xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision 6c71a0574249f5e5a45fe055ab5f837023d5eeca)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * Driver for Alauda-based card readers
4   *
5   * Current development and maintenance by:
6   *   (c) 2005 Daniel Drake <dsd@gentoo.org>
7   *
8   * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9   *
10   * Alauda implements a vendor-specific command set to access two media reader
11   * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12   * which are accepted by these devices.
13   *
14   * The driver was developed through reverse-engineering, with the help of the
15   * sddr09 driver which has many similarities, and with some help from the
16   * (very old) vendor-supplied GPL sma03 driver.
17   *
18   * For protocol info, see http://alauda.sourceforge.net
19   */
20  
21  #include <linux/module.h>
22  #include <linux/slab.h>
23  
24  #include <scsi/scsi.h>
25  #include <scsi/scsi_cmnd.h>
26  #include <scsi/scsi_device.h>
27  
28  #include "usb.h"
29  #include "transport.h"
30  #include "protocol.h"
31  #include "debug.h"
32  #include "scsiglue.h"
33  
34  #define DRV_NAME "ums-alauda"
35  
36  MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37  MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38  MODULE_LICENSE("GPL");
39  MODULE_IMPORT_NS(USB_STORAGE);
40  
41  /*
42   * Status bytes
43   */
44  #define ALAUDA_STATUS_ERROR		0x01
45  #define ALAUDA_STATUS_READY		0x40
46  
47  /*
48   * Control opcodes (for request field)
49   */
50  #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
51  #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
52  #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
53  #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
54  #define ALAUDA_GET_XD_MEDIA_SIG		0x86
55  #define ALAUDA_GET_SM_MEDIA_SIG		0x96
56  
57  /*
58   * Bulk command identity (byte 0)
59   */
60  #define ALAUDA_BULK_CMD			0x40
61  
62  /*
63   * Bulk opcodes (byte 1)
64   */
65  #define ALAUDA_BULK_GET_REDU_DATA	0x85
66  #define ALAUDA_BULK_READ_BLOCK		0x94
67  #define ALAUDA_BULK_ERASE_BLOCK		0xa3
68  #define ALAUDA_BULK_WRITE_BLOCK		0xb4
69  #define ALAUDA_BULK_GET_STATUS2		0xb7
70  #define ALAUDA_BULK_RESET_MEDIA		0xe0
71  
72  /*
73   * Port to operate on (byte 8)
74   */
75  #define ALAUDA_PORT_XD			0x00
76  #define ALAUDA_PORT_SM			0x01
77  
78  /*
79   * LBA and PBA are unsigned ints. Special values.
80   */
81  #define UNDEF    0xffff
82  #define SPARE    0xfffe
83  #define UNUSABLE 0xfffd
84  
85  struct alauda_media_info {
86  	unsigned long capacity;		/* total media size in bytes */
87  	unsigned int pagesize;		/* page size in bytes */
88  	unsigned int blocksize;		/* number of pages per block */
89  	unsigned int uzonesize;		/* number of usable blocks per zone */
90  	unsigned int zonesize;		/* number of blocks per zone */
91  	unsigned int blockmask;		/* mask to get page from address */
92  
93  	unsigned char pageshift;
94  	unsigned char blockshift;
95  	unsigned char zoneshift;
96  
97  	u16 **lba_to_pba;		/* logical to physical block map */
98  	u16 **pba_to_lba;		/* physical to logical block map */
99  };
100  
101  struct alauda_info {
102  	struct alauda_media_info port[2];
103  	int wr_ep;			/* endpoint to write data out of */
104  
105  	unsigned char sense_key;
106  	unsigned long sense_asc;	/* additional sense code */
107  	unsigned long sense_ascq;	/* additional sense code qualifier */
108  
109  	bool media_initialized;
110  };
111  
112  #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
113  #define LSB_of(s) ((s)&0xFF)
114  #define MSB_of(s) ((s)>>8)
115  
116  #define MEDIA_PORT(us) us->srb->device->lun
117  #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
118  
119  #define PBA_LO(pba) ((pba & 0xF) << 5)
120  #define PBA_HI(pba) (pba >> 3)
121  #define PBA_ZONE(pba) (pba >> 11)
122  
123  static int init_alauda(struct us_data *us);
124  
125  
126  /*
127   * The table of devices
128   */
129  #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
130  		    vendorName, productName, useProtocol, useTransport, \
131  		    initFunction, flags) \
132  { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
133    .driver_info = (flags) }
134  
135  static struct usb_device_id alauda_usb_ids[] = {
136  #	include "unusual_alauda.h"
137  	{ }		/* Terminating entry */
138  };
139  MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
140  
141  #undef UNUSUAL_DEV
142  
143  /*
144   * The flags table
145   */
146  #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
147  		    vendor_name, product_name, use_protocol, use_transport, \
148  		    init_function, Flags) \
149  { \
150  	.vendorName = vendor_name,	\
151  	.productName = product_name,	\
152  	.useProtocol = use_protocol,	\
153  	.useTransport = use_transport,	\
154  	.initFunction = init_function,	\
155  }
156  
157  static struct us_unusual_dev alauda_unusual_dev_list[] = {
158  #	include "unusual_alauda.h"
159  	{ }		/* Terminating entry */
160  };
161  
162  #undef UNUSUAL_DEV
163  
164  
165  /*
166   * Media handling
167   */
168  
169  struct alauda_card_info {
170  	unsigned char id;		/* id byte */
171  	unsigned char chipshift;	/* 1<<cs bytes total capacity */
172  	unsigned char pageshift;	/* 1<<ps bytes in a page */
173  	unsigned char blockshift;	/* 1<<bs pages per block */
174  	unsigned char zoneshift;	/* 1<<zs blocks per zone */
175  };
176  
177  static struct alauda_card_info alauda_card_ids[] = {
178  	/* NAND flash */
179  	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
180  	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
181  	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
182  	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
183  	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
184  	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
185  	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
186  	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
187  	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
188  	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
189  	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
190  	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
191  	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
192  	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
193  
194  	/* MASK ROM */
195  	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
196  	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
197  	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
198  	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
199  	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
200  	{ 0,}
201  };
202  
alauda_card_find_id(unsigned char id)203  static struct alauda_card_info *alauda_card_find_id(unsigned char id)
204  {
205  	int i;
206  
207  	for (i = 0; alauda_card_ids[i].id != 0; i++)
208  		if (alauda_card_ids[i].id == id)
209  			return &(alauda_card_ids[i]);
210  	return NULL;
211  }
212  
213  /*
214   * ECC computation.
