1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40
41 #include "drop.h"
42 #include "flow_netlink.h"
43
44 struct ovs_len_tbl {
45 int len;
46 const struct ovs_len_tbl *next;
47 };
48
49 #define OVS_ATTR_NESTED -1
50 #define OVS_ATTR_VARIABLE -2
51 #define OVS_COPY_ACTIONS_MAX_DEPTH 16
52
actions_may_change_flow(const struct nlattr * actions)53 static bool actions_may_change_flow(const struct nlattr *actions)
54 {
55 struct nlattr *nla;
56 int rem;
57
58 nla_for_each_nested(nla, actions, rem) {
59 u16 action = nla_type(nla);
60
61 switch (action) {
62 case OVS_ACTION_ATTR_OUTPUT:
63 case OVS_ACTION_ATTR_RECIRC:
64 case OVS_ACTION_ATTR_TRUNC:
65 case OVS_ACTION_ATTR_USERSPACE:
66 case OVS_ACTION_ATTR_DROP:
67 break;
68
69 case OVS_ACTION_ATTR_CT:
70 case OVS_ACTION_ATTR_CT_CLEAR:
71 case OVS_ACTION_ATTR_HASH:
72 case OVS_ACTION_ATTR_POP_ETH:
73 case OVS_ACTION_ATTR_POP_MPLS:
74 case OVS_ACTION_ATTR_POP_NSH:
75 case OVS_ACTION_ATTR_POP_VLAN:
76 case OVS_ACTION_ATTR_PUSH_ETH:
77 case OVS_ACTION_ATTR_PUSH_MPLS:
78 case OVS_ACTION_ATTR_PUSH_NSH:
79 case OVS_ACTION_ATTR_PUSH_VLAN:
80 case OVS_ACTION_ATTR_SAMPLE:
81 case OVS_ACTION_ATTR_SET:
82 case OVS_ACTION_ATTR_SET_MASKED:
83 case OVS_ACTION_ATTR_METER:
84 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
85 case OVS_ACTION_ATTR_ADD_MPLS:
86 case OVS_ACTION_ATTR_DEC_TTL:
87 default:
88 return true;
89 }
90 }
91 return false;
92 }
93
update_range(struct sw_flow_match * match,size_t offset,size_t size,bool is_mask)94 static void update_range(struct sw_flow_match *match,
95 size_t offset, size_t size, bool is_mask)
96 {
97 struct sw_flow_key_range *range;
98 size_t start = rounddown(offset, sizeof(long));
99 size_t end = roundup(offset + size, sizeof(long));
100
101 if (!is_mask)
102 range = &match->range;
103 else
104 range = &match->mask->range;
105
106 if (range->start == range->end) {
107 range->start = start;
108 range->end = end;
109 return;
110 }
111
112 if (range->start > start)
113 range->start = start;
114
115 if (range->end < end)
116 range->end = end;
117 }
118
119 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
120 do { \
121 update_range(match, offsetof(struct sw_flow_key, field), \
122 sizeof((match)->key->field), is_mask); \
123 if (is_mask) \
124 (match)->mask->key.field = value; \
125 else \
126 (match)->key->field = value; \
127 } while (0)
128
129 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
130 do { \
131 update_range(match, offset, len, is_mask); \
132 if (is_mask) \
133 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
134 len); \
135 else \
136 memcpy((u8 *)(match)->key + offset, value_p, len); \
137 } while (0)
138
139 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
140 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
141 value_p, len, is_mask)
142
143 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
144 do { \
145 update_range(match, offsetof(struct sw_flow_key, field), \
146 sizeof((match)->key->field), is_mask); \
147 if (is_mask) \
148 memset((u8 *)&(match)->mask->key.field, value, \
149 sizeof((match)->mask->key.field)); \
150 else \
151 memset((u8 *)&(match)->key->field, value, \
152 sizeof((match)->key->field)); \
153 } while (0)
154
match_validate(const struct sw_flow_match * match,u64 key_attrs,u64 mask_attrs,bool log)155 static bool match_validate(const struct sw_flow_match *match,
156 u64 key_attrs, u64 mask_attrs, bool log)
157 {
158 u64 key_expected = 0;
159 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
160
161 /* The following mask attributes allowed only if they
162 * pass the validation tests. */
163 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
164 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
165 | (1 << OVS_KEY_ATTR_IPV6)
166 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
167 | (1 << OVS_KEY_ATTR_TCP)
168 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
169 | (1 << OVS_KEY_ATTR_UDP)
170 | (1 << OVS_KEY_ATTR_SCTP)
171 | (1 << OVS_KEY_ATTR_ICMP)
172 | (1 << OVS_KEY_ATTR_ICMPV6)
173 | (1 << OVS_KEY_ATTR_ARP)
174 | (1 << OVS_KEY_ATTR_ND)
175 | (1 << OVS_KEY_ATTR_MPLS)
176 | (1 << OVS_KEY_ATTR_NSH));
177
178 /* Always allowed mask fields. */
179 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
180 | (1 << OVS_KEY_ATTR_IN_PORT)
181 | (1 << OVS_KEY_ATTR_ETHERTYPE));
182
183 /* Check key attributes. */
184 if (match->key->eth.type == htons(ETH_P_ARP)
185 || match->key->eth.type == htons(ETH_P_RARP)) {
186 key_expected |= 1 << OVS_KEY_ATTR_ARP;
187 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
188 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
189 }
190
191 if (eth_p_mpls(match->key->eth.type)) {
192 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
193 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
194 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
195 }
196
197 if (match->key->eth.type == htons(ETH_P_IP)) {
198 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
199 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
201 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
202 }
203
204 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
205 if (match->key->ip.proto == IPPROTO_UDP) {
206 key_expected |= 1 << OVS_KEY_ATTR_UDP;
207 if (match->mask && (match->mask->key.ip.proto == 0xff))
208 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
209 }
210
211 if (match->key->ip.proto == IPPROTO_SCTP) {
212 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
213 if (match->mask && (match->mask->key.ip.proto == 0xff))
214 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
215 }
216
217 if (match->key->ip.proto == IPPROTO_TCP) {
218 key_expected |= 1 << OVS_KEY_ATTR_TCP;
219 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
221 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
222 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
223 }
224 }
225
226 if (match->key->ip.proto == IPPROTO_ICMP) {
227 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
228 if (match->mask && (match->mask->key.ip.proto == 0xff))
229 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
230 }
231 }
232 }
233
234 if (match->key->eth.type == htons(ETH_P_IPV6)) {
235 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
236 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
237 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
238 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
239 }
240
241 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
242 if (match->key->ip.proto == IPPROTO_UDP) {
243 key_expected |= 1 << OVS_KEY_ATTR_UDP;
244 if (match->mask && (match->mask->key.ip.proto == 0xff))
245 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
246 }
247
248 if (match->key->ip.proto == IPPROTO_SCTP) {
249 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
250 if (match->mask && (match->mask->key.ip.proto == 0xff))
251 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
252 }
253
254 if (match->key->ip.proto == IPPROTO_TCP) {
255 key_expected |= 1 << OVS_KEY_ATTR_TCP;
256 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
257 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
258 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
259 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
260 }
261 }
262
263 if (match->key->ip.proto == IPPROTO_ICMPV6) {
264 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
265 if (match->mask && (match->mask->key.ip.proto == 0xff))
266 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
267
268 if (match->key->tp.src ==
269 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
270 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
271 key_expected |= 1 << OVS_KEY_ATTR_ND;
272 /* Original direction conntrack tuple
273 * uses the same space as the ND fields
274 * in the key, so both are not allowed
275 * at the same time.
276 */
277 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
278 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
279 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
280 }
281 }
282 }
283 }
284
285 if (match->key->eth.type == htons(ETH_P_NSH)) {
286 key_expected |= 1 << OVS_KEY_ATTR_NSH;
287 if (match->mask &&
288 match->mask->key.eth.type == htons(0xffff)) {
289 mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
290 }
291 }
292
293 if ((key_attrs & key_expected) != key_expected) {
294 /* Key attributes check failed. */
295 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
296 (unsigned long long)key_attrs,
297 (unsigned long long)key_expected);
298 return false;
299 }
300
301 if ((mask_attrs & mask_allowed) != mask_attrs) {
302 /* Mask attributes check failed. */
303 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
304 (unsigned long long)mask_attrs,
305 (unsigned long long)mask_allowed);
306 return false;
307 }
308
309 return true;
310 }
311
ovs_tun_key_attr_size(void)312 size_t ovs_tun_key_attr_size(void)
313 {
314 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
315 * updating this function.
316 */
317 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
318 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
319 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
320 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
321 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
322 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
323 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
324 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
325 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
326 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
327 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
328 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
329 */
330 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
331 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
332 }
333
ovs_nsh_key_attr_size(void)334 static size_t ovs_nsh_key_attr_size(void)
335 {
336 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
337 * updating this function.
338 */
339 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
340 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
341 * mutually exclusive, so the bigger one can cover
342 * the small one.
343 */
344 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
345 }
346
ovs_key_attr_size(void)347 size_t ovs_key_attr_size(void)
348 {
349 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
350 * updating this function.
351 */
352 BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
353
354 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
355 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
356 + ovs_tun_key_attr_size()
357 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
358 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
359 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
360 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
361 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
362 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
363 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
364 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
365 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
366 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */
367 + ovs_nsh_key_attr_size()
368 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
369 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
370 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
371 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
372 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
373 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
374 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
375 + nla_total_size(28) /* OVS_KEY_ATTR_ND */
376 + nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */
377 }
378
379 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
380 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
381 };
382
383 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
384 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
385 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
386 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
387 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
388 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
389 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
390 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
391 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
392 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
393 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
394 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
395 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
396 .next = ovs_vxlan_ext_key_lens },
397 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
398 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
399 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
400 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 },
401 };
402
403 static const struct ovs_len_tbl
404 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
405 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
406 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
407 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
408 };
409
410 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
411 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
412 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
413 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
414 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
415 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
416 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
417 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
418 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
419 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
420 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
421 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
422 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
423 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
424 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
425 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
426 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
427 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
428 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
429 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
430 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
431 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
432 .next = ovs_tunnel_key_lens, },
433 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE },
434 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
435 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
436 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
437 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
438 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
439 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
440 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
441 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
442 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
443 .next = ovs_nsh_key_attr_lens, },
444 [OVS_KEY_ATTR_IPV6_EXTHDRS] = {
445 .len = sizeof(struct ovs_key_ipv6_exthdrs) },
446 };
447
check_attr_len(unsigned int attr_len,unsigned int expected_len)448 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
449 {
450 return expected_len == attr_len ||
451 expected_len == OVS_ATTR_NESTED ||
452 expected_len == OVS_ATTR_VARIABLE;
453 }
454
is_all_zero(const u8 * fp,size_t size)455 static bool is_all_zero(const u8 *fp, size_t size)
456 {
457 int i;
458
459 if (!fp)
460 return false;
461
462 for (i = 0; i < size; i++)
463 if (fp[i])
464 return false;
465
466 return true;
467 }
468
__parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log,bool nz)469 static int __parse_flow_nlattrs(const struct nlattr *attr,
470 const struct nlattr *a[],
471 u64 *attrsp, bool log, bool nz)
472 {
473 const struct nlattr *nla;
474 u64 attrs;
475 int rem;
476
477 attrs = *attrsp;
478 nla_for_each_nested(nla, attr, rem) {
479 u16 type = nla_type(nla);
480 int expected_len;
481
482 if (type > OVS_KEY_ATTR_MAX) {
483 OVS_NLERR(log, "Key type %d is out of range max %d",
484 type, OVS_KEY_ATTR_MAX);
485 return -EINVAL;
486 }
487
488 if (type == OVS_KEY_ATTR_PACKET_TYPE ||
489 type == OVS_KEY_ATTR_ND_EXTENSIONS ||
490 type == OVS_KEY_ATTR_TUNNEL_INFO) {
491 OVS_NLERR(log, "Key type %d is not supported", type);
492 return -EINVAL;
493 }
494
495 if (attrs & (1ULL << type)) {
496 OVS_NLERR(log, "Duplicate key (type %d).", type);
497 return -EINVAL;
498 }
499
500 expected_len = ovs_key_lens[type].len;
501 if (!check_attr_len(nla_len(nla), expected_len)) {
502 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
503 type, nla_len(nla), expected_len);
504 return -EINVAL;
505 }
506
507 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
508 attrs |= 1ULL << type;
509 a[type] = nla;
510 }
511 }
512 if (rem) {
513 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
514 return -EINVAL;
515 }
516
517 *attrsp = attrs;
518 return 0;
519 }
520
parse_flow_mask_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)521 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
522 const struct nlattr *a[], u64 *attrsp,
523 bool log)
524 {
525 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
526 }
527
parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)528 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
529 u64 *attrsp, bool log)
530 {
531 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
532 }
533
genev_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)534 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
535 struct sw_flow_match *match, bool is_mask,
536 bool log)
537 {
538 unsigned long opt_key_offset;
539
540 if (nla_len(a) > sizeof(match->key->tun_opts)) {
541 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
542 nla_len(a), sizeof(match->key->tun_opts));
543 return -EINVAL;
544 }
545
546 if (nla_len(a) % 4 != 0) {
547 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
548 nla_len(a));
549 return -EINVAL;
550 }
551
552 /* We need to record the length of the options passed
553 * down, otherwise packets with the same format but
554 * additional options will be silently matched.
