p)1896 static inline void release_user_cpus_ptr(struct task_struct *p)
1897 {
1898 WARN_ON(p->user_cpus_ptr);
1899 }
1900
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1901 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1902 {
1903 return 0;
1904 }
1905 #endif
1906
1907 extern int yield_to(struct task_struct *p, bool preempt);
1908 extern void set_user_nice(struct task_struct *p, long nice);
1909 extern int task_prio(const struct task_struct *p);
1910
1911 /**
1912 * task_nice - return the nice value of a given task.
1913 * @p: the task in question.
1914 *
1915 * Return: The nice value [ -20 ... 0 ... 19 ].
1916 */
task_nice(const struct task_struct * p)1917 static inline int task_nice(const struct task_struct *p)
1918 {
1919 return PRIO_TO_NICE((p)->static_prio);
1920 }
1921
1922 extern int can_nice(const struct task_struct *p, const int nice);
1923 extern int task_curr(const struct task_struct *p);
1924 extern int idle_cpu(int cpu);
1925 extern int available_idle_cpu(int cpu);
1926 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1927 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1928 extern void sched_set_fifo(struct task_struct *p);
1929 extern void sched_set_fifo_low(struct task_struct *p);
1930 extern void sched_set_normal(struct task_struct *p, int nice);
1931 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1932 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1933 extern struct task_struct *idle_task(int cpu);
1934
1935 /**
1936 * is_idle_task - is the specified task an idle task?
1937 * @p: the task in question.
1938 *
1939 * Return: 1 if @p is an idle task. 0 otherwise.
1940 */
is_idle_task(const struct task_struct * p)1941 static __always_inline bool is_idle_task(const struct task_struct *p)
1942 {
1943 return !!(p->flags & PF_IDLE);
1944 }
1945
1946 extern struct task_struct *curr_task(int cpu);
1947 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1948
1949 void yield(void);
1950
1951 union thread_union {
1952 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1953 struct task_struct task;
1954 #endif
1955 #ifndef CONFIG_THREAD_INFO_IN_TASK
1956 struct thread_info thread_info;
1957 #endif
1958 unsigned long stack[THREAD_SIZE/sizeof(long)];
1959 };
1960
1961 #ifndef CONFIG_THREAD_INFO_IN_TASK
1962 extern struct thread_info init_thread_info;
1963 #endif
1964
1965 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1966
1967 #ifdef CONFIG_THREAD_INFO_IN_TASK
1968 # define task_thread_info(task) (&(task)->thread_info)
1969 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1970 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1971 #endif
1972
1973 /*
1974 * find a task by one of its numerical ids
1975 *
1976 * find_task_by_pid_ns():
1977 * finds a task by its pid in the specified namespace
1978 * find_task_by_vpid():
1979 * finds a task by its virtual pid
1980 *
1981 * see also find_vpid() etc in include/linux/pid.h
1982 */
1983
1984 extern struct task_struct *find_task_by_vpid(pid_t nr);
1985 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1986
1987 /*
1988 * find a task by its virtual pid and get the task struct
1989 */
1990 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1991
1992 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1993 extern int wake_up_process(struct task_struct *tsk);
1994 extern void wake_up_new_task(struct task_struct *tsk);
1995
1996 #ifdef CONFIG_SMP
1997 extern void kick_process(struct task_struct *tsk);
1998 #else
kick_process(struct task_struct * tsk)1999 static inline void kick_process(struct task_struct *tsk) { }
2000 #endif
2001
2002 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2003
set_task_comm(struct task_struct * tsk,const char * from)2004 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2005 {
2006 __set_task_comm(tsk, from, false);
2007 }
2008
2009 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2010 #define get_task_comm(buf, tsk) ({ \
2011 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
2012 __get_task_comm(buf, sizeof(buf), tsk); \
2013 })
2014
2015 #ifdef CONFIG_SMP
scheduler_ipi(void)2016 static __always_inline void scheduler_ipi(void)
2017 {
2018 /*
2019 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2020 * TIF_NEED_RESCHED remotely (for the first time) will also send
2021 * this IPI.
