xref: /openbmc/linux/drivers/dma/nbpfaxi.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4   * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5   */
6  
7  #include <linux/bitmap.h>
8  #include <linux/bitops.h>
9  #include <linux/clk.h>
10  #include <linux/dma-mapping.h>
11  #include <linux/dmaengine.h>
12  #include <linux/err.h>
13  #include <linux/interrupt.h>
14  #include <linux/io.h>
15  #include <linux/log2.h>
16  #include <linux/module.h>
17  #include <linux/of.h>
18  #include <linux/of_dma.h>
19  #include <linux/platform_device.h>
20  #include <linux/slab.h>
21  
22  #include <dt-bindings/dma/nbpfaxi.h>
23  
24  #include "dmaengine.h"
25  
26  #define NBPF_REG_CHAN_OFFSET	0
27  #define NBPF_REG_CHAN_SIZE	0x40
28  
29  /* Channel Current Transaction Byte register */
30  #define NBPF_CHAN_CUR_TR_BYTE	0x20
31  
32  /* Channel Status register */
33  #define NBPF_CHAN_STAT	0x24
34  #define NBPF_CHAN_STAT_EN	1
35  #define NBPF_CHAN_STAT_TACT	4
36  #define NBPF_CHAN_STAT_ERR	0x10
37  #define NBPF_CHAN_STAT_END	0x20
38  #define NBPF_CHAN_STAT_TC	0x40
39  #define NBPF_CHAN_STAT_DER	0x400
40  
41  /* Channel Control register */
42  #define NBPF_CHAN_CTRL	0x28
43  #define NBPF_CHAN_CTRL_SETEN	1
44  #define NBPF_CHAN_CTRL_CLREN	2
45  #define NBPF_CHAN_CTRL_STG	4
46  #define NBPF_CHAN_CTRL_SWRST	8
47  #define NBPF_CHAN_CTRL_CLRRQ	0x10
48  #define NBPF_CHAN_CTRL_CLREND	0x20
49  #define NBPF_CHAN_CTRL_CLRTC	0x40
50  #define NBPF_CHAN_CTRL_SETSUS	0x100
51  #define NBPF_CHAN_CTRL_CLRSUS	0x200
52  
53  /* Channel Configuration register */
54  #define NBPF_CHAN_CFG	0x2c
55  #define NBPF_CHAN_CFG_SEL	7		/* terminal SELect: 0..7 */
56  #define NBPF_CHAN_CFG_REQD	8		/* REQuest Direction: DMAREQ is 0: input, 1: output */
57  #define NBPF_CHAN_CFG_LOEN	0x10		/* LOw ENable: low DMA request line is: 0: inactive, 1: active */
58  #define NBPF_CHAN_CFG_HIEN	0x20		/* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
59  #define NBPF_CHAN_CFG_LVL	0x40		/* LeVeL: DMA request line is sensed as 0: edge, 1: level */
60  #define NBPF_CHAN_CFG_AM	0x700		/* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
61  #define NBPF_CHAN_CFG_SDS	0xf000		/* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
62  #define NBPF_CHAN_CFG_DDS	0xf0000		/* Destination Data Size: as above */
63  #define NBPF_CHAN_CFG_SAD	0x100000	/* Source ADdress counting: 0: increment, 1: fixed */
64  #define NBPF_CHAN_CFG_DAD	0x200000	/* Destination ADdress counting: 0: increment, 1: fixed */
65  #define NBPF_CHAN_CFG_TM	0x400000	/* Transfer Mode: 0: single, 1: block TM */
66  #define NBPF_CHAN_CFG_DEM	0x1000000	/* DMAEND interrupt Mask */
67  #define NBPF_CHAN_CFG_TCM	0x2000000	/* DMATCO interrupt Mask */
68  #define NBPF_CHAN_CFG_SBE	0x8000000	/* Sweep Buffer Enable */
69  #define NBPF_CHAN_CFG_RSEL	0x10000000	/* RM: Register Set sELect */
70  #define NBPF_CHAN_CFG_RSW	0x20000000	/* RM: Register Select sWitch */
71  #define NBPF_CHAN_CFG_REN	0x40000000	/* RM: Register Set Enable */
72  #define NBPF_CHAN_CFG_DMS	0x80000000	/* 0: register mode (RM), 1: link mode (LM) */
73  
74  #define NBPF_CHAN_NXLA	0x38
75  #define NBPF_CHAN_CRLA	0x3c
76  
77  /* Link Header field */
78  #define NBPF_HEADER_LV	1
79  #define NBPF_HEADER_LE	2
80  #define NBPF_HEADER_WBD	4
81  #define NBPF_HEADER_DIM	8
82  
83  #define NBPF_CTRL	0x300
84  #define NBPF_CTRL_PR	1		/* 0: fixed priority, 1: round robin */
85  #define NBPF_CTRL_LVINT	2		/* DMAEND and DMAERR signalling: 0: pulse, 1: level */
86  
87  #define NBPF_DSTAT_ER	0x314
88  #define NBPF_DSTAT_END	0x318
89  
90  #define NBPF_DMA_BUSWIDTHS \
91  	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
92  	 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
93  	 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
94  	 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
95  	 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
96  
97  struct nbpf_config {
98  	int num_channels;
99  	int buffer_size;
100  };
101  
102  /*
103   * We've got 3 types of objects, used to describe DMA transfers:
104   * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
105   *	in it, used to communicate with the user
106   * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
107   *	queuing, these must be DMAable, using either the streaming DMA API or
108   *	allocated from coherent memory - one per SG segment
109   * 3. one per SG segment descriptors, used to manage HW link descriptors from
110   *	(2). They do not have to be DMAable. They can either be (a) allocated
111   *	together with link descriptors as mixed (DMA / CPU) objects, or (b)
112   *	separately. Even if allocated separately it would be best to link them
113   *	to link descriptors once during channel resource allocation and always
114   *	use them as a single object.
