xref: /openbmc/linux/drivers/video/fbdev/imsttfb.c (revision b97d6790d03b763eca08847a9a5869a4291b9f9a)
1  /*
2   *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3   *
4   *  This file is derived from the powermac console "imstt" driver:
5   *  Copyright (C) 1997 Sigurdur Asgeirsson
6   *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7   *  Modified by Danilo Beuche 1998
8   *  Some register values added by Damien Doligez, INRIA Rocquencourt
9   *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10   *
11   *  This file was written by Ryan Nielsen (ran@krazynet.com)
12   *  Most of the frame buffer device stuff was copied from atyfb.c
13   *
14   *  This file is subject to the terms and conditions of the GNU General Public
15   *  License. See the file COPYING in the main directory of this archive for
16   *  more details.
17   */
18  
19  #include <linux/aperture.h>
20  #include <linux/module.h>
21  #include <linux/kernel.h>
22  #include <linux/errno.h>
23  #include <linux/string.h>
24  #include <linux/mm.h>
25  #include <linux/vmalloc.h>
26  #include <linux/delay.h>
27  #include <linux/interrupt.h>
28  #include <linux/fb.h>
29  #include <linux/init.h>
30  #include <linux/pci.h>
31  #include <asm/io.h>
32  #include <linux/uaccess.h>
33  
34  #if defined(CONFIG_PPC_PMAC)
35  #include <linux/nvram.h>
36  #include "macmodes.h"
37  #endif
38  
39  #ifndef __powerpc__
40  #define eieio()		/* Enforce In-order Execution of I/O */
41  #endif
42  
43  /* TwinTurbo (Cosmo) registers */
44  enum {
45  	S1SA	=  0, /* 0x00 */
46  	S2SA	=  1, /* 0x04 */
47  	SP	=  2, /* 0x08 */
48  	DSA	=  3, /* 0x0C */
49  	CNT	=  4, /* 0x10 */
50  	DP_OCTL	=  5, /* 0x14 */
51  	CLR	=  6, /* 0x18 */
52  	BI	=  8, /* 0x20 */
53  	MBC	=  9, /* 0x24 */
54  	BLTCTL	= 10, /* 0x28 */
55  
56  	/* Scan Timing Generator Registers */
57  	HES	= 12, /* 0x30 */
58  	HEB	= 13, /* 0x34 */
59  	HSB	= 14, /* 0x38 */
60  	HT	= 15, /* 0x3C */
61  	VES	= 16, /* 0x40 */
62  	VEB	= 17, /* 0x44 */
63  	VSB	= 18, /* 0x48 */
64  	VT	= 19, /* 0x4C */
65  	HCIV	= 20, /* 0x50 */
66  	VCIV	= 21, /* 0x54 */
67  	TCDR	= 22, /* 0x58 */
68  	VIL	= 23, /* 0x5C */
69  	STGCTL	= 24, /* 0x60 */
70  
71  	/* Screen Refresh Generator Registers */
72  	SSR	= 25, /* 0x64 */
73  	HRIR	= 26, /* 0x68 */
74  	SPR	= 27, /* 0x6C */
75  	CMR	= 28, /* 0x70 */
76  	SRGCTL	= 29, /* 0x74 */
77  
78  	/* RAM Refresh Generator Registers */
79  	RRCIV	= 30, /* 0x78 */
80  	RRSC	= 31, /* 0x7C */
81  	RRCR	= 34, /* 0x88 */
82  
83  	/* System Registers */
84  	GIOE	= 32, /* 0x80 */
85  	GIO	= 33, /* 0x84 */
86  	SCR	= 35, /* 0x8C */
87  	SSTATUS	= 36, /* 0x90 */
88  	PRC	= 37, /* 0x94 */
89  
90  #if 0
91  	/* PCI Registers */
92  	DVID	= 0x00000000L,
93  	SC	= 0x00000004L,
94  	CCR	= 0x00000008L,
95  	OG	= 0x0000000CL,
96  	BARM	= 0x00000010L,
97  	BARER	= 0x00000030L,
98  #endif
99  };
100  
101  /* IBM 624 RAMDAC Direct Registers */
102  enum {
103  	PADDRW	= 0x00,
104  	PDATA	= 0x04,
105  	PPMASK	= 0x08,
106  	PADDRR	= 0x0c,
107  	PIDXLO	= 0x10,
108  	PIDXHI	= 0x14,
109  	PIDXDATA= 0x18,
110  	PIDXCTL	= 0x1c
111  };
112  
113  /* IBM 624 RAMDAC Indirect Registers */
114  enum {
115  	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
116  	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
117  	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
118  	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
119  	DACOP		= 0x06,	/* (0x02) DAC Operation */
120  	PALETCTL	= 0x07,	/* (0x00) Palette Control */
121  	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
122  	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
123  	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
124  	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
125  	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
126  	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
127  	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
128  	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
129  	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
130  	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
131  	SYSCLKP		= 0x17,	/* () System Clock P */
132  	SYSCLKC		= 0x18,	/* () System Clock C */
133  	/*
134  	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
135  	 * c is charge pump bias which depends on the VCO frequency
136  	 */
137  	PIXM0		= 0x20,	/* () Pixel M 0 */
138  	PIXN0		= 0x21,	/* () Pixel N 0 */
139  	PIXP0		= 0x22,	/* () Pixel P 0 */
140  	PIXC0		= 0x23,	/* () Pixel C 0 */
141  	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
142  	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
143  	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
144  	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
145  	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
146  	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
147  	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
148  	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
149  	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
150  	CURS1R		= 0x40,	/* () Cursor 1 Red */
151  	CURS1G		= 0x41,	/* () Cursor 1 Green */
152  	CURS1B		= 0x42,	/* () Cursor 1 Blue */
153  	CURS2R		= 0x43,	/* () Cursor 2 Red */
154  	CURS2G		= 0x44,	/* () Cursor 2 Green */
155  	CURS2B		= 0x45,	/* () Cursor 2 Blue */
156  	CURS3R		= 0x46,	/* () Cursor 3 Red */
157  	CURS3G		= 0x47,	/* () Cursor 3 Green */
158  	CURS3B		= 0x48,	/* () Cursor 3 Blue */
159  	BORDR		= 0x60,	/* () Border Color Red */
160  	BORDG		= 0x61,	/* () Border Color Green */
161  	BORDB		= 0x62,	/* () Border Color Blue */
162  	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
163  	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
164  	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
165  	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
166  };
167  
168  /* TI TVP 3030 RAMDAC Direct Registers */
169  enum {
170  	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
171  	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
172  	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
173  	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
174  	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
175  	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
176  				/* 6  reserved */
177  	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
178  				/* 8  reserved */
179  	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
180  	TVPIDATA = 0x28,	/* 10 Index Data */
181  	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
182  	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
183  	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
184  	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
185  	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
186  };
187  
188  /* TI TVP 3030 RAMDAC Indirect Registers */
189  enum {
190  	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
191  	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
192  	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
193  	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
194  	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
195  	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
196  	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
197  	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
198  	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
199  	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
200  	TVPIRPLA = 0x2c,	/* PLL Address */
201  	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
202  	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
203  	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
204  	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
205  	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
206  	TVPIRCRL = 0x32,	/* Color-Key Red Low */
207  	TVPIRCRH = 0x33,	/* Color-Key Red High */
208  	TVPIRCGL = 0x34,	/* Color-Key Green Low */
209  	TVPIRCGH = 0x35,	/* Color-Key Green High */
210  	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
211  	TVPIRCBH = 0x37,	/* Color-Key Blue High */
212  	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
213  	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
214  	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
215  	TVPIRTMD = 0x3b,	/* Test Mode Data */
216  	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
217  	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
218  	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
219  	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
220  	TVPIRRES = 0xff		/* Software Reset [WO] */
221  };
222  
223  struct initvalues {
224  	__u8 addr, value;
225  };
226  
227  static struct initvalues ibm_initregs[] = {
228  	{ CLKCTL,	0x21 },
229  	{ SYNCCTL,	0x00 },
230  	{ HSYNCPOS,	0x00 },
231  	{ PWRMNGMT,	0x00 },
232  	{ DACOP,	0x02 },
233  	{ PALETCTL,	0x00 },
234  	{ SYSCLKCTL,	0x01 },
235  
236  	/*
237  	 * Note that colors in X are correct only if all video data is
238  	 * passed through the palette in the DAC.  That is, "indirect
239  	 * color" must be configured.  This is the case for the IBM DAC
240  	 * used in the 2MB and 4MB cards, at least.