555 */
556 if (!is_mask) {
557 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
558 false);
559 } else {
560 /* This is somewhat unusual because it looks at
561 * both the key and mask while parsing the
562 * attributes (and by extension assumes the key
563 * is parsed first). Normally, we would verify
564 * that each is the correct length and that the
565 * attributes line up in the validate function.
566 * However, that is difficult because this is
567 * variable length and we won't have the
568 * information later.
569 */
570 if (match->key->tun_opts_len != nla_len(a)) {
571 OVS_NLERR(log, "Geneve option len %d != mask len %d",
572 match->key->tun_opts_len, nla_len(a));
573 return -EINVAL;
574 }
575
576 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
577 }
578
579 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
580 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
581 nla_len(a), is_mask);
582 return 0;
583 }
584
vxlan_tun_opt_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)585 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
586 struct sw_flow_match *match, bool is_mask,
587 bool log)
588 {
589 struct nlattr *a;
590 int rem;
591 unsigned long opt_key_offset;
592 struct vxlan_metadata opts;
593
594 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
595
596 memset(&opts, 0, sizeof(opts));
597 nla_for_each_nested(a, attr, rem) {
598 int type = nla_type(a);
599
600 if (type > OVS_VXLAN_EXT_MAX) {
601 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
602 type, OVS_VXLAN_EXT_MAX);
603 return -EINVAL;
604 }
605
606 if (!check_attr_len(nla_len(a),
607 ovs_vxlan_ext_key_lens[type].len)) {
608 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
609 type, nla_len(a),
610 ovs_vxlan_ext_key_lens[type].len);
611 return -EINVAL;
612 }
613
614 switch (type) {
615 case OVS_VXLAN_EXT_GBP:
616 opts.gbp = nla_get_u32(a);
617 break;
618 default:
619 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
620 type);
621 return -EINVAL;
622 }
623 }
624 if (rem) {
625 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
626 rem);
627 return -EINVAL;
628 }
629
630 if (!is_mask)
631 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
632 else
633 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
634
635 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
636 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
637 is_mask);
638 return 0;
639 }
640
erspan_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)641 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
642 struct sw_flow_match *match, bool is_mask,
643 bool log)
644 {
645 unsigned long opt_key_offset;
646
647 BUILD_BUG_ON(sizeof(struct erspan_metadata) >
648 sizeof(match->key->tun_opts));
649
650 if (nla_len(a) > sizeof(match->key->tun_opts)) {
651 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
652 nla_len(a), sizeof(match->key->tun_opts));
653 return -EINVAL;
654 }
655
656 if (!is_mask)
657 SW_FLOW_KEY_PUT(match, tun_opts_len,
658 sizeof(struct erspan_metadata), false);
659 else
660 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
661
662 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
663 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
664 nla_len(a), is_mask);
665 return 0;
666 }
667
ip_tun_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)668 static int ip_tun_from_nlattr(const struct nlattr *attr,
669 struct sw_flow_match *match, bool is_mask,
670 bool log)
671 {
672 bool ttl = false, ipv4 = false, ipv6 = false;
673 bool info_bridge_mode = false;
674 __be16 tun_flags = 0;
675 int opts_type = 0;
676 struct nlattr *a;
677 int rem;
678
679 nla_for_each_nested(a, attr, rem) {
680 int type = nla_type(a);
681 int err;
682
683 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
684 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
685 type, OVS_TUNNEL_KEY_ATTR_MAX);
686 return -EINVAL;
687 }
688
689 if (!check_attr_len(nla_len(a),
690 ovs_tunnel_key_lens[type].len)) {
691 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
692 type, nla_len(a), ovs_tunnel_key_lens[type].len);
693 return -EINVAL;
694 }
695
696 switch (type) {
697 case OVS_TUNNEL_KEY_ATTR_ID:
698 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
699 nla_get_be64(a), is_mask);
700 tun_flags |= TUNNEL_KEY;
701 break;
702 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
703 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
704 nla_get_in_addr(a), is_mask);
705 ipv4 = true;
706 break;
707 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
708 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
709 nla_get_in_addr(a), is_mask);
710 ipv4 = true;
711 break;
712 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
713 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
714 nla_get_in6_addr(a), is_mask);
715 ipv6 = true;
716 break;
717 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
718 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
719 nla_get_in6_addr(a), is_mask);
720 ipv6 = true;
721 break;
722 case OVS_TUNNEL_KEY_ATTR_TOS:
723 SW_FLOW_KEY_PUT(match, tun_key.tos,
724 nla_get_u8(a), is_mask);
725 break;
726 case OVS_TUNNEL_KEY_ATTR_TTL:
727 SW_FLOW_KEY_PUT(match, tun_key.ttl,
728 nla_get_u8(a), is_mask);
729 ttl = true;
730 break;
731 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
732 tun_flags |= TUNNEL_DONT_FRAGMENT;
733 break;
734 case OVS_TUNNEL_KEY_ATTR_CSUM:
735 tun_flags |= TUNNEL_CSUM;
736 break;
737 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
738 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
739 nla_get_be16(a), is_mask);
740 break;
741 case OVS_TUNNEL_KEY_ATTR_TP_DST:
742 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
743 nla_get_be16(a), is_mask);
744 break;
745 case OVS_TUNNEL_KEY_ATTR_OAM:
746 tun_flags |= TUNNEL_OAM;
747 break;
748 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
749 if (opts_type) {
750 OVS_NLERR(log, "Multiple metadata blocks provided");
751 return -EINVAL;
752 }
753
754 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
755 if (err)
756 return err;
757
758 tun_flags |= TUNNEL_GENEVE_OPT;
759 opts_type = type;
760 break;
761 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
762 if (opts_type) {
763 OVS_NLERR(log, "Multiple metadata blocks provided");
764 return -EINVAL;
765 }
766
767 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
768 if (err)
769 return err;
770
771 tun_flags |= TUNNEL_VXLAN_OPT;
772 opts_type = type;
773 break;
774 case OVS_TUNNEL_KEY_ATTR_PAD:
775 break;
776 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
777 if (opts_type) {
778 OVS_NLERR(log, "Multiple metadata blocks provided");
779 return -EINVAL;
780 }
781
782 err = erspan_tun_opt_from_nlattr(a, match, is_mask,
783 log);
784 if (err)
785 return err;
786
787 tun_flags |= TUNNEL_ERSPAN_OPT;
788 opts_type = type;
789 break;
790 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
791 info_bridge_mode = true;
792 ipv4 = true;
793 break;
794 default:
795 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
796 type);
797 return -EINVAL;
798 }
799 }
800
801 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
802 if (is_mask)
803 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
804 else
805 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
806 false);
807
808 if (rem > 0) {
809 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
810 rem);
811 return -EINVAL;
812 }
813
814 if (ipv4 && ipv6) {
815 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
816 return -EINVAL;
817 }
818
819 if (!is_mask) {
820 if (!ipv4 && !ipv6) {
821 OVS_NLERR(log, "IP tunnel dst address not specified");
822 return -EINVAL;
823 }
824 if (ipv4) {
825 if (info_bridge_mode) {
826 if (match->key->tun_key.u.ipv4.src ||
827 match->key->tun_key.u.ipv4.dst ||
828 match->key->tun_key.tp_src ||
829 match->key->tun_key.tp_dst ||
830 match->key->tun_key.ttl ||
831 match->key->tun_key.tos ||
832 tun_flags & ~TUNNEL_KEY) {
833 OVS_NLERR(log, "IPv4 tun info is not correct");
834 return -EINVAL;
835 }
836 } else if (!match->key->tun_key.u.ipv4.dst) {
837 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
838 return -EINVAL;
839 }
840 }
841 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
842 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
843 return -EINVAL;
844 }
845
846 if (!ttl && !info_bridge_mode) {
847 OVS_NLERR(log, "IP tunnel TTL not specified.");
848 return -EINVAL;
849 }
850 }
851
852 return opts_type;
853 }
854
vxlan_opt_to_nlattr(struct sk_buff * skb,const void * tun_opts,int swkey_tun_opts_len)855 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
856 const void *tun_opts, int swkey_tun_opts_len)
857 {
858 const struct vxlan_metadata *opts = tun_opts;
859 struct nlattr *nla;
860
861 nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
862 if (!nla)
863 return -EMSGSIZE;
864
865 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
866 return -EMSGSIZE;
867
868 nla_nest_end(skb, nla);
869 return 0;
870 }
871
__ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)872 static int __ip_tun_to_nlattr(struct sk_buff *skb,
873 const struct ip_tunnel_key *output,
874 const void *tun_opts, int swkey_tun_opts_len,
875 unsigned short tun_proto, u8 mode)
876 {
877 if (output->tun_flags & TUNNEL_KEY &&
878 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
879 OVS_TUNNEL_KEY_ATTR_PAD))
880 return -EMSGSIZE;
881
882 if (mode & IP_TUNNEL_INFO_BRIDGE)
883 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
884 ? -EMSGSIZE : 0;
885
886 switch (tun_proto) {
887 case AF_INET:
888 if (output->u.ipv4.src &&
889 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
890 output->u.ipv4.src))
891 return -EMSGSIZE;
892 if (output->u.ipv4.dst &&
893 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
894 output->u.ipv4.dst))
895 return -EMSGSIZE;
896 break;
897 case AF_INET6:
898 if (!ipv6_addr_any(&output->u.ipv6.src) &&
899 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
900 &output->u.ipv6.src))
901 return -EMSGSIZE;
902 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
903 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
904 &output->u.ipv6.dst))
905 return -EMSGSIZE;
906 break;
907 }
908 if (output->tos &&
909 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
910 return -EMSGSIZE;
911 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
912 return -EMSGSIZE;
913 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
914 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
915 return -EMSGSIZE;
916 if ((output->tun_flags & TUNNEL_CSUM) &&
917 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
918 return -EMSGSIZE;
919 if (output->tp_src &&
920 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
921 return -EMSGSIZE;
922 if (output->tp_dst &&
923 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
924 return -EMSGSIZE;
925 if ((output->tun_flags & TUNNEL_OAM) &&
926 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
927 return -EMSGSIZE;
928 if (swkey_tun_opts_len) {
929 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
930 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
931 swkey_tun_opts_len, tun_opts))
932 return -EMSGSIZE;
933 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
934 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
935 return -EMSGSIZE;
936 else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
937 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
938 swkey_tun_opts_len, tun_opts))
939 return -EMSGSIZE;
940 }
941
942 return 0;
943 }
944
ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)945 static int ip_tun_to_nlattr(struct sk_buff *skb,
946 const struct ip_tunnel_key *output,
947 const void *tun_opts, int swkey_tun_opts_len,
948 unsigned short tun_proto, u8 mode)
949 {
950 struct nlattr *nla;
951 int err;
952
953 nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
954 if (!nla)
955 return -EMSGSIZE;
956
957 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
958 tun_proto, mode);
959 if (err)
960 return err;
961
962 nla_nest_end(skb, nla);
963 return 0;
964 }
965
ovs_nla_put_tunnel_info(struct sk_buff * skb,struct ip_tunnel_info * tun_info)966 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
967 struct ip_tunnel_info *tun_info)
968 {
969 return __ip_tun_to_nlattr(skb, &tun_info->key,
970 ip_tunnel_info_opts(tun_info),
971 tun_info->options_len,
972 ip_tunnel_info_af(tun_info), tun_info->mode);
973 }
974
encode_vlan_from_nlattrs(struct sw_flow_match * match,const struct nlattr * a[],bool is_mask,bool inner)975 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
976 const struct nlattr *a[],
977 bool is_mask, bool inner)
978 {
979 __be16 tci = 0;
980 __be16 tpid = 0;
981
982 if (a[OVS_KEY_ATTR_VLAN])
983 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
984
985 if (a[OVS_KEY_ATTR_ETHERTYPE])
986 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
987
988 if (likely(!inner)) {
989 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
990 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
991 } else {
992 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
993 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
994 }
995 return 0;
996 }
997
validate_vlan_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)998 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
999 u64 key_attrs, bool inner,
1000 const struct nlattr **a, bool log)
1001 {
1002 __be16 tci = 0;
1003
1004 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1005 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1006 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1007 /* Not a VLAN. */
1008 return 0;
1009 }
1010
1011 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1012 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1013 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1014 return -EINVAL;
1015 }
1016
1017 if (a[OVS_KEY_ATTR_VLAN])
1018 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1019
1020 if (!(tci & htons(VLAN_CFI_MASK))) {
1021 if (tci) {
1022 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1023 (inner) ? "C-VLAN" : "VLAN");
1024 return -EINVAL;
1025 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1026 /* Corner case for truncated VLAN header. */
1027 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1028 (inner) ? "C-VLAN" : "VLAN");
1029 return -EINVAL;
1030 }
1031 }
1032
1033 return 1;
1034 }
1035
validate_vlan_mask_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)1036 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1037 u64 key_attrs, bool inner,
1038 const struct nlattr **a, bool log)
1039 {
1040 __be16 tci = 0;
1041 __be16 tpid = 0;
1042 bool encap_valid = !!(match->key->eth.vlan.tci &
1043 htons(VLAN_CFI_MASK));
1044 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1045 htons(VLAN_CFI_MASK));
1046
1047 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1048 /* Not a VLAN. */