115   * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
116   * treated as a single SG segment descriptor.
117   */
118  
119  struct nbpf_link_reg {
120  	u32	header;
121  	u32	src_addr;
122  	u32	dst_addr;
123  	u32	transaction_size;
124  	u32	config;
125  	u32	interval;
126  	u32	extension;
127  	u32	next;
128  } __packed;
129  
130  struct nbpf_device;
131  struct nbpf_channel;
132  struct nbpf_desc;
133  
134  struct nbpf_link_desc {
135  	struct nbpf_link_reg *hwdesc;
136  	dma_addr_t hwdesc_dma_addr;
137  	struct nbpf_desc *desc;
138  	struct list_head node;
139  };
140  
141  /**
142   * struct nbpf_desc - DMA transfer descriptor
143   * @async_tx:	dmaengine object
144   * @user_wait:	waiting for a user ack
145   * @length:	total transfer length
146   * @chan:	associated DMAC channel
147   * @sg:		list of hardware descriptors, represented by struct nbpf_link_desc
148   * @node:	member in channel descriptor lists
149   */
150  struct nbpf_desc {
151  	struct dma_async_tx_descriptor async_tx;
152  	bool user_wait;
153  	size_t length;
154  	struct nbpf_channel *chan;
155  	struct list_head sg;
156  	struct list_head node;
157  };
158  
159  /* Take a wild guess: allocate 4 segments per descriptor */
160  #define NBPF_SEGMENTS_PER_DESC 4
161  #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /	\
162  	(sizeof(struct nbpf_desc) +					\
163  	 NBPF_SEGMENTS_PER_DESC *					\
164  	 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
165  #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
166  
167  struct nbpf_desc_page {
168  	struct list_head node;
169  	struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
170  	struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
171  	struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
172  };
173  
174  /**
175   * struct nbpf_channel - one DMAC channel
176   * @dma_chan:	standard dmaengine channel object
177   * @tasklet:	channel specific tasklet used for callbacks
178   * @base:	register address base
179   * @nbpf:	DMAC
180   * @name:	IRQ name
181   * @irq:	IRQ number
182   * @slave_src_addr:	source address for slave DMA
183   * @slave_src_width:	source slave data size in bytes
184   * @slave_src_burst:	maximum source slave burst size in bytes
185   * @slave_dst_addr:	destination address for slave DMA
186   * @slave_dst_width:	destination slave data size in bytes
187   * @slave_dst_burst:	maximum destination slave burst size in bytes
188   * @terminal:	DMA terminal, assigned to this channel
189   * @dmarq_cfg:	DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
190   * @flags:	configuration flags from DT
191   * @lock:	protect descriptor lists
192   * @free_links:	list of free link descriptors
193   * @free:	list of free descriptors
194   * @queued:	list of queued descriptors
195   * @active:	list of descriptors, scheduled for processing
196   * @done:	list of completed descriptors, waiting post-processing
197   * @desc_page:	list of additionally allocated descriptor pages - if any
198   * @running:	linked descriptor of running transaction
199   * @paused:	are translations on this channel paused?
