1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54
55 /*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60 #include <asm/mman.h>
61
62 #include "swap.h"
63
64 /*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76 /*
77 * Lock ordering:
78 *
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
82 * ->i_pages lock
83 *
84 * ->i_rwsem
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
87 *
88 * ->mmap_lock
89 * ->i_mmap_rwsem
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
92 *
93 * ->mmap_lock
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
96 *
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
99 *
100 * bdi->wb.list_lock
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
103 *
104 * ->i_mmap_rwsem
105 * ->anon_vma.lock (vma_merge)
106 *
107 * ->anon_vma.lock
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
109 *
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
124 */
125
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
128 {
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
131
132 mapping_set_update(&xas, mapping);
133
134 /* hugetlb pages are represented by a single entry in the xarray */
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138 }
139
140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
144
145 folio->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
147 mapping->nrpages -= nr;
148 }
149
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)150 static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
152 {
153 long nr;
154
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
176 }
177 }
178
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
181 return;
182
183 nr = folio_nr_pages(folio);
184
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 filemap_nr_thps_dec(mapping);
193 }
194
195 /*
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
198 * unwritten data - on ordinary filesystems.
199 *
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
207 * buddy allocator.
208 */
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213
214 /*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
217 * is safe. The caller must hold the i_pages lock.
218 */
__filemap_remove_folio(struct folio * folio,void * shadow)219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 struct address_space *mapping = folio->mapping;
222
223 trace_mm_filemap_delete_from_page_cache(folio);
224 filemap_unaccount_folio(mapping, folio);
225 page_cache_delete(mapping, folio, shadow);
226 }
227
filemap_free_folio(struct address_space * mapping,struct folio * folio)228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 void (*free_folio)(struct folio *);
231 int refs = 1;
232
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
236
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
240 }
241
242 /**
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
245 *
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
249 */
filemap_remove_folio(struct folio * folio)250 void filemap_remove_folio(struct folio *folio)
251 {
252 struct address_space *mapping = folio->mapping;
253
254 BUG_ON(!folio_test_locked(folio));
255 spin_lock(&mapping->host->i_lock);
256 xa_lock_irq(&mapping->i_pages);
257 __filemap_remove_folio(folio, NULL);
258 xa_unlock_irq(&mapping->i_pages);
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
262
263 filemap_free_folio(mapping, folio);
264 }
265
266 /*
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
270 *
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
276 *
277 * The function expects the i_pages lock to be held.
278 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)279 static void page_cache_delete_batch(struct address_space *mapping,
280 struct folio_batch *fbatch)
281 {
282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 long total_pages = 0;
284 int i = 0;
285 struct folio *folio;
286
287 mapping_set_update(&xas, mapping);
288 xas_for_each(&xas, folio, ULONG_MAX) {
289 if (i >= folio_batch_count(fbatch))
290 break;
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
293 if (xa_is_value(folio))
294 continue;
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
302 if (folio != fbatch->folios[i]) {
303 VM_BUG_ON_FOLIO(folio->index >
304 fbatch->folios[i]->index, folio);
305 continue;
306 }
307
308 WARN_ON_ONCE(!folio_test_locked(folio));
309
310 folio->mapping = NULL;
311 /* Leave folio->index set: truncation lookup relies on it */
312
313 i++;
314 xas_store(&xas, NULL);
315 total_pages += folio_nr_pages(folio);
316 }
317 mapping->nrpages -= total_pages;
318 }
319
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)320 void delete_from_page_cache_batch(struct address_space *mapping,
321 struct folio_batch *fbatch)
322 {
323 int i;
324
325 if (!folio_batch_count(fbatch))
326 return;
327
328 spin_lock(&mapping->host->i_lock);
329 xa_lock_irq(&mapping->i_pages);
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
332
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
335 }
336 page_cache_delete_batch(mapping, fbatch);
337 xa_unlock_irq(&mapping->i_pages);
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
341
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345
filemap_check_errors(struct address_space * mapping)346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
filemap_check_and_keep_errors(struct address_space * mapping)360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368 }
369
370 /**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382 {
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
396 /**
397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
400 * @end: offset in bytes where the range ends (inclusive)
401 * @sync_mode: enable synchronous operation
402 *
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407 * opposed to a regular memory cleansing writeback. The difference between
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
410 *
411 * Return: %0 on success, negative error code otherwise.
412 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
415 {
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
418 .nr_to_write = LONG_MAX,
419 .range_start = start,
420 .range_end = end,
421 };
422
423 return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
filemap_fdatawrite(struct address_space * mapping)432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
filemap_flush(struct address_space * mapping)454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct folio *folio;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(folio))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
512
513 while (index <= end) {
514 unsigned i;
515
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
520 break;
521
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
524
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
527 }
528 folio_batch_release(&fbatch);
529 cond_resched();
530 }
531 }
532
533 /**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
546 *
547 * Return: error status of the address space.
548 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551 {
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556
557 /**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573 {
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
579 /**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603
604 /**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
615 *
616 * Return: error status of the address space.
617 */
filemap_fdatawait_keep_errors(struct address_space * mapping)618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624
625 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 return mapping->nrpages;
629 }
630
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)631 bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
633 {
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
636 struct folio *folio;
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
644 continue;
645 if (xa_is_value(folio))
646 continue;
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
649 break;
650 }
651 rcu_read_unlock();
652 return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655
656 /**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
664 * Note that @lend is inclusive (describes the last byte to be written) so
665 * that this function can be used to write to the very end-of-file (end = -1).
666 *
667 * Return: error status of the address space.
668 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)669 int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671 {
672 int err = 0, err2;
673
674 if (lend < lstart)
675 return 0;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
688 }
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
692 return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695
__filemap_set_wb_err(struct address_space * mapping,int err)696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
699
700 trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703
704 /**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
725 *
726 * Return: %0 on success, negative error code otherwise.
727 */
file_check_and_advance_wb_err(struct file * file)728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 *
770 * Return: %0 on success, negative error code otherwise.
771 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
777 if (lend < lstart)
778 return 0;
779
780 if (mapping_needs_writeback(mapping)) {
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793
794 /**
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
803 * caller must do that.
804 *
805 * The remove + add is atomic. This function cannot fail.
806 */
replace_page_cache_folio(struct folio * old,struct folio * new)807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 struct address_space *mapping = old->mapping;
810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
817
818 folio_get(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(old, new);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (free_folio)
839 free_folio(old);
840 folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)844 noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 void *alloced_shadow = NULL;
850 int alloced_order = 0;
851 bool charged = false;
852 long nr = 1;
853
854 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
855 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
856 mapping_set_update(&xas, mapping);
857
858 if (!huge) {
859 int error = mem_cgroup_charge(folio, NULL, gfp);
860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 if (error)
862 return error;
863 charged = true;
864 xas_set_order(&xas, index, folio_order(folio));
865 nr = folio_nr_pages(folio);
866 }
867
868 gfp &= GFP_RECLAIM_MASK;
869 folio_ref_add(folio, nr);
870 folio->mapping = mapping;
871 folio->index = xas.xa_index;
872
873 for (;;) {
874 int order = -1, split_order = 0;
875 void *entry, *old = NULL;
876
877 xas_lock_irq(&xas);
878 xas_for_each_conflict(&xas, entry) {
879 old = entry;
880 if (!xa_is_value(entry)) {
881 xas_set_err(&xas, -EEXIST);
882 goto unlock;
883 }
884 /*
885 * If a larger entry exists,
886 * it will be the first and only entry iterated.
887 */
888 if (order == -1)
889 order = xas_get_order(&xas);
890 }
891
892 /* entry may have changed before we re-acquire the lock */
893 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
894 xas_destroy(&xas);
895 alloced_order = 0;
896 }
897
898 if (old) {
899 if (order > 0 && order > folio_order(folio)) {
900 /* How to handle large swap entries? */
901 BUG_ON(shmem_mapping(mapping));
902 if (!alloced_order) {
903 split_order = order;
904 goto unlock;
905 }
906 xas_split(&xas, old, order);
907 xas_reset(&xas);
908 }
909 if (shadowp)
910 *shadowp = old;
911 }
912
913 xas_store(&xas, folio);
914 if (xas_error(&xas))
915 goto unlock;
916
917 mapping->nrpages += nr;
918
919 /* hugetlb pages do not participate in page cache accounting */
920 if (!huge) {
921 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
922 if (folio_test_pmd_mappable(folio))
923 __lruvec_stat_mod_folio(folio,
924 NR_FILE_THPS, nr);
925 }
926
927 unlock:
928 xas_unlock_irq(&xas);
929
930 /* split needed, alloc here and retry. */
931 if (split_order) {
932 xas_split_alloc(&xas, old, split_order, gfp);
933 if (xas_error(&xas))
934 goto error;
935 alloced_shadow = old;
936 alloced_order = split_order;
937 xas_reset(&xas);
938 continue;
939 }
940
941 if (!xas_nomem(&xas, gfp))
942 break;
943 }
944
945 if (xas_error(&xas))
946 goto error;
947
948 trace_mm_filemap_add_to_page_cache(folio);
949 return 0;
950 error:
951 if (charged)
952 mem_cgroup_uncharge(folio);
953 folio->mapping = NULL;
954 /* Leave page->index set: truncation relies upon it */
955 folio_put_refs(folio, nr);
956 return xas_error(&xas);
957 }
958 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
959
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)960 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
961 pgoff_t index, gfp_t gfp)
962 {
963 void *shadow = NULL;
964 int ret;
965
966 __folio_set_locked(folio);
967 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
968 if (unlikely(ret))
969 __folio_clear_locked(folio);
970 else {
971 /*
972 * The folio might have been evicted from cache only
973 * recently, in which case it should be activated like
974 * any other repeatedly accessed folio.
975 * The exception is folios getting rewritten; evicting other
976 * data from the working set, only to cache data that will
977 * get overwritten with something else, is a waste of memory.
978 */
979 WARN_ON_ONCE(folio_test_active(folio));
980 if (!(gfp & __GFP_WRITE) && shadow)
981 workingset_refault(folio, shadow);
982 folio_add_lru(folio);
983 }
984 return ret;
985 }
986 EXPORT_SYMBOL_GPL(filemap_add_folio);
987
988 #ifdef CONFIG_NUMA
filemap_alloc_folio(gfp_t gfp,unsigned int order)989 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
990 {
991 int n;
992 struct folio *folio;
993
994 if (cpuset_do_page_mem_spread()) {
995 unsigned int cpuset_mems_cookie;
996 do {
997 cpuset_mems_cookie = read_mems_allowed_begin();
998 n = cpuset_mem_spread_node();
999 folio = __folio_alloc_node(gfp, order, n);
1000 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1001
1002 return folio;
1003 }
1004 return folio_alloc(gfp, order);
1005 }
1006 EXPORT_SYMBOL(filemap_alloc_folio);
1007 #endif
1008
1009 /*
1010 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1011 *
1012 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to lock
1015 * @mapping2: the second mapping to lock
1016 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1017 void filemap_invalidate_lock_two(struct address_space *mapping1,
1018 struct address_space *mapping2)
1019 {
1020 if (mapping1 > mapping2)
1021 swap(mapping1, mapping2);
1022 if (mapping1)
1023 down_write(&mapping1->invalidate_lock);
1024 if (mapping2 && mapping1 != mapping2)
1025 down_write_nested(&mapping2->invalidate_lock, 1);
1026 }
1027 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1028
1029 /*
1030 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1031 *
1032 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1033 *
1034 * @mapping1: the first mapping to unlock
1035 * @mapping2: the second mapping to unlock
1036 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1037 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1038 struct address_space *mapping2)
1039 {
1040 if (mapping1)
1041 up_write(&mapping1->invalidate_lock);
1042 if (mapping2 && mapping1 != mapping2)
1043 up_write(&mapping2->invalidate_lock);
1044 }
1045 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1046
1047 /*
1048 * In order to wait for pages to become available there must be
1049 * waitqueues associated with pages. By using a hash table of
1050 * waitqueues where the bucket discipline is to maintain all
1051 * waiters on the same queue and wake all when any of the pages
1052 * become available, and for the woken contexts to check to be
1053 * sure the appropriate page became available, this saves space
1054 * at a cost of "thundering herd" phenomena during rare hash
1055 * collisions.
1056 */
1057 #define PAGE_WAIT_TABLE_BITS 8
1058 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1059 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1060
folio_waitqueue(struct folio * folio)1061 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1062 {
1063 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1064 }
1065
pagecache_init(void)1066 void __init pagecache_init(void)
1067 {
1068 int i;
1069
1070 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1071 init_waitqueue_head(&folio_wait_table[i]);
1072
1073 page_writeback_init();
1074 }
1075
1076 /*
1077 * The page wait code treats the "wait->flags" somewhat unusually, because
1078 * we have multiple different kinds of waits, not just the usual "exclusive"
1079 * one.
1080 *
1081 * We have:
1082 *
1083 * (a) no special bits set:
1084 *
1085 * We're just waiting for the bit to be released, and when a waker
1086 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1087 * and remove it from the wait queue.
1088 *
1089 * Simple and straightforward.
1090 *
1091 * (b) WQ_FLAG_EXCLUSIVE:
1092 *
1093 * The waiter is waiting to get the lock, and only one waiter should
1094 * be woken up to avoid any thundering herd behavior. We'll set the
1095 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1096 *
1097 * This is the traditional exclusive wait.
1098 *
1099 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1100 *
1101 * The waiter is waiting to get the bit, and additionally wants the
1102 * lock to be transferred to it for fair lock behavior. If the lock
1103 * cannot be taken, we stop walking the wait queue without waking
1104 * the waiter.
1105 *
1106 * This is the "fair lock handoff" case, and in addition to setting
1107 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1108 * that it now has the lock.
1109 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1110 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1111 {
1112 unsigned int flags;
1113 struct wait_page_key *key = arg;
1114 struct wait_page_queue *wait_page
1115 = container_of(wait, struct wait_page_queue, wait);
1116
1117 if (!wake_page_match(wait_page, key))
1118 return 0;
1119
1120 /*
1121 * If it's a lock handoff wait, we get the bit for it, and
1122 * stop walking (and do not wake it up) if we can't.
1123 */
1124 flags = wait->flags;
1125 if (flags & WQ_FLAG_EXCLUSIVE) {
1126 if (test_bit(key->bit_nr, &key->folio->flags))
1127 return -1;
1128 if (flags & WQ_FLAG_CUSTOM) {
1129 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1130 return -1;
1131 flags |= WQ_FLAG_DONE;
1132 }
1133 }
1134
1135 /*
1136 * We are holding the wait-queue lock, but the waiter that
1137 * is waiting for this will be checking the flags without
1138 * any locking.