241  	 */
242  	{ BPP8,		0x00 },
243  	{ BPP16,	0x01 },
244  	{ BPP24,	0x00 },
245  	{ BPP32,	0x00 },
246  
247  	{ PIXCTL1,	0x05 },
248  	{ PIXCTL2,	0x00 },
249  	{ SYSCLKN,	0x08 },
250  	{ SYSCLKM,	0x4f },
251  	{ SYSCLKP,	0x00 },
252  	{ SYSCLKC,	0x00 },
253  	{ CURSCTL,	0x00 },
254  	{ CURSACCTL,	0x01 },
255  	{ CURSACATTR,	0xa8 },
256  	{ CURS1R,	0xff },
257  	{ CURS1G,	0xff },
258  	{ CURS1B,	0xff },
259  	{ CURS2R,	0xff },
260  	{ CURS2G,	0xff },
261  	{ CURS2B,	0xff },
262  	{ CURS3R,	0xff },
263  	{ CURS3G,	0xff },
264  	{ CURS3B,	0xff },
265  	{ BORDR,	0xff },
266  	{ BORDG,	0xff },
267  	{ BORDB,	0xff },
268  	{ MISCTL1,	0x01 },
269  	{ MISCTL2,	0x45 },
270  	{ MISCTL3,	0x00 },
271  	{ KEYCTL,	0x00 }
272  };
273  
274  static struct initvalues tvp_initregs[] = {
275  	{ TVPIRICC,	0x00 },
276  	{ TVPIRBRC,	0xe4 },
277  	{ TVPIRLAC,	0x06 },
278  	{ TVPIRTCC,	0x80 },
279  	{ TVPIRMXC,	0x4d },
280  	{ TVPIRCLS,	0x05 },
281  	{ TVPIRPPG,	0x00 },
282  	{ TVPIRGEC,	0x00 },
283  	{ TVPIRMIC,	0x08 },
284  	{ TVPIRCKL,	0xff },
285  	{ TVPIRCKH,	0xff },
286  	{ TVPIRCRL,	0xff },
287  	{ TVPIRCRH,	0xff },
288  	{ TVPIRCGL,	0xff },
289  	{ TVPIRCGH,	0xff },
290  	{ TVPIRCBL,	0xff },
291  	{ TVPIRCBH,	0xff },
292  	{ TVPIRCKC,	0x00 },
293  	{ TVPIRPLA,	0x00 },
294  	{ TVPIRPPD,	0xc0 },
295  	{ TVPIRPPD,	0xd5 },
296  	{ TVPIRPPD,	0xea },
297  	{ TVPIRPLA,	0x00 },
298  	{ TVPIRMPD,	0xb9 },
299  	{ TVPIRMPD,	0x3a },
300  	{ TVPIRMPD,	0xb1 },
301  	{ TVPIRPLA,	0x00 },
302  	{ TVPIRLPD,	0xc1 },
303  	{ TVPIRLPD,	0x3d },
304  	{ TVPIRLPD,	0xf3 },
305  };
306  
307  struct imstt_regvals {
308  	__u32 pitch;
309  	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
310  	__u8 pclk_m, pclk_n, pclk_p;
311  	/* Values of the tvp which change depending on colormode x resolution */
312  	__u8 mlc[3];	/* Memory Loop Config 0x39 */
313  	__u8 lckl_p[3];	/* P value of LCKL PLL */
314  };
315  
316  struct imstt_par {
317  	struct imstt_regvals init;
318  	__u32 __iomem *dc_regs;
319  	unsigned long cmap_regs_phys;
320  	__u8 *cmap_regs;
321  	__u32 ramdac;
322  	__u32 palette[16];
323  };
324  
325  enum {
326  	IBM = 0,
327  	TVP = 1
328  };
329  
330  #define INIT_BPP		8
331  #define INIT_XRES		640
332  #define INIT_YRES		480
333  
334  static int inverse = 0;
335  static char fontname[40] __initdata = { 0 };
336  #if defined(CONFIG_PPC_PMAC)
337  static signed char init_vmode = -1, init_cmode = -1;
338  #endif
339  
340  static struct imstt_regvals tvp_reg_init_2 = {
341  	512,
342  	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
343  	0xec, 0x2a, 0xf3,
344  	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
345  };
346  
347  static struct imstt_regvals tvp_reg_init_6 = {
348  	640,
349  	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
350  	0xef, 0x2e, 0xb2,
351  	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
352  };
353  
354  static struct imstt_regvals tvp_reg_init_12 = {
355  	800,
356  	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
357  	0xf6, 0x2e, 0xf2,
358  	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
359  };
360  
361  static struct imstt_regvals tvp_reg_init_13 = {
362  	832,
363  	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
364  	0xfe, 0x3e, 0xf1,
365  	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
366  };
367  
368  static struct imstt_regvals tvp_reg_init_17 = {
369  	1024,
370  	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
371  	0xfc, 0x3a, 0xf1,
372  	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
373  };
374  
375  static struct imstt_regvals tvp_reg_init_18 = {
376  	1152,
377    	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
378  	0xfd, 0x3a, 0xf1,
379  	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
380  };
381  
382  static struct imstt_regvals tvp_reg_init_19 = {
383  	1280,
384  	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
385  	0xf7, 0x36, 0xf0,
386  	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
387  };
388  
389  static struct imstt_regvals tvp_reg_init_20 = {
390  	1280,
391  	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
392  	0xf0, 0x2d, 0xf0,
393  	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
394  };
395  
396  /*
397   * PCI driver prototypes
398   */
399  static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
400  static void imsttfb_remove(struct pci_dev *pdev);
401  
402  /*
403   * Register access
404   */
read_reg_le32(volatile u32 __iomem * base,int regindex)405  static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
406  {
407  #ifdef __powerpc__
408  	return in_le32(base + regindex);
409  #else
410  	return readl(base + regindex);
411  #endif
412  }
413  
write_reg_le32(volatile u32 __iomem * base,int regindex,u32 val)414  static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
415  {
416  #ifdef __powerpc__
417  	out_le32(base + regindex, val);
418  #else
419  	writel(val, base + regindex);
420  #endif
421  }
422  
423  static __u32
getclkMHz(struct imstt_par * par)424  getclkMHz(struct imstt_par *par)
425  {
426  	__u32 clk_m, clk_n, clk_p;
427  
428  	clk_m = par->init.pclk_m;
429  	clk_n = par->init.pclk_n;
430  	clk_p = par->init.pclk_p;
431  
432  	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
433  }
434  
435  static void
setclkMHz(struct imstt_par * par,__u32 MHz)436  setclkMHz(struct imstt_par *par, __u32 MHz)
437  {
438  	__u32 clk_m, clk_n, x, stage, spilled;
439  
440  	clk_m = clk_n = 0;
441  	stage = spilled = 0;
442  	for (;;) {
443  		switch (stage) {
444  			case 0:
445  				clk_m++;
446  				break;
447  			case 1:
448  				clk_n++;
449  				break;
450  		}
451  		x = 20 * (clk_m + 1) / (clk_n + 1);
452  		if (x == MHz)
453  			break;
454  		if (x > MHz) {
455  			spilled = 1;
456  			stage = 1;
457  		} else if (spilled && x < MHz) {
458  			stage = 0;
459  		}
460  	}
461  
462  	par->init.pclk_m = clk_m;
463  	par->init.pclk_n = clk_n;
464  	par->init.pclk_p = 0;
465  }
466  
467  static struct imstt_regvals *
compute_imstt_regvals_ibm(struct imstt_par * par,int xres,int yres)468  compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
469  {
470  	struct imstt_regvals *init = &par->init;
471  	__u32 MHz, hes, heb, veb, htp, vtp;
472  
473  	switch (xres) {
474  		case 640:
475  			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
476  			MHz = 30 /* .25 */ ;
477  			break;
478  		case 832:
479  			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
480  			MHz = 57 /* .27_ */ ;
481  			break;
482  		case 1024:
483  			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
484  			MHz = 80;
485  			break;
