1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KMSAN initialization routines.
4 *
5 * Copyright (C) 2017-2021 Google LLC
6 * Author: Alexander Potapenko <glider@google.com>
7 *
8 */
9
10 #include "kmsan.h"
11
12 #include <asm/sections.h>
13 #include <linux/mm.h>
14 #include <linux/memblock.h>
15
16 #include "../internal.h"
17
18 #define NUM_FUTURE_RANGES 128
19 struct start_end_pair {
20 u64 start, end;
21 };
22
23 static struct start_end_pair start_end_pairs[NUM_FUTURE_RANGES] __initdata;
24 static int future_index __initdata;
25
26 /*
27 * Record a range of memory for which the metadata pages will be created once
28 * the page allocator becomes available.
29 */
kmsan_record_future_shadow_range(void * start,void * end)30 static void __init kmsan_record_future_shadow_range(void *start, void *end)
31 {
32 u64 nstart = (u64)start, nend = (u64)end, cstart, cend;
33 bool merged = false;
34
35 KMSAN_WARN_ON(future_index == NUM_FUTURE_RANGES);
36 KMSAN_WARN_ON((nstart >= nend) || !nstart || !nend);
37 nstart = ALIGN_DOWN(nstart, PAGE_SIZE);
38 nend = ALIGN(nend, PAGE_SIZE);
39
40 /*
41 * Scan the existing ranges to see if any of them overlaps with
42 * [start, end). In that case, merge the two ranges instead of
43 * creating a new one.
44 * The number of ranges is less than 20, so there is no need to organize
45 * them into a more intelligent data structure.
46 */
47 for (int i = 0; i < future_index; i++) {
48 cstart = start_end_pairs[i].start;
49 cend = start_end_pairs[i].end;
50 if ((cstart < nstart && cend < nstart) ||
51 (cstart > nend && cend > nend))
52 /* ranges are disjoint - do not merge */
53 continue;
54 start_end_pairs[i].start = min(nstart, cstart);
55 start_end_pairs[i].end = max(nend, cend);
56 merged = true;
57 break;
58 }
59 if (merged)
60 return;
61 start_end_pairs[future_index].start = nstart;
62 start_end_pairs[future_index].end = nend;
63 future_index++;
64 }
65
66 /*
67 * Initialize the shadow for existing mappings during kernel initialization.
68 * These include kernel text/data sections, NODE_DATA and future ranges
69 * registered while creating other data (e.g. percpu).
70 *
71 * Allocations via memblock can be only done before slab is initialized.
72 */
kmsan_init_shadow(void)73 void __init kmsan_init_shadow(void)
74 {
75 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
76 phys_addr_t p_start, p_end;
77 u64 loop;
78 int nid;
79
80 for_each_reserved_mem_range(loop, &p_start, &p_end)
81 kmsan_record_future_shadow_range(phys_to_virt(p_start),
82 phys_to_virt(p_end));
83 /* Allocate shadow for .data */
84 kmsan_record_future_shadow_range(_sdata, _edata);
85
86 for_each_online_node(nid)
87 kmsan_record_future_shadow_range(
88 NODE_DATA(nid), (char *)NODE_DATA(nid) + nd_size);
89
90 for (int i = 0; i < future_index; i++)
91 kmsan_init_alloc_meta_for_range(
92 (void *)start_end_pairs[i].start,
93 (void *)start_end_pairs[i].end);
94 }
95
96 struct metadata_page_pair {
97 struct page *shadow, *origin;
98 };
99 static struct metadata_page_pair held_back[NR_PAGE_ORDERS] __initdata;
100
101 /*
102 * Eager metadata allocation. When the memblock allocator is freeing pages to
103 * pagealloc, we use 2/3 of them as metadata for the remaining 1/3.
104 * We store the pointers to the returned blocks of pages in held_back[] grouped
105 * by their order: when kmsan_memblock_free_pages() is called for the first
106 * time with a certain order, it is reserved as a shadow block, for the second
107 * time - as an origin block. On the third time the incoming block receives its
108 * shadow and origin ranges from the previously saved shadow and origin blocks,
109 * after which held_back[order] can be used again.
