1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2011 The Chromium OS Authors.
4  * (C) Copyright 2010-2015
5  * NVIDIA Corporation <www.nvidia.com>
6  */
7 
8 /* Tegra20 Clock control functions */
9 
10 #include <common.h>
11 #include <errno.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/timer.h>
17 #include <div64.h>
18 #include <fdtdec.h>
19 
20 /*
21  * Clock types that we can use as a source. The Tegra20 has muxes for the
22  * peripheral clocks, and in most cases there are four options for the clock
23  * source. This gives us a clock 'type' and exploits what commonality exists
24  * in the device.
25  *
26  * Letters are obvious, except for T which means CLK_M, and S which means the
27  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28  * datasheet) and PLL_M are different things. The former is the basic
29  * clock supplied to the SOC from an external oscillator. The latter is the
30  * memory clock PLL.
31  *
32  * See definitions in clock_id in the header file.
33  */
34 enum clock_type_id {
35 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
36 	CLOCK_TYPE_MCPA,	/* and so on */
37 	CLOCK_TYPE_MCPT,
38 	CLOCK_TYPE_PCM,
39 	CLOCK_TYPE_PCMT,
40 	CLOCK_TYPE_PCMT16,	/* CLOCK_TYPE_PCMT with 16-bit divider */
41 	CLOCK_TYPE_PCXTS,
42 	CLOCK_TYPE_PDCT,
43 
44 	CLOCK_TYPE_COUNT,
45 	CLOCK_TYPE_NONE = -1,	/* invalid clock type */
46 };
47 
48 enum {
49 	CLOCK_MAX_MUX	= 4	/* number of source options for each clock */
50 };
51 
52 /*
53  * Clock source mux for each clock type. This just converts our enum into
54  * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
55  * is special as it has 5 sources. Since it also has a different number of
56  * bits in its register for the source, we just handle it with a special
57  * case in the code.
58  */
59 #define CLK(x) CLOCK_ID_ ## x
60 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
61 	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC)	},
62 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO)	},
63 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC)	},
64 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE)	},
65 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC)	},
66 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC)	},
67 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(XCPU),	CLK(OSC)	},
68 	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC)	},
69 };
70 
71 /*
72  * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
73  * not in the header file since it is for purely internal use - we want
74  * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
75  * confusion bewteen PERIPH_ID_... and PERIPHC_...
76  *
77  * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
78  * confusing.
79  *
80  * Note to SOC vendors: perhaps define a unified numbering for peripherals and
81  * use it for reset, clock enable, clock source/divider and even pinmuxing
82  * if you can.
83  */
84 enum periphc_internal_id {
85 	/* 0x00 */
86 	PERIPHC_I2S1,
87 	PERIPHC_I2S2,
88 	PERIPHC_SPDIF_OUT,
89 	PERIPHC_SPDIF_IN,
90 	PERIPHC_PWM,
91 	PERIPHC_SPI1,
92 	PERIPHC_SPI2,
93 	PERIPHC_SPI3,
94 
95 	/* 0x08 */
96 	PERIPHC_XIO,
97 	PERIPHC_I2C1,
98 	PERIPHC_DVC_I2C,
99 	PERIPHC_TWC,
100 	PERIPHC_0c,
101 	PERIPHC_10,	/* PERIPHC_SPI1, what is this really? */
102 	PERIPHC_DISP1,
103 	PERIPHC_DISP2,
104 
105 	/* 0x10 */
106 	PERIPHC_CVE,