200   */
201  struct nbpf_channel {
202  	struct dma_chan dma_chan;
203  	struct tasklet_struct tasklet;
204  	void __iomem *base;
205  	struct nbpf_device *nbpf;
206  	char name[16];
207  	int irq;
208  	dma_addr_t slave_src_addr;
209  	size_t slave_src_width;
210  	size_t slave_src_burst;
211  	dma_addr_t slave_dst_addr;
212  	size_t slave_dst_width;
213  	size_t slave_dst_burst;
214  	unsigned int terminal;
215  	u32 dmarq_cfg;
216  	unsigned long flags;
217  	spinlock_t lock;
218  	struct list_head free_links;
219  	struct list_head free;
220  	struct list_head queued;
221  	struct list_head active;
222  	struct list_head done;
223  	struct list_head desc_page;
224  	struct nbpf_desc *running;
225  	bool paused;
226  };
227  
228  struct nbpf_device {
229  	struct dma_device dma_dev;
230  	void __iomem *base;
231  	u32 max_burst_mem_read;
232  	u32 max_burst_mem_write;
233  	struct clk *clk;
234  	const struct nbpf_config *config;
235  	unsigned int eirq;
236  	struct nbpf_channel chan[];
237  };
238  
239  enum nbpf_model {
240  	NBPF1B4,
241  	NBPF1B8,
242  	NBPF1B16,
243  	NBPF4B4,
244  	NBPF4B8,
245  	NBPF4B16,
246  	NBPF8B4,
247  	NBPF8B8,
248  	NBPF8B16,
249  };
250  
251  static struct nbpf_config nbpf_cfg[] = {
252  	[NBPF1B4] = {
253  		.num_channels = 1,
254  		.buffer_size = 4,
255  	},
256  	[NBPF1B8] = {
257  		.num_channels = 1,
258  		.buffer_size = 8,
259  	},
260  	[NBPF1B16] = {
261  		.num_channels = 1,
262  		.buffer_size = 16,
263  	},
264  	[NBPF4B4] = {
265  		.num_channels = 4,
266  		.buffer_size = 4,
267  	},
268  	[NBPF4B8] = {
269  		.num_channels = 4,
270  		.buffer_size = 8,
271  	},
272  	[NBPF4B16] = {
273  		.num_channels = 4,
274  		.buffer_size = 16,
275  	},
276  	[NBPF8B4] = {
277  		.num_channels = 8,
278  		.buffer_size = 4,
279  	},
280  	[NBPF8B8] = {
281  		.num_channels = 8,
282  		.buffer_size = 8,
283  	},
284  	[NBPF8B16] = {
285  		.num_channels = 8,
286  		.buffer_size = 16,
287  	},
288  };
289  
290  #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
291  
292  /*
293   * dmaengine drivers seem to have a lot in common and instead of sharing more
294   * code, they reimplement those common algorithms independently. In this driver
295   * we try to separate the hardware-specific part from the (largely) generic
296   * part. This improves code readability and makes it possible in the future to
297   * reuse the generic code in form of a helper library. That generic code should
298   * be suitable for various DMA controllers, using transfer descriptors in RAM
299   * and pushing one SG list at a time to the DMA controller.
300   */
301  
302  /*		Hardware-specific part		*/
303  
nbpf_chan_read(struct nbpf_channel * chan,unsigned int offset)304  static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
305  				 unsigned int offset)
306  {
307  	u32 data = ioread32(chan->base + offset);
308  	dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
309  		__func__, chan->base, offset, data);
310  	return data;
311  }
312  
nbpf_chan_write(struct nbpf_channel * chan,unsigned int offset,u32 data)313  static inline void nbpf_chan_write(struct nbpf_channel *chan,
314  				   unsigned int offset, u32 data)
315  {
316  	iowrite32(data, chan->base + offset);
317  	dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
318  		__func__, chan->base, offset, data);
319  }
320  
nbpf_read(struct nbpf_device * nbpf,unsigned int offset)321  static inline u32 nbpf_read(struct nbpf_device *nbpf,
322  			    unsigned int offset)
323  {
324  	u32 data = ioread32(nbpf->base + offset);
325  	dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
326  		__func__, nbpf->base, offset, data);
327  	return data;
328  }
329  
nbpf_write(struct nbpf_device * nbpf,unsigned int offset,u32 data)330  static inline void nbpf_write(struct nbpf_device *nbpf,
331  			      unsigned int offset, u32 data)
332  {
333  	iowrite32(data, nbpf->base + offset);
334  	dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
335  		__func__, nbpf->base, offset, data);
336  }
337  
nbpf_chan_halt(struct nbpf_channel * chan)338  static void nbpf_chan_halt(struct nbpf_channel *chan)
339  {
340  	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
341  }
342  
nbpf_status_get(struct nbpf_channel * chan)343  static bool nbpf_status_get(struct nbpf_channel *chan)
344  {
345  	u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
346  
347  	return status & BIT(chan - chan->nbpf->chan);
348  }
349  
nbpf_status_ack(struct nbpf_channel * chan)350  static void nbpf_status_ack(struct nbpf_channel *chan)
351  {
352  	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
353  }
354  
nbpf_error_get(struct nbpf_device * nbpf)355  static u32 nbpf_error_get(struct nbpf_device *nbpf)
356  {
357  	return nbpf_read(nbpf, NBPF_DSTAT_ER);
358  }
359  
nbpf_error_get_channel(struct nbpf_device * nbpf,u32 error)360  static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
361  {
362  	return nbpf->chan + __ffs(error);
363  }
364  
nbpf_error_clear(struct nbpf_channel * chan)365  static void nbpf_error_clear(struct nbpf_channel *chan)
366  {
367  	u32 status;
368  	int i;
369  
370  	/* Stop the channel, make sure DMA has been aborted */
371  	nbpf_chan_halt(chan);
372  
373  	for (i = 1000; i; i--) {
374  		status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
375  		if (!(status & NBPF_CHAN_STAT_TACT))
376  			break;
377  		cpu_relax();
378  	}
379  
380  	if (!i)
381  		dev_err(chan->dma_chan.device->dev,
382  			"%s(): abort timeout, channel status 0x%x\n", __func__, status);
383  
384  	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
385  }
386  
nbpf_start(struct nbpf_desc * desc)387  static int nbpf_start(struct nbpf_desc *desc)
388  {
389  	struct nbpf_channel *chan = desc->chan;
390  	struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
391  
392  	nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
393  	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
394  	chan->paused = false;
395  
396  	/* Software trigger MEMCPY - only MEMCPY uses the block mode */
397  	if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
398  		nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
399  
400  	dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
401  		nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
402  
403  	return 0;
404  }
405  
nbpf_chan_prepare(struct nbpf_channel * chan)406  static void nbpf_chan_prepare(struct nbpf_channel *chan)
407  {
408  	chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
409  		(chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
410  		(chan->flags & NBPF_SLAVE_RQ_LEVEL ?