215   */
216  
217  static unsigned char parity[256];
218  static unsigned char ecc2[256];
219  
nand_init_ecc(void)220  static void nand_init_ecc(void)
221  {
222  	int i, j, a;
223  
224  	parity[0] = 0;
225  	for (i = 1; i < 256; i++)
226  		parity[i] = (parity[i&(i-1)] ^ 1);
227  
228  	for (i = 0; i < 256; i++) {
229  		a = 0;
230  		for (j = 0; j < 8; j++) {
231  			if (i & (1<<j)) {
232  				if ((j & 1) == 0)
233  					a ^= 0x04;
234  				if ((j & 2) == 0)
235  					a ^= 0x10;
236  				if ((j & 4) == 0)
237  					a ^= 0x40;
238  			}
239  		}
240  		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
241  	}
242  }
243  
244  /* compute 3-byte ecc on 256 bytes */
nand_compute_ecc(unsigned char * data,unsigned char * ecc)245  static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
246  {
247  	int i, j, a;
248  	unsigned char par = 0, bit, bits[8] = {0};
249  
250  	/* collect 16 checksum bits */
251  	for (i = 0; i < 256; i++) {
252  		par ^= data[i];
253  		bit = parity[data[i]];
254  		for (j = 0; j < 8; j++)
255  			if ((i & (1<<j)) == 0)
256  				bits[j] ^= bit;
257  	}
258  
259  	/* put 4+4+4 = 12 bits in the ecc */
260  	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
261  	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
262  
263  	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
264  	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
265  
266  	ecc[2] = ecc2[par];
267  }
268  
nand_compare_ecc(unsigned char * data,unsigned char * ecc)269  static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
270  {
271  	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
272  }
273  
nand_store_ecc(unsigned char * data,unsigned char * ecc)274  static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
275  {
276  	memcpy(data, ecc, 3);
277  }
278  
279  /*
280   * Alauda driver
281   */
282  
283  /*
284   * Forget our PBA <---> LBA mappings for a particular port
285   */
alauda_free_maps(struct alauda_media_info * media_info)286  static void alauda_free_maps (struct alauda_media_info *media_info)
287  {
288  	unsigned int shift = media_info->zoneshift
289  		+ media_info->blockshift + media_info->pageshift;
290  	unsigned int num_zones = media_info->capacity >> shift;
291  	unsigned int i;
292  
293  	if (media_info->lba_to_pba != NULL)
294  		for (i = 0; i < num_zones; i++) {
295  			kfree(media_info->lba_to_pba[i]);
296  			media_info->lba_to_pba[i] = NULL;
297  		}
298  
299  	if (media_info->pba_to_lba != NULL)
300  		for (i = 0; i < num_zones; i++) {
301  			kfree(media_info->pba_to_lba[i]);
302  			media_info->pba_to_lba[i] = NULL;
303  		}
304  }
305  
306  /*
307   * Returns 2 bytes of status data
308   * The first byte describes media status, and second byte describes door status
309   */
alauda_get_media_status(struct us_data * us,unsigned char * data)310  static int alauda_get_media_status(struct us_data *us, unsigned char *data)
311  {
312  	int rc;
313  	unsigned char command;
314  
315  	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
316  		command = ALAUDA_GET_XD_MEDIA_STATUS;
317  	else
318  		command = ALAUDA_GET_SM_MEDIA_STATUS;
319  
320  	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
321  		command, 0xc0, 0, 1, data, 2);
322  
323  	if (rc == USB_STOR_XFER_GOOD)
324  		usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
325  
326  	return rc;
327  }
328  
329  /*
330   * Clears the "media was changed" bit so that we know when it changes again
331   * in the future.
332   */
alauda_ack_media(struct us_data * us)333  static int alauda_ack_media(struct us_data *us)
334  {
335  	unsigned char command;
336  
337  	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
338  		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
339  	else
340  		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
341  
342  	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
343  		command, 0x40, 0, 1, NULL, 0);
344  }
345  
346  /*
347   * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
348   * and some other details.