107 	PERIPHC_IDE0,
108 	PERIPHC_VI,
109 	PERIPHC_1c,
110 	PERIPHC_SDMMC1,
111 	PERIPHC_SDMMC2,
112 	PERIPHC_G3D,
113 	PERIPHC_G2D,
114 
115 	/* 0x18 */
116 	PERIPHC_NDFLASH,
117 	PERIPHC_SDMMC4,
118 	PERIPHC_VFIR,
119 	PERIPHC_EPP,
120 	PERIPHC_MPE,
121 	PERIPHC_MIPI,
122 	PERIPHC_UART1,
123 	PERIPHC_UART2,
124 
125 	/* 0x20 */
126 	PERIPHC_HOST1X,
127 	PERIPHC_21,
128 	PERIPHC_TVO,
129 	PERIPHC_HDMI,
130 	PERIPHC_24,
131 	PERIPHC_TVDAC,
132 	PERIPHC_I2C2,
133 	PERIPHC_EMC,
134 
135 	/* 0x28 */
136 	PERIPHC_UART3,
137 	PERIPHC_29,
138 	PERIPHC_VI_SENSOR,
139 	PERIPHC_2b,
140 	PERIPHC_2c,
141 	PERIPHC_SPI4,
142 	PERIPHC_I2C3,
143 	PERIPHC_SDMMC3,
144 
145 	/* 0x30 */
146 	PERIPHC_UART4,
147 	PERIPHC_UART5,
148 	PERIPHC_VDE,
149 	PERIPHC_OWR,
150 	PERIPHC_NOR,
151 	PERIPHC_CSITE,
152 
153 	PERIPHC_COUNT,
154 
155 	PERIPHC_NONE = -1,
156 };
157 
158 /*
159  * Clock type for each peripheral clock source. We put the name in each
160  * record just so it is easy to match things up
161  */
162 #define TYPE(name, type) type
163 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
164 	/* 0x00 */
165 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
166 	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
167 	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
168 	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PCM),
169 	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PCXTS),
170 	TYPE(PERIPHC_SPI1,	CLOCK_TYPE_PCMT),
171 	TYPE(PERIPHC_SPI22,	CLOCK_TYPE_PCMT),
172 	TYPE(PERIPHC_SPI3,	CLOCK_TYPE_PCMT),
173 
174 	/* 0x08 */
175 	TYPE(PERIPHC_XIO,	CLOCK_TYPE_PCMT),
176 	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PCMT16),
177 	TYPE(PERIPHC_DVC_I2C,	CLOCK_TYPE_PCMT16),
178 	TYPE(PERIPHC_TWC,	CLOCK_TYPE_PCMT),
179 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
180 	TYPE(PERIPHC_SPI1,	CLOCK_TYPE_PCMT),
181 	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PDCT),
182 	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PDCT),
183 
184 	/* 0x10 */
185 	TYPE(PERIPHC_CVE,	CLOCK_TYPE_PDCT),
186 	TYPE(PERIPHC_IDE0,	CLOCK_TYPE_PCMT),
187 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
188 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
189 	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PCMT),
190 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PCMT),
191 	TYPE(PERIPHC_G3D,	CLOCK_TYPE_MCPA),
192 	TYPE(PERIPHC_G2D,	CLOCK_TYPE_MCPA),
193 
194 	/* 0x18 */
195 	TYPE(PERIPHC_NDFLASH,	CLOCK_TYPE_PCMT),
196 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PCMT),
197 	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PCMT),
198 	TYPE(PERIPHC_EPP,	CLOCK_TYPE_MCPA),
199 	TYPE(PERIPHC_MPE,	CLOCK_TYPE_MCPA),
200 	TYPE(PERIPHC_MIPI,	CLOCK_TYPE_PCMT),
201 	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PCMT),
202 	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PCMT),
203 
204 	/* 0x20 */
205 	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MCPA),
206 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
207 	TYPE(PERIPHC_TVO,	CLOCK_TYPE_PDCT),
208 	TYPE(PERIPHC_HDMI,	CLOCK_TYPE_PDCT),
209 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
210 	TYPE(PERIPHC_TVDAC,	CLOCK_TYPE_PDCT),
211 	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PCMT16),
212 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPT),
213 
214 	/* 0x28 */
215 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PCMT),