486  		case 1152:
487  			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
488  			MHz = 101 /* .6_ */ ;
489  			break;
490  		case 1280:
491  			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
492  			MHz = yres == 960 ? 126 : 135;
493  			break;
494  		case 1600:
495  			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
496  			MHz = 200;
497  			break;
498  		default:
499  			return NULL;
500  	}
501  
502  	setclkMHz(par, MHz);
503  
504  	init->hes = hes;
505  	init->heb = heb;
506  	init->hsb = init->heb + (xres >> 3);
507  	init->ht = init->hsb + htp;
508  	init->ves = 0x0003;
509  	init->veb = veb;
510  	init->vsb = init->veb + yres;
511  	init->vt = init->vsb + vtp;
512  	init->vil = init->vsb;
513  
514  	init->pitch = xres;
515  	return init;
516  }
517  
518  static struct imstt_regvals *
compute_imstt_regvals_tvp(struct imstt_par * par,int xres,int yres)519  compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
520  {
521  	struct imstt_regvals *init;
522  
523  	switch (xres) {
524  		case 512:
525  			init = &tvp_reg_init_2;
526  			break;
527  		case 640:
528  			init = &tvp_reg_init_6;
529  			break;
530  		case 800:
531  			init = &tvp_reg_init_12;
532  			break;
533  		case 832:
534  			init = &tvp_reg_init_13;
535  			break;
536  		case 1024:
537  			init = &tvp_reg_init_17;
538  			break;
539  		case 1152:
540  			init = &tvp_reg_init_18;
541  			break;
542  		case 1280:
543  			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
544  			break;
545  		default:
546  			return NULL;
547  	}
548  	par->init = *init;
549  	return init;
550  }
551  
552  static struct imstt_regvals *
compute_imstt_regvals(struct imstt_par * par,u_int xres,u_int yres)553  compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
554  {
555  	if (par->ramdac == IBM)
556  		return compute_imstt_regvals_ibm(par, xres, yres);
557  	else
558  		return compute_imstt_regvals_tvp(par, xres, yres);
559  }
560  
561  static void
set_imstt_regvals_ibm(struct imstt_par * par,u_int bpp)562  set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
563  {
564  	struct imstt_regvals *init = &par->init;
565  	__u8 pformat = (bpp >> 3) + 2;
566  
567  	par->cmap_regs[PIDXHI] = 0;		eieio();
568  	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
569  	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
570  	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
571  	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
572  	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
573  	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
574  	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
575  	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
576  
577  	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
578  	par->cmap_regs[PIDXDATA] = pformat;	eieio();
579  }
580  
581  static void
set_imstt_regvals_tvp(struct imstt_par * par,u_int bpp)582  set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
583  {
584  	struct imstt_regvals *init = &par->init;
585  	__u8 tcc, mxc, lckl_n, mic;
586  	__u8 mlc, lckl_p;
587  
588  	switch (bpp) {
589  		default:
590  		case 8:
591  			tcc = 0x80;
592  			mxc = 0x4d;
593  			lckl_n = 0xc1;
594  			mlc = init->mlc[0];
595  			lckl_p = init->lckl_p[0];
596  			break;
597  		case 16:
598  			tcc = 0x44;
599  			mxc = 0x55;
600  			lckl_n = 0xe1;
601  			mlc = init->mlc[1];
602  			lckl_p = init->lckl_p[1];
603  			break;
604  		case 24:
605  			tcc = 0x5e;
606  			mxc = 0x5d;
607  			lckl_n = 0xf1;
608  			mlc = init->mlc[2];
609  			lckl_p = init->lckl_p[2];
610  			break;
611  		case 32:
612  			tcc = 0x46;
613  			mxc = 0x5d;
614  			lckl_n = 0xf1;
615  			mlc = init->mlc[2];
616  			lckl_p = init->lckl_p[2];
617  			break;
618  	}
619  	mic = 0x08;
620  
621  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
622  	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
623  	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
624  	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
625  	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
626  	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
627  	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
628  	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
629  
630  	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
631  	par->cmap_regs[TVPIDATA] = tcc;			eieio();
632  	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
633  	par->cmap_regs[TVPIDATA] = mxc;			eieio();
634  	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
635  	par->cmap_regs[TVPIDATA] = mic;			eieio();
636  
637  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
638  	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
639  	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
640  	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
641  
642  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
643  	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
644  	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
645  	par->cmap_regs[TVPIDATA] = mlc;			eieio();
646  
647  	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
648  	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
649  	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
650  	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
651  }
652  
653  static void
set_imstt_regvals(struct fb_info * info,u_int bpp)654  set_imstt_regvals (struct fb_info *info, u_int bpp)
655  {
656  	struct imstt_par *par = info->par;
657  	struct imstt_regvals *init = &par->init;
658  	__u32 ctl, pitch, byteswap, scr;
659  
660  	if (par->ramdac == IBM)
661  		set_imstt_regvals_ibm(par, bpp);
662  	else
663  		set_imstt_regvals_tvp(par, bpp);
664  
665    /*
666     * From what I (jsk) can gather poking around with MacsBug,
667     * bits 8 and 9 in the SCR register control endianness
668     * correction (byte swapping).  These bits must be set according
669     * to the color depth as follows:
670     *     Color depth    Bit 9   Bit 8
671     *     ==========     =====   =====
672     *        8bpp          0       0
673     *       16bpp          0       1
674     *       32bpp          1       1
675     */
676  	switch (bpp) {
677  		default:
678  		case 8:
679  			ctl = 0x17b1;
680  			pitch = init->pitch >> 2;
681  			byteswap = 0x000;
682  			break;
683  		case 16:
684  			ctl = 0x17b3;
685  			pitch = init->pitch >> 1;
686  			byteswap = 0x100;
687  			break;
688  		case 24:
689  			ctl = 0x17b9;
690  			pitch = init->pitch - (init->pitch >> 2);
691  			byteswap = 0x200;
692  			break;
693  		case 32:
694  			ctl = 0x17b5;