1139 *
1140 * So update the flags atomically, and wake up the waiter
1141 * afterwards to avoid any races. This store-release pairs
1142 * with the load-acquire in folio_wait_bit_common().
1143 */
1144 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1145 wake_up_state(wait->private, mode);
1146
1147 /*
1148 * Ok, we have successfully done what we're waiting for,
1149 * and we can unconditionally remove the wait entry.
1150 *
1151 * Note that this pairs with the "finish_wait()" in the
1152 * waiter, and has to be the absolute last thing we do.
1153 * After this list_del_init(&wait->entry) the wait entry
1154 * might be de-allocated and the process might even have
1155 * exited.
1156 */
1157 list_del_init_careful(&wait->entry);
1158 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1159 }
1160
folio_wake_bit(struct folio * folio,int bit_nr)1161 static void folio_wake_bit(struct folio *folio, int bit_nr)
1162 {
1163 wait_queue_head_t *q = folio_waitqueue(folio);
1164 struct wait_page_key key;
1165 unsigned long flags;
1166 wait_queue_entry_t bookmark;
1167
1168 key.folio = folio;
1169 key.bit_nr = bit_nr;
1170 key.page_match = 0;
1171
1172 bookmark.flags = 0;
1173 bookmark.private = NULL;
1174 bookmark.func = NULL;
1175 INIT_LIST_HEAD(&bookmark.entry);
1176
1177 spin_lock_irqsave(&q->lock, flags);
1178 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1179
1180 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1181 /*
1182 * Take a breather from holding the lock,
1183 * allow pages that finish wake up asynchronously
1184 * to acquire the lock and remove themselves
1185 * from wait queue
1186 */
1187 spin_unlock_irqrestore(&q->lock, flags);
1188 cpu_relax();
1189 spin_lock_irqsave(&q->lock, flags);
1190 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1191 }
1192
1193 /*
1194 * It's possible to miss clearing waiters here, when we woke our page
1195 * waiters, but the hashed waitqueue has waiters for other pages on it.
1196 * That's okay, it's a rare case. The next waker will clear it.
1197 *
1198 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1199 * other), the flag may be cleared in the course of freeing the page;
1200 * but that is not required for correctness.
1201 */
1202 if (!waitqueue_active(q) || !key.page_match)
1203 folio_clear_waiters(folio);
1204
1205 spin_unlock_irqrestore(&q->lock, flags);
1206 }
1207
folio_wake(struct folio * folio,int bit)1208 static void folio_wake(struct folio *folio, int bit)
1209 {
1210 if (!folio_test_waiters(folio))
1211 return;
1212 folio_wake_bit(folio, bit);
1213 }
1214
1215 /*
1216 * A choice of three behaviors for folio_wait_bit_common():
1217 */
1218 enum behavior {
1219 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1220 * __folio_lock() waiting on then setting PG_locked.
1221 */
1222 SHARED, /* Hold ref to page and check the bit when woken, like
1223 * folio_wait_writeback() waiting on PG_writeback.
1224 */
1225 DROP, /* Drop ref to page before wait, no check when woken,
1226 * like folio_put_wait_locked() on PG_locked.
1227 */
1228 };
1229
1230 /*
1231 * Attempt to check (or get) the folio flag, and mark us done
1232 * if successful.
1233 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1234 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1235 struct wait_queue_entry *wait)
1236 {
1237 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1238 if (test_and_set_bit(bit_nr, &folio->flags))
1239 return false;
1240 } else if (test_bit(bit_nr, &folio->flags))
1241 return false;
1242
1243 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1244 return true;
1245 }
1246
1247 /* How many times do we accept lock stealing from under a waiter? */
1248 int sysctl_page_lock_unfairness = 5;
1249
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1250 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1251 int state, enum behavior behavior)
1252 {
1253 wait_queue_head_t *q = folio_waitqueue(folio);
1254 int unfairness = sysctl_page_lock_unfairness;
1255 struct wait_page_queue wait_page;
1256 wait_queue_entry_t *wait = &wait_page.wait;
1257 bool thrashing = false;
1258 unsigned long pflags;
1259 bool in_thrashing;
1260
1261 if (bit_nr == PG_locked &&
1262 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1263 delayacct_thrashing_start(&in_thrashing);
1264 psi_memstall_enter(&pflags);
1265 thrashing = true;
1266 }
1267
1268 init_wait(wait);
1269 wait->func = wake_page_function;
1270 wait_page.folio = folio;
1271 wait_page.bit_nr = bit_nr;
1272
1273 repeat:
1274 wait->flags = 0;
1275 if (behavior == EXCLUSIVE) {
1276 wait->flags = WQ_FLAG_EXCLUSIVE;
1277 if (--unfairness < 0)
1278 wait->flags |= WQ_FLAG_CUSTOM;
1279 }
1280
1281 /*
1282 * Do one last check whether we can get the
1283 * page bit synchronously.
1284 *
1285 * Do the folio_set_waiters() marking before that
1286 * to let any waker we _just_ missed know they
1287 * need to wake us up (otherwise they'll never
1288 * even go to the slow case that looks at the
1289 * page queue), and add ourselves to the wait
1290 * queue if we need to sleep.
1291 *
1292 * This part needs to be done under the queue
1293 * lock to avoid races.
1294 */
1295 spin_lock_irq(&q->lock);
1296 folio_set_waiters(folio);
1297 if (!folio_trylock_flag(folio, bit_nr, wait))
1298 __add_wait_queue_entry_tail(q, wait);
1299 spin_unlock_irq(&q->lock);
1300
1301 /*
1302 * From now on, all the logic will be based on
1303 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1304 * see whether the page bit testing has already
1305 * been done by the wake function.
1306 *
1307 * We can drop our reference to the folio.
1308 */
1309 if (behavior == DROP)
1310 folio_put(folio);
1311
1312 /*
1313 * Note that until the "finish_wait()", or until
1314 * we see the WQ_FLAG_WOKEN flag, we need to
1315 * be very careful with the 'wait->flags', because
1316 * we may race with a waker that sets them.
1317 */
1318 for (;;) {
1319 unsigned int flags;
1320
1321 set_current_state(state);
1322
1323 /* Loop until we've been woken or interrupted */
1324 flags = smp_load_acquire(&wait->flags);
1325 if (!(flags & WQ_FLAG_WOKEN)) {
1326 if (signal_pending_state(state, current))
1327 break;
1328
1329 io_schedule();
1330 continue;
1331 }
1332
1333 /* If we were non-exclusive, we're done */
1334 if (behavior != EXCLUSIVE)
1335 break;
1336
1337 /* If the waker got the lock for us, we're done */
1338 if (flags & WQ_FLAG_DONE)
1339 break;
1340
1341 /*
1342 * Otherwise, if we're getting the lock, we need to
1343 * try to get it ourselves.
1344 *
1345 * And if that fails, we'll have to retry this all.
1346 */
1347 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1348 goto repeat;
1349
1350 wait->flags |= WQ_FLAG_DONE;
1351 break;
1352 }
1353
1354 /*
1355 * If a signal happened, this 'finish_wait()' may remove the last
1356 * waiter from the wait-queues, but the folio waiters bit will remain
1357 * set. That's ok. The next wakeup will take care of it, and trying
1358 * to do it here would be difficult and prone to races.
1359 */
1360 finish_wait(q, wait);
1361
1362 if (thrashing) {
1363 delayacct_thrashing_end(&in_thrashing);
1364 psi_memstall_leave(&pflags);
1365 }
1366
1367 /*
1368 * NOTE! The wait->flags weren't stable until we've done the
1369 * 'finish_wait()', and we could have exited the loop above due
1370 * to a signal, and had a wakeup event happen after the signal
1371 * test but before the 'finish_wait()'.
1372 *
1373 * So only after the finish_wait() can we reliably determine
1374 * if we got woken up or not, so we can now figure out the final
1375 * return value based on that state without races.
1376 *
1377 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1378 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1379 */
1380 if (behavior == EXCLUSIVE)
1381 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1382
1383 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1384 }
1385
1386 #ifdef CONFIG_MIGRATION
1387 /**
1388 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1389 * @entry: migration swap entry.
1390 * @ptl: already locked ptl. This function will drop the lock.
1391 *
1392 * Wait for a migration entry referencing the given page to be removed. This is
1393 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1394 * this can be called without taking a reference on the page. Instead this
1395 * should be called while holding the ptl for the migration entry referencing
1396 * the page.
1397 *
1398 * Returns after unlocking the ptl.
1399 *
1400 * This follows the same logic as folio_wait_bit_common() so see the comments
1401 * there.
1402 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1403 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1404 __releases(ptl)
1405 {
1406 struct wait_page_queue wait_page;
1407 wait_queue_entry_t *wait = &wait_page.wait;
1408 bool thrashing = false;
1409 unsigned long pflags;
1410 bool in_thrashing;
1411 wait_queue_head_t *q;
1412 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1413
1414 q = folio_waitqueue(folio);
1415 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1416 delayacct_thrashing_start(&in_thrashing);
1417 psi_memstall_enter(&pflags);
1418 thrashing = true;
1419 }
1420
1421 init_wait(wait);
1422 wait->func = wake_page_function;
1423 wait_page.folio = folio;
1424 wait_page.bit_nr = PG_locked;
1425 wait->flags = 0;
1426
1427 spin_lock_irq(&q->lock);
1428 folio_set_waiters(folio);
1429 if (!folio_trylock_flag(folio, PG_locked, wait))
1430 __add_wait_queue_entry_tail(q, wait);
1431 spin_unlock_irq(&q->lock);
1432
1433 /*
1434 * If a migration entry exists for the page the migration path must hold
1435 * a valid reference to the page, and it must take the ptl to remove the
1436 * migration entry. So the page is valid until the ptl is dropped.
1437 */
1438 spin_unlock(ptl);
1439
1440 for (;;) {
1441 unsigned int flags;
1442
1443 set_current_state(TASK_UNINTERRUPTIBLE);
1444
1445 /* Loop until we've been woken or interrupted */
1446 flags = smp_load_acquire(&wait->flags);
1447 if (!(flags & WQ_FLAG_WOKEN)) {
1448 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1449 break;
1450
1451 io_schedule();
1452 continue;
1453 }
1454 break;
1455 }
1456
1457 finish_wait(q, wait);
1458
1459 if (thrashing) {
1460 delayacct_thrashing_end(&in_thrashing);
1461 psi_memstall_leave(&pflags);
1462 }
1463 }
1464 #endif
1465
folio_wait_bit(struct folio * folio,int bit_nr)1466 void folio_wait_bit(struct folio *folio, int bit_nr)
1467 {
1468 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1469 }
1470 EXPORT_SYMBOL(folio_wait_bit);
1471
folio_wait_bit_killable(struct folio * folio,int bit_nr)1472 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1473 {
1474 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1475 }
1476 EXPORT_SYMBOL(folio_wait_bit_killable);
1477
1478 /**
1479 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1480 * @folio: The folio to wait for.
1481 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1482 *
1483 * The caller should hold a reference on @folio. They expect the page to
1484 * become unlocked relatively soon, but do not wish to hold up migration
1485 * (for example) by holding the reference while waiting for the folio to
1486 * come unlocked. After this function returns, the caller should not
1487 * dereference @folio.
1488 *
1489 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1490 */
folio_put_wait_locked(struct folio * folio,int state)1491 static int folio_put_wait_locked(struct folio *folio, int state)
1492 {
1493 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1494 }
1495
1496 /**
1497 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1498 * @folio: Folio defining the wait queue of interest
1499 * @waiter: Waiter to add to the queue
1500 *
1501 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1502 */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1503 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1504 {
1505 wait_queue_head_t *q = folio_waitqueue(folio);
1506 unsigned long flags;
1507
1508 spin_lock_irqsave(&q->lock, flags);
1509 __add_wait_queue_entry_tail(q, waiter);
1510 folio_set_waiters(folio);
1511 spin_unlock_irqrestore(&q->lock, flags);
1512 }
1513 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1514
1515 #ifndef clear_bit_unlock_is_negative_byte
1516
1517 /*
1518 * PG_waiters is the high bit in the same byte as PG_lock.
1519 *
1520 * On x86 (and on many other architectures), we can clear PG_lock and
1521 * test the sign bit at the same time. But if the architecture does
1522 * not support that special operation, we just do this all by hand
1523 * instead.
1524 *
1525 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1526 * being cleared, but a memory barrier should be unnecessary since it is
1527 * in the same byte as PG_locked.
1528 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1529 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1530 {
1531 clear_bit_unlock(nr, mem);
1532 /* smp_mb__after_atomic(); */
1533 return test_bit(PG_waiters, mem);
1534 }
1535
1536 #endif
1537
1538 /**
1539 * folio_unlock - Unlock a locked folio.
1540 * @folio: The folio.
1541 *
1542 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1543 *
1544 * Context: May be called from interrupt or process context. May not be
1545 * called from NMI context.
1546 */
folio_unlock(struct folio * folio)1547 void folio_unlock(struct folio *folio)
1548 {
1549 /* Bit 7 allows x86 to check the byte's sign bit */
1550 BUILD_BUG_ON(PG_waiters != 7);
1551 BUILD_BUG_ON(PG_locked > 7);
1552 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1553 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1554 folio_wake_bit(folio, PG_locked);
1555 }
1556 EXPORT_SYMBOL(folio_unlock);
1557
1558 /**
1559 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1560 * @folio: The folio.
1561 *
1562 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1563 * it. The folio reference held for PG_private_2 being set is released.
1564 *
1565 * This is, for example, used when a netfs folio is being written to a local
1566 * disk cache, thereby allowing writes to the cache for the same folio to be
1567 * serialised.
1568 */
folio_end_private_2(struct folio * folio)1569 void folio_end_private_2(struct folio *folio)
1570 {
1571 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1572 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1573 folio_wake_bit(folio, PG_private_2);
1574 folio_put(folio);
1575 }
1576 EXPORT_SYMBOL(folio_end_private_2);
1577
1578 /**
1579 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1580 * @folio: The folio to wait on.
1581 *
1582 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1583 */
folio_wait_private_2(struct folio * folio)1584 void folio_wait_private_2(struct folio *folio)
1585 {
1586 while (folio_test_private_2(folio))
1587 folio_wait_bit(folio, PG_private_2);
1588 }
1589 EXPORT_SYMBOL(folio_wait_private_2);
1590
1591 /**
1592 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1593 * @folio: The folio to wait on.