216 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
217 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
218 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
219 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
220 	TYPE(PERIPHC_SPI4,	CLOCK_TYPE_PCMT),
221 	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PCMT16),
222 	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PCMT),
223 
224 	/* 0x30 */
225 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PCMT),
226 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PCMT),
227 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PCMT),
228 	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PCMT),
229 	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PCMT),
230 	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PCMT),
231 };
232 
233 /*
234  * This array translates a periph_id to a periphc_internal_id
235  *
236  * Not present/matched up:
237  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
238  *	SPDIF - which is both 0x08 and 0x0c
239  *
240  */
241 #define NONE(name) (-1)
242 #define OFFSET(name, value) PERIPHC_ ## name
243 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
244 	/* Low word: 31:0 */
245 	NONE(CPU),
246 	NONE(RESERVED1),
247 	NONE(RESERVED2),
248 	NONE(AC97),
249 	NONE(RTC),
250 	NONE(TMR),
251 	PERIPHC_UART1,
252 	PERIPHC_UART2,	/* and vfir 0x68 */
253 
254 	/* 0x08 */
255 	NONE(GPIO),
256 	PERIPHC_SDMMC2,
257 	NONE(SPDIF),		/* 0x08 and 0x0c, unclear which to use */
258 	PERIPHC_I2S1,
259 	PERIPHC_I2C1,
260 	PERIPHC_NDFLASH,
261 	PERIPHC_SDMMC1,
262 	PERIPHC_SDMMC4,
263 
264 	/* 0x10 */
265 	PERIPHC_TWC,
266 	PERIPHC_PWM,
267 	PERIPHC_I2S2,
268 	PERIPHC_EPP,
269 	PERIPHC_VI,
270 	PERIPHC_G2D,
271 	NONE(USBD),
272 	NONE(ISP),
273 
274 	/* 0x18 */
275 	PERIPHC_G3D,
276 	PERIPHC_IDE0,
277 	PERIPHC_DISP2,
278 	PERIPHC_DISP1,
279 	PERIPHC_HOST1X,
280 	NONE(VCP),
281 	NONE(RESERVED30),
282 	NONE(CACHE2),
283 
284 	/* Middle word: 63:32 */
285 	NONE(MEM),
286 	NONE(AHBDMA),
287 	NONE(APBDMA),
288 	NONE(RESERVED35),
289 	NONE(KBC),
290 	NONE(STAT_MON),
291 	NONE(PMC),
292 	NONE(FUSE),
293 
294 	/* 0x28 */
295 	NONE(KFUSE),
296 	NONE(SBC1),	/* SBC1, 0x34, is this SPI1? */
297 	PERIPHC_NOR,
298 	PERIPHC_SPI1,
299 	PERIPHC_SPI2,
300 	PERIPHC_XIO,
301 	PERIPHC_SPI3,
302 	PERIPHC_DVC_I2C,
303 
304 	/* 0x30 */
305 	NONE(DSI),
306 	PERIPHC_TVO,	/* also CVE 0x40 */
307 	PERIPHC_MIPI,
308 	PERIPHC_HDMI,
309 	PERIPHC_CSITE,
310 	PERIPHC_TVDAC,
311 	PERIPHC_I2C2,
312 	PERIPHC_UART3,
313 
314 	/* 0x38 */
315 	NONE(RESERVED56),
316 	PERIPHC_EMC,
317 	NONE(USB2),
318 	NONE(USB3),
319 	PERIPHC_MPE,
320 	PERIPHC_VDE,
321 	NONE(BSEA),
322 	NONE(BSEV),
323 
324 	/* Upper word 95:64 */
325 	NONE(SPEEDO),
326 	PERIPHC_UART4,
327 	PERIPHC_UART5,
328 	PERIPHC_I2C3,
329 	PERIPHC_SPI4,
330 	PERIPHC_SDMMC3,
331 	NONE(PCIE),
332 	PERIPHC_OWR,
333 
334 	/* 0x48 */
335 	NONE(AFI),
336 	NONE(CORESIGHT),
337 	NONE(PCIEXCLK),
338 	NONE(AVPUCQ),
339 	NONE(RESERVED76),
340 	NONE(RESERVED77),
341 	NONE(RESERVED78),
342 	NONE(RESERVED79),
343 
344 	/* 0x50 */
345 	NONE(RESERVED80),
346 	NONE(RESERVED81),
347 	NONE(RESERVED82),
348 	NONE(RESERVED83),
349 	NONE(IRAMA),
350 	NONE(IRAMB),
351 	NONE(IRAMC),
352 	NONE(IRAMD),
353 
354 	/* 0x58 */
355 	NONE(CRAM2),
356 };
357 
358 /*
359  * PLL divider shift/mask tables for all PLL IDs.