695  			pitch = init->pitch;
696  			byteswap = 0x300;
697  			break;
698  	}
699  	if (par->ramdac == TVP)
700  		ctl -= 0x30;
701  
702  	write_reg_le32(par->dc_regs, HES, init->hes);
703  	write_reg_le32(par->dc_regs, HEB, init->heb);
704  	write_reg_le32(par->dc_regs, HSB, init->hsb);
705  	write_reg_le32(par->dc_regs, HT, init->ht);
706  	write_reg_le32(par->dc_regs, VES, init->ves);
707  	write_reg_le32(par->dc_regs, VEB, init->veb);
708  	write_reg_le32(par->dc_regs, VSB, init->vsb);
709  	write_reg_le32(par->dc_regs, VT, init->vt);
710  	write_reg_le32(par->dc_regs, VIL, init->vil);
711  	write_reg_le32(par->dc_regs, HCIV, 1);
712  	write_reg_le32(par->dc_regs, VCIV, 1);
713  	write_reg_le32(par->dc_regs, TCDR, 4);
714  	write_reg_le32(par->dc_regs, RRCIV, 1);
715  	write_reg_le32(par->dc_regs, RRSC, 0x980);
716  	write_reg_le32(par->dc_regs, RRCR, 0x11);
717  
718  	if (par->ramdac == IBM) {
719  		write_reg_le32(par->dc_regs, HRIR, 0x0100);
720  		write_reg_le32(par->dc_regs, CMR, 0x00ff);
721  		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
722  	} else {
723  		write_reg_le32(par->dc_regs, HRIR, 0x0200);
724  		write_reg_le32(par->dc_regs, CMR, 0x01ff);
725  		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
726  	}
727  
728  	switch (info->fix.smem_len) {
729  		case 0x200000:
730  			scr = 0x059d | byteswap;
731  			break;
732  		/* case 0x400000:
733  		   case 0x800000: */
734  		default:
735  			pitch >>= 1;
736  			scr = 0x150dd | byteswap;
737  			break;
738  	}
739  
740  	write_reg_le32(par->dc_regs, SCR, scr);
741  	write_reg_le32(par->dc_regs, SPR, pitch);
742  	write_reg_le32(par->dc_regs, STGCTL, ctl);
743  }
744  
745  static inline void
set_offset(struct fb_var_screeninfo * var,struct fb_info * info)746  set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
747  {
748  	struct imstt_par *par = info->par;
749  	__u32 off = var->yoffset * (info->fix.line_length >> 3)
750  		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
751  	write_reg_le32(par->dc_regs, SSR, off);
752  }
753  
754  static inline void
set_555(struct imstt_par * par)755  set_555 (struct imstt_par *par)
756  {
757  	if (par->ramdac == IBM) {
758  		par->cmap_regs[PIDXHI] = 0;		eieio();
759  		par->cmap_regs[PIDXLO] = BPP16;		eieio();
760  		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
761  	} else {
762  		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
763  		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
764  	}
765  }
766  
767  static inline void
set_565(struct imstt_par * par)768  set_565 (struct imstt_par *par)
769  {
770  	if (par->ramdac == IBM) {
771  		par->cmap_regs[PIDXHI] = 0;		eieio();
772  		par->cmap_regs[PIDXLO] = BPP16;		eieio();
773  		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
774  	} else {
775  		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
776  		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
777  	}
778  }
779  
780  static int
imsttfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)781  imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
782  {
783  	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
784  	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
785  	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
786  	    || var->nonstd
787  	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
788  		return -EINVAL;
789  
790  	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
791  	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
792  		return -EINVAL;
793  
794  	switch (var->bits_per_pixel) {
795  		case 8:
796  			var->red.offset = 0;
797  			var->red.length = 8;
798  			var->green.offset = 0;
799  			var->green.length = 8;
800  			var->blue.offset = 0;
801  			var->blue.length = 8;
802  			var->transp.offset = 0;
803  			var->transp.length = 0;
804  			break;
805  		case 16:	/* RGB 555 or 565 */
806  			if (var->green.length != 6)
807  				var->red.offset = 10;
808  			var->red.length = 5;
809  			var->green.offset = 5;
810  			if (var->green.length != 6)
811  				var->green.length = 5;
812  			var->blue.offset = 0;
813  			var->blue.length = 5;
814  			var->transp.offset = 0;
815  			var->transp.length = 0;
816  			break;
817  		case 24:	/* RGB 888 */
818  			var->red.offset = 16;
819  			var->red.length = 8;
820  			var->green.offset = 8;
821  			var->green.length = 8;
822  			var->blue.offset = 0;
823  			var->blue.length = 8;
824  			var->transp.offset = 0;
825  			var->transp.length = 0;
826  			break;
827  		case 32:	/* RGBA 8888 */
828  			var->red.offset = 16;
829  			var->red.length = 8;
830  			var->green.offset = 8;
831  			var->green.length = 8;
832  			var->blue.offset = 0;
833  			var->blue.length = 8;
834  			var->transp.offset = 24;
835  			var->transp.length = 8;
836  			break;
837  	}
838  
839  	if (var->yres == var->yres_virtual) {
840  		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
841  		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
842  		if (var->yres_virtual < var->yres)
843  			var->yres_virtual = var->yres;
844  	}
845  
846  	var->red.msb_right = 0;
847  	var->green.msb_right = 0;
848  	var->blue.msb_right = 0;
849  	var->transp.msb_right = 0;
850  	var->height = -1;
851  	var->width = -1;
852  	var->vmode = FB_VMODE_NONINTERLACED;
853  	var->left_margin = var->right_margin = 16;
854  	var->upper_margin = var->lower_margin = 16;
855  	var->hsync_len = var->vsync_len = 8;
856  	return 0;
857  }
858  
859  static int
imsttfb_set_par(struct fb_info * info)860  imsttfb_set_par(struct fb_info *info)
861  {
862  	struct imstt_par *par = info->par;
863  
864  	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
865  		return -EINVAL;
866  
867  	if (info->var.green.length == 6)
868  		set_565(par);
869  	else
870  		set_555(par);
871  	set_imstt_regvals(info, info->var.bits_per_pixel);
872  	info->var.pixclock = 1000000 / getclkMHz(par);
873  	return 0;
874  }
875  
876  static int
imsttfb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)877  imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
878  		   u_int transp, struct fb_info *info)
879  {
880  	struct imstt_par *par = info->par;
881  	u_int bpp = info->var.bits_per_pixel;
882  
883  	if (regno > 255)
884  		return 1;
885  
886  	red >>= 8;
887  	green >>= 8;
888  	blue >>= 8;
889  
890  	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
891  	if (0 && bpp == 16)	/* screws up X */
892  		par->cmap_regs[PADDRW] = regno << 3;
893  	else
894  		par->cmap_regs[PADDRW] = regno;
895  	eieio();
896  
897  	par->cmap_regs[PDATA] = red;	eieio();
898  	par->cmap_regs[PDATA] = green;	eieio();