349   */
alauda_get_media_signature(struct us_data * us,unsigned char * data)350  static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
351  {
352  	unsigned char command;
353  
354  	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
355  		command = ALAUDA_GET_XD_MEDIA_SIG;
356  	else
357  		command = ALAUDA_GET_SM_MEDIA_SIG;
358  
359  	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
360  		command, 0xc0, 0, 0, data, 4);
361  }
362  
363  /*
364   * Resets the media status (but not the whole device?)
365   */
alauda_reset_media(struct us_data * us)366  static int alauda_reset_media(struct us_data *us)
367  {
368  	unsigned char *command = us->iobuf;
369  
370  	memset(command, 0, 9);
371  	command[0] = ALAUDA_BULK_CMD;
372  	command[1] = ALAUDA_BULK_RESET_MEDIA;
373  	command[8] = MEDIA_PORT(us);
374  
375  	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
376  		command, 9, NULL);
377  }
378  
379  /*
380   * Examines the media and deduces capacity, etc.
381   */
alauda_init_media(struct us_data * us)382  static int alauda_init_media(struct us_data *us)
383  {
384  	unsigned char *data = us->iobuf;
385  	int ready = 0;
386  	struct alauda_card_info *media_info;
387  	unsigned int num_zones;
388  
389  	while (ready == 0) {
390  		msleep(20);
391  
392  		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
393  			return USB_STOR_TRANSPORT_ERROR;
394  
395  		if (data[0] & 0x10)
396  			ready = 1;
397  	}
398  
399  	usb_stor_dbg(us, "We are ready for action!\n");
400  
401  	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
402  		return USB_STOR_TRANSPORT_ERROR;
403  
404  	msleep(10);
405  
406  	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
407  		return USB_STOR_TRANSPORT_ERROR;
408  
409  	if (data[0] != 0x14) {
410  		usb_stor_dbg(us, "Media not ready after ack\n");
411  		return USB_STOR_TRANSPORT_ERROR;
412  	}
413  
414  	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
415  		return USB_STOR_TRANSPORT_ERROR;
416  
417  	usb_stor_dbg(us, "Media signature: %4ph\n", data);
418  	media_info = alauda_card_find_id(data[1]);
419  	if (media_info == NULL) {
420  		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
421  			data);
422  		return USB_STOR_TRANSPORT_ERROR;
423  	}
424  
425  	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
426  	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
427  		     MEDIA_INFO(us).capacity >> 20);
428  
429  	MEDIA_INFO(us).pageshift = media_info->pageshift;
430  	MEDIA_INFO(us).blockshift = media_info->blockshift;
431  	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
432  
433  	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
434  	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
435  	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
436  
437  	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
438  	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
439  
440  	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
441  		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
442  	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
443  	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
444  	if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
445  		return USB_STOR_TRANSPORT_ERROR;
446  
447  	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
448  		return USB_STOR_TRANSPORT_ERROR;
449  
450  	return USB_STOR_TRANSPORT_GOOD;
451  }
452  
453  /*
454   * Examines the media status and does the right thing when the media has gone,
455   * appeared, or changed.
456   */
alauda_check_media(struct us_data * us)457  static int alauda_check_media(struct us_data *us)
458  {
459  	struct alauda_info *info = (struct alauda_info *) us->extra;
460  	unsigned char *status = us->iobuf;
461  	int rc;
462  
463  	rc = alauda_get_media_status(us, status);
464  	if (rc != USB_STOR_XFER_GOOD) {
465  		status[0] = 0xF0;	/* Pretend there's no media */
466  		status[1] = 0;
467  	}
468  
469  	/* Check for no media or door open */
470  	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
471  		|| ((status[1] & 0x01) == 0)) {
472  		usb_stor_dbg(us, "No media, or door open\n");
473  		alauda_free_maps(&MEDIA_INFO(us));
474  		info->sense_key = 0x02;
475  		info->sense_asc = 0x3A;
476  		info->sense_ascq = 0x00;
477  		return USB_STOR_TRANSPORT_FAILED;
478  	}
479  
480  	/* Check for media change */
481  	if (status[0] & 0x08 || !info->media_initialized) {
482  		usb_stor_dbg(us, "Media change detected\n");
483  		alauda_free_maps(&MEDIA_INFO(us));
484  		rc = alauda_init_media(us);
485  		if (rc == USB_STOR_TRANSPORT_GOOD)
486  			info->media_initialized = true;
487  		info->sense_key = UNIT_ATTENTION;
488  		info->sense_asc = 0x28;
489  		info->sense_ascq = 0x00;
490  		return USB_STOR_TRANSPORT_FAILED;
491  	}
492  
493  	return USB_STOR_TRANSPORT_GOOD;
494  }
495  
496  /*
497   * Checks the status from the 2nd status register
498   * Returns 3 bytes of status data, only the first is known
499   */
alauda_check_status2(struct us_data * us)500  static int alauda_check_status2(struct us_data *us)
501  {
502  	int rc;
503  	unsigned char command[] = {
504  		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
505  		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
506  	};
507  	unsigned char data[3];
508  
509  	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
510  		command, 9, NULL);
511  	if (rc != USB_STOR_XFER_GOOD)
512  		return rc;
513  
514  	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
515  		data, 3, NULL);
516  	if (rc != USB_STOR_XFER_GOOD)
517  		return rc;
518  
519  	usb_stor_dbg(us, "%3ph\n", data);
520  	if (data[0] & ALAUDA_STATUS_ERROR)
521  		return USB_STOR_XFER_ERROR;
522  
523  	return USB_STOR_XFER_GOOD;
524  }
525  
526  /*
527   * Gets the redundancy data for the first page of a PBA
528   * Returns 16 bytes.