1594 *
1595 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1596 * fatal signal is received by the calling task.
1597 *
1598 * Return:
1599 * - 0 if successful.
1600 * - -EINTR if a fatal signal was encountered.
1601 */
folio_wait_private_2_killable(struct folio * folio)1602 int folio_wait_private_2_killable(struct folio *folio)
1603 {
1604 int ret = 0;
1605
1606 while (folio_test_private_2(folio)) {
1607 ret = folio_wait_bit_killable(folio, PG_private_2);
1608 if (ret < 0)
1609 break;
1610 }
1611
1612 return ret;
1613 }
1614 EXPORT_SYMBOL(folio_wait_private_2_killable);
1615
1616 /**
1617 * folio_end_writeback - End writeback against a folio.
1618 * @folio: The folio.
1619 */
folio_end_writeback(struct folio * folio)1620 void folio_end_writeback(struct folio *folio)
1621 {
1622 /*
1623 * folio_test_clear_reclaim() could be used here but it is an
1624 * atomic operation and overkill in this particular case. Failing
1625 * to shuffle a folio marked for immediate reclaim is too mild
1626 * a gain to justify taking an atomic operation penalty at the
1627 * end of every folio writeback.
1628 */
1629 if (folio_test_reclaim(folio)) {
1630 folio_clear_reclaim(folio);
1631 folio_rotate_reclaimable(folio);
1632 }
1633
1634 /*
1635 * Writeback does not hold a folio reference of its own, relying
1636 * on truncation to wait for the clearing of PG_writeback.
1637 * But here we must make sure that the folio is not freed and
1638 * reused before the folio_wake().
1639 */
1640 folio_get(folio);
1641 if (!__folio_end_writeback(folio))
1642 BUG();
1643
1644 smp_mb__after_atomic();
1645 folio_wake(folio, PG_writeback);
1646 acct_reclaim_writeback(folio);
1647 folio_put(folio);
1648 }
1649 EXPORT_SYMBOL(folio_end_writeback);
1650
1651 /**
1652 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1653 * @folio: The folio to lock
1654 */
__folio_lock(struct folio * folio)1655 void __folio_lock(struct folio *folio)
1656 {
1657 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1658 EXCLUSIVE);
1659 }
1660 EXPORT_SYMBOL(__folio_lock);
1661
__folio_lock_killable(struct folio * folio)1662 int __folio_lock_killable(struct folio *folio)
1663 {
1664 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1665 EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1668
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1669 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1670 {
1671 struct wait_queue_head *q = folio_waitqueue(folio);
1672 int ret = 0;
1673
1674 wait->folio = folio;
1675 wait->bit_nr = PG_locked;
1676
1677 spin_lock_irq(&q->lock);
1678 __add_wait_queue_entry_tail(q, &wait->wait);
1679 folio_set_waiters(folio);
1680 ret = !folio_trylock(folio);
1681 /*
1682 * If we were successful now, we know we're still on the
1683 * waitqueue as we're still under the lock. This means it's
1684 * safe to remove and return success, we know the callback
1685 * isn't going to trigger.
1686 */
1687 if (!ret)
1688 __remove_wait_queue(q, &wait->wait);
1689 else
1690 ret = -EIOCBQUEUED;
1691 spin_unlock_irq(&q->lock);
1692 return ret;
1693 }
1694
1695 /*
1696 * Return values:
1697 * 0 - folio is locked.
1698 * non-zero - folio is not locked.
1699 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1700 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1701 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1702 *
1703 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1704 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1705 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1706 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1707 {
1708 unsigned int flags = vmf->flags;
1709
1710 if (fault_flag_allow_retry_first(flags)) {
1711 /*
1712 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1713 * released even though returning VM_FAULT_RETRY.
1714 */
1715 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1716 return VM_FAULT_RETRY;
1717
1718 release_fault_lock(vmf);
1719 if (flags & FAULT_FLAG_KILLABLE)
1720 folio_wait_locked_killable(folio);
1721 else
1722 folio_wait_locked(folio);
1723 return VM_FAULT_RETRY;
1724 }
1725 if (flags & FAULT_FLAG_KILLABLE) {
1726 bool ret;
1727
1728 ret = __folio_lock_killable(folio);
1729 if (ret) {
1730 release_fault_lock(vmf);
1731 return VM_FAULT_RETRY;
1732 }
1733 } else {
1734 __folio_lock(folio);
1735 }
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * page_cache_next_miss() - Find the next gap in the page cache.
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
1745 *
1746 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1747 * gap with the lowest index.
1748 *
1749 * This function may be called under the rcu_read_lock. However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 5, then subsequently a gap is
1752 * created at index 10, page_cache_next_miss covering both indices may
1753 * return 10 if called under the rcu_read_lock.
1754 *
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'return - index >= max_scan' will be true).
1757 * In the rare case of index wrap-around, 0 will be returned.
1758 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1759 pgoff_t page_cache_next_miss(struct address_space *mapping,
1760 pgoff_t index, unsigned long max_scan)
1761 {
1762 XA_STATE(xas, &mapping->i_pages, index);
1763
1764 while (max_scan--) {
1765 void *entry = xas_next(&xas);
1766 if (!entry || xa_is_value(entry))
1767 break;
1768 if (xas.xa_index == 0)
1769 break;
1770 }
1771
1772 return xas.xa_index;
1773 }
1774 EXPORT_SYMBOL(page_cache_next_miss);
1775
1776 /**
1777 * page_cache_prev_miss() - Find the previous gap in the page cache.
1778 * @mapping: Mapping.
1779 * @index: Index.
1780 * @max_scan: Maximum range to search.
1781 *
1782 * Search the range [max(index - max_scan + 1, 0), index] for the
1783 * gap with the highest index.
1784 *
1785 * This function may be called under the rcu_read_lock. However, this will
1786 * not atomically search a snapshot of the cache at a single point in time.
1787 * For example, if a gap is created at index 10, then subsequently a gap is
1788 * created at index 5, page_cache_prev_miss() covering both indices may
1789 * return 5 if called under the rcu_read_lock.
1790 *
1791 * Return: The index of the gap if found, otherwise an index outside the
1792 * range specified (in which case 'index - return >= max_scan' will be true).
1793 * In the rare case of wrap-around, ULONG_MAX will be returned.
1794 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1795 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1796 pgoff_t index, unsigned long max_scan)
1797 {
1798 XA_STATE(xas, &mapping->i_pages, index);
1799
1800 while (max_scan--) {
1801 void *entry = xas_prev(&xas);
1802 if (!entry || xa_is_value(entry))
1803 break;
1804 if (xas.xa_index == ULONG_MAX)
1805 break;
1806 }
1807
1808 return xas.xa_index;
1809 }
1810 EXPORT_SYMBOL(page_cache_prev_miss);
1811
1812 /*
1813 * Lockless page cache protocol:
1814 * On the lookup side:
1815 * 1. Load the folio from i_pages
1816 * 2. Increment the refcount if it's not zero
1817 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1818 *
1819 * On the removal side:
1820 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1821 * B. Remove the page from i_pages
1822 * C. Return the page to the page allocator
1823 *
1824 * This means that any page may have its reference count temporarily
1825 * increased by a speculative page cache (or fast GUP) lookup as it can
1826 * be allocated by another user before the RCU grace period expires.
1827 * Because the refcount temporarily acquired here may end up being the
1828 * last refcount on the page, any page allocation must be freeable by
1829 * folio_put().
1830 */
1831
1832 /*
1833 * filemap_get_entry - Get a page cache entry.
1834 * @mapping: the address_space to search
1835 * @index: The page cache index.
1836 *
1837 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1838 * it is returned with an increased refcount. If it is a shadow entry
1839 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1840 * it is returned without further action.
1841 *
1842 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1843 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1844 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1845 {
1846 XA_STATE(xas, &mapping->i_pages, index);
1847 struct folio *folio;
1848
1849 rcu_read_lock();
1850 repeat:
1851 xas_reset(&xas);
1852 folio = xas_load(&xas);
1853 if (xas_retry(&xas, folio))
1854 goto repeat;
1855 /*
1856 * A shadow entry of a recently evicted page, or a swap entry from
1857 * shmem/tmpfs. Return it without attempting to raise page count.
1858 */
1859 if (!folio || xa_is_value(folio))
1860 goto out;
1861
1862 if (!folio_try_get(folio))
1863 goto repeat;
1864
1865 if (unlikely(folio != xas_reload(&xas))) {
1866 folio_put(folio);
1867 goto repeat;
1868 }
1869 out:
1870 rcu_read_unlock();
1871
1872 return folio;
1873 }
1874
1875 /**
1876 * __filemap_get_folio - Find and get a reference to a folio.
1877 * @mapping: The address_space to search.
1878 * @index: The page index.
1879 * @fgp_flags: %FGP flags modify how the folio is returned.
1880 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1881 *
1882 * Looks up the page cache entry at @mapping & @index.
1883 *
1884 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1885 * if the %GFP flags specified for %FGP_CREAT are atomic.
1886 *
1887 * If this function returns a folio, it is returned with an increased refcount.
1888 *
1889 * Return: The found folio or an ERR_PTR() otherwise.
1890 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1891 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1892 fgf_t fgp_flags, gfp_t gfp)
1893 {
1894 struct folio *folio;
1895
1896 repeat:
1897 folio = filemap_get_entry(mapping, index);
1898 if (xa_is_value(folio))
1899 folio = NULL;
1900 if (!folio)
1901 goto no_page;
1902
1903 if (fgp_flags & FGP_LOCK) {
1904 if (fgp_flags & FGP_NOWAIT) {
1905 if (!folio_trylock(folio)) {
1906 folio_put(folio);
1907 return ERR_PTR(-EAGAIN);
1908 }
1909 } else {
1910 folio_lock(folio);
1911 }
1912
1913 /* Has the page been truncated? */
1914 if (unlikely(folio->mapping != mapping)) {
1915 folio_unlock(folio);
1916 folio_put(folio);
1917 goto repeat;
1918 }
1919 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1920 }
1921
1922 if (fgp_flags & FGP_ACCESSED)
1923 folio_mark_accessed(folio);
1924 else if (fgp_flags & FGP_WRITE) {
1925 /* Clear idle flag for buffer write */
1926 if (folio_test_idle(folio))
1927 folio_clear_idle(folio);
1928 }
1929
1930 if (fgp_flags & FGP_STABLE)
1931 folio_wait_stable(folio);
1932 no_page:
1933 if (!folio && (fgp_flags & FGP_CREAT)) {
1934 unsigned order = FGF_GET_ORDER(fgp_flags);
1935 int err;
1936
1937 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1938 gfp |= __GFP_WRITE;
1939 if (fgp_flags & FGP_NOFS)
1940 gfp &= ~__GFP_FS;
1941 if (fgp_flags & FGP_NOWAIT) {
1942 gfp &= ~GFP_KERNEL;
1943 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1944 }
1945 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1946 fgp_flags |= FGP_LOCK;
1947
1948 if (!mapping_large_folio_support(mapping))
1949 order = 0;
1950 if (order > MAX_PAGECACHE_ORDER)
1951 order = MAX_PAGECACHE_ORDER;
1952 /* If we're not aligned, allocate a smaller folio */
1953 if (index & ((1UL << order) - 1))
1954 order = __ffs(index);
1955
1956 do {
1957 gfp_t alloc_gfp = gfp;
1958
1959 err = -ENOMEM;
1960 if (order > 0)
1961 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1962 folio = filemap_alloc_folio(alloc_gfp, order);
1963 if (!folio)
1964 continue;
1965
1966 /* Init accessed so avoid atomic mark_page_accessed later */
1967 if (fgp_flags & FGP_ACCESSED)
1968 __folio_set_referenced(folio);
1969
1970 err = filemap_add_folio(mapping, folio, index, gfp);
1971 if (!err)
1972 break;
1973 folio_put(folio);
1974 folio = NULL;
1975 } while (order-- > 0);
1976
1977 if (err == -EEXIST)
1978 goto repeat;
1979 if (err)
1980 return ERR_PTR(err);
1981 /*
1982 * filemap_add_folio locks the page, and for mmap
1983 * we expect an unlocked page.
1984 */
1985 if (folio && (fgp_flags & FGP_FOR_MMAP))
1986 folio_unlock(folio);
1987 }
1988
1989 if (!folio)
1990 return ERR_PTR(-ENOENT);
1991 return folio;
1992 }
1993 EXPORT_SYMBOL(__filemap_get_folio);
1994
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1995 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1996 xa_mark_t mark)
1997 {
1998 struct folio *folio;
1999
2000 retry:
2001 if (mark == XA_PRESENT)
2002 folio = xas_find(xas, max);
2003 else
2004 folio = xas_find_marked(xas, max, mark);
2005
2006 if (xas_retry(xas, folio))
2007 goto retry;
2008 /*
2009 * A shadow entry of a recently evicted page, a swap
2010 * entry from shmem/tmpfs or a DAX entry. Return it
2011 * without attempting to raise page count.
2012 */
2013 if (!folio || xa_is_value(folio))
2014 return folio;
2015
2016 if (!folio_try_get(folio))
2017 goto reset;
2018
2019 if (unlikely(folio != xas_reload(xas))) {
2020 folio_put(folio);
2021 goto reset;
2022 }
2023
2024 return folio;
2025 reset:
2026 xas_reset(xas);
2027 goto retry;
2028 }
2029
2030 /**
2031 * find_get_entries - gang pagecache lookup
2032 * @mapping: The address_space to search
2033 * @start: The starting page cache index
2034 * @end: The final page index (inclusive).
2035 * @fbatch: Where the resulting entries are placed.
2036 * @indices: The cache indices corresponding to the entries in @entries
2037 *
2038 * find_get_entries() will search for and return a batch of entries in
2039 * the mapping. The entries are placed in @fbatch. find_get_entries()
2040 * takes a reference on any actual folios it returns.
2041 *
2042 * The entries have ascending indexes. The indices may not be consecutive
2043 * due to not-present entries or large folios.
2044 *
2045 * Any shadow entries of evicted folios, or swap entries from
2046 * shmem/tmpfs, are included in the returned array.
2047 *
2048 * Return: The number of entries which were found.