899  	par->cmap_regs[PDATA] = blue;	eieio();
900  
901  	if (regno < 16)
902  		switch (bpp) {
903  			case 16:
904  				par->palette[regno] =
905  					(regno << (info->var.green.length ==
906  					5 ? 10 : 11)) | (regno << 5) | regno;
907  				break;
908  			case 24:
909  				par->palette[regno] =
910  					(regno << 16) | (regno << 8) | regno;
911  				break;
912  			case 32: {
913  				int i = (regno << 8) | regno;
914  				par->palette[regno] = (i << 16) |i;
915  				break;
916  			}
917  		}
918  	return 0;
919  }
920  
921  static int
imsttfb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)922  imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
923  {
924  	if (var->xoffset + info->var.xres > info->var.xres_virtual
925  	    || var->yoffset + info->var.yres > info->var.yres_virtual)
926  		return -EINVAL;
927  
928  	info->var.xoffset = var->xoffset;
929  	info->var.yoffset = var->yoffset;
930  	set_offset(var, info);
931  	return 0;
932  }
933  
934  static int
imsttfb_blank(int blank,struct fb_info * info)935  imsttfb_blank(int blank, struct fb_info *info)
936  {
937  	struct imstt_par *par = info->par;
938  	__u32 ctrl;
939  
940  	ctrl = read_reg_le32(par->dc_regs, STGCTL);
941  	if (blank > 0) {
942  		switch (blank) {
943  		case FB_BLANK_NORMAL:
944  		case FB_BLANK_POWERDOWN:
945  			ctrl &= ~0x00000380;
946  			if (par->ramdac == IBM) {
947  				par->cmap_regs[PIDXHI] = 0;		eieio();
948  				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
949  				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
950  				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
951  				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
952  				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
953  				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
954  				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
955  				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
956  				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
957  				par->cmap_regs[PIDXDATA] = 0xc0;
958  			}
959  			break;
960  		case FB_BLANK_VSYNC_SUSPEND:
961  			ctrl &= ~0x00000020;
962  			break;
963  		case FB_BLANK_HSYNC_SUSPEND:
964  			ctrl &= ~0x00000010;
965  			break;
966  		}
967  	} else {
968  		if (par->ramdac == IBM) {
969  			ctrl |= 0x000017b0;
970  			par->cmap_regs[PIDXHI] = 0;		eieio();
971  			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
972  			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
973  			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
974  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
975  			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
976  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
977  			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
978  			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
979  			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
980  			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
981  		} else
982  			ctrl |= 0x00001780;
983  	}
984  	write_reg_le32(par->dc_regs, STGCTL, ctrl);
985  	return 0;
986  }
987  
988  static void
imsttfb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)989  imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
990  {
991  	struct imstt_par *par = info->par;
992  	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
993  
994  	bgc = rect->color;
995  	bgc |= (bgc << 8);
996  	bgc |= (bgc << 16);
997  
998  	Bpp = info->var.bits_per_pixel >> 3,
999  	line_pitch = info->fix.line_length;
1000  
1001  	dy = rect->dy * line_pitch;
1002  	dx = rect->dx * Bpp;
1003  	height = rect->height;
1004  	height--;
1005  	width = rect->width * Bpp;
1006  	width--;
1007  
1008  	if (rect->rop == ROP_COPY) {
1009  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1010  		write_reg_le32(par->dc_regs, DSA, dy + dx);
1011  		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1012  		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1013  		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1014  		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1015  		write_reg_le32(par->dc_regs, CLR, bgc);
1016  		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1017  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1018  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1019  	} else {
1020  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1021  		write_reg_le32(par->dc_regs, DSA, dy + dx);
1022  		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1023  		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1024  		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1025  		write_reg_le32(par->dc_regs, SP, line_pitch);
1026  		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1027  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1028  		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1029  	}
1030  }
1031  
1032  static void
imsttfb_copyarea(struct fb_info * info,const struct fb_copyarea * area)1033  imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1034  {
1035  	struct imstt_par *par = info->par;
1036  	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1037   	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1038  
1039  	Bpp = info->var.bits_per_pixel >> 3,
1040  
1041  	sx = area->sx * Bpp;
1042  	sy = area->sy;
1043  	dx = area->dx * Bpp;
1044  	dy = area->dy;
1045  	height = area->height;
1046  	height--;
1047  	width = area->width * Bpp;
1048  	width--;
1049  
1050  	line_pitch = info->fix.line_length;
1051  	bltctl = 0x05;
1052  	sp = line_pitch << 16;
1053  	cnt = height << 16;
1054  
1055  	if (sy < dy) {
1056  		sy += height;
1057  		dy += height;
1058  		sp |= -(line_pitch) & 0xffff;
1059  		dp_octl = -(line_pitch) & 0xffff;
1060  	} else {
1061  		sp |= line_pitch;
1062  		dp_octl = line_pitch;
1063  	}
1064  	if (sx < dx) {
1065  		sx += width;
1066  		dx += width;
1067  		bltctl |= 0x80;
1068  		cnt |= -(width) & 0xffff;
1069  	} else {
1070  		cnt |= width;
1071  	}
1072  	fb_offset_old = sy * line_pitch + sx;
1073  	fb_offset_new = dy * line_pitch + dx;
1074  
1075  	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1076  	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1077  	write_reg_le32(par->dc_regs, SP, sp);
1078  	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1079  	write_reg_le32(par->dc_regs, CNT, cnt);
1080  	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1081  	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1082  	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1083  	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1084  }
1085  
1086  #if 0
1087  static int