529   */
alauda_get_redu_data(struct us_data * us,u16 pba,unsigned char * data)530  static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
531  {
532  	int rc;
533  	unsigned char command[] = {
534  		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
535  		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
536  	};
537  
538  	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
539  		command, 9, NULL);
540  	if (rc != USB_STOR_XFER_GOOD)
541  		return rc;
542  
543  	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
544  		data, 16, NULL);
545  }
546  
547  /*
548   * Finds the first unused PBA in a zone
549   * Returns the absolute PBA of an unused PBA, or 0 if none found.
550   */
alauda_find_unused_pba(struct alauda_media_info * info,unsigned int zone)551  static u16 alauda_find_unused_pba(struct alauda_media_info *info,
552  	unsigned int zone)
553  {
554  	u16 *pba_to_lba = info->pba_to_lba[zone];
555  	unsigned int i;
556  
557  	for (i = 0; i < info->zonesize; i++)
558  		if (pba_to_lba[i] == UNDEF)
559  			return (zone << info->zoneshift) + i;
560  
561  	return 0;
562  }
563  
564  /*
565   * Reads the redundancy data for all PBA's in a zone
566   * Produces lba <--> pba mappings
567   */
alauda_read_map(struct us_data * us,unsigned int zone)568  static int alauda_read_map(struct us_data *us, unsigned int zone)
569  {
570  	unsigned char *data = us->iobuf;
571  	int result;
572  	int i, j;
573  	unsigned int zonesize = MEDIA_INFO(us).zonesize;
574  	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
575  	unsigned int lba_offset, lba_real, blocknum;
576  	unsigned int zone_base_lba = zone * uzonesize;
577  	unsigned int zone_base_pba = zone * zonesize;
578  	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
579  	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
580  	if (lba_to_pba == NULL || pba_to_lba == NULL) {
581  		result = USB_STOR_TRANSPORT_ERROR;
582  		goto error;
583  	}
584  
585  	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
586  
587  	/* 1024 PBA's per zone */
588  	for (i = 0; i < zonesize; i++)
589  		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
590  
591  	for (i = 0; i < zonesize; i++) {
592  		blocknum = zone_base_pba + i;
593  
594  		result = alauda_get_redu_data(us, blocknum, data);
595  		if (result != USB_STOR_XFER_GOOD) {
596  			result = USB_STOR_TRANSPORT_ERROR;
597  			goto error;
598  		}
599  
600  		/* special PBAs have control field 0^16 */
601  		for (j = 0; j < 16; j++)
602  			if (data[j] != 0)
603  				goto nonz;
604  		pba_to_lba[i] = UNUSABLE;
605  		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
606  		continue;
607  
608  	nonz:
609  		/* unwritten PBAs have control field FF^16 */
610  		for (j = 0; j < 16; j++)
611  			if (data[j] != 0xff)
612  				goto nonff;
613  		continue;
614  
615  	nonff:
616  		/* normal PBAs start with six FFs */
617  		if (j < 6) {
618  			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
619  				     blocknum,
620  				     data[0], data[1], data[2], data[3],
621  				     data[4], data[5]);
622  			pba_to_lba[i] = UNUSABLE;
623  			continue;
624  		}
625  
626  		if ((data[6] >> 4) != 0x01) {
627  			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
628  				     blocknum, data[6], data[7],
629  				     data[11], data[12]);
630  			pba_to_lba[i] = UNUSABLE;
631  			continue;
632  		}
633  
634  		/* check even parity */
635  		if (parity[data[6] ^ data[7]]) {
636  			printk(KERN_WARNING
637  			       "alauda_read_map: Bad parity in LBA for block %d"
638  			       " (%02X %02X)\n", i, data[6], data[7]);
639  			pba_to_lba[i] = UNUSABLE;
640  			continue;
641  		}
642  
643  		lba_offset = short_pack(data[7], data[6]);
644  		lba_offset = (lba_offset & 0x07FF) >> 1;
645  		lba_real = lba_offset + zone_base_lba;
646  
647  		/*
648  		 * Every 1024 physical blocks ("zone"), the LBA numbers
649  		 * go back to zero, but are within a higher block of LBA's.
650  		 * Also, there is a maximum of 1000 LBA's per zone.
651  		 * In other words, in PBA 1024-2047 you will find LBA 0-999
652  		 * which are really LBA 1000-1999. This allows for 24 bad
653  		 * or special physical blocks per zone.