2022 */
2023 preempt_fold_need_resched();
2024 }
2025 #else
scheduler_ipi(void)2026 static inline void scheduler_ipi(void) { }
2027 #endif
2028
2029 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2030
2031 /*
2032 * Set thread flags in other task's structures.
2033 * See asm/thread_info.h for TIF_xxxx flags available:
2034 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2035 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 set_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2040 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 clear_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2045 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2046 bool value)
2047 {
2048 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2049 }
2050
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2051 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2052 {
2053 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2054 }
2055
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2056 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2057 {
2058 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2059 }
2060
test_tsk_thread_flag(struct task_struct * tsk,int flag)2061 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2062 {
2063 return test_ti_thread_flag(task_thread_info(tsk), flag);
2064 }
2065
set_tsk_need_resched(struct task_struct * tsk)2066 static inline void set_tsk_need_resched(struct task_struct *tsk)
2067 {
2068 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2069 }
2070
clear_tsk_need_resched(struct task_struct * tsk)2071 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2072 {
2073 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2074 }
2075
test_tsk_need_resched(struct task_struct * tsk)2076 static inline int test_tsk_need_resched(struct task_struct *tsk)
2077 {
2078 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2079 }
2080
2081 /*
2082 * cond_resched() and cond_resched_lock(): latency reduction via
2083 * explicit rescheduling in places that are safe. The return
2084 * value indicates whether a reschedule was done in fact.
2085 * cond_resched_lock() will drop the spinlock before scheduling,
2086 */
2087 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2088 extern int __cond_resched(void);
2089
2090 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2091
2092 void sched_dynamic_klp_enable(void);
2093 void sched_dynamic_klp_disable(void);
2094
2095 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2096
_cond_resched(void)2097 static __always_inline int _cond_resched(void)
2098 {
2099 return static_call_mod(cond_resched)();
2100 }
2101
2102 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2103
2104 extern int dynamic_cond_resched(void);
2105
_cond_resched(void)2106 static __always_inline int _cond_resched(void)
2107 {
2108 return dynamic_cond_resched();
2109 }
2110
2111 #else /* !CONFIG_PREEMPTION */
2112
_cond_resched(void)2113 static inline int _cond_resched(void)
2114 {
2115 klp_sched_try_switch();
2116 return __cond_resched();
2117 }
2118
2119 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2120
2121 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2122
_cond_resched(void)2123 static inline int _cond_resched(void)
2124 {
2125 klp_sched_try_switch();
2126 return 0;
2127 }
2128
2129 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2130
2131 #define cond_resched() ({ \
2132 __might_resched(__FILE__, __LINE__, 0); \
2133 _cond_resched(); \
2134 })
2135
2136 extern int __cond_resched_lock(spinlock_t *lock);
2137 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2138 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2139
2140 #define MIGHT_RESCHED_RCU_SHIFT 8
2141 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2142
2143 #ifndef CONFIG_PREEMPT_RT
2144 /*
2145 * Non RT kernels have an elevated preempt count due to the held lock,
2146 * but are not allowed to be inside a RCU read side critical section
2147 */
2148 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2149 #else
2150 /*
2151 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2152 * cond_resched*lock() has to take that into account because it checks for
2153 * preempt_count() and rcu_preempt_depth().
2154 */
2155 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2156 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2157 #endif
2158
2159 #define cond_resched_lock(lock) ({ \
2160 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2161 __cond_resched_lock(lock); \
2162 })
2163
2164 #define cond_resched_rwlock_read(lock) ({ \
2165 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2166 __cond_resched_rwlock_read(lock); \
2167 })
2168
2169 #define cond_resched_rwlock_write(lock) ({ \
2170 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2171 __cond_resched_rwlock_write(lock); \
2172 })
2173
cond_resched_rcu(void)2174 static inline void cond_resched_rcu(void)
2175 {
2176 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2177 rcu_read_unlock();
2178 cond_resched();
2179 rcu_read_lock();
2180 #endif
2181 }
2182
2183 #ifdef CONFIG_PREEMPT_DYNAMIC
2184
2185 extern bool preempt_model_none(void);
2186 extern bool preempt_model_voluntary(void);
2187 extern bool preempt_model_full(void);
2188
2189 #else
2190
preempt_model_none(void)2191 static inline bool preempt_model_none(void)
2192 {
2193 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2194 }
preempt_model_voluntary(void)2195 static inline bool preempt_model_voluntary(void)
2196 {
2197 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2198 }
preempt_model_full(void)2199 static inline bool preempt_model_full(void)
2200 {
2201 return IS_ENABLED(CONFIG_PREEMPT);
2202 }
2203
2204 #endif
2205
preempt_model_rt(void)2206 static inline bool preempt_model_rt(void)
2207 {
2208 return IS_ENABLED(CONFIG_PREEMPT_RT);
2209 }
2210
2211 /*
2212 * Does the preemption model allow non-cooperative preemption?