1088  imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1089  {
1090  	u_int x, y;
1091  
1092  	if (width > 32 || height > 32)
1093  		return -EINVAL;
1094  
1095  	if (par->ramdac == IBM) {
1096  		par->cmap_regs[PIDXHI] = 1;	eieio();
1097  		for (x = 0; x < 0x100; x++) {
1098  			par->cmap_regs[PIDXLO] = x;		eieio();
1099  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1100  		}
1101  		par->cmap_regs[PIDXHI] = 1;	eieio();
1102  		for (y = 0; y < height; y++)
1103  			for (x = 0; x < width >> 2; x++) {
1104  				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1105  				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1106  			}
1107  		par->cmap_regs[PIDXHI] = 0;		eieio();
1108  		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1109  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1110  		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1111  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1112  		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1113  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1114  		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1115  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1116  		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1117  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1118  		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1119  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1120  		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1121  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1122  		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1123  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1124  		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1125  		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1126  	} else {
1127  		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1128  		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1129  		par->cmap_regs[TVPADDRW] = 0;		eieio();
1130  		for (x = 0; x < 0x200; x++) {
1131  			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1132  		}
1133  		for (x = 0; x < 0x200; x++) {
1134  			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1135  		}
1136  		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1137  		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1138  		for (y = 0; y < height; y++)
1139  			for (x = 0; x < width >> 3; x++) {
1140  				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1141  				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1142  			}
1143  		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1144  		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1145  		for (y = 0; y < height; y++)
1146  			for (x = 0; x < width >> 3; x++) {
1147  				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1148  				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1149  			}
1150  		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1151  		for (x = 0; x < 12; x++) {
1152  			par->cmap_regs[TVPCDATA] = fgc;
1153  			eieio();
1154  		}
1155  	}
1156  	return 1;
1157  }
1158  
1159  static void
1160  imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1161  {
1162  	if (par->ramdac == IBM) {
1163  		par->cmap_regs[PIDXHI] = 0;	eieio();
1164  		if (!on) {
1165  			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1166  			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1167  		} else {
1168  			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1169  			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1170  			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1171  			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1172  			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1173  			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1174  			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1175  			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1176  			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1177  			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1178  		}
1179  	} else {
1180  		if (!on) {
1181  			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1182  			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1183  		} else {
1184  			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1185  
1186  			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1187  			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1188  			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1189  			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1190  			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1191  			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1192  		}
1193  	}
1194  }
1195  
1196  static int
1197  imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1198  {
1199  	struct imstt_par *par = info->par;
1200          u32 flags = cursor->set, fg, bg, xx, yy;
1201  
1202  	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1203  		return 1;
1204  
1205  	imstt_set_cursor(info, cursor, 0);
1206  
1207  	if (flags & FB_CUR_SETPOS) {
1208  		xx = cursor->image.dx - info->var.xoffset;
1209  		yy = cursor->image.dy - info->var.yoffset;
1210  	}
1211  
1212  	if (flags & FB_CUR_SETSIZE) {
1213          }
1214  
1215          if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1216                  int fg_idx = cursor->image.fg_color;
1217                  int width = (cursor->image.width+7)/8;
1218                  u8 *dat = (u8 *) cursor->image.data;
1219                  u8 *dst = (u8 *) cursor->dest;
1220                  u8 *msk = (u8 *) cursor->mask;
1221  
1222                  switch (cursor->rop) {
1223                  case ROP_XOR:
1224                          for (i = 0; i < cursor->image.height; i++) {
1225                                  for (j = 0; j < width; j++) {
1226                                          d_idx = i * MAX_CURS/8  + j;
1227                                          data[d_idx] =  byte_rev[dat[s_idx] ^
1228                                                                  dst[s_idx]];
1229                                          mask[d_idx] = byte_rev[msk[s_idx]];
1230                                          s_idx++;
1231                                  }
1232                          }
1233                          break;
1234                  case ROP_COPY:
1235                  default:
1236                          for (i = 0; i < cursor->image.height; i++) {
1237                                  for (j = 0; j < width; j++) {
1238                                          d_idx = i * MAX_CURS/8 + j;
1239                                          data[d_idx] = byte_rev[dat[s_idx]];