654  		 */
655  
656  		if (lba_offset >= uzonesize) {
657  			printk(KERN_WARNING
658  			       "alauda_read_map: Bad low LBA %d for block %d\n",
659  			       lba_real, blocknum);
660  			continue;
661  		}
662  
663  		if (lba_to_pba[lba_offset] != UNDEF) {
664  			printk(KERN_WARNING
665  			       "alauda_read_map: "
666  			       "LBA %d seen for PBA %d and %d\n",
667  			       lba_real, lba_to_pba[lba_offset], blocknum);
668  			continue;
669  		}
670  
671  		pba_to_lba[i] = lba_real;
672  		lba_to_pba[lba_offset] = blocknum;
673  		continue;
674  	}
675  
676  	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
677  	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
678  	result = 0;
679  	goto out;
680  
681  error:
682  	kfree(lba_to_pba);
683  	kfree(pba_to_lba);
684  out:
685  	return result;
686  }
687  
688  /*
689   * Checks to see whether we have already mapped a certain zone
690   * If we haven't, the map is generated
691   */
alauda_ensure_map_for_zone(struct us_data * us,unsigned int zone)692  static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
693  {
694  	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
695  		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
696  		alauda_read_map(us, zone);
697  }
698  
699  /*
700   * Erases an entire block
701   */
alauda_erase_block(struct us_data * us,u16 pba)702  static int alauda_erase_block(struct us_data *us, u16 pba)
703  {
704  	int rc;
705  	unsigned char command[] = {
706  		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
707  		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
708  	};
709  	unsigned char buf[2];
710  
711  	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
712  
713  	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
714  		command, 9, NULL);
715  	if (rc != USB_STOR_XFER_GOOD)
716  		return rc;
717  
718  	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
719  		buf, 2, NULL);
720  	if (rc != USB_STOR_XFER_GOOD)
721  		return rc;
722  
723  	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
724  	return rc;
725  }
726  
727  /*
728   * Reads data from a certain offset page inside a PBA, including interleaved
729   * redundancy data. Returns (pagesize+64)*pages bytes in data.
730   */
alauda_read_block_raw(struct us_data * us,u16 pba,unsigned int page,unsigned int pages,unsigned char * data)731  static int alauda_read_block_raw(struct us_data *us, u16 pba,
732  		unsigned int page, unsigned int pages, unsigned char *data)
733  {
734  	int rc;
735  	unsigned char command[] = {
736  		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
737  		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
738  	};
739  
740  	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
741  
742  	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
743  		command, 9, NULL);
744  	if (rc != USB_STOR_XFER_GOOD)
745  		return rc;
746  
747  	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
748  		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
749  }
750  
751  /*
752   * Reads data from a certain offset page inside a PBA, excluding redundancy
753   * data. Returns pagesize*pages bytes in data. Note that data must be big enough
754   * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
755   * trailing bytes outside this function.
756   */
alauda_read_block(struct us_data * us,u16 pba,unsigned int page,unsigned int pages,unsigned char * data)757  static int alauda_read_block(struct us_data *us, u16 pba,
758  		unsigned int page, unsigned int pages, unsigned char *data)
759  {
760  	int i, rc;
761  	unsigned int pagesize = MEDIA_INFO(us).pagesize;
762  
763  	rc = alauda_read_block_raw(us, pba, page, pages, data);
764  	if (rc != USB_STOR_XFER_GOOD)
765  		return rc;
766  
767  	/* Cut out the redundancy data */
768  	for (i = 0; i < pages; i++) {
769  		int dest_offset = i * pagesize;
770  		int src_offset = i * (pagesize + 64);
771  		memmove(data + dest_offset, data + src_offset, pagesize);
772  	}
773  
774  	return rc;
775  }
776  
777  /*
778   * Writes an entire block of data and checks status after write.
779   * Redundancy data must be already included in data. Data should be
780   * (pagesize+64)*blocksize bytes in length.
781   */
alauda_write_block(struct us_data * us,u16 pba,unsigned char * data)782  static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
783  {
784  	int rc;
785  	struct alauda_info *info = (struct alauda_info *) us->extra;
786  	unsigned char command[] = {
787  		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
788  		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
789  	};
790  
791  	usb_stor_dbg(us, "pba %d\n", pba);
792  
793  	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
794  		command, 9, NULL);
795  	if (rc != USB_STOR_XFER_GOOD)
796  		return rc;
797  
798  	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
799  		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
800  		NULL);
801  	if (rc != USB_STOR_XFER_GOOD)
802  		return rc;
803  
804  	return alauda_check_status2(us);
805  }
806  
807  /*
808   * Write some data to a specific LBA.
809   */
alauda_write_lba(struct us_data * us,u16 lba,unsigned int page,unsigned int pages,unsigned char * ptr,unsigned char * blockbuffer)810  static int alauda_write_lba(struct us_data *us, u16 lba,
811  		 unsigned int page, unsigned int pages,
812  		 unsigned char *ptr, unsigned char *blockbuffer)
813  {
814  	u16 pba, lbap, new_pba;
815  	unsigned char *bptr, *cptr, *xptr;
816  	unsigned char ecc[3];
817  	int i, result;
818  	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
819  	unsigned int zonesize = MEDIA_INFO(us).zonesize;
820  	unsigned int pagesize = MEDIA_INFO(us).pagesize;
821  	unsigned int blocksize = MEDIA_INFO(us).blocksize;
822  	unsigned int lba_offset = lba % uzonesize;
823  	unsigned int new_pba_offset;
824  	unsigned int zone = lba / uzonesize;
825  
826  	alauda_ensure_map_for_zone(us, zone);
827  
828  	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
829  	if (pba == 1) {
830  		/*
831  		 * Maybe it is impossible to write to PBA 1.