2213 *
2214 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2215 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2216 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2217 * PREEMPT_NONE model.
2218 */
preempt_model_preemptible(void)2219 static inline bool preempt_model_preemptible(void)
2220 {
2221 return preempt_model_full() || preempt_model_rt();
2222 }
2223
2224 /*
2225 * Does a critical section need to be broken due to another
2226 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2227 * but a general need for low latency)
2228 */
spin_needbreak(spinlock_t * lock)2229 static inline int spin_needbreak(spinlock_t *lock)
2230 {
2231 #ifdef CONFIG_PREEMPTION
2232 return spin_is_contended(lock);
2233 #else
2234 return 0;
2235 #endif
2236 }
2237
2238 /*
2239 * Check if a rwlock is contended.
2240 * Returns non-zero if there is another task waiting on the rwlock.
2241 * Returns zero if the lock is not contended or the system / underlying
2242 * rwlock implementation does not support contention detection.
2243 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2244 * for low latency.
2245 */
rwlock_needbreak(rwlock_t * lock)2246 static inline int rwlock_needbreak(rwlock_t *lock)
2247 {
2248 #ifdef CONFIG_PREEMPTION
2249 return rwlock_is_contended(lock);
2250 #else
2251 return 0;
2252 #endif
2253 }
2254
need_resched(void)2255 static __always_inline bool need_resched(void)
2256 {
2257 return unlikely(tif_need_resched());
2258 }
2259
2260 /*
2261 * Wrappers for p->thread_info->cpu access. No-op on UP.
2262 */
2263 #ifdef CONFIG_SMP
2264
task_cpu(const struct task_struct * p)2265 static inline unsigned int task_cpu(const struct task_struct *p)
2266 {
2267 return READ_ONCE(task_thread_info(p)->cpu);
2268 }
2269
2270 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2271
2272 #else
2273
task_cpu(const struct task_struct * p)2274 static inline unsigned int task_cpu(const struct task_struct *p)
2275 {
2276 return 0;
2277 }
2278
set_task_cpu(struct task_struct * p,unsigned int cpu)2279 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2280 {
2281 }
2282
2283 #endif /* CONFIG_SMP */
2284
2285 extern bool sched_task_on_rq(struct task_struct *p);
2286 extern unsigned long get_wchan(struct task_struct *p);
2287 extern struct task_struct *cpu_curr_snapshot(int cpu);
2288
2289 /*
2290 * In order to reduce various lock holder preemption latencies provide an
2291 * interface to see if a vCPU is currently running or not.
2292 *
2293 * This allows us to terminate optimistic spin loops and block, analogous to
2294 * the native optimistic spin heuristic of testing if the lock owner task is
2295 * running or not.
2296 */
2297 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2298 static inline bool vcpu_is_preempted(int cpu)
2299 {
2300 return false;
2301 }
2302 #endif
2303
2304 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2305 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2306
2307 #ifndef TASK_SIZE_OF
2308 #define TASK_SIZE_OF(tsk) TASK_SIZE
2309 #endif
2310
2311 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2312 static inline bool owner_on_cpu(struct task_struct *owner)
2313 {
2314 /*
2315 * As lock holder preemption issue, we both skip spinning if
2316 * task is not on cpu or its cpu is preempted
2317 */
2318 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2319 }
2320
2321 /* Returns effective CPU energy utilization, as seen by the scheduler */
2322 unsigned long sched_cpu_util(int cpu);
2323 #endif /* CONFIG_SMP */
2324
2325 #ifdef CONFIG_RSEQ
2326
2327 /*
2328 * Map the event mask on the user-space ABI enum rseq_cs_flags
2329 * for direct mask checks.