411  		 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
412  		chan->terminal;
413  }
414  
nbpf_chan_prepare_default(struct nbpf_channel * chan)415  static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
416  {
417  	/* Don't output DMAACK */
418  	chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
419  	chan->terminal = 0;
420  	chan->flags = 0;
421  }
422  
nbpf_chan_configure(struct nbpf_channel * chan)423  static void nbpf_chan_configure(struct nbpf_channel *chan)
424  {
425  	/*
426  	 * We assume, that only the link mode and DMA request line configuration
427  	 * have to be set in the configuration register manually. Dynamic
428  	 * per-transfer configuration will be loaded from transfer descriptors.
429  	 */
430  	nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
431  }
432  
nbpf_xfer_ds(struct nbpf_device * nbpf,size_t size,enum dma_transfer_direction direction)433  static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
434  			enum dma_transfer_direction direction)
435  {
436  	int max_burst = nbpf->config->buffer_size * 8;
437  
438  	if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
439  		switch (direction) {
440  		case DMA_MEM_TO_MEM:
441  			max_burst = min_not_zero(nbpf->max_burst_mem_read,
442  						 nbpf->max_burst_mem_write);
443  			break;
444  		case DMA_MEM_TO_DEV:
445  			if (nbpf->max_burst_mem_read)
446  				max_burst = nbpf->max_burst_mem_read;
447  			break;
448  		case DMA_DEV_TO_MEM:
449  			if (nbpf->max_burst_mem_write)
450  				max_burst = nbpf->max_burst_mem_write;
451  			break;
452  		case DMA_DEV_TO_DEV:
453  		default:
454  			break;
455  		}
456  	}
457  
458  	/* Maximum supported bursts depend on the buffer size */
459  	return min_t(int, __ffs(size), ilog2(max_burst));
460  }
461  
nbpf_xfer_size(struct nbpf_device * nbpf,enum dma_slave_buswidth width,u32 burst)462  static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
463  			     enum dma_slave_buswidth width, u32 burst)
464  {
465  	size_t size;
466  
467  	if (!burst)
468  		burst = 1;
469  
470  	switch (width) {
471  	case DMA_SLAVE_BUSWIDTH_8_BYTES:
472  		size = 8 * burst;
473  		break;
474  
475  	case DMA_SLAVE_BUSWIDTH_4_BYTES:
476  		size = 4 * burst;
477  		break;
478  
479  	case DMA_SLAVE_BUSWIDTH_2_BYTES:
480  		size = 2 * burst;
481  		break;
482  
483  	default:
484  		pr_warn("%s(): invalid bus width %u\n", __func__, width);
485  		fallthrough;
486  	case DMA_SLAVE_BUSWIDTH_1_BYTE:
487  		size = burst;
488  	}
489  
490  	return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
491  }
492  
493  /*
494   * We need a way to recognise slaves, whose data is sent "raw" over the bus,
495   * i.e. it isn't known in advance how many bytes will be received. Therefore
496   * the slave driver has to provide a "large enough" buffer and either read the
497   * buffer, when it is full, or detect, that some data has arrived, then wait for
498   * a timeout, if no more data arrives - receive what's already there. We want to
499   * handle such slaves in a special way to allow an optimised mode for other
500   * users, for whom the amount of data is known in advance. So far there's no way
501   * to recognise such slaves. We use a data-width check to distinguish between
502   * the SD host and the PL011 UART.
503   */
504  
nbpf_prep_one(struct nbpf_link_desc * ldesc,enum dma_transfer_direction direction,dma_addr_t src,dma_addr_t dst,size_t size,bool last)505  static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
506  			 enum dma_transfer_direction direction,
507  			 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
508  {
509  	struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
510  	struct nbpf_desc *desc = ldesc->desc;
511  	struct nbpf_channel *chan = desc->chan;
512  	struct device *dev = chan->dma_chan.device->dev;
513  	size_t mem_xfer, slave_xfer;
514  	bool can_burst;
515  
516  	hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
517  		(last ? NBPF_HEADER_LE : 0);
518  
519  	hwdesc->src_addr = src;
520  	hwdesc->dst_addr = dst;
521  	hwdesc->transaction_size = size;
522  
523  	/*
524  	 * set config: SAD, DAD, DDS, SDS, etc.
525  	 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
526  	 * but it is important to have transaction size a multiple of both
527  	 * receiver and transmitter transfer sizes. It is also possible to use
528  	 * different RAM and device transfer sizes, and it does work well with
529  	 * some devices, e.g. with V08R07S01E SD host controllers, which can use
530  	 * 128 byte transfers. But this doesn't work with other devices,
531  	 * especially when the transaction size is unknown. This is the case,
532  	 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
533  	 * the transaction size of 4K and if fewer bytes are received, it
534  	 * pauses DMA and reads out data received via DMA as well as those left
535  	 * in the Rx FIFO. For this to work with the RAM side using burst
536  	 * transfers we enable the SBE bit and terminate the transfer in our
537  	 * .device_pause handler.