1240                                          mask[d_idx] = byte_rev[msk[s_idx]];
1241                                          s_idx++;
1242                                  }
1243  			}
1244  			break;
1245  		}
1246  
1247  		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1248                       ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1249                       ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1250  
1251  		imsttfb_load_cursor_image(par, xx, yy, fgc);
1252  	}
1253  	if (cursor->enable)
1254  		imstt_set_cursor(info, cursor, 1);
1255  	return 0;
1256  }
1257  #endif
1258  
1259  #define FBIMSTT_SETREG		0x545401
1260  #define FBIMSTT_GETREG		0x545402
1261  #define FBIMSTT_SETCMAPREG	0x545403
1262  #define FBIMSTT_GETCMAPREG	0x545404
1263  #define FBIMSTT_SETIDXREG	0x545405
1264  #define FBIMSTT_GETIDXREG	0x545406
1265  
1266  static int
imsttfb_ioctl(struct fb_info * info,u_int cmd,u_long arg)1267  imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1268  {
1269  	struct imstt_par *par = info->par;
1270  	void __user *argp = (void __user *)arg;
1271  	__u32 reg[2];
1272  	__u8 idx[2];
1273  
1274  	switch (cmd) {
1275  		case FBIMSTT_SETREG:
1276  			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1277  				return -EFAULT;
1278  			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1279  			return 0;
1280  		case FBIMSTT_GETREG:
1281  			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1282  				return -EFAULT;
1283  			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1284  			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1285  				return -EFAULT;
1286  			return 0;
1287  		case FBIMSTT_SETCMAPREG:
1288  			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1289  				return -EFAULT;
1290  			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1291  			return 0;
1292  		case FBIMSTT_GETCMAPREG:
1293  			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1294  				return -EFAULT;
1295  			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1296  			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1297  				return -EFAULT;
1298  			return 0;
1299  		case FBIMSTT_SETIDXREG:
1300  			if (copy_from_user(idx, argp, 2))
1301  				return -EFAULT;
1302  			par->cmap_regs[PIDXHI] = 0;		eieio();
1303  			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1304  			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1305  			return 0;
1306  		case FBIMSTT_GETIDXREG:
1307  			if (copy_from_user(idx, argp, 1))
1308  				return -EFAULT;
1309  			par->cmap_regs[PIDXHI] = 0;		eieio();
1310  			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1311  			idx[1] = par->cmap_regs[PIDXDATA];
1312  			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1313  				return -EFAULT;
1314  			return 0;
1315  		default:
1316  			return -ENOIOCTLCMD;
1317  	}
1318  }
1319  
1320  static const struct pci_device_id imsttfb_pci_tbl[] = {
1321  	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1322  	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1323  	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1324  	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1325  	{ 0, }
1326  };
1327  
1328  MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1329  
1330  static struct pci_driver imsttfb_pci_driver = {
1331  	.name =		"imsttfb",
1332  	.id_table =	imsttfb_pci_tbl,
1333  	.probe =	imsttfb_probe,
1334  	.remove =	imsttfb_remove,
1335  };
1336  
1337  static const struct fb_ops imsttfb_ops = {
1338  	.owner 		= THIS_MODULE,
1339  	.fb_check_var	= imsttfb_check_var,
1340  	.fb_set_par 	= imsttfb_set_par,
1341  	.fb_setcolreg 	= imsttfb_setcolreg,
1342  	.fb_pan_display = imsttfb_pan_display,
1343  	.fb_blank 	= imsttfb_blank,
1344  	.fb_fillrect	= imsttfb_fillrect,
1345  	.fb_copyarea	= imsttfb_copyarea,
1346  	.fb_imageblit	= cfb_imageblit,
1347  	.fb_ioctl 	= imsttfb_ioctl,
1348  };
1349  
init_imstt(struct fb_info * info)1350  static int init_imstt(struct fb_info *info)
1351  {
1352  	struct imstt_par *par = info->par;
1353  	__u32 i, tmp, *ip, *end;
1354  
1355  	tmp = read_reg_le32(par->dc_regs, PRC);
1356  	if (par->ramdac == IBM)
1357  		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1358  	else
1359  		info->fix.smem_len = 0x800000;
1360  
1361  	ip = (__u32 *)info->screen_base;
1362  	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1363  	while (ip < end)
1364  		*ip++ = 0;
1365  
1366  	/* initialize the card */
1367  	tmp = read_reg_le32(par->dc_regs, STGCTL);
1368  	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1369  	write_reg_le32(par->dc_regs, SSR, 0);
1370  
1371  	/* set default values for DAC registers */
1372  	if (par->ramdac == IBM) {
1373  		par->cmap_regs[PPMASK] = 0xff;
1374  		eieio();
1375  		par->cmap_regs[PIDXHI] = 0;
1376  		eieio();
1377  		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1378  			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1379  			eieio();
1380  			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1381  			eieio();
1382  		}
1383  	} else {
1384  		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1385  			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1386  			eieio();
1387  			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1388  			eieio();
1389  		}
1390  	}
1391  
1392  #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1393  	if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1394  		int vmode = init_vmode, cmode = init_cmode;
1395  
1396  		if (vmode == -1) {
1397  			vmode = nvram_read_byte(NV_VMODE);
1398  			if (vmode <= 0 || vmode > VMODE_MAX)
1399  				vmode = VMODE_640_480_67;
1400  		}
1401  		if (cmode == -1) {
1402  			cmode = nvram_read_byte(NV_CMODE);
1403  			if (cmode < CMODE_8 || cmode > CMODE_32)
1404  				cmode = CMODE_8;
1405  		}
1406  		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1407  			info->var.xres = info->var.xres_virtual = INIT_XRES;
1408  			info->var.yres = info->var.yres_virtual = INIT_YRES;
1409  			info->var.bits_per_pixel = INIT_BPP;
1410  		}
1411  	} else
1412  #endif
1413  	{
1414  		info->var.xres = info->var.xres_virtual = INIT_XRES;
1415  		info->var.yres = info->var.yres_virtual = INIT_YRES;
1416  		info->var.bits_per_pixel = INIT_BPP;
1417  	}
1418  
1419  	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1420  	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1421  		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1422  		return -ENODEV;
1423  	}
1424  
1425  	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1426  	info->fix.mmio_len = 0x1000;