1049 return 0;
1050 }
1051
1052 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1053 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1054 (inner) ? "C-VLAN" : "VLAN");
1055 return -EINVAL;
1056 }
1057
1058 if (a[OVS_KEY_ATTR_VLAN])
1059 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1060
1061 if (a[OVS_KEY_ATTR_ETHERTYPE])
1062 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1063
1064 if (tpid != htons(0xffff)) {
1065 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1066 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1067 return -EINVAL;
1068 }
1069 if (!(tci & htons(VLAN_CFI_MASK))) {
1070 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1071 (inner) ? "C-VLAN" : "VLAN");
1072 return -EINVAL;
1073 }
1074
1075 return 1;
1076 }
1077
__parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,bool inner,const struct nlattr ** a,bool is_mask,bool log)1078 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1079 u64 *key_attrs, bool inner,
1080 const struct nlattr **a, bool is_mask,
1081 bool log)
1082 {
1083 int err;
1084 const struct nlattr *encap;
1085
1086 if (!is_mask)
1087 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1088 a, log);
1089 else
1090 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1091 a, log);
1092 if (err <= 0)
1093 return err;
1094
1095 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1096 if (err)
1097 return err;
1098
1099 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1100 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1101 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1102
1103 encap = a[OVS_KEY_ATTR_ENCAP];
1104
1105 if (!is_mask)
1106 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1107 else
1108 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1109
1110 return err;
1111 }
1112
parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,const struct nlattr ** a,bool is_mask,bool log)1113 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1114 u64 *key_attrs, const struct nlattr **a,
1115 bool is_mask, bool log)
1116 {
1117 int err;
1118 bool encap_valid = false;
1119
1120 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1121 is_mask, log);
1122 if (err)
1123 return err;
1124
1125 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1126 if (encap_valid) {
1127 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1128 is_mask, log);
1129 if (err)
1130 return err;
1131 }
1132
1133 return 0;
1134 }
1135
parse_eth_type_from_nlattrs(struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1136 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1137 u64 *attrs, const struct nlattr **a,
1138 bool is_mask, bool log)
1139 {
1140 __be16 eth_type;
1141
1142 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1143 if (is_mask) {
1144 /* Always exact match EtherType. */
1145 eth_type = htons(0xffff);
1146 } else if (!eth_proto_is_802_3(eth_type)) {
1147 OVS_NLERR(log, "EtherType %x is less than min %x",
1148 ntohs(eth_type), ETH_P_802_3_MIN);
1149 return -EINVAL;
1150 }
1151
1152 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1153 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1154 return 0;
1155 }
1156
metadata_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1157 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1158 u64 *attrs, const struct nlattr **a,
1159 bool is_mask, bool log)
1160 {
1161 u8 mac_proto = MAC_PROTO_ETHERNET;
1162
1163 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1164 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1165
1166 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1167 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1168 }
1169
1170 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1171 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1172
1173 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1174 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1175 }
1176
1177 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1178 SW_FLOW_KEY_PUT(match, phy.priority,
1179 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1180 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1181 }
1182
1183 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1184 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1185
1186 if (is_mask) {
1187 in_port = 0xffffffff; /* Always exact match in_port. */
1188 } else if (in_port >= DP_MAX_PORTS) {
1189 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1190 in_port, DP_MAX_PORTS);
1191 return -EINVAL;
1192 }
1193
1194 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1195 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1196 } else if (!is_mask) {
1197 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1198 }
1199
1200 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1201 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1202
1203 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1204 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1205 }
1206 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1207 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1208 is_mask, log) < 0)
1209 return -EINVAL;
1210 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1211 }
1212
1213 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1214 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1215 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1216
1217 if (ct_state & ~CT_SUPPORTED_MASK) {
1218 OVS_NLERR(log, "ct_state flags %08x unsupported",
1219 ct_state);
1220 return -EINVAL;
1221 }
1222
1223 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1224 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1225 }
1226 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1227 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1228 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1229
1230 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1231 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1232 }
1233 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1234 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1235 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1236
1237 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1238 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1239 }
1240 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1241 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1242 const struct ovs_key_ct_labels *cl;
1243
1244 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1245 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1246 sizeof(*cl), is_mask);
1247 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1248 }
1249 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1250 const struct ovs_key_ct_tuple_ipv4 *ct;
1251
1252 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1253
1254 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1255 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1256 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1257 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1258 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1259 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1260 }
1261 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1262 const struct ovs_key_ct_tuple_ipv6 *ct;
1263
1264 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1265
1266 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1267 sizeof(match->key->ipv6.ct_orig.src),
1268 is_mask);
1269 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1270 sizeof(match->key->ipv6.ct_orig.dst),
1271 is_mask);
1272 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1273 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1274 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1275 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1276 }
1277
1278 /* For layer 3 packets the Ethernet type is provided
1279 * and treated as metadata but no MAC addresses are provided.
1280 */
1281 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1282 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1283 mac_proto = MAC_PROTO_NONE;
1284
1285 /* Always exact match mac_proto */
1286 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1287
1288 if (mac_proto == MAC_PROTO_NONE)
1289 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1290 log);
1291
1292 return 0;
1293 }
1294
nsh_hdr_from_nlattr(const struct nlattr * attr,struct nshhdr * nh,size_t size)1295 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1296 struct nshhdr *nh, size_t size)
1297 {
1298 struct nlattr *a;
1299 int rem;
1300 u8 flags = 0;
1301 u8 ttl = 0;
1302 int mdlen = 0;
1303
1304 /* validate_nsh has check this, so we needn't do duplicate check here
1305 */
1306 if (size < NSH_BASE_HDR_LEN)
1307 return -ENOBUFS;
1308
1309 nla_for_each_nested(a, attr, rem) {
1310 int type = nla_type(a);
1311
1312 switch (type) {
1313 case OVS_NSH_KEY_ATTR_BASE: {
1314 const struct ovs_nsh_key_base *base = nla_data(a);
1315
1316 flags = base->flags;
1317 ttl = base->ttl;
1318 nh->np = base->np;
1319 nh->mdtype = base->mdtype;
1320 nh->path_hdr = base->path_hdr;
1321 break;
1322 }
1323 case OVS_NSH_KEY_ATTR_MD1:
1324 mdlen = nla_len(a);
1325 if (mdlen > size - NSH_BASE_HDR_LEN)
1326 return -ENOBUFS;
1327 memcpy(&nh->md1, nla_data(a), mdlen);
1328 break;
1329
1330 case OVS_NSH_KEY_ATTR_MD2:
1331 mdlen = nla_len(a);
1332 if (mdlen > size - NSH_BASE_HDR_LEN)
1333 return -ENOBUFS;
1334 memcpy(&nh->md2, nla_data(a), mdlen);
1335 break;
1336
1337 default:
1338 return -EINVAL;
1339 }
1340 }
1341
1342 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */
1343 nh->ver_flags_ttl_len = 0;
1344 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1345
1346 return 0;
1347 }
1348
nsh_key_from_nlattr(const struct nlattr * attr,struct ovs_key_nsh * nsh,struct ovs_key_nsh * nsh_mask)1349 int nsh_key_from_nlattr(const struct nlattr *attr,
1350 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1351 {
1352 struct nlattr *a;
1353 int rem;
1354
1355 /* validate_nsh has check this, so we needn't do duplicate check here
1356 */
1357 nla_for_each_nested(a, attr, rem) {
1358 int type = nla_type(a);
1359
1360 switch (type) {
1361 case OVS_NSH_KEY_ATTR_BASE: {
1362 const struct ovs_nsh_key_base *base = nla_data(a);
1363 const struct ovs_nsh_key_base *base_mask = base + 1;
1364
1365 nsh->base = *base;
1366 nsh_mask->base = *base_mask;
1367 break;
1368 }
1369 case OVS_NSH_KEY_ATTR_MD1: {
1370 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1371 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1372
1373 memcpy(nsh->context, md1->context, sizeof(*md1));
1374 memcpy(nsh_mask->context, md1_mask->context,
1375 sizeof(*md1_mask));
1376 break;
1377 }
1378 case OVS_NSH_KEY_ATTR_MD2:
1379 /* Not supported yet */
1380 return -ENOTSUPP;
1381 default:
1382 return -EINVAL;
1383 }
1384 }
1385
1386 return 0;
1387 }
1388
nsh_key_put_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool is_push_nsh,bool log)1389 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1390 struct sw_flow_match *match, bool is_mask,
1391 bool is_push_nsh, bool log)
1392 {
1393 struct nlattr *a;
1394 int rem;
1395 bool has_base = false;
1396 bool has_md1 = false;
1397 bool has_md2 = false;
1398 u8 mdtype = 0;
1399 int mdlen = 0;
1400
1401 if (WARN_ON(is_push_nsh && is_mask))
1402 return -EINVAL;
1403
1404 nla_for_each_nested(a, attr, rem) {
1405 int type = nla_type(a);
1406 int i;
1407
1408 if (type > OVS_NSH_KEY_ATTR_MAX) {
1409 OVS_NLERR(log, "nsh attr %d is out of range max %d",
1410 type, OVS_NSH_KEY_ATTR_MAX);
1411 return -EINVAL;
1412 }
1413
1414 if (!check_attr_len(nla_len(a),
1415 ovs_nsh_key_attr_lens[type].len)) {
1416 OVS_NLERR(
1417 log,
1418 "nsh attr %d has unexpected len %d expected %d",
1419 type,
1420 nla_len(a),
1421 ovs_nsh_key_attr_lens[type].len
1422 );
1423 return -EINVAL;
1424 }
1425
1426 switch (type) {
1427 case OVS_NSH_KEY_ATTR_BASE: {
1428 const struct ovs_nsh_key_base *base = nla_data(a);
1429
1430 has_base = true;
1431 mdtype = base->mdtype;
1432 SW_FLOW_KEY_PUT(match, nsh.base.flags,
1433 base->flags, is_mask);
1434 SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1435 base->ttl, is_mask);
1436 SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1437 base->mdtype, is_mask);
1438 SW_FLOW_KEY_PUT(match, nsh.base.np,
1439 base->np, is_mask);
1440 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1441 base->path_hdr, is_mask);
1442 break;
1443 }
1444 case OVS_NSH_KEY_ATTR_MD1: {
1445 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1446
1447 has_md1 = true;
1448 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1449 SW_FLOW_KEY_PUT(match, nsh.context[i],
1450 md1->context[i], is_mask);
1451 break;
1452 }
1453 case OVS_NSH_KEY_ATTR_MD2:
1454 if (!is_push_nsh) /* Not supported MD type 2 yet */
1455 return -ENOTSUPP;
1456
1457 has_md2 = true;
1458 mdlen = nla_len(a);
1459 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1460 OVS_NLERR(
1461 log,
1462 "Invalid MD length %d for MD type %d",
1463 mdlen,
1464 mdtype
1465 );
1466 return -EINVAL;
1467 }
1468 break;
1469 default:
1470 OVS_NLERR(log, "Unknown nsh attribute %d",
1471 type);
1472 return -EINVAL;
1473 }
1474 }
1475
1476 if (rem > 0) {
1477 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1478 return -EINVAL;
1479 }
1480
1481 if (has_md1 && has_md2) {
1482 OVS_NLERR(
1483 1,
1484 "invalid nsh attribute: md1 and md2 are exclusive."
1485 );
1486 return -EINVAL;
1487 }
1488
1489 if (!is_mask) {
1490 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1491 (has_md2 && mdtype != NSH_M_TYPE2)) {
1492 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1493 mdtype);
1494 return -EINVAL;
1495 }
1496
1497 if (is_push_nsh &&
1498 (!has_base || (!has_md1 && !has_md2))) {
1499 OVS_NLERR(
1500 1,
1501 "push_nsh: missing base or metadata attributes"
1502 );
1503 return -EINVAL;
1504 }
1505 }
1506
1507 return 0;
1508 }
1509
ovs_key_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 attrs,const struct nlattr ** a,bool is_mask,bool log)1510 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1511 u64 attrs, const struct nlattr **a,
1512 bool is_mask, bool log)
1513 {
1514 int err;
1515
1516 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1517 if (err)
1518 return err;
1519
1520 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1521 const struct ovs_key_ethernet *eth_key;
1522
1523 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1524 SW_FLOW_KEY_MEMCPY(match, eth.src,
1525 eth_key->eth_src, ETH_ALEN, is_mask);
1526 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1527 eth_key->eth_dst, ETH_ALEN, is_mask);
1528 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1529
1530 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1531 /* VLAN attribute is always parsed before getting here since it
1532 * may occur multiple times.