2049 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2050 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2051 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2052 {
2053 XA_STATE(xas, &mapping->i_pages, *start);
2054 struct folio *folio;
2055
2056 rcu_read_lock();
2057 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2058 indices[fbatch->nr] = xas.xa_index;
2059 if (!folio_batch_add(fbatch, folio))
2060 break;
2061 }
2062 rcu_read_unlock();
2063
2064 if (folio_batch_count(fbatch)) {
2065 unsigned long nr = 1;
2066 int idx = folio_batch_count(fbatch) - 1;
2067
2068 folio = fbatch->folios[idx];
2069 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2070 nr = folio_nr_pages(folio);
2071 *start = indices[idx] + nr;
2072 }
2073 return folio_batch_count(fbatch);
2074 }
2075
2076 /**
2077 * find_lock_entries - Find a batch of pagecache entries.
2078 * @mapping: The address_space to search.
2079 * @start: The starting page cache index.
2080 * @end: The final page index (inclusive).
2081 * @fbatch: Where the resulting entries are placed.
2082 * @indices: The cache indices of the entries in @fbatch.
2083 *
2084 * find_lock_entries() will return a batch of entries from @mapping.
2085 * Swap, shadow and DAX entries are included. Folios are returned
2086 * locked and with an incremented refcount. Folios which are locked
2087 * by somebody else or under writeback are skipped. Folios which are
2088 * partially outside the range are not returned.
2089 *
2090 * The entries have ascending indexes. The indices may not be consecutive
2091 * due to not-present entries, large folios, folios which could not be
2092 * locked or folios under writeback.
2093 *
2094 * Return: The number of entries which were found.
2095 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2096 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2097 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2098 {
2099 XA_STATE(xas, &mapping->i_pages, *start);
2100 struct folio *folio;
2101
2102 rcu_read_lock();
2103 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2104 if (!xa_is_value(folio)) {
2105 if (folio->index < *start)
2106 goto put;
2107 if (folio_next_index(folio) - 1 > end)
2108 goto put;
2109 if (!folio_trylock(folio))
2110 goto put;
2111 if (folio->mapping != mapping ||
2112 folio_test_writeback(folio))
2113 goto unlock;
2114 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2115 folio);
2116 }
2117 indices[fbatch->nr] = xas.xa_index;
2118 if (!folio_batch_add(fbatch, folio))
2119 break;
2120 continue;
2121 unlock:
2122 folio_unlock(folio);
2123 put:
2124 folio_put(folio);
2125 }
2126 rcu_read_unlock();
2127
2128 if (folio_batch_count(fbatch)) {
2129 unsigned long nr = 1;
2130 int idx = folio_batch_count(fbatch) - 1;
2131
2132 folio = fbatch->folios[idx];
2133 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2134 nr = folio_nr_pages(folio);
2135 *start = indices[idx] + nr;
2136 }
2137 return folio_batch_count(fbatch);
2138 }
2139
2140 /**
2141 * filemap_get_folios - Get a batch of folios
2142 * @mapping: The address_space to search
2143 * @start: The starting page index
2144 * @end: The final page index (inclusive)
2145 * @fbatch: The batch to fill.
2146 *
2147 * Search for and return a batch of folios in the mapping starting at
2148 * index @start and up to index @end (inclusive). The folios are returned
2149 * in @fbatch with an elevated reference count.
2150 *
2151 * The first folio may start before @start; if it does, it will contain
2152 * @start. The final folio may extend beyond @end; if it does, it will
2153 * contain @end. The folios have ascending indices. There may be gaps
2154 * between the folios if there are indices which have no folio in the
2155 * page cache. If folios are added to or removed from the page cache
2156 * while this is running, they may or may not be found by this call.
2157 *
2158 * Return: The number of folios which were found.
2159 * We also update @start to index the next folio for the traversal.
2160 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2161 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2162 pgoff_t end, struct folio_batch *fbatch)
2163 {
2164 XA_STATE(xas, &mapping->i_pages, *start);
2165 struct folio *folio;
2166
2167 rcu_read_lock();
2168 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2169 /* Skip over shadow, swap and DAX entries */
2170 if (xa_is_value(folio))
2171 continue;
2172 if (!folio_batch_add(fbatch, folio)) {
2173 unsigned long nr = folio_nr_pages(folio);
2174
2175 if (folio_test_hugetlb(folio))
2176 nr = 1;
2177 *start = folio->index + nr;
2178 goto out;
2179 }
2180 }
2181
2182 /*
2183 * We come here when there is no page beyond @end. We take care to not
2184 * overflow the index @start as it confuses some of the callers. This
2185 * breaks the iteration when there is a page at index -1 but that is
2186 * already broken anyway.
2187 */
2188 if (end == (pgoff_t)-1)
2189 *start = (pgoff_t)-1;
2190 else
2191 *start = end + 1;
2192 out:
2193 rcu_read_unlock();
2194
2195 return folio_batch_count(fbatch);
2196 }
2197 EXPORT_SYMBOL(filemap_get_folios);
2198
2199 /**
2200 * filemap_get_folios_contig - Get a batch of contiguous folios
2201 * @mapping: The address_space to search
2202 * @start: The starting page index
2203 * @end: The final page index (inclusive)
2204 * @fbatch: The batch to fill
2205 *
2206 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2207 * except the returned folios are guaranteed to be contiguous. This may
2208 * not return all contiguous folios if the batch gets filled up.
2209 *
2210 * Return: The number of folios found.
2211 * Also update @start to be positioned for traversal of the next folio.
2212 */
2213
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2214 unsigned filemap_get_folios_contig(struct address_space *mapping,
2215 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2216 {
2217 XA_STATE(xas, &mapping->i_pages, *start);
2218 unsigned long nr;
2219 struct folio *folio;
2220
2221 rcu_read_lock();
2222
2223 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2224 folio = xas_next(&xas)) {
2225 if (xas_retry(&xas, folio))
2226 continue;
2227 /*
2228 * If the entry has been swapped out, we can stop looking.
2229 * No current caller is looking for DAX entries.
2230 */
2231 if (xa_is_value(folio))
2232 goto update_start;
2233
2234 if (!folio_try_get(folio))
2235 goto retry;
2236
2237 if (unlikely(folio != xas_reload(&xas)))
2238 goto put_folio;
2239
2240 if (!folio_batch_add(fbatch, folio)) {
2241 nr = folio_nr_pages(folio);
2242
2243 if (folio_test_hugetlb(folio))
2244 nr = 1;
2245 *start = folio->index + nr;
2246 goto out;
2247 }
2248 continue;
2249 put_folio:
2250 folio_put(folio);
2251
2252 retry:
2253 xas_reset(&xas);
2254 }
2255
2256 update_start:
2257 nr = folio_batch_count(fbatch);
2258
2259 if (nr) {
2260 folio = fbatch->folios[nr - 1];
2261 if (folio_test_hugetlb(folio))
2262 *start = folio->index + 1;
2263 else
2264 *start = folio_next_index(folio);
2265 }
2266 out:
2267 rcu_read_unlock();
2268 return folio_batch_count(fbatch);
2269 }
2270 EXPORT_SYMBOL(filemap_get_folios_contig);
2271
2272 /**
2273 * filemap_get_folios_tag - Get a batch of folios matching @tag
2274 * @mapping: The address_space to search
2275 * @start: The starting page index
2276 * @end: The final page index (inclusive)
2277 * @tag: The tag index
2278 * @fbatch: The batch to fill
2279 *
2280 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2281 *
2282 * Return: The number of folios found.
2283 * Also update @start to index the next folio for traversal.
2284 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2285 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2286 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2287 {
2288 XA_STATE(xas, &mapping->i_pages, *start);
2289 struct folio *folio;
2290
2291 rcu_read_lock();
2292 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2293 /*
2294 * Shadow entries should never be tagged, but this iteration
2295 * is lockless so there is a window for page reclaim to evict
2296 * a page we saw tagged. Skip over it.
2297 */
2298 if (xa_is_value(folio))
2299 continue;
2300 if (!folio_batch_add(fbatch, folio)) {
2301 unsigned long nr = folio_nr_pages(folio);
2302
2303 if (folio_test_hugetlb(folio))
2304 nr = 1;
2305 *start = folio->index + nr;
2306 goto out;
2307 }
2308 }
2309 /*
2310 * We come here when there is no page beyond @end. We take care to not
2311 * overflow the index @start as it confuses some of the callers. This
2312 * breaks the iteration when there is a page at index -1 but that is
2313 * already broke anyway.
2314 */
2315 if (end == (pgoff_t)-1)
2316 *start = (pgoff_t)-1;
2317 else
2318 *start = end + 1;
2319 out:
2320 rcu_read_unlock();
2321
2322 return folio_batch_count(fbatch);
2323 }
2324 EXPORT_SYMBOL(filemap_get_folios_tag);
2325
2326 /*
2327 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2328 * a _large_ part of the i/o request. Imagine the worst scenario:
2329 *
2330 * ---R__________________________________________B__________
2331 * ^ reading here ^ bad block(assume 4k)
2332 *
2333 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2334 * => failing the whole request => read(R) => read(R+1) =>
2335 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2336 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2337 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2338 *
2339 * It is going insane. Fix it by quickly scaling down the readahead size.
2340 */
shrink_readahead_size_eio(struct file_ra_state * ra)2341 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2342 {
2343 ra->ra_pages /= 4;
2344 }
2345
2346 /*
2347 * filemap_get_read_batch - Get a batch of folios for read
2348 *
2349 * Get a batch of folios which represent a contiguous range of bytes in
2350 * the file. No exceptional entries will be returned. If @index is in
2351 * the middle of a folio, the entire folio will be returned. The last
2352 * folio in the batch may have the readahead flag set or the uptodate flag
2353 * clear so that the caller can take the appropriate action.
2354 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2355 static void filemap_get_read_batch(struct address_space *mapping,
2356 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2357 {
2358 XA_STATE(xas, &mapping->i_pages, index);
2359 struct folio *folio;
2360
2361 rcu_read_lock();
2362 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2363 if (xas_retry(&xas, folio))
2364 continue;
2365 if (xas.xa_index > max || xa_is_value(folio))
2366 break;
2367 if (xa_is_sibling(folio))
2368 break;
2369 if (!folio_try_get(folio))
2370 goto retry;
2371
2372 if (unlikely(folio != xas_reload(&xas)))
2373 goto put_folio;
2374
2375 if (!folio_batch_add(fbatch, folio))
2376 break;
2377 if (!folio_test_uptodate(folio))
2378 break;
2379 if (folio_test_readahead(folio))
2380 break;
2381 xas_advance(&xas, folio_next_index(folio) - 1);
2382 continue;
2383 put_folio:
2384 folio_put(folio);
2385 retry:
2386 xas_reset(&xas);
2387 }
2388 rcu_read_unlock();
2389 }
2390
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2391 static int filemap_read_folio(struct file *file, filler_t filler,
2392 struct folio *folio)
2393 {
2394 bool workingset = folio_test_workingset(folio);
2395 unsigned long pflags;
2396 int error;
2397
2398 /*
2399 * A previous I/O error may have been due to temporary failures,
2400 * eg. multipath errors. PG_error will be set again if read_folio
2401 * fails.
2402 */
2403 folio_clear_error(folio);
2404
2405 /* Start the actual read. The read will unlock the page. */
2406 if (unlikely(workingset))
2407 psi_memstall_enter(&pflags);
2408 error = filler(file, folio);
2409 if (unlikely(workingset))
2410 psi_memstall_leave(&pflags);
2411 if (error)
2412 return error;
2413
2414 error = folio_wait_locked_killable(folio);
2415 if (error)
2416 return error;
2417 if (folio_test_uptodate(folio))
2418 return 0;
2419 if (file)
2420 shrink_readahead_size_eio(&file->f_ra);
2421 return -EIO;
2422 }
2423
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2424 static bool filemap_range_uptodate(struct address_space *mapping,
2425 loff_t pos, size_t count, struct folio *folio,
2426 bool need_uptodate)
2427 {
2428 if (folio_test_uptodate(folio))
2429 return true;
2430 /* pipes can't handle partially uptodate pages */
2431 if (need_uptodate)
2432 return false;
2433 if (!mapping->a_ops->is_partially_uptodate)
2434 return false;
2435 if (mapping->host->i_blkbits >= folio_shift(folio))
2436 return false;
2437
2438 if (folio_pos(folio) > pos) {
2439 count -= folio_pos(folio) - pos;
2440 pos = 0;
2441 } else {
2442 pos -= folio_pos(folio);
2443 }
2444
2445 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2446 }
2447
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2448 static int filemap_update_page(struct kiocb *iocb,
2449 struct address_space *mapping, size_t count,
2450 struct folio *folio, bool need_uptodate)
2451 {
2452 int error;
2453
2454 if (iocb->ki_flags & IOCB_NOWAIT) {
2455 if (!filemap_invalidate_trylock_shared(mapping))
2456 return -EAGAIN;
2457 } else {
2458 filemap_invalidate_lock_shared(mapping);
2459 }
2460
2461 if (!folio_trylock(folio)) {
2462 error = -EAGAIN;
2463 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2464 goto unlock_mapping;
2465 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2466 filemap_invalidate_unlock_shared(mapping);
2467 /*
2468 * This is where we usually end up waiting for a
2469 * previously submitted readahead to finish.
2470 */
2471 folio_put_wait_locked(folio, TASK_KILLABLE);
2472 return AOP_TRUNCATED_PAGE;
2473 }
2474 error = __folio_lock_async(folio, iocb->ki_waitq);
2475 if (error)
2476 goto unlock_mapping;
2477 }
2478
2479 error = AOP_TRUNCATED_PAGE;
2480 if (!folio->mapping)
2481 goto unlock;
2482
2483 error = 0;
2484 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2485 need_uptodate))
2486 goto unlock;
2487
2488 error = -EAGAIN;
2489 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2490 goto unlock;
2491
2492 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2493 folio);
2494 goto unlock_mapping;
2495 unlock:
2496 folio_unlock(folio);
2497 unlock_mapping:
2498 filemap_invalidate_unlock_shared(mapping);
2499 if (error == AOP_TRUNCATED_PAGE)
2500 folio_put(folio);
2501 return error;
2502 }
2503
filemap_create_folio(struct file * file,struct address_space * mapping,pgoff_t index,struct folio_batch * fbatch)2504 static int filemap_create_folio(struct file *file,
2505 struct address_space *mapping, pgoff_t index,
2506 struct folio_batch *fbatch)
2507 {
2508 struct folio *folio;
2509 int error;
2510
2511 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2512 if (!folio)
2513 return -ENOMEM;
2514
2515 /*
2516 * Protect against truncate / hole punch. Grabbing invalidate_lock
2517 * here assures we cannot instantiate and bring uptodate new
2518 * pagecache folios after evicting page cache during truncate
2519 * and before actually freeing blocks. Note that we could
2520 * release invalidate_lock after inserting the folio into
2521 * the page cache as the locked folio would then be enough to
2522 * synchronize with hole punching. But there are code paths
2523 * such as filemap_update_page() filling in partially uptodate
2524 * pages or ->readahead() that need to hold invalidate_lock
2525 * while mapping blocks for IO so let's hold the lock here as
2526 * well to keep locking rules simple.