1427  	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1428  	info->fix.type = FB_TYPE_PACKED_PIXELS;
1429  	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1430  							: FB_VISUAL_DIRECTCOLOR;
1431  	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1432  	info->fix.xpanstep = 8;
1433  	info->fix.ypanstep = 1;
1434  	info->fix.ywrapstep = 0;
1435  
1436  	info->var.accel_flags = FB_ACCELF_TEXT;
1437  
1438  //	if (par->ramdac == IBM)
1439  //		imstt_cursor_init(info);
1440  	if (info->var.green.length == 6)
1441  		set_565(par);
1442  	else
1443  		set_555(par);
1444  	set_imstt_regvals(info, info->var.bits_per_pixel);
1445  
1446  	info->var.pixclock = 1000000 / getclkMHz(par);
1447  
1448  	info->fbops = &imsttfb_ops;
1449  	info->flags = FBINFO_HWACCEL_COPYAREA |
1450  	              FBINFO_HWACCEL_FILLRECT |
1451  	              FBINFO_HWACCEL_YPAN;
1452  
1453  	if (fb_alloc_cmap(&info->cmap, 0, 0))
1454  		return -ENODEV;
1455  
1456  	if (register_framebuffer(info) < 0) {
1457  		fb_dealloc_cmap(&info->cmap);
1458  		return -ENODEV;
1459  	}
1460  
1461  	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1462  	fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1463  		info->fix.id, info->fix.smem_len >> 20, tmp);
1464  	return 0;
1465  }
1466  
imsttfb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1467  static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1468  {
1469  	unsigned long addr, size;
1470  	struct imstt_par *par;
1471  	struct fb_info *info;
1472  	struct device_node *dp;
1473  	int ret;
1474  
1475  	ret = aperture_remove_conflicting_pci_devices(pdev, "imsttfb");
1476  	if (ret)
1477  		return ret;
1478  	ret = -ENOMEM;
1479  
1480  	dp = pci_device_to_OF_node(pdev);
1481  	if(dp)
1482  		printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1483  	else if (IS_ENABLED(CONFIG_OF))
1484  		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1485  
1486  	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1487  	if (!info)
1488  		return -ENOMEM;
1489  
1490  	par = info->par;
1491  
1492  	addr = pci_resource_start (pdev, 0);
1493  	size = pci_resource_len (pdev, 0);
1494  
1495  	if (!request_mem_region(addr, size, "imsttfb")) {
1496  		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1497  		ret = -ENODEV;
1498  		goto release_info;
1499  	}
1500  
1501  	switch (pdev->device) {
1502  		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1503  			par->ramdac = IBM;
1504  			if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1505  			    of_node_name_eq(dp, "IMS,tt128mb8A"))
1506  				par->ramdac = TVP;
1507  			break;
1508  		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1509  			par->ramdac = TVP;
1510  			break;
1511  		default:
1512  			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1513  					 "contact maintainer.\n", pdev->device);
1514  			ret = -ENODEV;
1515  			goto release_mem_region;
1516  	}
1517  
1518  	info->fix.smem_start = addr;
1519  	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1520  					    0x400000 : 0x800000);
1521  	if (!info->screen_base)
1522  		goto release_mem_region;
1523  	info->fix.mmio_start = addr + 0x800000;
1524  	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1525  	if (!par->dc_regs)
1526  		goto unmap_screen_base;
1527  	par->cmap_regs_phys = addr + 0x840000;
1528  	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1529  	if (!par->cmap_regs)
1530  		goto unmap_dc_regs;
1531  	info->pseudo_palette = par->palette;
1532  	ret = init_imstt(info);
1533  	if (ret)
1534  		goto unmap_cmap_regs;
1535  
1536  	pci_set_drvdata(pdev, info);
1537  	return 0;
1538  
1539  unmap_cmap_regs:
1540  	iounmap(par->cmap_regs);
1541  unmap_dc_regs:
1542  	iounmap(par->dc_regs);
1543  unmap_screen_base:
1544  	iounmap(info->screen_base);
1545  release_mem_region:
1546  	release_mem_region(addr, size);
1547  release_info:
1548  	framebuffer_release(info);
1549  	return ret;
1550  }
1551  
imsttfb_remove(struct pci_dev * pdev)1552  static void imsttfb_remove(struct pci_dev *pdev)
1553  {
1554  	struct fb_info *info = pci_get_drvdata(pdev);
1555  	struct imstt_par *par = info->par;
1556  	int size = pci_resource_len(pdev, 0);
1557  
1558  	unregister_framebuffer(info);
1559  	iounmap(par->cmap_regs);
1560  	iounmap(par->dc_regs);
1561  	iounmap(info->screen_base);
1562  	release_mem_region(info->fix.smem_start, size);
1563  	framebuffer_release(info);
1564  }
1565  
1566  #ifndef MODULE
1567  static int __init
imsttfb_setup(char * options)1568  imsttfb_setup(char *options)
1569  {
1570  	char *this_opt;
1571  
1572  	if (!options || !*options)
1573  		return 0;
1574  
1575  	while ((this_opt = strsep(&options, ",")) != NULL) {
1576  		if (!strncmp(this_opt, "font:", 5)) {
1577  			char *p;
1578  			int i;
1579  
1580  			p = this_opt + 5;
1581  			for (i = 0; i < sizeof(fontname) - 1; i++)
1582  				if (!*p || *p == ' ' || *p == ',')
1583  					break;
1584  			memcpy(fontname, this_opt + 5, i);
1585  			fontname[i] = 0;
1586  		} else if (!strncmp(this_opt, "inverse", 7)) {
1587  			inverse = 1;
1588  			fb_invert_cmaps();
1589  		}
1590  #if defined(CONFIG_PPC_PMAC)
1591  		else if (!strncmp(this_opt, "vmode:", 6)) {
1592  			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1593  			if (vmode > 0 && vmode <= VMODE_MAX)
1594  				init_vmode = vmode;
1595  		} else if (!strncmp(this_opt, "cmode:", 6)) {
1596  			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1597  			switch (cmode) {
1598  				case CMODE_8:
1599  				case 8:
1600  					init_cmode = CMODE_8;
1601  					break;
1602  				case CMODE_16:
1603  				case 15:
1604  				case 16:
1605  					init_cmode = CMODE_16;
1606  					break;
1607  				case CMODE_32:
1608  				case 24:
1609  				case 32:
1610  					init_cmode = CMODE_32;
1611  					break;
1612  			}
1613  		}
1614  #endif
1615  	}
1616  	return 0;
1617  }
1618  
1619  #endif /* MODULE */
1620  
imsttfb_init(void)1621  static int __init imsttfb_init(void)
1622  {
1623  #ifndef MODULE
1624  	char *option = NULL;
1625  #endif
1626  
1627  	if (fb_modesetting_disabled("imsttfb"))
1628  		return -ENODEV;
1629  
1630  #ifndef MODULE
1631  	if (fb_get_options("imsttfb", &option))
1632  		return -ENODEV;
1633  
1634  	imsttfb_setup(option);
1635  #endif
1636  	return pci_register_driver(&imsttfb_pci_driver);
1637  }
1638  
imsttfb_exit(void)1639  static void __exit imsttfb_exit(void)
1640  {
1641  	pci_unregister_driver(&imsttfb_pci_driver);
1642  }
1643  
1644  MODULE_LICENSE("GPL");
1645  
1646  module_init(imsttfb_init);
1647  module_exit(imsttfb_exit);
1648  
1649