1533 */
1534 OVS_NLERR(log, "VLAN attribute unexpected.");
1535 return -EINVAL;
1536 }
1537
1538 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1539 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1540 log);
1541 if (err)
1542 return err;
1543 } else if (!is_mask) {
1544 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1545 }
1546 } else if (!match->key->eth.type) {
1547 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1548 return -EINVAL;
1549 }
1550
1551 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1552 const struct ovs_key_ipv4 *ipv4_key;
1553
1554 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1555 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1556 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1557 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1558 return -EINVAL;
1559 }
1560 SW_FLOW_KEY_PUT(match, ip.proto,
1561 ipv4_key->ipv4_proto, is_mask);
1562 SW_FLOW_KEY_PUT(match, ip.tos,
1563 ipv4_key->ipv4_tos, is_mask);
1564 SW_FLOW_KEY_PUT(match, ip.ttl,
1565 ipv4_key->ipv4_ttl, is_mask);
1566 SW_FLOW_KEY_PUT(match, ip.frag,
1567 ipv4_key->ipv4_frag, is_mask);
1568 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1569 ipv4_key->ipv4_src, is_mask);
1570 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1571 ipv4_key->ipv4_dst, is_mask);
1572 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1573 }
1574
1575 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1576 const struct ovs_key_ipv6 *ipv6_key;
1577
1578 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1579 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1580 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1581 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1582 return -EINVAL;
1583 }
1584
1585 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1586 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1587 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1588 return -EINVAL;
1589 }
1590
1591 SW_FLOW_KEY_PUT(match, ipv6.label,
1592 ipv6_key->ipv6_label, is_mask);
1593 SW_FLOW_KEY_PUT(match, ip.proto,
1594 ipv6_key->ipv6_proto, is_mask);
1595 SW_FLOW_KEY_PUT(match, ip.tos,
1596 ipv6_key->ipv6_tclass, is_mask);
1597 SW_FLOW_KEY_PUT(match, ip.ttl,
1598 ipv6_key->ipv6_hlimit, is_mask);
1599 SW_FLOW_KEY_PUT(match, ip.frag,
1600 ipv6_key->ipv6_frag, is_mask);
1601 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1602 ipv6_key->ipv6_src,
1603 sizeof(match->key->ipv6.addr.src),
1604 is_mask);
1605 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1606 ipv6_key->ipv6_dst,
1607 sizeof(match->key->ipv6.addr.dst),
1608 is_mask);
1609
1610 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1611 }
1612
1613 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1614 const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1615
1616 ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1617
1618 SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1619 ipv6_exthdrs_key->hdrs, is_mask);
1620
1621 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1622 }
1623
1624 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1625 const struct ovs_key_arp *arp_key;
1626
1627 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1628 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1629 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1630 arp_key->arp_op);
1631 return -EINVAL;
1632 }
1633
1634 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1635 arp_key->arp_sip, is_mask);
1636 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1637 arp_key->arp_tip, is_mask);
1638 SW_FLOW_KEY_PUT(match, ip.proto,
1639 ntohs(arp_key->arp_op), is_mask);
1640 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1641 arp_key->arp_sha, ETH_ALEN, is_mask);
1642 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1643 arp_key->arp_tha, ETH_ALEN, is_mask);
1644
1645 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1646 }
1647
1648 if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1649 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1650 is_mask, false, log) < 0)
1651 return -EINVAL;
1652 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1653 }
1654
1655 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1656 const struct ovs_key_mpls *mpls_key;
1657 u32 hdr_len;
1658 u32 label_count, label_count_mask, i;
1659
1660 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1661 hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1662 label_count = hdr_len / sizeof(struct ovs_key_mpls);
1663
1664 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1665 hdr_len % sizeof(struct ovs_key_mpls))
1666 return -EINVAL;
1667
1668 label_count_mask = GENMASK(label_count - 1, 0);
1669
1670 for (i = 0 ; i < label_count; i++)
1671 SW_FLOW_KEY_PUT(match, mpls.lse[i],
1672 mpls_key[i].mpls_lse, is_mask);
1673
1674 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1675 label_count_mask, is_mask);
1676
1677 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1678 }
1679
1680 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1681 const struct ovs_key_tcp *tcp_key;
1682
1683 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1684 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1685 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1686 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1687 }
1688
1689 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1690 SW_FLOW_KEY_PUT(match, tp.flags,
1691 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1692 is_mask);
1693 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1694 }
1695
1696 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1697 const struct ovs_key_udp *udp_key;
1698
1699 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1700 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1701 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1702 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1703 }
1704
1705 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1706 const struct ovs_key_sctp *sctp_key;
1707
1708 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1709 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1710 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1711 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1712 }
1713
1714 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1715 const struct ovs_key_icmp *icmp_key;
1716
1717 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1718 SW_FLOW_KEY_PUT(match, tp.src,
1719 htons(icmp_key->icmp_type), is_mask);
1720 SW_FLOW_KEY_PUT(match, tp.dst,
1721 htons(icmp_key->icmp_code), is_mask);
1722 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1723 }
1724
1725 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1726 const struct ovs_key_icmpv6 *icmpv6_key;
1727
1728 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1729 SW_FLOW_KEY_PUT(match, tp.src,
1730 htons(icmpv6_key->icmpv6_type), is_mask);
1731 SW_FLOW_KEY_PUT(match, tp.dst,
1732 htons(icmpv6_key->icmpv6_code), is_mask);
1733 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1734 }
1735
1736 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1737 const struct ovs_key_nd *nd_key;
1738
1739 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1740 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1741 nd_key->nd_target,
1742 sizeof(match->key->ipv6.nd.target),
1743 is_mask);
1744 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1745 nd_key->nd_sll, ETH_ALEN, is_mask);
1746 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1747 nd_key->nd_tll, ETH_ALEN, is_mask);
1748 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1749 }
1750
1751 if (attrs != 0) {
1752 OVS_NLERR(log, "Unknown key attributes %llx",
1753 (unsigned long long)attrs);
1754 return -EINVAL;
1755 }
1756
1757 return 0;
1758 }
1759
nlattr_set(struct nlattr * attr,u8 val,const struct ovs_len_tbl * tbl)1760 static void nlattr_set(struct nlattr *attr, u8 val,
1761 const struct ovs_len_tbl *tbl)
1762 {
1763 struct nlattr *nla;
1764 int rem;
1765
1766 /* The nlattr stream should already have been validated */
1767 nla_for_each_nested(nla, attr, rem) {
1768 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1769 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1770 else
1771 memset(nla_data(nla), val, nla_len(nla));
1772
1773 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1774 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1775 }
1776 }
1777
mask_set_nlattr(struct nlattr * attr,u8 val)1778 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1779 {
1780 nlattr_set(attr, val, ovs_key_lens);
1781 }
1782
1783 /**
1784 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1785 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1786 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1787 * does not include any don't care bit.
1788 * @net: Used to determine per-namespace field support.
1789 * @match: receives the extracted flow match information.
1790 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1791 * sequence. The fields should of the packet that triggered the creation
1792 * of this flow.
1793 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1794 * Netlink attribute specifies the mask field of the wildcarded flow.
1795 * @log: Boolean to allow kernel error logging. Normally true, but when
1796 * probing for feature compatibility this should be passed in as false to
1797 * suppress unnecessary error logging.
1798 */
ovs_nla_get_match(struct net * net,struct sw_flow_match * match,const struct nlattr * nla_key,const struct nlattr * nla_mask,bool log)1799 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1800 const struct nlattr *nla_key,
1801 const struct nlattr *nla_mask,
1802 bool log)
1803 {
1804 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1805 struct nlattr *newmask = NULL;
1806 u64 key_attrs = 0;
1807 u64 mask_attrs = 0;
1808 int err;
1809
1810 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1811 if (err)
1812 return err;
1813
1814 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1815 if (err)
1816 return err;
1817
1818 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1819 if (err)
1820 return err;
1821
1822 if (match->mask) {
1823 if (!nla_mask) {
1824 /* Create an exact match mask. We need to set to 0xff
1825 * all the 'match->mask' fields that have been touched
1826 * in 'match->key'. We cannot simply memset
1827 * 'match->mask', because padding bytes and fields not
1828 * specified in 'match->key' should be left to 0.
1829 * Instead, we use a stream of netlink attributes,
1830 * copied from 'key' and set to 0xff.
1831 * ovs_key_from_nlattrs() will take care of filling
1832 * 'match->mask' appropriately.
1833 */
1834 newmask = kmemdup(nla_key,
1835 nla_total_size(nla_len(nla_key)),
1836 GFP_KERNEL);
1837 if (!newmask)
1838 return -ENOMEM;
1839
1840 mask_set_nlattr(newmask, 0xff);
1841
1842 /* The userspace does not send tunnel attributes that
1843 * are 0, but we should not wildcard them nonetheless.
1844 */
1845 if (match->key->tun_proto)
1846 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1847 0xff, true);
1848
1849 nla_mask = newmask;
1850 }
1851
1852 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1853 if (err)
1854 goto free_newmask;
1855
1856 /* Always match on tci. */
1857 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1858 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1859
1860 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1861 if (err)
1862 goto free_newmask;
1863
1864 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1865 log);
1866 if (err)
1867 goto free_newmask;
1868 }
1869
1870 if (!match_validate(match, key_attrs, mask_attrs, log))
1871 err = -EINVAL;
1872
1873 free_newmask:
1874 kfree(newmask);
1875 return err;
1876 }
1877
get_ufid_len(const struct nlattr * attr,bool log)1878 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1879 {
1880 size_t len;
1881
1882 if (!attr)
1883 return 0;
1884
1885 len = nla_len(attr);
1886 if (len < 1 || len > MAX_UFID_LENGTH) {
1887 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1888 nla_len(attr), MAX_UFID_LENGTH);
1889 return 0;
1890 }
1891
1892 return len;
1893 }
1894
1895 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1896 * or false otherwise.
1897 */
ovs_nla_get_ufid(struct sw_flow_id * sfid,const struct nlattr * attr,bool log)1898 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1899 bool log)
1900 {
1901 sfid->ufid_len = get_ufid_len(attr, log);
1902 if (sfid->ufid_len)
1903 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1904
1905 return sfid->ufid_len;
1906 }
1907
ovs_nla_get_identifier(struct sw_flow_id * sfid,const struct nlattr * ufid,const struct sw_flow_key * key,bool log)1908 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1909 const struct sw_flow_key *key, bool log)
1910 {
1911 struct sw_flow_key *new_key;
1912
1913 if (ovs_nla_get_ufid(sfid, ufid, log))
1914 return 0;
1915
1916 /* If UFID was not provided, use unmasked key. */
1917 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1918 if (!new_key)
1919 return -ENOMEM;
1920 memcpy(new_key, key, sizeof(*key));
1921 sfid->unmasked_key = new_key;
1922
1923 return 0;
1924 }
1925
ovs_nla_get_ufid_flags(const struct nlattr * attr)1926 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1927 {
1928 return attr ? nla_get_u32(attr) : 0;
1929 }
1930
1931 /**
1932 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1933 * @net: Network namespace.
1934 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1935 * metadata.
1936 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1937 * attributes.
1938 * @attrs: Bit mask for the netlink attributes included in @a.
1939 * @log: Boolean to allow kernel error logging. Normally true, but when
1940 * probing for feature compatibility this should be passed in as false to
1941 * suppress unnecessary error logging.
1942 *
1943 * This parses a series of Netlink attributes that form a flow key, which must
1944 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1945 * get the metadata, that is, the parts of the flow key that cannot be
1946 * extracted from the packet itself.
1947 *
1948 * This must be called before the packet key fields are filled in 'key'.
1949 */
1950
ovs_nla_get_flow_metadata(struct net * net,const struct nlattr * a[OVS_KEY_ATTR_MAX+1],u64 attrs,struct sw_flow_key * key,bool log)1951 int ovs_nla_get_flow_metadata(struct net *net,
1952 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1953 u64 attrs, struct sw_flow_key *key, bool log)
1954 {
1955 struct sw_flow_match match;
1956
1957 memset(&match, 0, sizeof(match));
1958 match.key = key;
1959
1960 key->ct_state = 0;
1961 key->ct_zone = 0;
1962 key->ct_orig_proto = 0;
1963 memset(&key->ct, 0, sizeof(key->ct));
1964 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1965 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1966
1967 key->phy.in_port = DP_MAX_PORTS;
1968
1969 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1970 }
1971
ovs_nla_put_vlan(struct sk_buff * skb,const struct vlan_head * vh,bool is_mask)1972 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1973 bool is_mask)
1974 {
1975 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1976
1977 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1978 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1979 return -EMSGSIZE;
1980 return 0;
1981 }
1982
nsh_key_to_nlattr(const struct ovs_key_nsh * nsh,bool is_mask,struct sk_buff * skb)1983 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1984 struct sk_buff *skb)
1985 {
1986 struct nlattr *start;
1987
1988 start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1989 if (!start)
1990 return -EMSGSIZE;
1991
1992 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1993 goto nla_put_failure;
1994
1995 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1996 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1997 sizeof(nsh->context), nsh->context))
1998 goto nla_put_failure;
1999 }
2000
2001 /* Don't support MD type 2 yet */
2002
2003 nla_nest_end(skb, start);
2004
2005 return 0;
2006
2007 nla_put_failure:
2008 return -EMSGSIZE;
2009 }
2010
__ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,bool is_mask,struct sk_buff * skb)2011 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2012 const struct sw_flow_key *output, bool is_mask,
2013 struct sk_buff *skb)
2014 {
2015 struct ovs_key_ethernet *eth_key;
2016 struct nlattr *nla;
2017 struct nlattr *encap = NULL;
2018 struct nlattr *in_encap = NULL;
2019
2020 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2021 goto nla_put_failure;
2022
2023 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2024 goto nla_put_failure;
2025
2026 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2027 goto nla_put_failure;
2028
2029 if ((swkey->tun_proto || is_mask)) {
2030 const void *opts = NULL;
2031
2032 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2033 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2034
2035 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2036 swkey->tun_opts_len, swkey->tun_proto, 0))
2037 goto nla_put_failure;
2038 }
2039
2040 if (swkey->phy.in_port == DP_MAX_PORTS) {
2041 if (is_mask && (output->phy.in_port == 0xffff))
2042 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2043 goto nla_put_failure;
2044 } else {
2045 u16 upper_u16;
2046 upper_u16 = !is_mask ? 0 : 0xffff;
2047
2048 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2049 (upper_u16 << 16) | output->phy.in_port))
2050 goto nla_put_failure;
2051 }
2052
2053 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2054 goto nla_put_failure;
2055
2056 if (ovs_ct_put_key(swkey, output, skb))
2057 goto nla_put_failure;
2058
2059 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2060 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2061 if (!nla)
2062 goto nla_put_failure;
2063
2064 eth_key = nla_data(nla);
2065 ether_addr_copy(eth_key->eth_src, output->eth.src);
2066 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2067
2068 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2069 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2070 goto nla_put_failure;
2071 encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2072 if (!swkey->eth.vlan.tci)
2073 goto unencap;
2074
2075 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2076 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2077 goto nla_put_failure;
2078 in_encap = nla_nest_start_noflag(skb,
2079 OVS_KEY_ATTR_ENCAP);
2080 if (!swkey->eth.cvlan.tci)
2081 goto unencap;
2082 }
2083 }
2084
2085 if (swkey->eth.type == htons(ETH_P_802_2)) {
2086 /*
2087 * Ethertype 802.2 is represented in the netlink with omitted
2088 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2089 * 0xffff in the mask attribute. Ethertype can also
2090 * be wildcarded.