360  */
361 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
362 	/*
363 	 * T20 and T25
364 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
365 	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
366 	 */
367 
368 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
369 	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
370 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 0,  .p_mask = 0,
371 	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
372 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
373 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
374 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
375 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
376 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
377 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
378 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
379 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
380 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
381 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
382 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
383 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
384 	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
385 	  .lock_ena = 18, .lock_det = 0, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS */
386 };
387 
388 /*
389  * Get the oscillator frequency, from the corresponding hardware configuration
390  * field. T20 has 4 frequencies that it supports.
391  */
clock_get_osc_freq(void)392 enum clock_osc_freq clock_get_osc_freq(void)
393 {
394 	struct clk_rst_ctlr *clkrst =
395 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
396 	u32 reg;
397 
398 	reg = readl(&clkrst->crc_osc_ctrl);
399 	return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
400 }
401 
402 /* Returns a pointer to the clock source register for a peripheral */
get_periph_source_reg(enum periph_id periph_id)403 u32 *get_periph_source_reg(enum periph_id periph_id)
404 {
405 	struct clk_rst_ctlr *clkrst =
406 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
407 	enum periphc_internal_id internal_id;
408 
409 	assert(clock_periph_id_isvalid(periph_id));
410 	internal_id = periph_id_to_internal_id[periph_id];
411 	assert(internal_id != -1);
412 	return &clkrst->crc_clk_src[internal_id];
413 }
414 
get_periph_clock_info(enum periph_id periph_id,int * mux_bits,int * divider_bits,int * type)415 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
416 			  int *divider_bits, int *type)
417 {
418 	enum periphc_internal_id internal_id;
419 
420 	if (!clock_periph_id_isvalid(periph_id))
421 		return -1;
422 
423 	internal_id = periph_id_to_internal_id[periph_id];
424 	if (!periphc_internal_id_isvalid(internal_id))
425 		return -1;
426 
427 	*type = clock_periph_type[internal_id];
428 	if (!clock_type_id_isvalid(*type))
429 		return -1;
430 
431 	/*
432 	 * Special cases here for the clock with a 4-bit source mux and I2C
433 	 * with its 16-bit divisor
434 	 */
435 	if (*type == CLOCK_TYPE_PCXTS)
436 		*mux_bits = MASK_BITS_31_28;
437 	else
438 		*mux_bits = MASK_BITS_31_30;
439 	if (*type == CLOCK_TYPE_PCMT16)
440 		*divider_bits = 16;
441 	else
442 		*divider_bits = 8;
443 
444 	return 0;
445 }
446 
get_periph_clock_id(enum periph_id periph_id,int source)447 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
448 {
449 	enum periphc_internal_id internal_id;
450 	int type;
451 
452 	if (!clock_periph_id_isvalid(periph_id))
453 		return CLOCK_ID_NONE;
454 
455 	internal_id = periph_id_to_internal_id[periph_id];
456 	if (!periphc_internal_id_isvalid(internal_id))
457 		return CLOCK_ID_NONE;
458 
459 	type = clock_periph_type[internal_id];
460 	if (!clock_type_id_isvalid(type))
461 		return CLOCK_ID_NONE;
462 
463 	return clock_source[type][source];
464 }
465 
466 /**
467  * Given a peripheral ID and the required source clock, this returns which
468  * value should be programmed into the source mux for that peripheral.
469  *
470  * There is special code here to handle the one source type with 5 sources.
471  *
472  * @param periph_id	peripheral to start
473  * @param source	PLL id of required parent clock
474  * @param mux_bits	Set to number of bits in mux register: 2 or 4
475  * @param divider_bits	Set to number of divider bits (8 or 16)
476  * @return mux value (0-4, or -1 if not found)
477  */
get_periph_clock_source(enum periph_id periph_id,enum clock_id parent,int * mux_bits,int * divider_bits)478 int get_periph_clock_source(enum periph_id periph_id,
479 		enum clock_id parent, int *mux_bits, int *divider_bits)
480 {
481 	enum clock_type_id type;
482 	int mux, err;
483 
484 	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
485 	assert(!err);
486 
487 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
488 		if (clock_source[type][mux] == parent)
489 			return mux;
490 
491 	/*
492 	 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
493 	 * which is not in our table. If not, then they are asking for a
494 	 * source which this peripheral can't access through its mux.