2527 */
2528 filemap_invalidate_lock_shared(mapping);
2529 error = filemap_add_folio(mapping, folio, index,
2530 mapping_gfp_constraint(mapping, GFP_KERNEL));
2531 if (error == -EEXIST)
2532 error = AOP_TRUNCATED_PAGE;
2533 if (error)
2534 goto error;
2535
2536 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2537 if (error)
2538 goto error;
2539
2540 filemap_invalidate_unlock_shared(mapping);
2541 folio_batch_add(fbatch, folio);
2542 return 0;
2543 error:
2544 filemap_invalidate_unlock_shared(mapping);
2545 folio_put(folio);
2546 return error;
2547 }
2548
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2549 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2550 struct address_space *mapping, struct folio *folio,
2551 pgoff_t last_index)
2552 {
2553 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2554
2555 if (iocb->ki_flags & IOCB_NOIO)
2556 return -EAGAIN;
2557 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2558 return 0;
2559 }
2560
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2561 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2562 struct folio_batch *fbatch, bool need_uptodate)
2563 {
2564 struct file *filp = iocb->ki_filp;
2565 struct address_space *mapping = filp->f_mapping;
2566 struct file_ra_state *ra = &filp->f_ra;
2567 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2568 pgoff_t last_index;
2569 struct folio *folio;
2570 int err = 0;
2571
2572 /* "last_index" is the index of the page beyond the end of the read */
2573 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2574 retry:
2575 if (fatal_signal_pending(current))
2576 return -EINTR;
2577
2578 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2579 if (!folio_batch_count(fbatch)) {
2580 if (iocb->ki_flags & IOCB_NOIO)
2581 return -EAGAIN;
2582 page_cache_sync_readahead(mapping, ra, filp, index,
2583 last_index - index);
2584 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2585 }
2586 if (!folio_batch_count(fbatch)) {
2587 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2588 return -EAGAIN;
2589 err = filemap_create_folio(filp, mapping,
2590 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2591 if (err == AOP_TRUNCATED_PAGE)
2592 goto retry;
2593 return err;
2594 }
2595
2596 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2597 if (folio_test_readahead(folio)) {
2598 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2599 if (err)
2600 goto err;
2601 }
2602 if (!folio_test_uptodate(folio)) {
2603 if ((iocb->ki_flags & IOCB_WAITQ) &&
2604 folio_batch_count(fbatch) > 1)
2605 iocb->ki_flags |= IOCB_NOWAIT;
2606 err = filemap_update_page(iocb, mapping, count, folio,
2607 need_uptodate);
2608 if (err)
2609 goto err;
2610 }
2611
2612 return 0;
2613 err:
2614 if (err < 0)
2615 folio_put(folio);
2616 if (likely(--fbatch->nr))
2617 return 0;
2618 if (err == AOP_TRUNCATED_PAGE)
2619 goto retry;
2620 return err;
2621 }
2622
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2623 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2624 {
2625 unsigned int shift = folio_shift(folio);
2626
2627 return (pos1 >> shift == pos2 >> shift);
2628 }
2629
2630 /**
2631 * filemap_read - Read data from the page cache.
2632 * @iocb: The iocb to read.
2633 * @iter: Destination for the data.
2634 * @already_read: Number of bytes already read by the caller.
2635 *
2636 * Copies data from the page cache. If the data is not currently present,
2637 * uses the readahead and read_folio address_space operations to fetch it.
2638 *
2639 * Return: Total number of bytes copied, including those already read by
2640 * the caller. If an error happens before any bytes are copied, returns
2641 * a negative error number.
2642 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2643 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2644 ssize_t already_read)
2645 {
2646 struct file *filp = iocb->ki_filp;
2647 struct file_ra_state *ra = &filp->f_ra;
2648 struct address_space *mapping = filp->f_mapping;
2649 struct inode *inode = mapping->host;
2650 struct folio_batch fbatch;
2651 int i, error = 0;
2652 bool writably_mapped;
2653 loff_t isize, end_offset;
2654 loff_t last_pos = ra->prev_pos;
2655
2656 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2657 return 0;
2658 if (unlikely(!iov_iter_count(iter)))
2659 return 0;
2660
2661 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2662 folio_batch_init(&fbatch);
2663
2664 do {
2665 cond_resched();
2666
2667 /*
2668 * If we've already successfully copied some data, then we
2669 * can no longer safely return -EIOCBQUEUED. Hence mark
2670 * an async read NOWAIT at that point.
2671 */
2672 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2673 iocb->ki_flags |= IOCB_NOWAIT;
2674
2675 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2676 break;
2677
2678 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2679 if (error < 0)
2680 break;
2681
2682 /*
2683 * i_size must be checked after we know the pages are Uptodate.
2684 *
2685 * Checking i_size after the check allows us to calculate
2686 * the correct value for "nr", which means the zero-filled
2687 * part of the page is not copied back to userspace (unless
2688 * another truncate extends the file - this is desired though).
2689 */
2690 isize = i_size_read(inode);
2691 if (unlikely(iocb->ki_pos >= isize))
2692 goto put_folios;
2693 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2694
2695 /*
2696 * Pairs with a barrier in
2697 * block_write_end()->mark_buffer_dirty() or other page
2698 * dirtying routines like iomap_write_end() to ensure
2699 * changes to page contents are visible before we see
2700 * increased inode size.
2701 */
2702 smp_rmb();
2703
2704 /*
2705 * Once we start copying data, we don't want to be touching any
2706 * cachelines that might be contended:
2707 */
2708 writably_mapped = mapping_writably_mapped(mapping);
2709
2710 /*
2711 * When a read accesses the same folio several times, only
2712 * mark it as accessed the first time.
2713 */
2714 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2715 fbatch.folios[0]))
2716 folio_mark_accessed(fbatch.folios[0]);
2717
2718 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2719 struct folio *folio = fbatch.folios[i];
2720 size_t fsize = folio_size(folio);
2721 size_t offset = iocb->ki_pos & (fsize - 1);
2722 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2723 fsize - offset);
2724 size_t copied;
2725
2726 if (end_offset < folio_pos(folio))
2727 break;
2728 if (i > 0)
2729 folio_mark_accessed(folio);
2730 /*
2731 * If users can be writing to this folio using arbitrary
2732 * virtual addresses, take care of potential aliasing
2733 * before reading the folio on the kernel side.
2734 */
2735 if (writably_mapped)
2736 flush_dcache_folio(folio);
2737
2738 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2739
2740 already_read += copied;
2741 iocb->ki_pos += copied;
2742 last_pos = iocb->ki_pos;
2743
2744 if (copied < bytes) {
2745 error = -EFAULT;
2746 break;
2747 }
2748 }
2749 put_folios:
2750 for (i = 0; i < folio_batch_count(&fbatch); i++)
2751 folio_put(fbatch.folios[i]);
2752 folio_batch_init(&fbatch);
2753 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2754
2755 file_accessed(filp);
2756 ra->prev_pos = last_pos;
2757 return already_read ? already_read : error;
2758 }
2759 EXPORT_SYMBOL_GPL(filemap_read);
2760
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2761 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2762 {
2763 struct address_space *mapping = iocb->ki_filp->f_mapping;
2764 loff_t pos = iocb->ki_pos;
2765 loff_t end = pos + count - 1;
2766
2767 if (iocb->ki_flags & IOCB_NOWAIT) {
2768 if (filemap_range_needs_writeback(mapping, pos, end))
2769 return -EAGAIN;
2770 return 0;
2771 }
2772
2773 return filemap_write_and_wait_range(mapping, pos, end);
2774 }
2775
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2776 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2777 {
2778 struct address_space *mapping = iocb->ki_filp->f_mapping;
2779 loff_t pos = iocb->ki_pos;
2780 loff_t end = pos + count - 1;
2781 int ret;
2782
2783 if (iocb->ki_flags & IOCB_NOWAIT) {
2784 /* we could block if there are any pages in the range */
2785 if (filemap_range_has_page(mapping, pos, end))
2786 return -EAGAIN;
2787 } else {
2788 ret = filemap_write_and_wait_range(mapping, pos, end);
2789 if (ret)
2790 return ret;
2791 }
2792
2793 /*
2794 * After a write we want buffered reads to be sure to go to disk to get
2795 * the new data. We invalidate clean cached page from the region we're
2796 * about to write. We do this *before* the write so that we can return
2797 * without clobbering -EIOCBQUEUED from ->direct_IO().
2798 */
2799 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2800 end >> PAGE_SHIFT);
2801 }
2802
2803 /**
2804 * generic_file_read_iter - generic filesystem read routine
2805 * @iocb: kernel I/O control block
2806 * @iter: destination for the data read
2807 *
2808 * This is the "read_iter()" routine for all filesystems
2809 * that can use the page cache directly.
2810 *
2811 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2812 * be returned when no data can be read without waiting for I/O requests
2813 * to complete; it doesn't prevent readahead.
2814 *
2815 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2816 * requests shall be made for the read or for readahead. When no data
2817 * can be read, -EAGAIN shall be returned. When readahead would be
2818 * triggered, a partial, possibly empty read shall be returned.
2819 *
2820 * Return:
2821 * * number of bytes copied, even for partial reads
2822 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2823 */
2824 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2825 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2826 {
2827 size_t count = iov_iter_count(iter);
2828 ssize_t retval = 0;
2829
2830 if (!count)
2831 return 0; /* skip atime */
2832
2833 if (iocb->ki_flags & IOCB_DIRECT) {
2834 struct file *file = iocb->ki_filp;
2835 struct address_space *mapping = file->f_mapping;
2836 struct inode *inode = mapping->host;
2837
2838 retval = kiocb_write_and_wait(iocb, count);
2839 if (retval < 0)
2840 return retval;
2841 file_accessed(file);
2842
2843 retval = mapping->a_ops->direct_IO(iocb, iter);
2844 if (retval >= 0) {
2845 iocb->ki_pos += retval;
2846 count -= retval;
2847 }
2848 if (retval != -EIOCBQUEUED)
2849 iov_iter_revert(iter, count - iov_iter_count(iter));
2850
2851 /*
2852 * Btrfs can have a short DIO read if we encounter
2853 * compressed extents, so if there was an error, or if
2854 * we've already read everything we wanted to, or if
2855 * there was a short read because we hit EOF, go ahead
2856 * and return. Otherwise fallthrough to buffered io for
2857 * the rest of the read. Buffered reads will not work for
2858 * DAX files, so don't bother trying.
2859 */
2860 if (retval < 0 || !count || IS_DAX(inode))
2861 return retval;
2862 if (iocb->ki_pos >= i_size_read(inode))
2863 return retval;
2864 }
2865
2866 return filemap_read(iocb, iter, retval);
2867 }
2868 EXPORT_SYMBOL(generic_file_read_iter);
2869
2870 /*
2871 * Splice subpages from a folio into a pipe.
2872 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2873 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2874 struct folio *folio, loff_t fpos, size_t size)
2875 {
2876 struct page *page;
2877 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2878
2879 page = folio_page(folio, offset / PAGE_SIZE);
2880 size = min(size, folio_size(folio) - offset);
2881 offset %= PAGE_SIZE;
2882
2883 while (spliced < size &&
2884 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2885 struct pipe_buffer *buf = pipe_head_buf(pipe);
2886 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2887
2888 *buf = (struct pipe_buffer) {
2889 .ops = &page_cache_pipe_buf_ops,
2890 .page = page,
2891 .offset = offset,
2892 .len = part,
2893 };
2894 folio_get(folio);
2895 pipe->head++;
2896 page++;
2897 spliced += part;
2898 offset = 0;
2899 }
2900
2901 return spliced;
2902 }
2903
2904 /**
2905 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2906 * @in: The file to read from
2907 * @ppos: Pointer to the file position to read from
2908 * @pipe: The pipe to splice into
2909 * @len: The amount to splice
2910 * @flags: The SPLICE_F_* flags
2911 *
2912 * This function gets folios from a file's pagecache and splices them into the
2913 * pipe. Readahead will be called as necessary to fill more folios. This may
2914 * be used for blockdevs also.
2915 *
2916 * Return: On success, the number of bytes read will be returned and *@ppos
2917 * will be updated if appropriate; 0 will be returned if there is no more data
2918 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2919 * other negative error code will be returned on error. A short read may occur
2920 * if the pipe has insufficient space, we reach the end of the data or we hit a
2921 * hole.
2922 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2923 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2924 struct pipe_inode_info *pipe,
2925 size_t len, unsigned int flags)
2926 {
2927 struct folio_batch fbatch;
2928 struct kiocb iocb;
2929 size_t total_spliced = 0, used, npages;
2930 loff_t isize, end_offset;
2931 bool writably_mapped;
2932 int i, error = 0;
2933
2934 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2935 return 0;
2936
2937 init_sync_kiocb(&iocb, in);
2938 iocb.ki_pos = *ppos;
2939
2940 /* Work out how much data we can actually add into the pipe */
2941 used = pipe_occupancy(pipe->head, pipe->tail);
2942 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2943 len = min_t(size_t, len, npages * PAGE_SIZE);
2944
2945 folio_batch_init(&fbatch);
2946
2947 do {
2948 cond_resched();
2949
2950 if (*ppos >= i_size_read(in->f_mapping->host))
2951 break;
2952
2953 iocb.ki_pos = *ppos;
2954 error = filemap_get_pages(&iocb, len, &fbatch, true);
2955 if (error < 0)
2956 break;
2957
2958 /*
2959 * i_size must be checked after we know the pages are Uptodate.
2960 *
2961 * Checking i_size after the check allows us to calculate
2962 * the correct value for "nr", which means the zero-filled
2963 * part of the page is not copied back to userspace (unless
2964 * another truncate extends the file - this is desired though).