2091 */
2092 if (is_mask && output->eth.type)
2093 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2094 output->eth.type))
2095 goto nla_put_failure;
2096 goto unencap;
2097 }
2098 }
2099
2100 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2101 goto nla_put_failure;
2102
2103 if (eth_type_vlan(swkey->eth.type)) {
2104 /* There are 3 VLAN tags, we don't know anything about the rest
2105 * of the packet, so truncate here.
2106 */
2107 WARN_ON_ONCE(!(encap && in_encap));
2108 goto unencap;
2109 }
2110
2111 if (swkey->eth.type == htons(ETH_P_IP)) {
2112 struct ovs_key_ipv4 *ipv4_key;
2113
2114 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2115 if (!nla)
2116 goto nla_put_failure;
2117 ipv4_key = nla_data(nla);
2118 ipv4_key->ipv4_src = output->ipv4.addr.src;
2119 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2120 ipv4_key->ipv4_proto = output->ip.proto;
2121 ipv4_key->ipv4_tos = output->ip.tos;
2122 ipv4_key->ipv4_ttl = output->ip.ttl;
2123 ipv4_key->ipv4_frag = output->ip.frag;
2124 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2125 struct ovs_key_ipv6 *ipv6_key;
2126 struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2127
2128 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2129 if (!nla)
2130 goto nla_put_failure;
2131 ipv6_key = nla_data(nla);
2132 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2133 sizeof(ipv6_key->ipv6_src));
2134 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2135 sizeof(ipv6_key->ipv6_dst));
2136 ipv6_key->ipv6_label = output->ipv6.label;
2137 ipv6_key->ipv6_proto = output->ip.proto;
2138 ipv6_key->ipv6_tclass = output->ip.tos;
2139 ipv6_key->ipv6_hlimit = output->ip.ttl;
2140 ipv6_key->ipv6_frag = output->ip.frag;
2141
2142 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2143 sizeof(*ipv6_exthdrs_key));
2144 if (!nla)
2145 goto nla_put_failure;
2146 ipv6_exthdrs_key = nla_data(nla);
2147 ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2148 } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2149 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2150 goto nla_put_failure;
2151 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2152 swkey->eth.type == htons(ETH_P_RARP)) {
2153 struct ovs_key_arp *arp_key;
2154
2155 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2156 if (!nla)
2157 goto nla_put_failure;
2158 arp_key = nla_data(nla);
2159 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2160 arp_key->arp_sip = output->ipv4.addr.src;
2161 arp_key->arp_tip = output->ipv4.addr.dst;
2162 arp_key->arp_op = htons(output->ip.proto);
2163 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2164 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2165 } else if (eth_p_mpls(swkey->eth.type)) {
2166 u8 i, num_labels;
2167 struct ovs_key_mpls *mpls_key;
2168
2169 num_labels = hweight_long(output->mpls.num_labels_mask);
2170 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2171 num_labels * sizeof(*mpls_key));
2172 if (!nla)
2173 goto nla_put_failure;
2174
2175 mpls_key = nla_data(nla);
2176 for (i = 0; i < num_labels; i++)
2177 mpls_key[i].mpls_lse = output->mpls.lse[i];
2178 }
2179
2180 if ((swkey->eth.type == htons(ETH_P_IP) ||
2181 swkey->eth.type == htons(ETH_P_IPV6)) &&
2182 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2183
2184 if (swkey->ip.proto == IPPROTO_TCP) {
2185 struct ovs_key_tcp *tcp_key;
2186
2187 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2188 if (!nla)
2189 goto nla_put_failure;
2190 tcp_key = nla_data(nla);
2191 tcp_key->tcp_src = output->tp.src;
2192 tcp_key->tcp_dst = output->tp.dst;
2193 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2194 output->tp.flags))
2195 goto nla_put_failure;
2196 } else if (swkey->ip.proto == IPPROTO_UDP) {
2197 struct ovs_key_udp *udp_key;
2198
2199 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2200 if (!nla)
2201 goto nla_put_failure;
2202 udp_key = nla_data(nla);
2203 udp_key->udp_src = output->tp.src;
2204 udp_key->udp_dst = output->tp.dst;
2205 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2206 struct ovs_key_sctp *sctp_key;
2207
2208 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2209 if (!nla)
2210 goto nla_put_failure;
2211 sctp_key = nla_data(nla);
2212 sctp_key->sctp_src = output->tp.src;
2213 sctp_key->sctp_dst = output->tp.dst;
2214 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2215 swkey->ip.proto == IPPROTO_ICMP) {
2216 struct ovs_key_icmp *icmp_key;
2217
2218 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2219 if (!nla)
2220 goto nla_put_failure;
2221 icmp_key = nla_data(nla);
2222 icmp_key->icmp_type = ntohs(output->tp.src);
2223 icmp_key->icmp_code = ntohs(output->tp.dst);
2224 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2225 swkey->ip.proto == IPPROTO_ICMPV6) {
2226 struct ovs_key_icmpv6 *icmpv6_key;
2227
2228 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2229 sizeof(*icmpv6_key));
2230 if (!nla)
2231 goto nla_put_failure;
2232 icmpv6_key = nla_data(nla);
2233 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2234 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2235
2236 if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2237 swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2238 struct ovs_key_nd *nd_key;
2239
2240 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2241 if (!nla)
2242 goto nla_put_failure;
2243 nd_key = nla_data(nla);
2244 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2245 sizeof(nd_key->nd_target));
2246 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2247 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2248 }
2249 }
2250 }
2251
2252 unencap:
2253 if (in_encap)
2254 nla_nest_end(skb, in_encap);
2255 if (encap)
2256 nla_nest_end(skb, encap);
2257
2258 return 0;
2259
2260 nla_put_failure:
2261 return -EMSGSIZE;
2262 }
2263
ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,int attr,bool is_mask,struct sk_buff * skb)2264 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2265 const struct sw_flow_key *output, int attr, bool is_mask,
2266 struct sk_buff *skb)
2267 {
2268 int err;
2269 struct nlattr *nla;
2270
2271 nla = nla_nest_start_noflag(skb, attr);
2272 if (!nla)
2273 return -EMSGSIZE;
2274 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2275 if (err)
2276 return err;
2277 nla_nest_end(skb, nla);
2278
2279 return 0;
2280 }
2281
2282 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_identifier(const struct sw_flow * flow,struct sk_buff * skb)2283 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2284 {
2285 if (ovs_identifier_is_ufid(&flow->id))
2286 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2287 flow->id.ufid);
2288
2289 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2290 OVS_FLOW_ATTR_KEY, false, skb);
2291 }
2292
2293 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_masked_key(const struct sw_flow * flow,struct sk_buff * skb)2294 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2295 {
2296 return ovs_nla_put_key(&flow->key, &flow->key,
2297 OVS_FLOW_ATTR_KEY, false, skb);
2298 }
2299
2300 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_mask(const struct sw_flow * flow,struct sk_buff * skb)2301 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2302 {
2303 return ovs_nla_put_key(&flow->key, &flow->mask->key,
2304 OVS_FLOW_ATTR_MASK, true, skb);
2305 }
2306
2307 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
2308
nla_alloc_flow_actions(int size)2309 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2310 {
2311 struct sw_flow_actions *sfa;
2312
2313 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2314
2315 sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2316 if (!sfa)
2317 return ERR_PTR(-ENOMEM);
2318
2319 sfa->actions_len = 0;
2320 return sfa;
2321 }
2322
2323 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2324
ovs_nla_free_check_pkt_len_action(const struct nlattr * action)2325 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2326 {
2327 const struct nlattr *a;
2328 int rem;
2329
2330 nla_for_each_nested(a, action, rem) {
2331 switch (nla_type(a)) {
2332 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2333 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2334 ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2335 break;
2336 }
2337 }
2338 }
2339
ovs_nla_free_clone_action(const struct nlattr * action)2340 static void ovs_nla_free_clone_action(const struct nlattr *action)
2341 {
2342 const struct nlattr *a = nla_data(action);
2343 int rem = nla_len(action);
2344
2345 switch (nla_type(a)) {
2346 case OVS_CLONE_ATTR_EXEC:
2347 /* The real list of actions follows this attribute. */
2348 a = nla_next(a, &rem);
2349 ovs_nla_free_nested_actions(a, rem);
2350 break;
2351 }
2352 }
2353
ovs_nla_free_dec_ttl_action(const struct nlattr * action)2354 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2355 {
2356 const struct nlattr *a = nla_data(action);
2357
2358 switch (nla_type(a)) {
2359 case OVS_DEC_TTL_ATTR_ACTION:
2360 ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2361 break;
2362 }
2363 }
2364
ovs_nla_free_sample_action(const struct nlattr * action)2365 static void ovs_nla_free_sample_action(const struct nlattr *action)
2366 {
2367 const struct nlattr *a = nla_data(action);
2368 int rem = nla_len(action);
2369
2370 switch (nla_type(a)) {
2371 case OVS_SAMPLE_ATTR_ARG:
2372 /* The real list of actions follows this attribute. */
2373 a = nla_next(a, &rem);
2374 ovs_nla_free_nested_actions(a, rem);
2375 break;
2376 }
2377 }
2378
ovs_nla_free_set_action(const struct nlattr * a)2379 static void ovs_nla_free_set_action(const struct nlattr *a)
2380 {
2381 const struct nlattr *ovs_key = nla_data(a);
2382 struct ovs_tunnel_info *ovs_tun;
2383
2384 switch (nla_type(ovs_key)) {
2385 case OVS_KEY_ATTR_TUNNEL_INFO:
2386 ovs_tun = nla_data(ovs_key);
2387 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2388 break;
2389 }
2390 }
2391
ovs_nla_free_nested_actions(const struct nlattr * actions,int len)2392 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2393 {
2394 const struct nlattr *a;
2395 int rem;
2396
2397 /* Whenever new actions are added, the need to update this
2398 * function should be considered.