832  		 * Fake success, but don't do anything.
833  		 */
834  		printk(KERN_WARNING
835  		       "alauda_write_lba: avoid writing to pba 1\n");
836  		return USB_STOR_TRANSPORT_GOOD;
837  	}
838  
839  	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
840  	if (!new_pba) {
841  		printk(KERN_WARNING
842  		       "alauda_write_lba: Out of unused blocks\n");
843  		return USB_STOR_TRANSPORT_ERROR;
844  	}
845  
846  	/* read old contents */
847  	if (pba != UNDEF) {
848  		result = alauda_read_block_raw(us, pba, 0,
849  			blocksize, blockbuffer);
850  		if (result != USB_STOR_XFER_GOOD)
851  			return result;
852  	} else {
853  		memset(blockbuffer, 0, blocksize * (pagesize + 64));
854  	}
855  
856  	lbap = (lba_offset << 1) | 0x1000;
857  	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
858  		lbap ^= 1;
859  
860  	/* check old contents and fill lba */
861  	for (i = 0; i < blocksize; i++) {
862  		bptr = blockbuffer + (i * (pagesize + 64));
863  		cptr = bptr + pagesize;
864  		nand_compute_ecc(bptr, ecc);
865  		if (!nand_compare_ecc(cptr+13, ecc)) {
866  			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
867  				     i, pba);
868  			nand_store_ecc(cptr+13, ecc);
869  		}
870  		nand_compute_ecc(bptr + (pagesize / 2), ecc);
871  		if (!nand_compare_ecc(cptr+8, ecc)) {
872  			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
873  				     i, pba);
874  			nand_store_ecc(cptr+8, ecc);
875  		}
876  		cptr[6] = cptr[11] = MSB_of(lbap);
877  		cptr[7] = cptr[12] = LSB_of(lbap);
878  	}
879  
880  	/* copy in new stuff and compute ECC */
881  	xptr = ptr;
882  	for (i = page; i < page+pages; i++) {
883  		bptr = blockbuffer + (i * (pagesize + 64));
884  		cptr = bptr + pagesize;
885  		memcpy(bptr, xptr, pagesize);
886  		xptr += pagesize;
887  		nand_compute_ecc(bptr, ecc);
888  		nand_store_ecc(cptr+13, ecc);
889  		nand_compute_ecc(bptr + (pagesize / 2), ecc);
890  		nand_store_ecc(cptr+8, ecc);
891  	}
892  
893  	result = alauda_write_block(us, new_pba, blockbuffer);
894  	if (result != USB_STOR_XFER_GOOD)
895  		return result;
896  
897  	new_pba_offset = new_pba - (zone * zonesize);
898  	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
899  	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
900  	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
901  
902  	if (pba != UNDEF) {
903  		unsigned int pba_offset = pba - (zone * zonesize);
904  		result = alauda_erase_block(us, pba);
905  		if (result != USB_STOR_XFER_GOOD)
906  			return result;
907  		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
908  	}
909  
910  	return USB_STOR_TRANSPORT_GOOD;
911  }
912  
913  /*
914   * Read data from a specific sector address
915   */
alauda_read_data(struct us_data * us,unsigned long address,unsigned int sectors)916  static int alauda_read_data(struct us_data *us, unsigned long address,
917  		unsigned int sectors)
918  {
919  	unsigned char *buffer;
920  	u16 lba, max_lba;
921  	unsigned int page, len, offset;
922  	unsigned int blockshift = MEDIA_INFO(us).blockshift;
923  	unsigned int pageshift = MEDIA_INFO(us).pageshift;
924  	unsigned int blocksize = MEDIA_INFO(us).blocksize;
925  	unsigned int pagesize = MEDIA_INFO(us).pagesize;
926  	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
927  	struct scatterlist *sg;
928  	int result;
929  
930  	/*
931  	 * Since we only read in one block at a time, we have to create
932  	 * a bounce buffer and move the data a piece at a time between the
933  	 * bounce buffer and the actual transfer buffer.
934  	 * We make this buffer big enough to hold temporary redundancy data,
935  	 * which we use when reading the data blocks.
936  	 */
937  
938  	len = min(sectors, blocksize) * (pagesize + 64);
939  	buffer = kmalloc(len, GFP_NOIO);
940  	if (!buffer)
941  		return USB_STOR_TRANSPORT_ERROR;
942  
943  	/* Figure out the initial LBA and page */
944  	lba = address >> blockshift;
945  	page = (address & MEDIA_INFO(us).blockmask);
946  	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
947  
948  	result = USB_STOR_TRANSPORT_GOOD;
949  	offset = 0;
950  	sg = NULL;
951  
952  	while (sectors > 0) {
953  		unsigned int zone = lba / uzonesize; /* integer division */
954  		unsigned int lba_offset = lba - (zone * uzonesize);
955  		unsigned int pages;
956  		u16 pba;
957  		alauda_ensure_map_for_zone(us, zone);
958  
959  		/* Not overflowing capacity? */
960  		if (lba >= max_lba) {
961  			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
962  				     lba, max_lba);
963  			result = USB_STOR_TRANSPORT_ERROR;
964  			break;
965  		}
966  
967  		/* Find number of pages we can read in this block */
968  		pages = min(sectors, blocksize - page);
969  		len = pages << pageshift;
970  
971  		/* Find where this lba lives on disk */
972  		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
973  
974  		if (pba == UNDEF) {	/* this lba was never written */
975  			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
976  				     pages, lba, page);
977  
978  			/*
979  			 * This is not really an error. It just means
980  			 * that the block has never been written.