2965 */
2966 isize = i_size_read(in->f_mapping->host);
2967 if (unlikely(*ppos >= isize))
2968 break;
2969 end_offset = min_t(loff_t, isize, *ppos + len);
2970
2971 /*
2972 * Once we start copying data, we don't want to be touching any
2973 * cachelines that might be contended:
2974 */
2975 writably_mapped = mapping_writably_mapped(in->f_mapping);
2976
2977 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2978 struct folio *folio = fbatch.folios[i];
2979 size_t n;
2980
2981 if (folio_pos(folio) >= end_offset)
2982 goto out;
2983 folio_mark_accessed(folio);
2984
2985 /*
2986 * If users can be writing to this folio using arbitrary
2987 * virtual addresses, take care of potential aliasing
2988 * before reading the folio on the kernel side.
2989 */
2990 if (writably_mapped)
2991 flush_dcache_folio(folio);
2992
2993 n = min_t(loff_t, len, isize - *ppos);
2994 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2995 if (!n)
2996 goto out;
2997 len -= n;
2998 total_spliced += n;
2999 *ppos += n;
3000 in->f_ra.prev_pos = *ppos;
3001 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3002 goto out;
3003 }
3004
3005 folio_batch_release(&fbatch);
3006 } while (len);
3007
3008 out:
3009 folio_batch_release(&fbatch);
3010 file_accessed(in);
3011
3012 return total_spliced ? total_spliced : error;
3013 }
3014 EXPORT_SYMBOL(filemap_splice_read);
3015
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3016 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3017 struct address_space *mapping, struct folio *folio,
3018 loff_t start, loff_t end, bool seek_data)
3019 {
3020 const struct address_space_operations *ops = mapping->a_ops;
3021 size_t offset, bsz = i_blocksize(mapping->host);
3022
3023 if (xa_is_value(folio) || folio_test_uptodate(folio))
3024 return seek_data ? start : end;
3025 if (!ops->is_partially_uptodate)
3026 return seek_data ? end : start;
3027
3028 xas_pause(xas);
3029 rcu_read_unlock();
3030 folio_lock(folio);
3031 if (unlikely(folio->mapping != mapping))
3032 goto unlock;
3033
3034 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3035
3036 do {
3037 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3038 seek_data)
3039 break;
3040 start = (start + bsz) & ~(bsz - 1);
3041 offset += bsz;
3042 } while (offset < folio_size(folio));
3043 unlock:
3044 folio_unlock(folio);
3045 rcu_read_lock();
3046 return start;
3047 }
3048
seek_folio_size(struct xa_state * xas,struct folio * folio)3049 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3050 {
3051 if (xa_is_value(folio))
3052 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3053 return folio_size(folio);
3054 }
3055
3056 /**
3057 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3058 * @mapping: Address space to search.
3059 * @start: First byte to consider.
3060 * @end: Limit of search (exclusive).
3061 * @whence: Either SEEK_HOLE or SEEK_DATA.
3062 *
3063 * If the page cache knows which blocks contain holes and which blocks
3064 * contain data, your filesystem can use this function to implement
3065 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3066 * entirely memory-based such as tmpfs, and filesystems which support
3067 * unwritten extents.
3068 *
3069 * Return: The requested offset on success, or -ENXIO if @whence specifies
3070 * SEEK_DATA and there is no data after @start. There is an implicit hole
3071 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3072 * and @end contain data.
3073 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3074 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3075 loff_t end, int whence)
3076 {
3077 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3078 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3079 bool seek_data = (whence == SEEK_DATA);
3080 struct folio *folio;
3081
3082 if (end <= start)
3083 return -ENXIO;
3084
3085 rcu_read_lock();
3086 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3087 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3088 size_t seek_size;
3089
3090 if (start < pos) {
3091 if (!seek_data)
3092 goto unlock;
3093 start = pos;
3094 }
3095
3096 seek_size = seek_folio_size(&xas, folio);
3097 pos = round_up((u64)pos + 1, seek_size);
3098 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3099 seek_data);
3100 if (start < pos)
3101 goto unlock;
3102 if (start >= end)
3103 break;
3104 if (seek_size > PAGE_SIZE)
3105 xas_set(&xas, pos >> PAGE_SHIFT);
3106 if (!xa_is_value(folio))
3107 folio_put(folio);
3108 }
3109 if (seek_data)
3110 start = -ENXIO;
3111 unlock:
3112 rcu_read_unlock();
3113 if (folio && !xa_is_value(folio))
3114 folio_put(folio);
3115 if (start > end)
3116 return end;
3117 return start;
3118 }
3119
3120 #ifdef CONFIG_MMU
3121 #define MMAP_LOTSAMISS (100)
3122 /*
3123 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3124 * @vmf - the vm_fault for this fault.
3125 * @folio - the folio to lock.
3126 * @fpin - the pointer to the file we may pin (or is already pinned).
3127 *
3128 * This works similar to lock_folio_or_retry in that it can drop the
3129 * mmap_lock. It differs in that it actually returns the folio locked
3130 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3131 * to drop the mmap_lock then fpin will point to the pinned file and
3132 * needs to be fput()'ed at a later point.
3133 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3134 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3135 struct file **fpin)
3136 {
3137 if (folio_trylock(folio))
3138 return 1;
3139
3140 /*
3141 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3142 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3143 * is supposed to work. We have way too many special cases..
3144 */
3145 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3146 return 0;
3147
3148 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3149 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3150 if (__folio_lock_killable(folio)) {
3151 /*
3152 * We didn't have the right flags to drop the mmap_lock,
3153 * but all fault_handlers only check for fatal signals
3154 * if we return VM_FAULT_RETRY, so we need to drop the
3155 * mmap_lock here and return 0 if we don't have a fpin.
3156 */
3157 if (*fpin == NULL)
3158 mmap_read_unlock(vmf->vma->vm_mm);
3159 return 0;
3160 }
3161 } else
3162 __folio_lock(folio);
3163
3164 return 1;
3165 }
3166
3167 /*
3168 * Synchronous readahead happens when we don't even find a page in the page
3169 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3170 * to drop the mmap sem we return the file that was pinned in order for us to do
3171 * that. If we didn't pin a file then we return NULL. The file that is
3172 * returned needs to be fput()'ed when we're done with it.
3173 */
do_sync_mmap_readahead(struct vm_fault * vmf)3174 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3175 {
3176 struct file *file = vmf->vma->vm_file;
3177 struct file_ra_state *ra = &file->f_ra;
3178 struct address_space *mapping = file->f_mapping;
3179 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3180 struct file *fpin = NULL;
3181 unsigned long vm_flags = vmf->vma->vm_flags;
3182 unsigned int mmap_miss;
3183
3184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3185 /* Use the readahead code, even if readahead is disabled */
3186 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3187 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3188 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3189 ra->size = HPAGE_PMD_NR;
3190 /*
3191 * Fetch two PMD folios, so we get the chance to actually
3192 * readahead, unless we've been told not to.
3193 */
3194 if (!(vm_flags & VM_RAND_READ))
3195 ra->size *= 2;
3196 ra->async_size = HPAGE_PMD_NR;
3197 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3198 return fpin;
3199 }
3200 #endif
3201
3202 /* If we don't want any read-ahead, don't bother */
3203 if (vm_flags & VM_RAND_READ)
3204 return fpin;
3205 if (!ra->ra_pages)
3206 return fpin;
3207
3208 if (vm_flags & VM_SEQ_READ) {
3209 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3210 page_cache_sync_ra(&ractl, ra->ra_pages);
3211 return fpin;
3212 }
3213
3214 /* Avoid banging the cache line if not needed */
3215 mmap_miss = READ_ONCE(ra->mmap_miss);
3216 if (mmap_miss < MMAP_LOTSAMISS * 10)
3217 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3218
3219 /*
3220 * Do we miss much more than hit in this file? If so,
3221 * stop bothering with read-ahead. It will only hurt.
3222 */
3223 if (mmap_miss > MMAP_LOTSAMISS)
3224 return fpin;
3225
3226 /*
3227 * mmap read-around
3228 */
3229 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3230 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3231 ra->size = ra->ra_pages;
3232 ra->async_size = ra->ra_pages / 4;
3233 ractl._index = ra->start;
3234 page_cache_ra_order(&ractl, ra, 0);
3235 return fpin;
3236 }
3237
3238 /*
3239 * Asynchronous readahead happens when we find the page and PG_readahead,
3240 * so we want to possibly extend the readahead further. We return the file that
3241 * was pinned if we have to drop the mmap_lock in order to do IO.
3242 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3243 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3244 struct folio *folio)
3245 {
3246 struct file *file = vmf->vma->vm_file;
3247 struct file_ra_state *ra = &file->f_ra;
3248 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3249 struct file *fpin = NULL;
3250 unsigned int mmap_miss;
3251
3252 /* If we don't want any read-ahead, don't bother */
3253 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3254 return fpin;
3255
3256 mmap_miss = READ_ONCE(ra->mmap_miss);
3257 if (mmap_miss)
3258 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3259
3260 if (folio_test_readahead(folio)) {
3261 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3262 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3263 }
3264 return fpin;
3265 }
3266
3267 /**
3268 * filemap_fault - read in file data for page fault handling
3269 * @vmf: struct vm_fault containing details of the fault
3270 *
3271 * filemap_fault() is invoked via the vma operations vector for a
3272 * mapped memory region to read in file data during a page fault.
3273 *
3274 * The goto's are kind of ugly, but this streamlines the normal case of having
3275 * it in the page cache, and handles the special cases reasonably without
3276 * having a lot of duplicated code.
3277 *
3278 * vma->vm_mm->mmap_lock must be held on entry.
3279 *
3280 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3281 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3282 *
3283 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3284 * has not been released.
3285 *
3286 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3287 *
3288 * Return: bitwise-OR of %VM_FAULT_ codes.
3289 */
filemap_fault(struct vm_fault * vmf)3290 vm_fault_t filemap_fault(struct vm_fault *vmf)
3291 {
3292 int error;
3293 struct file *file = vmf->vma->vm_file;
3294 struct file *fpin = NULL;
3295 struct address_space *mapping = file->f_mapping;
3296 struct inode *inode = mapping->host;
3297 pgoff_t max_idx, index = vmf->pgoff;
3298 struct folio *folio;
3299 vm_fault_t ret = 0;
3300 bool mapping_locked = false;
3301
3302 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3303 if (unlikely(index >= max_idx))
3304 return VM_FAULT_SIGBUS;
3305
3306 /*
3307 * Do we have something in the page cache already?
3308 */
3309 folio = filemap_get_folio(mapping, index);
3310 if (likely(!IS_ERR(folio))) {
3311 /*
3312 * We found the page, so try async readahead before waiting for
3313 * the lock.
3314 */
3315 if (!(vmf->flags & FAULT_FLAG_TRIED))
3316 fpin = do_async_mmap_readahead(vmf, folio);
3317 if (unlikely(!folio_test_uptodate(folio))) {
3318 filemap_invalidate_lock_shared(mapping);
3319 mapping_locked = true;
3320 }
3321 } else {
3322 /* No page in the page cache at all */
3323 count_vm_event(PGMAJFAULT);
3324 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3325 ret = VM_FAULT_MAJOR;
3326 fpin = do_sync_mmap_readahead(vmf);
3327 retry_find:
3328 /*
3329 * See comment in filemap_create_folio() why we need
3330 * invalidate_lock
3331 */
3332 if (!mapping_locked) {
3333 filemap_invalidate_lock_shared(mapping);
3334 mapping_locked = true;
3335 }
3336 folio = __filemap_get_folio(mapping, index,
3337 FGP_CREAT|FGP_FOR_MMAP,
3338 vmf->gfp_mask);
3339 if (IS_ERR(folio)) {
3340 if (fpin)
3341 goto out_retry;
3342 filemap_invalidate_unlock_shared(mapping);
3343 return VM_FAULT_OOM;
3344 }
3345 }
3346
3347 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3348 goto out_retry;
3349
3350 /* Did it get truncated? */
3351 if (unlikely(folio->mapping != mapping)) {
3352 folio_unlock(folio);
3353 folio_put(folio);
3354 goto retry_find;
3355 }
3356 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3357
3358 /*
3359 * We have a locked page in the page cache, now we need to check
3360 * that it's up-to-date. If not, it is going to be due to an error.
3361 */
3362 if (unlikely(!folio_test_uptodate(folio))) {
3363 /*
3364 * The page was in cache and uptodate and now it is not.
3365 * Strange but possible since we didn't hold the page lock all
3366 * the time. Let's drop everything get the invalidate lock and
3367 * try again.
3368 */
3369 if (!mapping_locked) {
3370 folio_unlock(folio);
3371 folio_put(folio);
3372 goto retry_find;
3373 }
3374 goto page_not_uptodate;
3375 }
3376
3377 /*
3378 * We've made it this far and we had to drop our mmap_lock, now is the
3379 * time to return to the upper layer and have it re-find the vma and
3380 * redo the fault.
3381 */
3382 if (fpin) {
3383 folio_unlock(folio);
3384 goto out_retry;
3385 }
3386 if (mapping_locked)
3387 filemap_invalidate_unlock_shared(mapping);
3388
3389 /*
3390 * Found the page and have a reference on it.
3391 * We must recheck i_size under page lock.
3392 */
3393 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3394 if (unlikely(index >= max_idx)) {
3395 folio_unlock(folio);
3396 folio_put(folio);
3397 return VM_FAULT_SIGBUS;
3398 }
3399
3400 vmf->page = folio_file_page(folio, index);
3401 return ret | VM_FAULT_LOCKED;
3402
3403 page_not_uptodate:
3404 /*
3405 * Umm, take care of errors if the page isn't up-to-date.
3406 * Try to re-read it _once_. We do this synchronously,
3407 * because there really aren't any performance issues here
3408 * and we need to check for errors.
3409 */
3410 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3411 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3412 if (fpin)
3413 goto out_retry;
3414 folio_put(folio);
3415
3416 if (!error || error == AOP_TRUNCATED_PAGE)
3417 goto retry_find;
3418 filemap_invalidate_unlock_shared(mapping);
3419
3420 return VM_FAULT_SIGBUS;
3421
3422 out_retry:
3423 /*
3424 * We dropped the mmap_lock, we need to return to the fault handler to
3425 * re-find the vma and come back and find our hopefully still populated
3426 * page.