2399 */
2400 BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 24);
2401
2402 if (!actions)
2403 return;
2404
2405 nla_for_each_attr(a, actions, len, rem) {
2406 switch (nla_type(a)) {
2407 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2408 ovs_nla_free_check_pkt_len_action(a);
2409 break;
2410
2411 case OVS_ACTION_ATTR_CLONE:
2412 ovs_nla_free_clone_action(a);
2413 break;
2414
2415 case OVS_ACTION_ATTR_CT:
2416 ovs_ct_free_action(a);
2417 break;
2418
2419 case OVS_ACTION_ATTR_DEC_TTL:
2420 ovs_nla_free_dec_ttl_action(a);
2421 break;
2422
2423 case OVS_ACTION_ATTR_SAMPLE:
2424 ovs_nla_free_sample_action(a);
2425 break;
2426
2427 case OVS_ACTION_ATTR_SET:
2428 ovs_nla_free_set_action(a);
2429 break;
2430 }
2431 }
2432 }
2433
ovs_nla_free_flow_actions(struct sw_flow_actions * sf_acts)2434 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2435 {
2436 if (!sf_acts)
2437 return;
2438
2439 ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2440 kfree(sf_acts);
2441 }
2442
__ovs_nla_free_flow_actions(struct rcu_head * head)2443 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2444 {
2445 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2446 }
2447
2448 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2449 * The caller must hold rcu_read_lock for this to be sensible. */
ovs_nla_free_flow_actions_rcu(struct sw_flow_actions * sf_acts)2450 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2451 {
2452 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2453 }
2454
reserve_sfa_size(struct sw_flow_actions ** sfa,int attr_len,bool log)2455 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2456 int attr_len, bool log)
2457 {
2458
2459 struct sw_flow_actions *acts;
2460 int new_acts_size;
2461 size_t req_size = NLA_ALIGN(attr_len);
2462 int next_offset = offsetof(struct sw_flow_actions, actions) +
2463 (*sfa)->actions_len;
2464
2465 if (req_size <= (ksize(*sfa) - next_offset))
2466 goto out;
2467
2468 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2469
2470 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2471 if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2472 OVS_NLERR(log, "Flow action size exceeds max %u",
2473 MAX_ACTIONS_BUFSIZE);
2474 return ERR_PTR(-EMSGSIZE);
2475 }
2476 new_acts_size = MAX_ACTIONS_BUFSIZE;
2477 }
2478
2479 acts = nla_alloc_flow_actions(new_acts_size);
2480 if (IS_ERR(acts))
2481 return (void *)acts;
2482
2483 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2484 acts->actions_len = (*sfa)->actions_len;
2485 acts->orig_len = (*sfa)->orig_len;
2486 kfree(*sfa);
2487 *sfa = acts;
2488
2489 out:
2490 (*sfa)->actions_len += req_size;
2491 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2492 }
2493
__add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2494 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2495 int attrtype, void *data, int len, bool log)
2496 {
2497 struct nlattr *a;
2498
2499 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2500 if (IS_ERR(a))
2501 return a;
2502
2503 a->nla_type = attrtype;
2504 a->nla_len = nla_attr_size(len);
2505
2506 if (data)
2507 memcpy(nla_data(a), data, len);
2508 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2509
2510 return a;
2511 }
2512
ovs_nla_add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2513 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2514 int len, bool log)
2515 {
2516 struct nlattr *a;
2517
2518 a = __add_action(sfa, attrtype, data, len, log);
2519
2520 return PTR_ERR_OR_ZERO(a);
2521 }
2522
add_nested_action_start(struct sw_flow_actions ** sfa,int attrtype,bool log)2523 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2524 int attrtype, bool log)
2525 {
2526 int used = (*sfa)->actions_len;
2527 int err;
2528
2529 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2530 if (err)
2531 return err;
2532
2533 return used;
2534 }
2535
add_nested_action_end(struct sw_flow_actions * sfa,int st_offset)2536 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2537 int st_offset)
2538 {
2539 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2540 st_offset);
2541
2542 a->nla_len = sfa->actions_len - st_offset;
2543 }
2544
2545 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2546 const struct sw_flow_key *key,
2547 struct sw_flow_actions **sfa,
2548 __be16 eth_type, __be16 vlan_tci,
2549 u32 mpls_label_count, bool log,
2550 u32 depth);
2551
validate_and_copy_sample(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last,u32 depth)2552 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2553 const struct sw_flow_key *key,
2554 struct sw_flow_actions **sfa,
2555 __be16 eth_type, __be16 vlan_tci,
2556 u32 mpls_label_count, bool log, bool last,
2557 u32 depth)
2558 {
2559 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2560 const struct nlattr *probability, *actions;
2561 const struct nlattr *a;
2562 int rem, start, err;
2563 struct sample_arg arg;
2564
2565 memset(attrs, 0, sizeof(attrs));
2566 nla_for_each_nested(a, attr, rem) {
2567 int type = nla_type(a);
2568 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2569 return -EINVAL;
2570 attrs[type] = a;
2571 }
2572 if (rem)
2573 return -EINVAL;
2574
2575 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2576 if (!probability || nla_len(probability) != sizeof(u32))
2577 return -EINVAL;
2578
2579 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2580 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2581 return -EINVAL;
2582
2583 /* validation done, copy sample action. */
2584 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2585 if (start < 0)
2586 return start;
2587
2588 /* When both skb and flow may be changed, put the sample
2589 * into a deferred fifo. On the other hand, if only skb
2590 * may be modified, the actions can be executed in place.
2591 *
2592 * Do this analysis at the flow installation time.
2593 * Set 'clone_action->exec' to true if the actions can be
2594 * executed without being deferred.
2595 *
2596 * If the sample is the last action, it can always be excuted
2597 * rather than deferred.
2598 */
2599 arg.exec = last || !actions_may_change_flow(actions);
2600 arg.probability = nla_get_u32(probability);
2601
2602 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2603 log);
2604 if (err)
2605 return err;
2606
2607 err = __ovs_nla_copy_actions(net, actions, key, sfa,
2608 eth_type, vlan_tci, mpls_label_count, log,
2609 depth + 1);
2610
2611 if (err)
2612 return err;
2613
2614 add_nested_action_end(*sfa, start);
2615
2616 return 0;
2617 }
2618
validate_and_copy_dec_ttl(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,u32 depth)2619 static int validate_and_copy_dec_ttl(struct net *net,
2620 const struct nlattr *attr,
2621 const struct sw_flow_key *key,
2622 struct sw_flow_actions **sfa,
2623 __be16 eth_type, __be16 vlan_tci,
2624 u32 mpls_label_count, bool log,
2625 u32 depth)
2626 {
2627 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2628 int start, action_start, err, rem;
2629 const struct nlattr *a, *actions;
2630
2631 memset(attrs, 0, sizeof(attrs));
2632 nla_for_each_nested(a, attr, rem) {
2633 int type = nla_type(a);
2634
2635 /* Ignore unknown attributes to be future proof. */
2636 if (type > OVS_DEC_TTL_ATTR_MAX)
2637 continue;
2638
2639 if (!type || attrs[type]) {
2640 OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2641 type);
2642 return -EINVAL;
2643 }
2644
2645 attrs[type] = a;
2646 }
2647
2648 if (rem) {
2649 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2650 return -EINVAL;
2651 }
2652
2653 actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2654 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2655 OVS_NLERR(log, "Missing valid actions attribute.");
2656 return -EINVAL;
2657 }
2658
2659 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2660 if (start < 0)
2661 return start;
2662
2663 action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2664 if (action_start < 0)
2665 return action_start;
2666
2667 err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2668 vlan_tci, mpls_label_count, log,
2669 depth + 1);
2670 if (err)
2671 return err;
2672
2673 add_nested_action_end(*sfa, action_start);
2674 add_nested_action_end(*sfa, start);
2675 return 0;
2676 }
2677
validate_and_copy_clone(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last,u32 depth)2678 static int validate_and_copy_clone(struct net *net,
2679 const struct nlattr *attr,
2680 const struct sw_flow_key *key,
2681 struct sw_flow_actions **sfa,
2682 __be16 eth_type, __be16 vlan_tci,
2683 u32 mpls_label_count, bool log, bool last,
2684 u32 depth)
2685 {
2686 int start, err;
2687 u32 exec;
2688
2689 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2690 return -EINVAL;
2691
2692 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2693 if (start < 0)
2694 return start;
2695
2696 exec = last || !actions_may_change_flow(attr);
2697
2698 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2699 sizeof(exec), log);
2700 if (err)
2701 return err;
2702
2703 err = __ovs_nla_copy_actions(net, attr, key, sfa,
2704 eth_type, vlan_tci, mpls_label_count, log,
2705 depth + 1);
2706 if (err)
2707 return err;
2708
2709 add_nested_action_end(*sfa, start);
2710
2711 return 0;
2712 }
2713
ovs_match_init(struct sw_flow_match * match,struct sw_flow_key * key,bool reset_key,struct sw_flow_mask * mask)2714 void ovs_match_init(struct sw_flow_match *match,
2715 struct sw_flow_key *key,
2716 bool reset_key,
2717 struct sw_flow_mask *mask)
2718 {
2719 memset(match, 0, sizeof(*match));
2720 match->key = key;
2721 match->mask = mask;
2722
2723 if (reset_key)
2724 memset(key, 0, sizeof(*key));
2725
2726 if (mask) {
2727 memset(&mask->key, 0, sizeof(mask->key));
2728 mask->range.start = mask->range.end = 0;
2729 }
2730 }
2731
validate_geneve_opts(struct sw_flow_key * key)2732 static int validate_geneve_opts(struct sw_flow_key *key)
2733 {
2734 struct geneve_opt *option;
2735 int opts_len = key->tun_opts_len;
2736 bool crit_opt = false;
2737
2738 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2739 while (opts_len > 0) {
2740 int len;
2741
2742 if (opts_len < sizeof(*option))
2743 return -EINVAL;
2744
2745 len = sizeof(*option) + option->length * 4;
2746 if (len > opts_len)
2747 return -EINVAL;
2748
2749 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2750
2751 option = (struct geneve_opt *)((u8 *)option + len);
2752 opts_len -= len;
2753 }
2754
2755 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2756
2757 return 0;
2758 }
2759
validate_and_copy_set_tun(const struct nlattr * attr,struct sw_flow_actions ** sfa,bool log)2760 static int validate_and_copy_set_tun(const struct nlattr *attr,
2761 struct sw_flow_actions **sfa, bool log)
2762 {
2763 struct sw_flow_match match;
2764 struct sw_flow_key key;
2765 struct metadata_dst *tun_dst;
2766 struct ip_tunnel_info *tun_info;
2767 struct ovs_tunnel_info *ovs_tun;
2768 struct nlattr *a;
2769 int err = 0, start, opts_type;
2770 __be16 dst_opt_type;
2771
2772 dst_opt_type = 0;
2773 ovs_match_init(&match, &key, true, NULL);
2774 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2775 if (opts_type < 0)
2776 return opts_type;
2777
2778 if (key.tun_opts_len) {
2779 switch (opts_type) {
2780 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2781 err = validate_geneve_opts(&key);
2782 if (err < 0)
2783 return err;
2784 dst_opt_type = TUNNEL_GENEVE_OPT;
2785 break;
2786 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2787 dst_opt_type = TUNNEL_VXLAN_OPT;
2788 break;
2789 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2790 dst_opt_type = TUNNEL_ERSPAN_OPT;
2791 break;
2792 }
2793 }
2794
2795 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2796 if (start < 0)
2797 return start;
2798
2799 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2800 GFP_KERNEL);
2801
2802 if (!tun_dst)
2803 return -ENOMEM;
2804
2805 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2806 if (err) {
2807 dst_release((struct dst_entry *)tun_dst);
2808 return err;
2809 }
2810
2811 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2812 sizeof(*ovs_tun), log);
2813 if (IS_ERR(a)) {
2814 dst_release((struct dst_entry *)tun_dst);
2815 return PTR_ERR(a);
2816 }
2817
2818 ovs_tun = nla_data(a);
2819 ovs_tun->tun_dst = tun_dst;
2820
2821 tun_info = &tun_dst->u.tun_info;
2822 tun_info->mode = IP_TUNNEL_INFO_TX;
2823 if (key.tun_proto == AF_INET6)
2824 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2825 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2826 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2827 tun_info->key = key.tun_key;
2828
2829 /* We need to store the options in the action itself since
2830 * everything else will go away after flow setup. We can append
2831 * it to tun_info and then point there.
2832 */
2833 ip_tunnel_info_opts_set(tun_info,
2834 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2835 key.tun_opts_len, dst_opt_type);
2836 add_nested_action_end(*sfa, start);
2837
2838 return err;
2839 }
2840
validate_nsh(const struct nlattr * attr,bool is_mask,bool is_push_nsh,bool log)2841 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2842 bool is_push_nsh, bool log)
2843 {
2844 struct sw_flow_match match;
2845 struct sw_flow_key key;
2846 int ret = 0;
2847
2848 ovs_match_init(&match, &key, true, NULL);
2849 ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2850 is_push_nsh, log);
2851 return !ret;
2852 }
2853
2854 /* Return false if there are any non-masked bits set.
2855 * Mask follows data immediately, before any netlink padding.