495 	 */
496 	assert(type == CLOCK_TYPE_PCXTS);
497 	assert(parent == CLOCK_ID_SFROM32KHZ);
498 	if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
499 		return 4;	/* mux value for this clock */
500 
501 	/* if we get here, either us or the caller has made a mistake */
502 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
503 		parent);
504 	return -1;
505 }
506 
clock_set_enable(enum periph_id periph_id,int enable)507 void clock_set_enable(enum periph_id periph_id, int enable)
508 {
509 	struct clk_rst_ctlr *clkrst =
510 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
511 	u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
512 	u32 reg;
513 
514 	/* Enable/disable the clock to this peripheral */
515 	assert(clock_periph_id_isvalid(periph_id));
516 	reg = readl(clk);
517 	if (enable)
518 		reg |= PERIPH_MASK(periph_id);
519 	else
520 		reg &= ~PERIPH_MASK(periph_id);
521 	writel(reg, clk);
522 }
523 
reset_set_enable(enum periph_id periph_id,int enable)524 void reset_set_enable(enum periph_id periph_id, int enable)
525 {
526 	struct clk_rst_ctlr *clkrst =
527 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
528 	u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
529 	u32 reg;
530 
531 	/* Enable/disable reset to the peripheral */
532 	assert(clock_periph_id_isvalid(periph_id));
533 	reg = readl(reset);
534 	if (enable)
535 		reg |= PERIPH_MASK(periph_id);
536 	else
537 		reg &= ~PERIPH_MASK(periph_id);
538 	writel(reg, reset);
539 }
540 
541 #if CONFIG_IS_ENABLED(OF_CONTROL)
542 /*
543  * Convert a device tree clock ID to our peripheral ID. They are mostly
544  * the same but we are very cautious so we check that a valid clock ID is
545  * provided.
546  *
547  * @param clk_id	Clock ID according to tegra20 device tree binding
548  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
549  */
clk_id_to_periph_id(int clk_id)550 enum periph_id clk_id_to_periph_id(int clk_id)
551 {
552 	if (clk_id > PERIPH_ID_COUNT)
553 		return PERIPH_ID_NONE;
554 
555 	switch (clk_id) {
556 	case PERIPH_ID_RESERVED1:
557 	case PERIPH_ID_RESERVED2:
558 	case PERIPH_ID_RESERVED30:
559 	case PERIPH_ID_RESERVED35:
560 	case PERIPH_ID_RESERVED56:
561 	case PERIPH_ID_PCIEXCLK:
562 	case PERIPH_ID_RESERVED76:
563 	case PERIPH_ID_RESERVED77:
564 	case PERIPH_ID_RESERVED78:
565 	case PERIPH_ID_RESERVED79:
566 	case PERIPH_ID_RESERVED80:
567 	case PERIPH_ID_RESERVED81:
568 	case PERIPH_ID_RESERVED82:
569 	case PERIPH_ID_RESERVED83:
570 	case PERIPH_ID_RESERVED91:
571 		return PERIPH_ID_NONE;
572 	default:
573 		return clk_id;
574 	}
575 }
576 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
577 
clock_early_init(void)578 void clock_early_init(void)
579 {
580 	/*
581 	 * PLLP output frequency set to 216MHz
582 	 * PLLC output frequency set to 600Mhz
583 	 *
584 	 * TODO: Can we calculate these values instead of hard-coding?
585 	 */
586 	switch (clock_get_osc_freq()) {
587 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
588 		clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
589 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
590 		break;
591 
592 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
593 		clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
594 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
595 		break;
596 
597 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
598 		clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
599 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
600 		break;
601 	case CLOCK_OSC_FREQ_19_2:
602 	default:
603 		/*
604 		 * These are not supported. It is too early to print a
605 		 * message and the UART likely won't work anyway due to the
606 		 * oscillator being wrong.