3427 */
3428 if (!IS_ERR(folio))
3429 folio_put(folio);
3430 if (mapping_locked)
3431 filemap_invalidate_unlock_shared(mapping);
3432 if (fpin)
3433 fput(fpin);
3434 return ret | VM_FAULT_RETRY;
3435 }
3436 EXPORT_SYMBOL(filemap_fault);
3437
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3438 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3439 pgoff_t start)
3440 {
3441 struct mm_struct *mm = vmf->vma->vm_mm;
3442
3443 /* Huge page is mapped? No need to proceed. */
3444 if (pmd_trans_huge(*vmf->pmd)) {
3445 folio_unlock(folio);
3446 folio_put(folio);
3447 return true;
3448 }
3449
3450 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3451 struct page *page = folio_file_page(folio, start);
3452 vm_fault_t ret = do_set_pmd(vmf, page);
3453 if (!ret) {
3454 /* The page is mapped successfully, reference consumed. */
3455 folio_unlock(folio);
3456 return true;
3457 }
3458 }
3459
3460 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3461 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3462
3463 return false;
3464 }
3465
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3466 static struct folio *next_uptodate_folio(struct xa_state *xas,
3467 struct address_space *mapping, pgoff_t end_pgoff)
3468 {
3469 struct folio *folio = xas_next_entry(xas, end_pgoff);
3470 unsigned long max_idx;
3471
3472 do {
3473 if (!folio)
3474 return NULL;
3475 if (xas_retry(xas, folio))
3476 continue;
3477 if (xa_is_value(folio))
3478 continue;
3479 if (folio_test_locked(folio))
3480 continue;
3481 if (!folio_try_get(folio))
3482 continue;
3483 /* Has the page moved or been split? */
3484 if (unlikely(folio != xas_reload(xas)))
3485 goto skip;
3486 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3487 goto skip;
3488 if (!folio_trylock(folio))
3489 goto skip;
3490 if (folio->mapping != mapping)
3491 goto unlock;
3492 if (!folio_test_uptodate(folio))
3493 goto unlock;
3494 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3495 if (xas->xa_index >= max_idx)
3496 goto unlock;
3497 return folio;
3498 unlock:
3499 folio_unlock(folio);
3500 skip:
3501 folio_put(folio);
3502 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3503
3504 return NULL;
3505 }
3506
3507 /*
3508 * Map page range [start_page, start_page + nr_pages) of folio.
3509 * start_page is gotten from start by folio_page(folio, start)
3510 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned int * mmap_miss)3511 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3512 struct folio *folio, unsigned long start,
3513 unsigned long addr, unsigned int nr_pages,
3514 unsigned int *mmap_miss)
3515 {
3516 vm_fault_t ret = 0;
3517 struct page *page = folio_page(folio, start);
3518 unsigned int count = 0;
3519 pte_t *old_ptep = vmf->pte;
3520
3521 do {
3522 if (PageHWPoison(page + count))
3523 goto skip;
3524
3525 (*mmap_miss)++;
3526
3527 /*
3528 * NOTE: If there're PTE markers, we'll leave them to be
3529 * handled in the specific fault path, and it'll prohibit the
3530 * fault-around logic.
3531 */
3532 if (!pte_none(vmf->pte[count]))
3533 goto skip;
3534
3535 count++;
3536 continue;
3537 skip:
3538 if (count) {
3539 set_pte_range(vmf, folio, page, count, addr);
3540 folio_ref_add(folio, count);
3541 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3542 ret = VM_FAULT_NOPAGE;
3543 }
3544
3545 count++;
3546 page += count;
3547 vmf->pte += count;
3548 addr += count * PAGE_SIZE;
3549 count = 0;
3550 } while (--nr_pages > 0);
3551
3552 if (count) {
3553 set_pte_range(vmf, folio, page, count, addr);
3554 folio_ref_add(folio, count);
3555 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3556 ret = VM_FAULT_NOPAGE;
3557 }
3558
3559 vmf->pte = old_ptep;
3560
3561 return ret;
3562 }
3563
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned int * mmap_miss)3564 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3565 struct folio *folio, unsigned long addr,
3566 unsigned int *mmap_miss)
3567 {
3568 vm_fault_t ret = 0;
3569 struct page *page = &folio->page;
3570
3571 if (PageHWPoison(page))
3572 return ret;
3573
3574 (*mmap_miss)++;
3575
3576 /*
3577 * NOTE: If there're PTE markers, we'll leave them to be
3578 * handled in the specific fault path, and it'll prohibit
3579 * the fault-around logic.
3580 */
3581 if (!pte_none(ptep_get(vmf->pte)))
3582 return ret;
3583
3584 if (vmf->address == addr)
3585 ret = VM_FAULT_NOPAGE;
3586
3587 set_pte_range(vmf, folio, page, 1, addr);
3588 folio_ref_inc(folio);
3589
3590 return ret;
3591 }
3592
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3593 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3594 pgoff_t start_pgoff, pgoff_t end_pgoff)
3595 {
3596 struct vm_area_struct *vma = vmf->vma;
3597 struct file *file = vma->vm_file;
3598 struct address_space *mapping = file->f_mapping;
3599 pgoff_t last_pgoff = start_pgoff;
3600 unsigned long addr;
3601 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3602 struct folio *folio;
3603 vm_fault_t ret = 0;
3604 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3605
3606 rcu_read_lock();
3607 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3608 if (!folio)
3609 goto out;
3610
3611 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3612 ret = VM_FAULT_NOPAGE;
3613 goto out;
3614 }
3615
3616 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3617 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3618 if (!vmf->pte) {
3619 folio_unlock(folio);
3620 folio_put(folio);
3621 goto out;
3622 }
3623 do {
3624 unsigned long end;
3625
3626 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3627 vmf->pte += xas.xa_index - last_pgoff;
3628 last_pgoff = xas.xa_index;
3629 end = folio->index + folio_nr_pages(folio) - 1;
3630 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3631
3632 if (!folio_test_large(folio))
3633 ret |= filemap_map_order0_folio(vmf,
3634 folio, addr, &mmap_miss);
3635 else
3636 ret |= filemap_map_folio_range(vmf, folio,
3637 xas.xa_index - folio->index, addr,
3638 nr_pages, &mmap_miss);
3639
3640 folio_unlock(folio);
3641 folio_put(folio);
3642 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3643 pte_unmap_unlock(vmf->pte, vmf->ptl);
3644 out:
3645 rcu_read_unlock();
3646
3647 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3648 if (mmap_miss >= mmap_miss_saved)
3649 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3650 else
3651 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3652
3653 return ret;
3654 }
3655 EXPORT_SYMBOL(filemap_map_pages);
3656
filemap_page_mkwrite(struct vm_fault * vmf)3657 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3658 {
3659 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3660 struct folio *folio = page_folio(vmf->page);
3661 vm_fault_t ret = VM_FAULT_LOCKED;
3662
3663 sb_start_pagefault(mapping->host->i_sb);
3664 file_update_time(vmf->vma->vm_file);
3665 folio_lock(folio);
3666 if (folio->mapping != mapping) {
3667 folio_unlock(folio);
3668 ret = VM_FAULT_NOPAGE;
3669 goto out;
3670 }
3671 /*
3672 * We mark the folio dirty already here so that when freeze is in
3673 * progress, we are guaranteed that writeback during freezing will
3674 * see the dirty folio and writeprotect it again.
3675 */
3676 folio_mark_dirty(folio);
3677 folio_wait_stable(folio);
3678 out:
3679 sb_end_pagefault(mapping->host->i_sb);
3680 return ret;
3681 }
3682
3683 const struct vm_operations_struct generic_file_vm_ops = {
3684 .fault = filemap_fault,
3685 .map_pages = filemap_map_pages,
3686 .page_mkwrite = filemap_page_mkwrite,
3687 };
3688
3689 /* This is used for a general mmap of a disk file */
3690
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3691 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3692 {
3693 struct address_space *mapping = file->f_mapping;
3694
3695 if (!mapping->a_ops->read_folio)
3696 return -ENOEXEC;
3697 file_accessed(file);
3698 vma->vm_ops = &generic_file_vm_ops;
3699 return 0;
3700 }
3701
3702 /*
3703 * This is for filesystems which do not implement ->writepage.
3704 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3705 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3706 {
3707 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3708 return -EINVAL;
3709 return generic_file_mmap(file, vma);
3710 }
3711 #else
filemap_page_mkwrite(struct vm_fault * vmf)3712 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3713 {
3714 return VM_FAULT_SIGBUS;
3715 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3716 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3717 {
3718 return -ENOSYS;
3719 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3720 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3721 {
3722 return -ENOSYS;
3723 }
3724 #endif /* CONFIG_MMU */
3725
3726 EXPORT_SYMBOL(filemap_page_mkwrite);
3727 EXPORT_SYMBOL(generic_file_mmap);
3728 EXPORT_SYMBOL(generic_file_readonly_mmap);
3729
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3730 static struct folio *do_read_cache_folio(struct address_space *mapping,
3731 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3732 {
3733 struct folio *folio;
3734 int err;
3735
3736 if (!filler)
3737 filler = mapping->a_ops->read_folio;
3738 repeat:
3739 folio = filemap_get_folio(mapping, index);
3740 if (IS_ERR(folio)) {
3741 folio = filemap_alloc_folio(gfp, 0);
3742 if (!folio)
3743 return ERR_PTR(-ENOMEM);
3744 err = filemap_add_folio(mapping, folio, index, gfp);
3745 if (unlikely(err)) {
3746 folio_put(folio);
3747 if (err == -EEXIST)
3748 goto repeat;
3749 /* Presumably ENOMEM for xarray node */
3750 return ERR_PTR(err);
3751 }
3752
3753 goto filler;
3754 }
3755 if (folio_test_uptodate(folio))
3756 goto out;
3757
3758 if (!folio_trylock(folio)) {
3759 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3760 goto repeat;
3761 }
3762
3763 /* Folio was truncated from mapping */
3764 if (!folio->mapping) {
3765 folio_unlock(folio);
3766 folio_put(folio);
3767 goto repeat;
3768 }
3769
3770 /* Someone else locked and filled the page in a very small window */
3771 if (folio_test_uptodate(folio)) {
3772 folio_unlock(folio);
3773 goto out;
3774 }
3775
3776 filler:
3777 err = filemap_read_folio(file, filler, folio);
3778 if (err) {
3779 folio_put(folio);
3780 if (err == AOP_TRUNCATED_PAGE)
3781 goto repeat;
3782 return ERR_PTR(err);
3783 }
3784
3785 out:
3786 folio_mark_accessed(folio);
3787 return folio;
3788 }
3789
3790 /**
3791 * read_cache_folio - Read into page cache, fill it if needed.
3792 * @mapping: The address_space to read from.
3793 * @index: The index to read.
3794 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3795 * @file: Passed to filler function, may be NULL if not required.
3796 *
3797 * Read one page into the page cache. If it succeeds, the folio returned
3798 * will contain @index, but it may not be the first page of the folio.
3799 *
3800 * If the filler function returns an error, it will be returned to the
3801 * caller.
3802 *
3803 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3804 * Return: An uptodate folio on success, ERR_PTR() on failure.
3805 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3806 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3807 filler_t filler, struct file *file)
3808 {
3809 return do_read_cache_folio(mapping, index, filler, file,
3810 mapping_gfp_mask(mapping));
3811 }
3812 EXPORT_SYMBOL(read_cache_folio);
3813
3814 /**
3815 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3816 * @mapping: The address_space for the folio.
3817 * @index: The index that the allocated folio will contain.
3818 * @gfp: The page allocator flags to use if allocating.
3819 *
3820 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3821 * any new memory allocations done using the specified allocation flags.
3822 *
3823 * The most likely error from this function is EIO, but ENOMEM is
3824 * possible and so is EINTR. If ->read_folio returns another error,
3825 * that will be returned to the caller.
3826 *
3827 * The function expects mapping->invalidate_lock to be already held.
3828 *
3829 * Return: Uptodate folio on success, ERR_PTR() on failure.
3830 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3831 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3832 pgoff_t index, gfp_t gfp)
3833 {
3834 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3835 }
3836 EXPORT_SYMBOL(mapping_read_folio_gfp);
3837
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3838 static struct page *do_read_cache_page(struct address_space *mapping,
3839 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3840 {
3841 struct folio *folio;
3842
3843 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3844 if (IS_ERR(folio))
3845 return &folio->page;
3846 return folio_file_page(folio, index);
3847 }
3848
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3849 struct page *read_cache_page(struct address_space *mapping,
3850 pgoff_t index, filler_t *filler, struct file *file)
3851 {
3852 return do_read_cache_page(mapping, index, filler, file,
3853 mapping_gfp_mask(mapping));
3854 }
3855 EXPORT_SYMBOL(read_cache_page);
3856
3857 /**
3858 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3859 * @mapping: the page's address_space
3860 * @index: the page index
3861 * @gfp: the page allocator flags to use if allocating
3862 *
3863 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3864 * any new page allocations done using the specified allocation flags.
3865 *
3866 * If the page does not get brought uptodate, return -EIO.
3867 *
3868 * The function expects mapping->invalidate_lock to be already held.
3869 *
3870 * Return: up to date page on success, ERR_PTR() on failure.
3871 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3872 struct page *read_cache_page_gfp(struct address_space *mapping,
3873 pgoff_t index,
3874 gfp_t gfp)
3875 {
3876 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3877 }
3878 EXPORT_SYMBOL(read_cache_page_gfp);
3879
3880 /*
3881 * Warn about a page cache invalidation failure during a direct I/O write.
3882 */
dio_warn_stale_pagecache(struct file * filp)3883 static void dio_warn_stale_pagecache(struct file *filp)
3884 {
3885 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3886 char pathname[128];
3887 char *path;
3888
3889 errseq_set(&filp->f_mapping->wb_err, -EIO);
3890 if (__ratelimit(&_rs)) {
3891 path = file_path(filp, pathname, sizeof(pathname));
3892 if (IS_ERR(path))
3893 path = "(unknown)";
3894 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3895 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3896 current->comm);
3897 }
3898 }
3899
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)3900 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3901 {
3902 struct address_space *mapping = iocb->ki_filp->f_mapping;
3903
3904 if (mapping->nrpages &&
3905 invalidate_inode_pages2_range(mapping,
3906 iocb->ki_pos >> PAGE_SHIFT,
3907 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3908 dio_warn_stale_pagecache(iocb->ki_filp);
3909 }
3910
3911 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3912 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3913 {
3914 struct address_space *mapping = iocb->ki_filp->f_mapping;
3915 size_t write_len = iov_iter_count(from);
3916 ssize_t written;
3917
3918 /*
3919 * If a page can not be invalidated, return 0 to fall back
3920 * to buffered write.