538  	 */
539  	mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
540  
541  	switch (direction) {
542  	case DMA_DEV_TO_MEM:
543  		can_burst = chan->slave_src_width >= 3;
544  		slave_xfer = min(mem_xfer, can_burst ?
545  				 chan->slave_src_burst : chan->slave_src_width);
546  		/*
547  		 * Is the slave narrower than 64 bits, i.e. isn't using the full
548  		 * bus width and cannot use bursts?
549  		 */
550  		if (mem_xfer > chan->slave_src_burst && !can_burst)
551  			mem_xfer = chan->slave_src_burst;
552  		/* Device-to-RAM DMA is unreliable without REQD set */
553  		hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
554  			(NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
555  			NBPF_CHAN_CFG_SBE;
556  		break;
557  
558  	case DMA_MEM_TO_DEV:
559  		slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
560  				 chan->slave_dst_burst : chan->slave_dst_width);
561  		hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
562  			(NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
563  		break;
564  
565  	case DMA_MEM_TO_MEM:
566  		hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
567  			(NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
568  			(NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
569  		break;
570  
571  	default:
572  		return -EINVAL;
573  	}
574  
575  	hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
576  		NBPF_CHAN_CFG_DMS;
577  
578  	dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
579  		__func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
580  		hwdesc->config, size, &src, &dst);
581  
582  	dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
583  				   DMA_TO_DEVICE);
584  
585  	return 0;
586  }
587  
nbpf_bytes_left(struct nbpf_channel * chan)588  static size_t nbpf_bytes_left(struct nbpf_channel *chan)
589  {
590  	return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
591  }
592  
nbpf_configure(struct nbpf_device * nbpf)593  static void nbpf_configure(struct nbpf_device *nbpf)
594  {
595  	nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
596  }
597  
598  /*		Generic part			*/
599  
600  /* DMA ENGINE functions */
nbpf_issue_pending(struct dma_chan * dchan)601  static void nbpf_issue_pending(struct dma_chan *dchan)
602  {
603  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
604  	unsigned long flags;
605  
606  	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
607  
608  	spin_lock_irqsave(&chan->lock, flags);
609  	if (list_empty(&chan->queued))
610  		goto unlock;
611  
612  	list_splice_tail_init(&chan->queued, &chan->active);
613  
614  	if (!chan->running) {
615  		struct nbpf_desc *desc = list_first_entry(&chan->active,
616  						struct nbpf_desc, node);
617  		if (!nbpf_start(desc))
618  			chan->running = desc;
619  	}
620  
621  unlock:
622  	spin_unlock_irqrestore(&chan->lock, flags);
623  }
624  
nbpf_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * state)625  static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
626  		dma_cookie_t cookie, struct dma_tx_state *state)
627  {
628  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
629  	enum dma_status status = dma_cookie_status(dchan, cookie, state);
630  
631  	if (state) {
632  		dma_cookie_t running;
633  		unsigned long flags;
634  
635  		spin_lock_irqsave(&chan->lock, flags);
636  		running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
637  
638  		if (cookie == running) {
639  			state->residue = nbpf_bytes_left(chan);
640  			dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
641  				state->residue);
642  		} else if (status == DMA_IN_PROGRESS) {
643  			struct nbpf_desc *desc;
644  			bool found = false;
645  
646  			list_for_each_entry(desc, &chan->active, node)
647  				if (desc->async_tx.cookie == cookie) {
648  					found = true;
649  					break;
650  				}
651  
652  			if (!found)
653  				list_for_each_entry(desc, &chan->queued, node)
654  					if (desc->async_tx.cookie == cookie) {
655  						found = true;
656  						break;
657  
658  					}
659  
660  			state->residue = found ? desc->length : 0;
661  		}
662  
663  		spin_unlock_irqrestore(&chan->lock, flags);
664  	}
665  
666  	if (chan->paused)
667  		status = DMA_PAUSED;
668  
669  	return status;
670  }
671  
nbpf_tx_submit(struct dma_async_tx_descriptor * tx)672  static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
673  {
674  	struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
675  	struct nbpf_channel *chan = desc->chan;
676  	unsigned long flags;
677  	dma_cookie_t cookie;
678  
679  	spin_lock_irqsave(&chan->lock, flags);
680  	cookie = dma_cookie_assign(tx);
681  	list_add_tail(&desc->node, &chan->queued);
682  	spin_unlock_irqrestore(&chan->lock, flags);
683  
684  	dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
685  
686  	return cookie;
687  }
688  
nbpf_desc_page_alloc(struct nbpf_channel * chan)689  static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
690  {
691  	struct dma_chan *dchan = &chan->dma_chan;
692  	struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
693  	struct nbpf_link_desc *ldesc;