2330 */
2331 enum rseq_event_mask_bits {
2332 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2333 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2334 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2335 };
2336
2337 enum rseq_event_mask {
2338 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2339 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2340 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2341 };
2342
rseq_set_notify_resume(struct task_struct * t)2343 static inline void rseq_set_notify_resume(struct task_struct *t)
2344 {
2345 if (t->rseq)
2346 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2347 }
2348
2349 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2350
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2351 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2352 struct pt_regs *regs)
2353 {
2354 if (current->rseq)
2355 __rseq_handle_notify_resume(ksig, regs);
2356 }
2357
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2358 static inline void rseq_signal_deliver(struct ksignal *ksig,
2359 struct pt_regs *regs)
2360 {
2361 preempt_disable();
2362 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2363 preempt_enable();
2364 rseq_handle_notify_resume(ksig, regs);
2365 }
2366
2367 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2368 static inline void rseq_preempt(struct task_struct *t)
2369 {
2370 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2371 rseq_set_notify_resume(t);
2372 }
2373
2374 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2375 static inline void rseq_migrate(struct task_struct *t)
2376 {
2377 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2378 rseq_set_notify_resume(t);
2379 }
2380
2381 /*
2382 * If parent process has a registered restartable sequences area, the
2383 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2384 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2385 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2386 {
2387 if (clone_flags & CLONE_VM) {
2388 t->rseq = NULL;
2389 t->rseq_len = 0;
2390 t->rseq_sig = 0;
2391 t->rseq_event_mask = 0;
2392 } else {
2393 t->rseq = current->rseq;
2394 t->rseq_len = current->rseq_len;
2395 t->rseq_sig = current->rseq_sig;
2396 t->rseq_event_mask = current->rseq_event_mask;
2397 }
2398 }
2399
rseq_execve(struct task_struct * t)2400 static inline void rseq_execve(struct task_struct *t)
2401 {
2402 t->rseq = NULL;
2403 t->rseq_len = 0;
2404 t->rseq_sig = 0;
2405 t->rseq_event_mask = 0;
2406 }
2407
2408 #else
2409
rseq_set_notify_resume(struct task_struct * t)2410 static inline void rseq_set_notify_resume(struct task_struct *t)
2411 {
2412 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2413 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2414 struct pt_regs *regs)
2415 {
2416 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2417 static inline void rseq_signal_deliver(struct ksignal *ksig,
2418 struct pt_regs *regs)
2419 {
2420 }
rseq_preempt(struct task_struct * t)2421 static inline void rseq_preempt(struct task_struct *t)
2422 {
2423 }
rseq_migrate(struct task_struct * t)2424 static inline void rseq_migrate(struct task_struct *t)
2425 {
2426 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2427 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2428 {
2429 }
rseq_execve(struct task_struct * t)2430 static inline void rseq_execve(struct task_struct *t)
2431 {
2432 }
2433
2434 #endif
2435
2436 #ifdef CONFIG_DEBUG_RSEQ
2437
2438 void rseq_syscall(struct pt_regs *regs);
2439
2440 #else
2441
rseq_syscall(struct pt_regs * regs)2442 static inline void rseq_syscall(struct pt_regs *regs)
2443 {
2444 }
2445
2446 #endif
2447
2448 #ifdef CONFIG_SCHED_CORE
2449 extern void sched_core_free(struct task_struct *tsk);
2450 extern void sched_core_fork(struct task_struct *p);
2451 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2452 unsigned long uaddr);
2453 extern int sched_core_idle_cpu(int cpu);
2454 #else
sched_core_free(struct task_struct * tsk)2455 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2456 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2457 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2458 #endif
2459
2460 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2461
2462 #endif
2463