607 		 */
608 		break;
609 	}
610 }
611 
arch_timer_init(void)612 void arch_timer_init(void)
613 {
614 }
615 
616 #define PMC_SATA_PWRGT 0x1ac
617 #define  PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
618 #define  PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
619 
620 #define PLLE_SS_CNTL 0x68
621 #define  PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
622 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
623 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
624 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
625 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
626 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
627 
628 #define PLLE_BASE 0x0e8
629 #define  PLLE_BASE_ENABLE_CML (1 << 31)
630 #define  PLLE_BASE_ENABLE (1 << 30)
631 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
632 #define  PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
633 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
634 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
635 
636 #define PLLE_MISC 0x0ec
637 #define  PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
638 #define  PLLE_MISC_PLL_READY (1 << 15)
639 #define  PLLE_MISC_LOCK (1 << 11)
640 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
641 #define  PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
642 
tegra_plle_train(void)643 static int tegra_plle_train(void)
644 {
645 	unsigned int timeout = 2000;
646 	unsigned long value;
647 
648 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
649 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
650 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
651 
652 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
653 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
654 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
655 
656 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
657 	value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
658 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
659 
660 	do {
661 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
662 		if (value & PLLE_MISC_PLL_READY)
663 			break;
664 
665 		udelay(100);
666 	} while (--timeout);
667 
668 	if (timeout == 0) {
669 		pr_err("timeout waiting for PLLE to become ready");
670 		return -ETIMEDOUT;
671 	}
672 
673 	return 0;
674 }
675 
tegra_plle_enable(void)676 int tegra_plle_enable(void)
677 {
678 	unsigned int timeout = 1000;
679 	u32 value;
680 	int err;
681 
682 	/* disable PLLE clock */
683 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
684 	value &= ~PLLE_BASE_ENABLE_CML;
685 	value &= ~PLLE_BASE_ENABLE;
686 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
687 
688 	/* clear lock enable and setup field */
689 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
690 	value &= ~PLLE_MISC_LOCK_ENABLE;
691 	value &= ~PLLE_MISC_SETUP_BASE(0xffff);
692 	value &= ~PLLE_MISC_SETUP_EXT(0x3);
693 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
694 
695 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
696 	if ((value & PLLE_MISC_PLL_READY) == 0) {
697 		err = tegra_plle_train();
698 		if (err < 0) {
699 			pr_err("failed to train PLLE: %d", err);
700 			return err;
701 		}
702 	}
703 
704 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
705 	value |= PLLE_MISC_SETUP_BASE(0x7);
706 	value |= PLLE_MISC_LOCK_ENABLE;
707 	value |= PLLE_MISC_SETUP_EXT(0);
708 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
709 
710 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
711 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
712 		 PLLE_SS_CNTL_BYPASS_SS;
713 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
714 
715 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
716 	value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
717 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
718 
719 	do {
720 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
721 		if (value & PLLE_MISC_LOCK)
722 			break;
723 
724 		udelay(2);
725 	} while (--timeout);
726 
727 	if (timeout == 0) {
728 		pr_err("timeout waiting for PLLE to lock");
729 		return -ETIMEDOUT;
730 	}
731 
732 	udelay(50);
733 
734 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
735 	value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
736 	value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
737 
738 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
739 	value |= PLLE_SS_CNTL_SSCINC(0x01);
740 
741 	value &= ~PLLE_SS_CNTL_SSCBYP;
742 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
743 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
744 
745 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
746 	value |= PLLE_SS_CNTL_SSCMAX(0x24);
747 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
748 
749 	return 0;
750 }
751 
752 struct periph_clk_init periph_clk_init_table[] = {
753 	{ PERIPH_ID_SPI1, CLOCK_ID_PERIPH },
754 	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
755 	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
756 	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
757 	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
758 	{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
759 	{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
760 	{ PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
761 	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
762 	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
763 	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
764 	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
765 	{ PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
766 	{ PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
767 	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
768 	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
769 	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
770 	{ -1, },
771 };
772