694  	struct nbpf_link_reg *hwdesc;
695  	struct nbpf_desc *desc;
696  	LIST_HEAD(head);
697  	LIST_HEAD(lhead);
698  	int i;
699  	struct device *dev = dchan->device->dev;
700  
701  	if (!dpage)
702  		return -ENOMEM;
703  
704  	dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
705  		__func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
706  
707  	for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
708  	     i < ARRAY_SIZE(dpage->ldesc);
709  	     i++, ldesc++, hwdesc++) {
710  		ldesc->hwdesc = hwdesc;
711  		list_add_tail(&ldesc->node, &lhead);
712  		ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
713  					hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
714  
715  		dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
716  			hwdesc, &ldesc->hwdesc_dma_addr);
717  	}
718  
719  	for (i = 0, desc = dpage->desc;
720  	     i < ARRAY_SIZE(dpage->desc);
721  	     i++, desc++) {
722  		dma_async_tx_descriptor_init(&desc->async_tx, dchan);
723  		desc->async_tx.tx_submit = nbpf_tx_submit;
724  		desc->chan = chan;
725  		INIT_LIST_HEAD(&desc->sg);
726  		list_add_tail(&desc->node, &head);
727  	}
728  
729  	/*
730  	 * This function cannot be called from interrupt context, so, no need to
731  	 * save flags
732  	 */
733  	spin_lock_irq(&chan->lock);
734  	list_splice_tail(&lhead, &chan->free_links);
735  	list_splice_tail(&head, &chan->free);
736  	list_add(&dpage->node, &chan->desc_page);
737  	spin_unlock_irq(&chan->lock);
738  
739  	return ARRAY_SIZE(dpage->desc);
740  }
741  
nbpf_desc_put(struct nbpf_desc * desc)742  static void nbpf_desc_put(struct nbpf_desc *desc)
743  {
744  	struct nbpf_channel *chan = desc->chan;
745  	struct nbpf_link_desc *ldesc, *tmp;
746  	unsigned long flags;
747  
748  	spin_lock_irqsave(&chan->lock, flags);
749  	list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
750  		list_move(&ldesc->node, &chan->free_links);
751  
752  	list_add(&desc->node, &chan->free);
753  	spin_unlock_irqrestore(&chan->lock, flags);
754  }
755  
nbpf_scan_acked(struct nbpf_channel * chan)756  static void nbpf_scan_acked(struct nbpf_channel *chan)
757  {
758  	struct nbpf_desc *desc, *tmp;
759  	unsigned long flags;
760  	LIST_HEAD(head);
761  
762  	spin_lock_irqsave(&chan->lock, flags);
763  	list_for_each_entry_safe(desc, tmp, &chan->done, node)
764  		if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
765  			list_move(&desc->node, &head);
766  			desc->user_wait = false;
767  		}
768  	spin_unlock_irqrestore(&chan->lock, flags);
769  
770  	list_for_each_entry_safe(desc, tmp, &head, node) {
771  		list_del(&desc->node);
772  		nbpf_desc_put(desc);
773  	}
774  }
775  
776  /*
777   * We have to allocate descriptors with the channel lock dropped. This means,
778   * before we re-acquire the lock buffers can be taken already, so we have to
779   * re-check after re-acquiring the lock and possibly retry, if buffers are gone
780   * again.
781   */
nbpf_desc_get(struct nbpf_channel * chan,size_t len)782  static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
783  {
784  	struct nbpf_desc *desc = NULL;
785  	struct nbpf_link_desc *ldesc, *prev = NULL;
786  
787  	nbpf_scan_acked(chan);
788  
789  	spin_lock_irq(&chan->lock);
790  
791  	do {
792  		int i = 0, ret;
793  
794  		if (list_empty(&chan->free)) {
795  			/* No more free descriptors */
796  			spin_unlock_irq(&chan->lock);
797  			ret = nbpf_desc_page_alloc(chan);
798  			if (ret < 0)
799  				return NULL;
800  			spin_lock_irq(&chan->lock);
801  			continue;
802  		}
803  		desc = list_first_entry(&chan->free, struct nbpf_desc, node);
804  		list_del(&desc->node);
805  
806  		do {
807  			if (list_empty(&chan->free_links)) {
808  				/* No more free link descriptors */
809  				spin_unlock_irq(&chan->lock);
810  				ret = nbpf_desc_page_alloc(chan);
811  				if (ret < 0) {
812  					nbpf_desc_put(desc);
813  					return NULL;
814  				}
815  				spin_lock_irq(&chan->lock);
816  				continue;
817  			}
818  
819  			ldesc = list_first_entry(&chan->free_links,
820  						 struct nbpf_link_desc, node);
821  			ldesc->desc = desc;
822  			if (prev)
823  				prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
824  
825  			prev = ldesc;
826  			list_move_tail(&ldesc->node, &desc->sg);
827  
828  			i++;
829  		} while (i < len);
830  	} while (!desc);
831  
832  	prev->hwdesc->next = 0;
833  
834  	spin_unlock_irq(&chan->lock);
835  
836  	return desc;
837  }
838  
nbpf_chan_idle(struct nbpf_channel * chan)839  static void nbpf_chan_idle(struct nbpf_channel *chan)
840  {
841  	struct nbpf_desc *desc, *tmp;
842  	unsigned long flags;
843  	LIST_HEAD(head);
844  
845  	spin_lock_irqsave(&chan->lock, flags);
846  
847  	list_splice_init(&chan->done, &head);
848  	list_splice_init(&chan->active, &head);
849  	list_splice_init(&chan->queued, &head);
850  
851  	chan->running = NULL;
852  
853  	spin_unlock_irqrestore(&chan->lock, flags);
854  
855  	list_for_each_entry_safe(desc, tmp, &head, node) {
856  		dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