981  			 * Instead of returning USB_STOR_TRANSPORT_ERROR
982  			 * it is better to return all zero data.
983  			 */
984  
985  			memset(buffer, 0, len);
986  		} else {
987  			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
988  				     pages, pba, lba, page);
989  
990  			result = alauda_read_block(us, pba, page, pages, buffer);
991  			if (result != USB_STOR_TRANSPORT_GOOD)
992  				break;
993  		}
994  
995  		/* Store the data in the transfer buffer */
996  		usb_stor_access_xfer_buf(buffer, len, us->srb,
997  				&sg, &offset, TO_XFER_BUF);
998  
999  		page = 0;
1000  		lba++;
1001  		sectors -= pages;
1002  	}
1003  
1004  	kfree(buffer);
1005  	return result;
1006  }
1007  
1008  /*
1009   * Write data to a specific sector address
1010   */
alauda_write_data(struct us_data * us,unsigned long address,unsigned int sectors)1011  static int alauda_write_data(struct us_data *us, unsigned long address,
1012  		unsigned int sectors)
1013  {
1014  	unsigned char *buffer, *blockbuffer;
1015  	unsigned int page, len, offset;
1016  	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1017  	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1018  	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1019  	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1020  	struct scatterlist *sg;
1021  	u16 lba, max_lba;
1022  	int result;
1023  
1024  	/*
1025  	 * Since we don't write the user data directly to the device,
1026  	 * we have to create a bounce buffer and move the data a piece
1027  	 * at a time between the bounce buffer and the actual transfer buffer.
1028  	 */
1029  
1030  	len = min(sectors, blocksize) * pagesize;
1031  	buffer = kmalloc(len, GFP_NOIO);
1032  	if (!buffer)
1033  		return USB_STOR_TRANSPORT_ERROR;
1034  
1035  	/*
1036  	 * We also need a temporary block buffer, where we read in the old data,
1037  	 * overwrite parts with the new data, and manipulate the redundancy data
1038  	 */
1039  	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1040  	if (!blockbuffer) {
1041  		kfree(buffer);
1042  		return USB_STOR_TRANSPORT_ERROR;
1043  	}
1044  
1045  	/* Figure out the initial LBA and page */
1046  	lba = address >> blockshift;
1047  	page = (address & MEDIA_INFO(us).blockmask);
1048  	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1049  
1050  	result = USB_STOR_TRANSPORT_GOOD;
1051  	offset = 0;
1052  	sg = NULL;
1053  
1054  	while (sectors > 0) {
1055  		/* Write as many sectors as possible in this block */
1056  		unsigned int pages = min(sectors, blocksize - page);
1057  		len = pages << pageshift;
1058  
1059  		/* Not overflowing capacity? */
1060  		if (lba >= max_lba) {
1061  			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1062  				     lba, max_lba);
1063  			result = USB_STOR_TRANSPORT_ERROR;
1064  			break;
1065  		}
1066  
1067  		/* Get the data from the transfer buffer */
1068  		usb_stor_access_xfer_buf(buffer, len, us->srb,
1069  				&sg, &offset, FROM_XFER_BUF);
1070  
1071  		result = alauda_write_lba(us, lba, page, pages, buffer,
1072  			blockbuffer);
1073  		if (result != USB_STOR_TRANSPORT_GOOD)
1074  			break;
1075  
1076  		page = 0;
1077  		lba++;
1078  		sectors -= pages;
1079  	}
1080  
1081  	kfree(buffer);
1082  	kfree(blockbuffer);
1083  	return result;
1084  }
1085  
1086  /*
1087   * Our interface with the rest of the world
1088   */
1089  
alauda_info_destructor(void * extra)1090  static void alauda_info_destructor(void *extra)
1091  {
1092  	struct alauda_info *info = (struct alauda_info *) extra;
1093  	int port;
1094  
1095  	if (!info)
1096  		return;
1097  
1098  	for (port = 0; port < 2; port++) {
1099  		struct alauda_media_info *media_info = &info->port[port];
1100  
1101  		alauda_free_maps(media_info);
1102  		kfree(media_info->lba_to_pba);
1103  		kfree(media_info->pba_to_lba);
1104  	}
1105  }
1106  
1107  /*
1108   * Initialize alauda_info struct and find the data-write endpoint
1109   */
init_alauda(struct us_data * us)1110  static int init_alauda(struct us_data *us)
1111  {
1112  	struct alauda_info *info;
1113  	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1114  	nand_init_ecc();
1115  
1116  	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1117  	if (!us->extra)
1118  		return -ENOMEM;
1119  
1120  	info = (struct alauda_info *) us->extra;
1121  	us->extra_destructor = alauda_info_destructor;
1122  
1123  	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1124  		altsetting->endpoint[0].desc.bEndpointAddress
1125  		& USB_ENDPOINT_NUMBER_MASK);
1126  
1127  	return 0;
1128  }
1129  
alauda_transport(struct scsi_cmnd * srb,struct us_data * us)1130  static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1131  {