2856 */
validate_masked(u8 * data,int len)2857 static bool validate_masked(u8 *data, int len)
2858 {
2859 u8 *mask = data + len;
2860
2861 while (len--)
2862 if (*data++ & ~*mask++)
2863 return false;
2864
2865 return true;
2866 }
2867
validate_set(const struct nlattr * a,const struct sw_flow_key * flow_key,struct sw_flow_actions ** sfa,bool * skip_copy,u8 mac_proto,__be16 eth_type,bool masked,bool log)2868 static int validate_set(const struct nlattr *a,
2869 const struct sw_flow_key *flow_key,
2870 struct sw_flow_actions **sfa, bool *skip_copy,
2871 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2872 {
2873 const struct nlattr *ovs_key = nla_data(a);
2874 int key_type = nla_type(ovs_key);
2875 size_t key_len;
2876
2877 /* There can be only one key in a action */
2878 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2879 return -EINVAL;
2880
2881 key_len = nla_len(ovs_key);
2882 if (masked)
2883 key_len /= 2;
2884
2885 if (key_type > OVS_KEY_ATTR_MAX ||
2886 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2887 return -EINVAL;
2888
2889 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2890 return -EINVAL;
2891
2892 switch (key_type) {
2893 case OVS_KEY_ATTR_PRIORITY:
2894 case OVS_KEY_ATTR_SKB_MARK:
2895 case OVS_KEY_ATTR_CT_MARK:
2896 case OVS_KEY_ATTR_CT_LABELS:
2897 break;
2898
2899 case OVS_KEY_ATTR_ETHERNET:
2900 if (mac_proto != MAC_PROTO_ETHERNET)
2901 return -EINVAL;
2902 break;
2903
2904 case OVS_KEY_ATTR_TUNNEL: {
2905 int err;
2906
2907 if (masked)
2908 return -EINVAL; /* Masked tunnel set not supported. */
2909
2910 *skip_copy = true;
2911 err = validate_and_copy_set_tun(a, sfa, log);
2912 if (err)
2913 return err;
2914 break;
2915 }
2916 case OVS_KEY_ATTR_IPV4: {
2917 const struct ovs_key_ipv4 *ipv4_key;
2918
2919 if (eth_type != htons(ETH_P_IP))
2920 return -EINVAL;
2921
2922 ipv4_key = nla_data(ovs_key);
2923
2924 if (masked) {
2925 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2926
2927 /* Non-writeable fields. */
2928 if (mask->ipv4_proto || mask->ipv4_frag)
2929 return -EINVAL;
2930 } else {
2931 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2932 return -EINVAL;
2933
2934 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2935 return -EINVAL;
2936 }
2937 break;
2938 }
2939 case OVS_KEY_ATTR_IPV6: {
2940 const struct ovs_key_ipv6 *ipv6_key;
2941
2942 if (eth_type != htons(ETH_P_IPV6))
2943 return -EINVAL;
2944
2945 ipv6_key = nla_data(ovs_key);
2946
2947 if (masked) {
2948 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2949
2950 /* Non-writeable fields. */
2951 if (mask->ipv6_proto || mask->ipv6_frag)
2952 return -EINVAL;
2953
2954 /* Invalid bits in the flow label mask? */
2955 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2956 return -EINVAL;
2957 } else {
2958 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2959 return -EINVAL;
2960
2961 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2962 return -EINVAL;
2963 }
2964 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2965 return -EINVAL;
2966
2967 break;
2968 }
2969 case OVS_KEY_ATTR_TCP:
2970 if ((eth_type != htons(ETH_P_IP) &&
2971 eth_type != htons(ETH_P_IPV6)) ||
2972 flow_key->ip.proto != IPPROTO_TCP)
2973 return -EINVAL;
2974
2975 break;
2976
2977 case OVS_KEY_ATTR_UDP:
2978 if ((eth_type != htons(ETH_P_IP) &&
2979 eth_type != htons(ETH_P_IPV6)) ||
2980 flow_key->ip.proto != IPPROTO_UDP)
2981 return -EINVAL;
2982
2983 break;
2984
2985 case OVS_KEY_ATTR_MPLS:
2986 if (!eth_p_mpls(eth_type))
2987 return -EINVAL;
2988 break;
2989
2990 case OVS_KEY_ATTR_SCTP:
2991 if ((eth_type != htons(ETH_P_IP) &&
2992 eth_type != htons(ETH_P_IPV6)) ||
2993 flow_key->ip.proto != IPPROTO_SCTP)
2994 return -EINVAL;
2995
2996 break;
2997
2998 case OVS_KEY_ATTR_NSH:
2999 if (eth_type != htons(ETH_P_NSH))
3000 return -EINVAL;
3001 if (!validate_nsh(nla_data(a), masked, false, log))
3002 return -EINVAL;
3003 break;
3004
3005 default:
3006 return -EINVAL;
3007 }
3008
3009 /* Convert non-masked non-tunnel set actions to masked set actions. */
3010 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3011 int start, len = key_len * 2;
3012 struct nlattr *at;
3013
3014 *skip_copy = true;
3015
3016 start = add_nested_action_start(sfa,
3017 OVS_ACTION_ATTR_SET_TO_MASKED,
3018 log);
3019 if (start < 0)
3020 return start;
3021
3022 at = __add_action(sfa, key_type, NULL, len, log);
3023 if (IS_ERR(at))
3024 return PTR_ERR(at);
3025
3026 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3027 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
3028 /* Clear non-writeable bits from otherwise writeable fields. */
3029 if (key_type == OVS_KEY_ATTR_IPV6) {
3030 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3031
3032 mask->ipv6_label &= htonl(0x000FFFFF);
3033 }
3034 add_nested_action_end(*sfa, start);
3035 }
3036
3037 return 0;
3038 }
3039
validate_userspace(const struct nlattr * attr)3040 static int validate_userspace(const struct nlattr *attr)
3041 {
3042 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3043 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3044 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3045 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3046 };
3047 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3048 int error;
3049
3050 error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3051 userspace_policy, NULL);
3052 if (error)
3053 return error;
3054
3055 if (!a[OVS_USERSPACE_ATTR_PID] ||
3056 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3057 return -EINVAL;
3058
3059 return 0;
3060 }
3061
3062 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3063 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3064 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3065 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3066 };
3067
validate_and_copy_check_pkt_len(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last,u32 depth)3068 static int validate_and_copy_check_pkt_len(struct net *net,
3069 const struct nlattr *attr,
3070 const struct sw_flow_key *key,
3071 struct sw_flow_actions **sfa,
3072 __be16 eth_type, __be16 vlan_tci,
3073 u32 mpls_label_count,
3074 bool log, bool last, u32 depth)
3075 {
3076 const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3077 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3078 struct check_pkt_len_arg arg;
3079 int nested_acts_start;
3080 int start, err;
3081
3082 err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3083 nla_data(attr), nla_len(attr),
3084 cpl_policy, NULL);
3085 if (err)
3086 return err;
3087
3088 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3089 !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3090 return -EINVAL;
3091
3092 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3093 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3094
3095 /* Both the nested action should be present. */
3096 if (!acts_if_greater || !acts_if_lesser_eq)
3097 return -EINVAL;
3098
3099 /* validation done, copy the nested actions. */
3100 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3101 log);
3102 if (start < 0)
3103 return start;
3104
3105 arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3106 arg.exec_for_lesser_equal =
3107 last || !actions_may_change_flow(acts_if_lesser_eq);
3108 arg.exec_for_greater =
3109 last || !actions_may_change_flow(acts_if_greater);
3110
3111 err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3112 sizeof(arg), log);
3113 if (err)
3114 return err;
3115
3116 nested_acts_start = add_nested_action_start(sfa,
3117 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3118 if (nested_acts_start < 0)
3119 return nested_acts_start;
3120
3121 err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3122 eth_type, vlan_tci, mpls_label_count, log,
3123 depth + 1);
3124
3125 if (err)
3126 return err;
3127
3128 add_nested_action_end(*sfa, nested_acts_start);
3129
3130 nested_acts_start = add_nested_action_start(sfa,
3131 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3132 if (nested_acts_start < 0)
3133 return nested_acts_start;
3134
3135 err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3136 eth_type, vlan_tci, mpls_label_count, log,
3137 depth + 1);
3138
3139 if (err)
3140 return err;
3141
3142 add_nested_action_end(*sfa, nested_acts_start);
3143 add_nested_action_end(*sfa, start);
3144 return 0;
3145 }
3146
copy_action(const struct nlattr * from,struct sw_flow_actions ** sfa,bool log)3147 static int copy_action(const struct nlattr *from,
3148 struct sw_flow_actions **sfa, bool log)
3149 {
3150 int totlen = NLA_ALIGN(from->nla_len);
3151 struct nlattr *to;
3152
3153 to = reserve_sfa_size(sfa, from->nla_len, log);
3154 if (IS_ERR(to))
3155 return PTR_ERR(to);
3156
3157 memcpy(to, from, totlen);
3158 return 0;
3159 }
3160
__ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,u32 depth)3161 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3162 const struct sw_flow_key *key,
3163 struct sw_flow_actions **sfa,
3164 __be16 eth_type, __be16 vlan_tci,
3165 u32 mpls_label_count, bool log,
3166 u32 depth)
3167 {
3168 u8 mac_proto = ovs_key_mac_proto(key);
3169 const struct nlattr *a;
3170 int rem, err;
3171
3172 if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3173 return -EOVERFLOW;
3174
3175 nla_for_each_nested(a, attr, rem) {
3176 /* Expected argument lengths, (u32)-1 for variable length. */
3177 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3178 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3179 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3180 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3181 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3182 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3183 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3184 [OVS_ACTION_ATTR_POP_VLAN] = 0,
3185 [OVS_ACTION_ATTR_SET] = (u32)-1,
3186 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3187 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3188 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3189 [OVS_ACTION_ATTR_CT] = (u32)-1,
3190 [OVS_ACTION_ATTR_CT_CLEAR] = 0,
3191 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3192 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3193 [OVS_ACTION_ATTR_POP_ETH] = 0,
3194 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3195 [OVS_ACTION_ATTR_POP_NSH] = 0,
3196 [OVS_ACTION_ATTR_METER] = sizeof(u32),
3197 [OVS_ACTION_ATTR_CLONE] = (u32)-1,
3198 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3199 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3200 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3201 [OVS_ACTION_ATTR_DROP] = sizeof(u32),
3202 };
3203 const struct ovs_action_push_vlan *vlan;
3204 int type = nla_type(a);
3205 bool skip_copy;
3206
3207 if (type > OVS_ACTION_ATTR_MAX ||
3208 (action_lens[type] != nla_len(a) &&
3209 action_lens[type] != (u32)-1))
3210 return -EINVAL;
3211
3212 skip_copy = false;
3213 switch (type) {
3214 case OVS_ACTION_ATTR_UNSPEC:
3215 return -EINVAL;
3216
3217 case OVS_ACTION_ATTR_USERSPACE:
3218 err = validate_userspace(a);
3219 if (err)
3220 return err;
3221 break;
3222
3223 case OVS_ACTION_ATTR_OUTPUT:
3224 if (nla_get_u32(a) >= DP_MAX_PORTS)
3225 return -EINVAL;
3226 break;
3227
3228 case OVS_ACTION_ATTR_TRUNC: {
3229 const struct ovs_action_trunc *trunc = nla_data(a);
3230
3231 if (trunc->max_len < ETH_HLEN)
3232 return -EINVAL;
3233 break;
3234 }
3235
3236 case OVS_ACTION_ATTR_HASH: {
3237 const struct ovs_action_hash *act_hash = nla_data(a);
3238
3239 switch (act_hash->hash_alg) {
3240 case OVS_HASH_ALG_L4:
3241 fallthrough;
3242 case OVS_HASH_ALG_SYM_L4:
3243 break;
3244 default:
3245 return -EINVAL;
3246 }
3247
3248 break;
3249 }
3250
3251 case OVS_ACTION_ATTR_POP_VLAN:
3252 if (mac_proto != MAC_PROTO_ETHERNET)
3253 return -EINVAL;
3254 vlan_tci = htons(0);
3255 break;
3256
3257 case OVS_ACTION_ATTR_PUSH_VLAN:
3258 if (mac_proto != MAC_PROTO_ETHERNET)
3259 return -EINVAL;
3260 vlan = nla_data(a);
3261 if (!eth_type_vlan(vlan->vlan_tpid))
3262 return -EINVAL;
3263 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3264 return -EINVAL;
3265 vlan_tci = vlan->vlan_tci;
3266 break;
3267
3268 case OVS_ACTION_ATTR_RECIRC:
3269 break;
3270
3271 case OVS_ACTION_ATTR_ADD_MPLS: {
3272 const struct ovs_action_add_mpls *mpls = nla_data(a);
3273
3274 if (!eth_p_mpls(mpls->mpls_ethertype))
3275 return -EINVAL;
3276
3277 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3278 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3279 (eth_type != htons(ETH_P_IP) &&
3280 eth_type != htons(ETH_P_IPV6) &&
3281 eth_type != htons(ETH_P_ARP) &&
3282 eth_type != htons(ETH_P_RARP) &&
3283 !eth_p_mpls(eth_type)))
3284 return -EINVAL;
3285 mpls_label_count++;
3286 } else {
3287 if (mac_proto == MAC_PROTO_ETHERNET) {
3288 mpls_label_count = 1;
3289 mac_proto = MAC_PROTO_NONE;
3290 } else {
3291 mpls_label_count++;
3292 }
3293 }
3294 eth_type = mpls->mpls_ethertype;
3295 break;
3296 }
3297
3298 case OVS_ACTION_ATTR_PUSH_MPLS: {
3299 const struct ovs_action_push_mpls *mpls = nla_data(a);
3300
3301 if (!eth_p_mpls(mpls->mpls_ethertype))
3302 return -EINVAL;
3303 /* Prohibit push MPLS other than to a white list
3304 * for packets that have a known tag order.
3305 */
3306 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3307 (eth_type != htons(ETH_P_IP) &&
3308 eth_type != htons(ETH_P_IPV6) &&
3309 eth_type != htons(ETH_P_ARP) &&
3310 eth_type != htons(ETH_P_RARP) &&
3311 !eth_p_mpls(eth_type)))
3312 return -EINVAL;
3313 eth_type = mpls->mpls_ethertype;
3314 mpls_label_count++;
3315 break;
3316 }
3317
3318 case OVS_ACTION_ATTR_POP_MPLS: {
3319 __be16 proto;
3320 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3321 !eth_p_mpls(eth_type))
3322 return -EINVAL;
3323
3324 /* Disallow subsequent L2.5+ set actions and mpls_pop
3325 * actions once the last MPLS label in the packet is
3326 * popped as there is no check here to ensure that
3327 * the new eth type is valid and thus set actions could
3328 * write off the end of the packet or otherwise corrupt
3329 * it.
3330 *
3331 * Support for these actions is planned using packet
3332 * recirculation.