857  			__func__, desc, desc->async_tx.cookie);
858  		list_del(&desc->node);
859  		nbpf_desc_put(desc);
860  	}
861  }
862  
nbpf_pause(struct dma_chan * dchan)863  static int nbpf_pause(struct dma_chan *dchan)
864  {
865  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
866  
867  	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
868  
869  	chan->paused = true;
870  	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
871  	/* See comment in nbpf_prep_one() */
872  	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
873  
874  	return 0;
875  }
876  
nbpf_terminate_all(struct dma_chan * dchan)877  static int nbpf_terminate_all(struct dma_chan *dchan)
878  {
879  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
880  
881  	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
882  	dev_dbg(dchan->device->dev, "Terminating\n");
883  
884  	nbpf_chan_halt(chan);
885  	nbpf_chan_idle(chan);
886  
887  	return 0;
888  }
889  
nbpf_config(struct dma_chan * dchan,struct dma_slave_config * config)890  static int nbpf_config(struct dma_chan *dchan,
891  		       struct dma_slave_config *config)
892  {
893  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
894  
895  	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
896  
897  	/*
898  	 * We could check config->slave_id to match chan->terminal here,
899  	 * but with DT they would be coming from the same source, so
900  	 * such a check would be superflous
901  	 */
902  
903  	chan->slave_dst_addr = config->dst_addr;
904  	chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
905  					       config->dst_addr_width, 1);
906  	chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
907  					       config->dst_addr_width,
908  					       config->dst_maxburst);
909  	chan->slave_src_addr = config->src_addr;
910  	chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
911  					       config->src_addr_width, 1);
912  	chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
913  					       config->src_addr_width,
914  					       config->src_maxburst);
915  
916  	return 0;
917  }
918  
nbpf_prep_sg(struct nbpf_channel * chan,struct scatterlist * src_sg,struct scatterlist * dst_sg,size_t len,enum dma_transfer_direction direction,unsigned long flags)919  static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
920  		struct scatterlist *src_sg, struct scatterlist *dst_sg,
921  		size_t len, enum dma_transfer_direction direction,
922  		unsigned long flags)
923  {
924  	struct nbpf_link_desc *ldesc;
925  	struct scatterlist *mem_sg;
926  	struct nbpf_desc *desc;
927  	bool inc_src, inc_dst;
928  	size_t data_len = 0;
929  	int i = 0;
930  
931  	switch (direction) {
932  	case DMA_DEV_TO_MEM:
933  		mem_sg = dst_sg;
934  		inc_src = false;
935  		inc_dst = true;
936  		break;
937  
938  	case DMA_MEM_TO_DEV:
939  		mem_sg = src_sg;
940  		inc_src = true;
941  		inc_dst = false;
942  		break;
943  
944  	default:
945  	case DMA_MEM_TO_MEM:
946  		mem_sg = src_sg;
947  		inc_src = true;
948  		inc_dst = true;
949  	}
950  
951  	desc = nbpf_desc_get(chan, len);
952  	if (!desc)
953  		return NULL;
954  
955  	desc->async_tx.flags = flags;
956  	desc->async_tx.cookie = -EBUSY;
957  	desc->user_wait = false;
958  
959  	/*
960  	 * This is a private descriptor list, and we own the descriptor. No need
961  	 * to lock.
962  	 */
963  	list_for_each_entry(ldesc, &desc->sg, node) {
964  		int ret = nbpf_prep_one(ldesc, direction,
965  					sg_dma_address(src_sg),
966  					sg_dma_address(dst_sg),
967  					sg_dma_len(mem_sg),
968  					i == len - 1);
969  		if (ret < 0) {
970  			nbpf_desc_put(desc);
971  			return NULL;
972  		}
973  		data_len += sg_dma_len(mem_sg);
974  		if (inc_src)
975  			src_sg = sg_next(src_sg);
976  		if (inc_dst)
977  			dst_sg = sg_next(dst_sg);
978  		mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
979  		i++;
980  	}
981  
982  	desc->length = data_len;
983  
984  	/* The user has to return the descriptor to us ASAP via .tx_submit() */
985  	return &desc->async_tx;
986  }
987  
nbpf_prep_memcpy(struct dma_chan * dchan,dma_addr_t dst,dma_addr_t src,size_t len,unsigned long flags)988  static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
989  	struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
990  	size_t len, unsigned long flags)
991  {
992  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
993  	struct scatterlist dst_sg;
994  	struct scatterlist src_sg;
995  
996  	sg_init_table(&dst_sg, 1);
997  	sg_init_table(&src_sg, 1);
998  
999  	sg_dma_address(&dst_sg) = dst;
1000  	sg_dma_address(&src_sg) = src;
1001  
1002  	sg_dma_len(&dst_sg) = len;
1003  	sg_dma_len(&src_sg) = len;
1004  
1005  	dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1006  		__func__, len, &src, &dst);
1007  
1008  	return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1009  			    DMA_MEM_TO_MEM, flags);
1010  }
1011  
nbpf_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1012  static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1013  	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1014  	enum dma_transfer_direction direction, unsigned long flags, void *context)