1132  	int rc;
1133  	struct alauda_info *info = (struct alauda_info *) us->extra;
1134  	unsigned char *ptr = us->iobuf;
1135  	static unsigned char inquiry_response[36] = {
1136  		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1137  	};
1138  
1139  	if (srb->cmnd[0] == INQUIRY) {
1140  		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1141  		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1142  		fill_inquiry_response(us, ptr, 36);
1143  		return USB_STOR_TRANSPORT_GOOD;
1144  	}
1145  
1146  	if (srb->cmnd[0] == TEST_UNIT_READY) {
1147  		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1148  		return alauda_check_media(us);
1149  	}
1150  
1151  	if (srb->cmnd[0] == READ_CAPACITY) {
1152  		unsigned int num_zones;
1153  		unsigned long capacity;
1154  
1155  		rc = alauda_check_media(us);
1156  		if (rc != USB_STOR_TRANSPORT_GOOD)
1157  			return rc;
1158  
1159  		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1160  			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1161  
1162  		capacity = num_zones * MEDIA_INFO(us).uzonesize
1163  			* MEDIA_INFO(us).blocksize;
1164  
1165  		/* Report capacity and page size */
1166  		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1167  		((__be32 *) ptr)[1] = cpu_to_be32(512);
1168  
1169  		usb_stor_set_xfer_buf(ptr, 8, srb);
1170  		return USB_STOR_TRANSPORT_GOOD;
1171  	}
1172  
1173  	if (srb->cmnd[0] == READ_10) {
1174  		unsigned int page, pages;
1175  
1176  		rc = alauda_check_media(us);
1177  		if (rc != USB_STOR_TRANSPORT_GOOD)
1178  			return rc;
1179  
1180  		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1181  		page <<= 16;
1182  		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1183  		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1184  
1185  		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1186  
1187  		return alauda_read_data(us, page, pages);
1188  	}
1189  
1190  	if (srb->cmnd[0] == WRITE_10) {
1191  		unsigned int page, pages;
1192  
1193  		rc = alauda_check_media(us);
1194  		if (rc != USB_STOR_TRANSPORT_GOOD)
1195  			return rc;
1196  
1197  		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1198  		page <<= 16;
1199  		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1200  		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1201  
1202  		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1203  
1204  		return alauda_write_data(us, page, pages);
1205  	}
1206  
1207  	if (srb->cmnd[0] == REQUEST_SENSE) {
1208  		usb_stor_dbg(us, "REQUEST_SENSE\n");
1209  
1210  		memset(ptr, 0, 18);
1211  		ptr[0] = 0xF0;
1212  		ptr[2] = info->sense_key;
1213  		ptr[7] = 11;
1214  		ptr[12] = info->sense_asc;
1215  		ptr[13] = info->sense_ascq;
1216  		usb_stor_set_xfer_buf(ptr, 18, srb);
1217  
1218  		return USB_STOR_TRANSPORT_GOOD;
1219  	}
1220  
1221  	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1222  		/*
1223  		 * sure.  whatever.  not like we can stop the user from popping
1224  		 * the media out of the device (no locking doors, etc)
1225  		 */
1226  		return USB_STOR_TRANSPORT_GOOD;
1227  	}
1228  
1229  	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1230  		     srb->cmnd[0], srb->cmnd[0]);
1231  	info->sense_key = 0x05;
1232  	info->sense_asc = 0x20;
1233  	info->sense_ascq = 0x00;
1234  	return USB_STOR_TRANSPORT_FAILED;
1235  }
1236  
1237  static struct scsi_host_template alauda_host_template;
1238  
alauda_probe(struct usb_interface * intf,const struct usb_device_id * id)1239  static int alauda_probe(struct usb_interface *intf,
1240  			 const struct usb_device_id *id)
1241  {
1242  	struct us_data *us;
1243  	int result;
1244  
1245  	result = usb_stor_probe1(&us, intf, id,
1246  			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1247  			&alauda_host_template);
1248  	if (result)
1249  		return result;
1250  
1251  	us->transport_name  = "Alauda Control/Bulk";
1252  	us->transport = alauda_transport;
1253  	us->transport_reset = usb_stor_Bulk_reset;
1254  	us->max_lun = 1;
1255  
1256  	result = usb_stor_probe2(us);
1257  	return result;
1258  }
1259  
1260  static struct usb_driver alauda_driver = {
1261  	.name =		DRV_NAME,
1262  	.probe =	alauda_probe,
1263  	.disconnect =	usb_stor_disconnect,
1264  	.suspend =	usb_stor_suspend,
1265  	.resume =	usb_stor_resume,
1266  	.reset_resume =	usb_stor_reset_resume,
1267  	.pre_reset =	usb_stor_pre_reset,
1268  	.post_reset =	usb_stor_post_reset,
1269  	.id_table =	alauda_usb_ids,
1270  	.soft_unbind =	1,
1271  	.no_dynamic_id = 1,
1272  };
1273  
1274  module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1275