110 *
111 * At the very end there may be leftover blocks in held_back[]. They are
112 * collected later by kmsan_memblock_discard().
113 */
kmsan_memblock_free_pages(struct page * page,unsigned int order)114 bool kmsan_memblock_free_pages(struct page *page, unsigned int order)
115 {
116 struct page *shadow, *origin;
117
118 if (!held_back[order].shadow) {
119 held_back[order].shadow = page;
120 return false;
121 }
122 if (!held_back[order].origin) {
123 held_back[order].origin = page;
124 return false;
125 }
126 shadow = held_back[order].shadow;
127 origin = held_back[order].origin;
128 kmsan_setup_meta(page, shadow, origin, order);
129
130 held_back[order].shadow = NULL;
131 held_back[order].origin = NULL;
132 return true;
133 }
134
135 #define MAX_BLOCKS 8
136 struct smallstack {
137 struct page *items[MAX_BLOCKS];
138 int index;
139 int order;
140 };
141
142 static struct smallstack collect = {
143 .index = 0,
144 .order = MAX_ORDER,
145 };
146
smallstack_push(struct smallstack * stack,struct page * pages)147 static void smallstack_push(struct smallstack *stack, struct page *pages)
148 {
149 KMSAN_WARN_ON(stack->index == MAX_BLOCKS);
150 stack->items[stack->index] = pages;
151 stack->index++;
152 }
153 #undef MAX_BLOCKS
154
smallstack_pop(struct smallstack * stack)155 static struct page *smallstack_pop(struct smallstack *stack)
156 {
157 struct page *ret;
158
159 KMSAN_WARN_ON(stack->index == 0);
160 stack->index--;
161 ret = stack->items[stack->index];
162 stack->items[stack->index] = NULL;
163 return ret;
164 }
165
do_collection(void)166 static void do_collection(void)
167 {
168 struct page *page, *shadow, *origin;
169
170 while (collect.index >= 3) {
171 page = smallstack_pop(&collect);
172 shadow = smallstack_pop(&collect);
173 origin = smallstack_pop(&collect);
174 kmsan_setup_meta(page, shadow, origin, collect.order);
175 __free_pages_core(page, collect.order);
176 }
177 }
178
collect_split(void)179 static void collect_split(void)
180 {
181 struct smallstack tmp = {
182 .order = collect.order - 1,
183 .index = 0,
184 };
185 struct page *page;
186
187 if (!collect.order)
188 return;
189 while (collect.index) {
190 page = smallstack_pop(&collect);
191 smallstack_push(&tmp, &page[0]);
192 smallstack_push(&tmp, &page[1 << tmp.order]);
193 }
194 __memcpy(&collect, &tmp, sizeof(tmp));
195 }
196
197 /*
198 * Memblock is about to go away. Split the page blocks left over in held_back[]
199 * and return 1/3 of that memory to the system.
200 */
kmsan_memblock_discard(void)201 static void kmsan_memblock_discard(void)
202 {
203 /*
204 * For each order=N:
205 * - push held_back[N].shadow and .origin to @collect;
206 * - while there are >= 3 elements in @collect, do garbage collection:
207 * - pop 3 ranges from @collect;
208 * - use two of them as shadow and origin for the third one;
209 * - repeat;
210 * - split each remaining element from @collect into 2 ranges of
211 * order=N-1,
212 * - repeat.
213 */
214 collect.order = MAX_ORDER;
215 for (int i = MAX_ORDER; i >= 0; i--) {
216 if (held_back[i].shadow)
217 smallstack_push(&collect, held_back[i].shadow);
218 if (held_back[i].origin)
219 smallstack_push(&collect, held_back[i].origin);
220 held_back[i].shadow = NULL;
221 held_back[i].origin = NULL;
222 do_collection();
223 collect_split();
224 }
225 }
226
kmsan_init_runtime(void)227 void __init kmsan_init_runtime(void)
228 {
229 /* Assuming current is init_task */
230 kmsan_internal_task_create(current);
231 kmsan_memblock_discard();
232 pr_info("Starting KernelMemorySanitizer\n");
233 pr_info("ATTENTION: KMSAN is a debugging tool! Do not use it on production machines!\n");
234 kmsan_enabled = true;
235 }
236