3333 */
3334 proto = nla_get_be16(a);
3335
3336 if (proto == htons(ETH_P_TEB) &&
3337 mac_proto != MAC_PROTO_NONE)
3338 return -EINVAL;
3339
3340 mpls_label_count--;
3341
3342 if (!eth_p_mpls(proto) || !mpls_label_count)
3343 eth_type = htons(0);
3344 else
3345 eth_type = proto;
3346
3347 break;
3348 }
3349
3350 case OVS_ACTION_ATTR_SET:
3351 err = validate_set(a, key, sfa,
3352 &skip_copy, mac_proto, eth_type,
3353 false, log);
3354 if (err)
3355 return err;
3356 break;
3357
3358 case OVS_ACTION_ATTR_SET_MASKED:
3359 err = validate_set(a, key, sfa,
3360 &skip_copy, mac_proto, eth_type,
3361 true, log);
3362 if (err)
3363 return err;
3364 break;
3365
3366 case OVS_ACTION_ATTR_SAMPLE: {
3367 bool last = nla_is_last(a, rem);
3368
3369 err = validate_and_copy_sample(net, a, key, sfa,
3370 eth_type, vlan_tci,
3371 mpls_label_count,
3372 log, last, depth);
3373 if (err)
3374 return err;
3375 skip_copy = true;
3376 break;
3377 }
3378
3379 case OVS_ACTION_ATTR_CT:
3380 err = ovs_ct_copy_action(net, a, key, sfa, log);
3381 if (err)
3382 return err;
3383 skip_copy = true;
3384 break;
3385
3386 case OVS_ACTION_ATTR_CT_CLEAR:
3387 break;
3388
3389 case OVS_ACTION_ATTR_PUSH_ETH:
3390 /* Disallow pushing an Ethernet header if one
3391 * is already present */
3392 if (mac_proto != MAC_PROTO_NONE)
3393 return -EINVAL;
3394 mac_proto = MAC_PROTO_ETHERNET;
3395 break;
3396
3397 case OVS_ACTION_ATTR_POP_ETH:
3398 if (mac_proto != MAC_PROTO_ETHERNET)
3399 return -EINVAL;
3400 if (vlan_tci & htons(VLAN_CFI_MASK))
3401 return -EINVAL;
3402 mac_proto = MAC_PROTO_NONE;
3403 break;
3404
3405 case OVS_ACTION_ATTR_PUSH_NSH:
3406 if (mac_proto != MAC_PROTO_ETHERNET) {
3407 u8 next_proto;
3408
3409 next_proto = tun_p_from_eth_p(eth_type);
3410 if (!next_proto)
3411 return -EINVAL;
3412 }
3413 mac_proto = MAC_PROTO_NONE;
3414 if (!validate_nsh(nla_data(a), false, true, true))
3415 return -EINVAL;
3416 break;
3417
3418 case OVS_ACTION_ATTR_POP_NSH: {
3419 __be16 inner_proto;
3420
3421 if (eth_type != htons(ETH_P_NSH))
3422 return -EINVAL;
3423 inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3424 if (!inner_proto)
3425 return -EINVAL;
3426 if (key->nsh.base.np == TUN_P_ETHERNET)
3427 mac_proto = MAC_PROTO_ETHERNET;
3428 else
3429 mac_proto = MAC_PROTO_NONE;
3430 break;
3431 }
3432
3433 case OVS_ACTION_ATTR_METER:
3434 /* Non-existent meters are simply ignored. */
3435 break;
3436
3437 case OVS_ACTION_ATTR_CLONE: {
3438 bool last = nla_is_last(a, rem);
3439
3440 err = validate_and_copy_clone(net, a, key, sfa,
3441 eth_type, vlan_tci,
3442 mpls_label_count,
3443 log, last, depth);
3444 if (err)
3445 return err;
3446 skip_copy = true;
3447 break;
3448 }
3449
3450 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3451 bool last = nla_is_last(a, rem);
3452
3453 err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3454 eth_type,
3455 vlan_tci,
3456 mpls_label_count,
3457 log, last,
3458 depth);
3459 if (err)
3460 return err;
3461 skip_copy = true;
3462 break;
3463 }
3464
3465 case OVS_ACTION_ATTR_DEC_TTL:
3466 err = validate_and_copy_dec_ttl(net, a, key, sfa,
3467 eth_type, vlan_tci,
3468 mpls_label_count, log,
3469 depth);
3470 if (err)
3471 return err;
3472 skip_copy = true;
3473 break;
3474
3475 case OVS_ACTION_ATTR_DROP:
3476 if (!nla_is_last(a, rem))
3477 return -EINVAL;
3478 break;
3479
3480 default:
3481 OVS_NLERR(log, "Unknown Action type %d", type);
3482 return -EINVAL;
3483 }
3484 if (!skip_copy) {
3485 err = copy_action(a, sfa, log);
3486 if (err)
3487 return err;
3488 }
3489 }
3490
3491 if (rem > 0)
3492 return -EINVAL;
3493
3494 return 0;
3495 }
3496
3497 /* 'key' must be the masked key. */
ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)3498 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3499 const struct sw_flow_key *key,
3500 struct sw_flow_actions **sfa, bool log)
3501 {
3502 int err;
3503 u32 mpls_label_count = 0;
3504
3505 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3506 if (IS_ERR(*sfa))
3507 return PTR_ERR(*sfa);
3508
3509 if (eth_p_mpls(key->eth.type))
3510 mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3511
3512 (*sfa)->orig_len = nla_len(attr);
3513 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3514 key->eth.vlan.tci, mpls_label_count, log,
3515 0);
3516 if (err)
3517 ovs_nla_free_flow_actions(*sfa);
3518
3519 return err;
3520 }
3521
sample_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3522 static int sample_action_to_attr(const struct nlattr *attr,
3523 struct sk_buff *skb)
3524 {
3525 struct nlattr *start, *ac_start = NULL, *sample_arg;
3526 int err = 0, rem = nla_len(attr);
3527 const struct sample_arg *arg;
3528 struct nlattr *actions;
3529
3530 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3531 if (!start)
3532 return -EMSGSIZE;
3533
3534 sample_arg = nla_data(attr);
3535 arg = nla_data(sample_arg);
3536 actions = nla_next(sample_arg, &rem);
3537
3538 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3539 err = -EMSGSIZE;
3540 goto out;
3541 }
3542
3543 ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3544 if (!ac_start) {
3545 err = -EMSGSIZE;
3546 goto out;
3547 }
3548
3549 err = ovs_nla_put_actions(actions, rem, skb);
3550
3551 out:
3552 if (err) {
3553 nla_nest_cancel(skb, ac_start);
3554 nla_nest_cancel(skb, start);
3555 } else {
3556 nla_nest_end(skb, ac_start);
3557 nla_nest_end(skb, start);
3558 }
3559
3560 return err;
3561 }
3562
clone_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3563 static int clone_action_to_attr(const struct nlattr *attr,
3564 struct sk_buff *skb)
3565 {
3566 struct nlattr *start;
3567 int err = 0, rem = nla_len(attr);
3568
3569 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3570 if (!start)
3571 return -EMSGSIZE;
3572
3573 /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3574 attr = nla_next(nla_data(attr), &rem);
3575 err = ovs_nla_put_actions(attr, rem, skb);
3576
3577 if (err)
3578 nla_nest_cancel(skb, start);
3579 else
3580 nla_nest_end(skb, start);
3581
3582 return err;
3583 }
3584
check_pkt_len_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3585 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3586 struct sk_buff *skb)
3587 {
3588 struct nlattr *start, *ac_start = NULL;
3589 const struct check_pkt_len_arg *arg;
3590 const struct nlattr *a, *cpl_arg;
3591 int err = 0, rem = nla_len(attr);
3592
3593 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3594 if (!start)
3595 return -EMSGSIZE;
3596
3597 /* The first nested attribute in 'attr' is always
3598 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3599 */
3600 cpl_arg = nla_data(attr);
3601 arg = nla_data(cpl_arg);
3602
3603 if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3604 err = -EMSGSIZE;
3605 goto out;
3606 }
3607
3608 /* Second nested attribute in 'attr' is always
3609 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3610 */
3611 a = nla_next(cpl_arg, &rem);
3612 ac_start = nla_nest_start_noflag(skb,
3613 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3614 if (!ac_start) {
3615 err = -EMSGSIZE;
3616 goto out;
3617 }
3618
3619 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3620 if (err) {
3621 nla_nest_cancel(skb, ac_start);
3622 goto out;
3623 } else {
3624 nla_nest_end(skb, ac_start);
3625 }
3626
3627 /* Third nested attribute in 'attr' is always
3628 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3629 */
3630 a = nla_next(a, &rem);
3631 ac_start = nla_nest_start_noflag(skb,
3632 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3633 if (!ac_start) {
3634 err = -EMSGSIZE;
3635 goto out;
3636 }
3637
3638 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3639 if (err) {
3640 nla_nest_cancel(skb, ac_start);
3641 goto out;
3642 } else {
3643 nla_nest_end(skb, ac_start);
3644 }
3645
3646 nla_nest_end(skb, start);
3647 return 0;
3648
3649 out:
3650 nla_nest_cancel(skb, start);
3651 return err;
3652 }
3653
dec_ttl_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3654 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3655 struct sk_buff *skb)
3656 {
3657 struct nlattr *start, *action_start;
3658 const struct nlattr *a;
3659 int err = 0, rem;
3660
3661 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3662 if (!start)
3663 return -EMSGSIZE;
3664
3665 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3666 switch (nla_type(a)) {
3667 case OVS_DEC_TTL_ATTR_ACTION:
3668
3669 action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3670 if (!action_start) {
3671 err = -EMSGSIZE;
3672 goto out;
3673 }
3674
3675 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3676 if (err)
3677 goto out;
3678
3679 nla_nest_end(skb, action_start);
3680 break;
3681
3682 default:
3683 /* Ignore all other option to be future compatible */
3684 break;
3685 }
3686 }
3687
3688 nla_nest_end(skb, start);
3689 return 0;
3690
3691 out:
3692 nla_nest_cancel(skb, start);
3693 return err;
3694 }
3695
set_action_to_attr(const struct nlattr * a,struct sk_buff * skb)3696 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3697 {
3698 const struct nlattr *ovs_key = nla_data(a);
3699 int key_type = nla_type(ovs_key);
3700 struct nlattr *start;
3701 int err;
3702
3703 switch (key_type) {
3704 case OVS_KEY_ATTR_TUNNEL_INFO: {
3705 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3706 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3707
3708 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3709 if (!start)
3710 return -EMSGSIZE;
3711
3712 err = ip_tun_to_nlattr(skb, &tun_info->key,
3713 ip_tunnel_info_opts(tun_info),
3714 tun_info->options_len,
3715 ip_tunnel_info_af(tun_info), tun_info->mode);
3716 if (err)
3717 return err;
3718 nla_nest_end(skb, start);
3719 break;
3720 }
3721 default:
3722 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3723 return -EMSGSIZE;
3724 break;
3725 }
3726
3727 return 0;
3728 }
3729
masked_set_action_to_set_action_attr(const struct nlattr * a,struct sk_buff * skb)3730 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3731 struct sk_buff *skb)
3732 {
3733 const struct nlattr *ovs_key = nla_data(a);
3734 struct nlattr *nla;
3735 size_t key_len = nla_len(ovs_key) / 2;
3736
3737 /* Revert the conversion we did from a non-masked set action to
3738 * masked set action.
3739 */
3740 nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3741 if (!nla)
3742 return -EMSGSIZE;
3743
3744 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3745 return -EMSGSIZE;
3746
3747 nla_nest_end(skb, nla);
3748 return 0;
3749 }
3750
ovs_nla_put_actions(const struct nlattr * attr,int len,struct sk_buff * skb)3751 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3752 {
3753 const struct nlattr *a;
3754 int rem, err;
3755
3756 nla_for_each_attr(a, attr, len, rem) {
3757 int type = nla_type(a);
3758
3759 switch (type) {
3760 case OVS_ACTION_ATTR_SET:
3761 err = set_action_to_attr(a, skb);
3762 if (err)
3763 return err;
3764 break;
3765
3766 case OVS_ACTION_ATTR_SET_TO_MASKED:
3767 err = masked_set_action_to_set_action_attr(a, skb);
3768 if (err)
3769 return err;
3770 break;
3771
3772 case OVS_ACTION_ATTR_SAMPLE:
3773 err = sample_action_to_attr(a, skb);
3774 if (err)
3775 return err;
3776 break;
3777
3778 case OVS_ACTION_ATTR_CT:
3779 err = ovs_ct_action_to_attr(nla_data(a), skb);
3780 if (err)
3781 return err;
3782 break;
3783
3784 case OVS_ACTION_ATTR_CLONE:
3785 err = clone_action_to_attr(a, skb);
3786 if (err)
3787 return err;
3788 break;
3789
3790 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3791 err = check_pkt_len_action_to_attr(a, skb);
3792 if (err)
3793 return err;
3794 break;
3795
3796 case OVS_ACTION_ATTR_DEC_TTL:
3797 err = dec_ttl_action_to_attr(a, skb);
3798 if (err)
3799 return err;
3800 break;
3801
3802 default:
3803 if (nla_put(skb, type, nla_len(a), nla_data(a)))
3804 return -EMSGSIZE;
3805 break;
3806 }
3807 }
3808
3809 return 0;
3810 }
3811