3921 */
3922 written = kiocb_invalidate_pages(iocb, write_len);
3923 if (written) {
3924 if (written == -EBUSY)
3925 return 0;
3926 return written;
3927 }
3928
3929 written = mapping->a_ops->direct_IO(iocb, from);
3930
3931 /*
3932 * Finally, try again to invalidate clean pages which might have been
3933 * cached by non-direct readahead, or faulted in by get_user_pages()
3934 * if the source of the write was an mmap'ed region of the file
3935 * we're writing. Either one is a pretty crazy thing to do,
3936 * so we don't support it 100%. If this invalidation
3937 * fails, tough, the write still worked...
3938 *
3939 * Most of the time we do not need this since dio_complete() will do
3940 * the invalidation for us. However there are some file systems that
3941 * do not end up with dio_complete() being called, so let's not break
3942 * them by removing it completely.
3943 *
3944 * Noticeable example is a blkdev_direct_IO().
3945 *
3946 * Skip invalidation for async writes or if mapping has no pages.
3947 */
3948 if (written > 0) {
3949 struct inode *inode = mapping->host;
3950 loff_t pos = iocb->ki_pos;
3951
3952 kiocb_invalidate_post_direct_write(iocb, written);
3953 pos += written;
3954 write_len -= written;
3955 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3956 i_size_write(inode, pos);
3957 mark_inode_dirty(inode);
3958 }
3959 iocb->ki_pos = pos;
3960 }
3961 if (written != -EIOCBQUEUED)
3962 iov_iter_revert(from, write_len - iov_iter_count(from));
3963 return written;
3964 }
3965 EXPORT_SYMBOL(generic_file_direct_write);
3966
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)3967 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3968 {
3969 struct file *file = iocb->ki_filp;
3970 loff_t pos = iocb->ki_pos;
3971 struct address_space *mapping = file->f_mapping;
3972 const struct address_space_operations *a_ops = mapping->a_ops;
3973 long status = 0;
3974 ssize_t written = 0;
3975
3976 do {
3977 struct page *page;
3978 unsigned long offset; /* Offset into pagecache page */
3979 unsigned long bytes; /* Bytes to write to page */
3980 size_t copied; /* Bytes copied from user */
3981 void *fsdata = NULL;
3982
3983 offset = (pos & (PAGE_SIZE - 1));
3984 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3985 iov_iter_count(i));
3986
3987 again:
3988 /*
3989 * Bring in the user page that we will copy from _first_.
3990 * Otherwise there's a nasty deadlock on copying from the
3991 * same page as we're writing to, without it being marked
3992 * up-to-date.
3993 */
3994 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3995 status = -EFAULT;
3996 break;
3997 }
3998
3999 if (fatal_signal_pending(current)) {
4000 status = -EINTR;
4001 break;
4002 }
4003
4004 status = a_ops->write_begin(file, mapping, pos, bytes,
4005 &page, &fsdata);
4006 if (unlikely(status < 0))
4007 break;
4008
4009 if (mapping_writably_mapped(mapping))
4010 flush_dcache_page(page);
4011
4012 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
4013 flush_dcache_page(page);
4014
4015 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4016 page, fsdata);
4017 if (unlikely(status != copied)) {
4018 iov_iter_revert(i, copied - max(status, 0L));
4019 if (unlikely(status < 0))
4020 break;
4021 }
4022 cond_resched();
4023
4024 if (unlikely(status == 0)) {
4025 /*
4026 * A short copy made ->write_end() reject the
4027 * thing entirely. Might be memory poisoning
4028 * halfway through, might be a race with munmap,
4029 * might be severe memory pressure.
4030 */
4031 if (copied)
4032 bytes = copied;
4033 goto again;
4034 }
4035 pos += status;
4036 written += status;
4037
4038 balance_dirty_pages_ratelimited(mapping);
4039 } while (iov_iter_count(i));
4040
4041 if (!written)
4042 return status;
4043 iocb->ki_pos += written;
4044 return written;
4045 }
4046 EXPORT_SYMBOL(generic_perform_write);
4047
4048 /**
4049 * __generic_file_write_iter - write data to a file
4050 * @iocb: IO state structure (file, offset, etc.)
4051 * @from: iov_iter with data to write
4052 *
4053 * This function does all the work needed for actually writing data to a
4054 * file. It does all basic checks, removes SUID from the file, updates
4055 * modification times and calls proper subroutines depending on whether we
4056 * do direct IO or a standard buffered write.
4057 *
4058 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4059 * object which does not need locking at all.
4060 *
4061 * This function does *not* take care of syncing data in case of O_SYNC write.
4062 * A caller has to handle it. This is mainly due to the fact that we want to
4063 * avoid syncing under i_rwsem.
4064 *
4065 * Return:
4066 * * number of bytes written, even for truncated writes
4067 * * negative error code if no data has been written at all
4068 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4069 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4070 {
4071 struct file *file = iocb->ki_filp;
4072 struct address_space *mapping = file->f_mapping;
4073 struct inode *inode = mapping->host;
4074 ssize_t ret;
4075
4076 ret = file_remove_privs(file);
4077 if (ret)
4078 return ret;
4079
4080 ret = file_update_time(file);
4081 if (ret)
4082 return ret;
4083
4084 if (iocb->ki_flags & IOCB_DIRECT) {
4085 ret = generic_file_direct_write(iocb, from);
4086 /*
4087 * If the write stopped short of completing, fall back to
4088 * buffered writes. Some filesystems do this for writes to
4089 * holes, for example. For DAX files, a buffered write will
4090 * not succeed (even if it did, DAX does not handle dirty
4091 * page-cache pages correctly).
4092 */
4093 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4094 return ret;
4095 return direct_write_fallback(iocb, from, ret,
4096 generic_perform_write(iocb, from));
4097 }
4098
4099 return generic_perform_write(iocb, from);
4100 }
4101 EXPORT_SYMBOL(__generic_file_write_iter);
4102
4103 /**
4104 * generic_file_write_iter - write data to a file
4105 * @iocb: IO state structure
4106 * @from: iov_iter with data to write
4107 *
4108 * This is a wrapper around __generic_file_write_iter() to be used by most
4109 * filesystems. It takes care of syncing the file in case of O_SYNC file
4110 * and acquires i_rwsem as needed.
4111 * Return:
4112 * * negative error code if no data has been written at all of
4113 * vfs_fsync_range() failed for a synchronous write
4114 * * number of bytes written, even for truncated writes
4115 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4117 {
4118 struct file *file = iocb->ki_filp;
4119 struct inode *inode = file->f_mapping->host;
4120 ssize_t ret;
4121
4122 inode_lock(inode);
4123 ret = generic_write_checks(iocb, from);
4124 if (ret > 0)
4125 ret = __generic_file_write_iter(iocb, from);
4126 inode_unlock(inode);
4127
4128 if (ret > 0)
4129 ret = generic_write_sync(iocb, ret);
4130 return ret;
4131 }
4132 EXPORT_SYMBOL(generic_file_write_iter);
4133
4134 /**
4135 * filemap_release_folio() - Release fs-specific metadata on a folio.
4136 * @folio: The folio which the kernel is trying to free.
4137 * @gfp: Memory allocation flags (and I/O mode).
4138 *
4139 * The address_space is trying to release any data attached to a folio
4140 * (presumably at folio->private).
4141 *
4142 * This will also be called if the private_2 flag is set on a page,
4143 * indicating that the folio has other metadata associated with it.
4144 *
4145 * The @gfp argument specifies whether I/O may be performed to release
4146 * this page (__GFP_IO), and whether the call may block
4147 * (__GFP_RECLAIM & __GFP_FS).
4148 *
4149 * Return: %true if the release was successful, otherwise %false.
4150 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4151 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4152 {
4153 struct address_space * const mapping = folio->mapping;
4154
4155 BUG_ON(!folio_test_locked(folio));
4156 if (!folio_needs_release(folio))
4157 return true;
4158 if (folio_test_writeback(folio))
4159 return false;
4160
4161 if (mapping && mapping->a_ops->release_folio)
4162 return mapping->a_ops->release_folio(folio, gfp);
4163 return try_to_free_buffers(folio);
4164 }
4165 EXPORT_SYMBOL(filemap_release_folio);
4166
4167 #ifdef CONFIG_CACHESTAT_SYSCALL
4168 /**
4169 * filemap_cachestat() - compute the page cache statistics of a mapping
4170 * @mapping: The mapping to compute the statistics for.
4171 * @first_index: The starting page cache index.
4172 * @last_index: The final page index (inclusive).
4173 * @cs: the cachestat struct to write the result to.
4174 *
4175 * This will query the page cache statistics of a mapping in the
4176 * page range of [first_index, last_index] (inclusive). The statistics
4177 * queried include: number of dirty pages, number of pages marked for
4178 * writeback, and the number of (recently) evicted pages.
4179 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4180 static void filemap_cachestat(struct address_space *mapping,
4181 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4182 {
4183 XA_STATE(xas, &mapping->i_pages, first_index);
4184 struct folio *folio;
4185
4186 rcu_read_lock();
4187 xas_for_each(&xas, folio, last_index) {
4188 int order;
4189 unsigned long nr_pages;
4190 pgoff_t folio_first_index, folio_last_index;
4191
4192 /*
4193 * Don't deref the folio. It is not pinned, and might
4194 * get freed (and reused) underneath us.
4195 *
4196 * We *could* pin it, but that would be expensive for
4197 * what should be a fast and lightweight syscall.
4198 *
4199 * Instead, derive all information of interest from
4200 * the rcu-protected xarray.
4201 */
4202
4203 if (xas_retry(&xas, folio))
4204 continue;
4205
4206 order = xa_get_order(xas.xa, xas.xa_index);
4207 nr_pages = 1 << order;
4208 folio_first_index = round_down(xas.xa_index, 1 << order);
4209 folio_last_index = folio_first_index + nr_pages - 1;
4210
4211 /* Folios might straddle the range boundaries, only count covered pages */
4212 if (folio_first_index < first_index)
4213 nr_pages -= first_index - folio_first_index;
4214
4215 if (folio_last_index > last_index)
4216 nr_pages -= folio_last_index - last_index;
4217
4218 if (xa_is_value(folio)) {
4219 /* page is evicted */
4220 void *shadow = (void *)folio;
4221 bool workingset; /* not used */
4222
4223 cs->nr_evicted += nr_pages;
4224
4225 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4226 if (shmem_mapping(mapping)) {
4227 /* shmem file - in swap cache */
4228 swp_entry_t swp = radix_to_swp_entry(folio);
4229
4230 /* swapin error results in poisoned entry */
4231 if (non_swap_entry(swp))
4232 goto resched;
4233
4234 /*
4235 * Getting a swap entry from the shmem
4236 * inode means we beat
4237 * shmem_unuse(). rcu_read_lock()
4238 * ensures swapoff waits for us before
4239 * freeing the swapper space. However,
4240 * we can race with swapping and
4241 * invalidation, so there might not be
4242 * a shadow in the swapcache (yet).
4243 */
4244 shadow = get_shadow_from_swap_cache(swp);
4245 if (!shadow)
4246 goto resched;
4247 }
4248 #endif
4249 if (workingset_test_recent(shadow, true, &workingset))
4250 cs->nr_recently_evicted += nr_pages;
4251
4252 goto resched;
4253 }
4254
4255 /* page is in cache */
4256 cs->nr_cache += nr_pages;
4257
4258 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4259 cs->nr_dirty += nr_pages;
4260
4261 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4262 cs->nr_writeback += nr_pages;
4263
4264 resched:
4265 if (need_resched()) {
4266 xas_pause(&xas);
4267 cond_resched_rcu();
4268 }
4269 }
4270 rcu_read_unlock();
4271 }
4272
4273 /*
4274 * The cachestat(2) system call.
4275 *
4276 * cachestat() returns the page cache statistics of a file in the
4277 * bytes range specified by `off` and `len`: number of cached pages,
4278 * number of dirty pages, number of pages marked for writeback,
4279 * number of evicted pages, and number of recently evicted pages.
4280 *
4281 * An evicted page is a page that is previously in the page cache
4282 * but has been evicted since. A page is recently evicted if its last
4283 * eviction was recent enough that its reentry to the cache would
4284 * indicate that it is actively being used by the system, and that
4285 * there is memory pressure on the system.
4286 *
4287 * `off` and `len` must be non-negative integers. If `len` > 0,
4288 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4289 * we will query in the range from `off` to the end of the file.
4290 *
4291 * The `flags` argument is unused for now, but is included for future
4292 * extensibility. User should pass 0 (i.e no flag specified).
4293 *
4294 * Currently, hugetlbfs is not supported.
4295 *
4296 * Because the status of a page can change after cachestat() checks it
4297 * but before it returns to the application, the returned values may
4298 * contain stale information.
4299 *
4300 * return values:
4301 * zero - success
4302 * -EFAULT - cstat or cstat_range points to an illegal address
4303 * -EINVAL - invalid flags
4304 * -EBADF - invalid file descriptor
4305 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4306 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4307 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4308 struct cachestat_range __user *, cstat_range,
4309 struct cachestat __user *, cstat, unsigned int, flags)
4310 {
4311 struct fd f = fdget(fd);
4312 struct address_space *mapping;
4313 struct cachestat_range csr;
4314 struct cachestat cs;
4315 pgoff_t first_index, last_index;
4316
4317 if (!f.file)
4318 return -EBADF;
4319
4320 if (copy_from_user(&csr, cstat_range,
4321 sizeof(struct cachestat_range))) {
4322 fdput(f);
4323 return -EFAULT;
4324 }
4325
4326 /* hugetlbfs is not supported */
4327 if (is_file_hugepages(f.file)) {
4328 fdput(f);
4329 return -EOPNOTSUPP;
4330 }
4331
4332 if (flags != 0) {
4333 fdput(f);
4334 return -EINVAL;
4335 }
4336
4337 first_index = csr.off >> PAGE_SHIFT;
4338 last_index =
4339 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4340 memset(&cs, 0, sizeof(struct cachestat));
4341 mapping = f.file->f_mapping;
4342 filemap_cachestat(mapping, first_index, last_index, &cs);
4343 fdput(f);
4344
4345 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4346 return -EFAULT;
4347
4348 return 0;
4349 }
4350 #endif /* CONFIG_CACHESTAT_SYSCALL */
4351