1015  {
1016  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
1017  	struct scatterlist slave_sg;
1018  
1019  	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1020  
1021  	sg_init_table(&slave_sg, 1);
1022  
1023  	switch (direction) {
1024  	case DMA_MEM_TO_DEV:
1025  		sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1026  		return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1027  				    direction, flags);
1028  
1029  	case DMA_DEV_TO_MEM:
1030  		sg_dma_address(&slave_sg) = chan->slave_src_addr;
1031  		return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1032  				    direction, flags);
1033  
1034  	default:
1035  		return NULL;
1036  	}
1037  }
1038  
nbpf_alloc_chan_resources(struct dma_chan * dchan)1039  static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1040  {
1041  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
1042  	int ret;
1043  
1044  	INIT_LIST_HEAD(&chan->free);
1045  	INIT_LIST_HEAD(&chan->free_links);
1046  	INIT_LIST_HEAD(&chan->queued);
1047  	INIT_LIST_HEAD(&chan->active);
1048  	INIT_LIST_HEAD(&chan->done);
1049  
1050  	ret = nbpf_desc_page_alloc(chan);
1051  	if (ret < 0)
1052  		return ret;
1053  
1054  	dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1055  		chan->terminal);
1056  
1057  	nbpf_chan_configure(chan);
1058  
1059  	return ret;
1060  }
1061  
nbpf_free_chan_resources(struct dma_chan * dchan)1062  static void nbpf_free_chan_resources(struct dma_chan *dchan)
1063  {
1064  	struct nbpf_channel *chan = nbpf_to_chan(dchan);
1065  	struct nbpf_desc_page *dpage, *tmp;
1066  
1067  	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1068  
1069  	nbpf_chan_halt(chan);
1070  	nbpf_chan_idle(chan);
1071  	/* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1072  	nbpf_chan_prepare_default(chan);
1073  
1074  	list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1075  		struct nbpf_link_desc *ldesc;
1076  		int i;
1077  		list_del(&dpage->node);
1078  		for (i = 0, ldesc = dpage->ldesc;
1079  		     i < ARRAY_SIZE(dpage->ldesc);
1080  		     i++, ldesc++)
1081  			dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1082  					 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1083  		free_page((unsigned long)dpage);
1084  	}
1085  }
1086  
nbpf_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1087  static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1088  				      struct of_dma *ofdma)
1089  {
1090  	struct nbpf_device *nbpf = ofdma->of_dma_data;
1091  	struct dma_chan *dchan;
1092  	struct nbpf_channel *chan;
1093  
1094  	if (dma_spec->args_count != 2)
1095  		return NULL;
1096  
1097  	dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1098  	if (!dchan)
1099  		return NULL;
1100  
1101  	dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1102  		dma_spec->np);
1103  
1104  	chan = nbpf_to_chan(dchan);
1105  
1106  	chan->terminal = dma_spec->args[0];
1107  	chan->flags = dma_spec->args[1];
1108  
1109  	nbpf_chan_prepare(chan);
1110  	nbpf_chan_configure(chan);
1111  
1112  	return dchan;
1113  }
1114  
nbpf_chan_tasklet(struct tasklet_struct * t)1115  static void nbpf_chan_tasklet(struct tasklet_struct *t)
1116  {
1117  	struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
1118  	struct nbpf_desc *desc, *tmp;
1119  	struct dmaengine_desc_callback cb;
1120  
1121  	while (!list_empty(&chan->done)) {
1122  		bool found = false, must_put, recycling = false;
1123  
1124  		spin_lock_irq(&chan->lock);
1125  
1126  		list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1127  			if (!desc->user_wait) {
1128  				/* Newly completed descriptor, have to process */
1129  				found = true;
1130  				break;
1131  			} else if (async_tx_test_ack(&desc->async_tx)) {
1132  				/*
1133  				 * This descriptor was waiting for a user ACK,
1134  				 * it can be recycled now.
1135  				 */
1136  				list_del(&desc->node);
1137  				spin_unlock_irq(&chan->lock);
1138  				nbpf_desc_put(desc);
1139  				recycling = true;
1140  				break;
1141  			}
1142  		}
1143  
1144  		if (recycling)
1145  			continue;
1146  
1147  		if (!found) {
1148  			/* This can happen if TERMINATE_ALL has been called */
1149  			spin_unlock_irq(&chan->lock);
1150  			break;
1151  		}
1152  
1153  		dma_cookie_complete(&desc->async_tx);
1154  
1155  		/*
1156  		 * With released lock we cannot dereference desc, maybe it's
1157  		 * still on the "done" list
1158  		 */
1159  		if (async_tx_test_ack(&desc->async_tx)) {
1160  			list_del(&desc->node);
1161  			must_put = true;
1162  		} else {
1163  			desc->user_wait = true;
1164  			must_put = false;
1165  		}
1166  
1167  		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1168  
1169  		/* ack and callback completed descriptor */
1170  		spin_unlock_irq(&chan->lock);
1171  
1172  		dmaengine_desc_callback_invoke(&cb, NULL);
1173  
1174  		if (must_put)
1175  			nbpf_desc_put(desc);
1176  	}
1177  }
1178  
nbpf_chan_irq(int irq,void * dev)1179  static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1180  {
1181  	struct nbpf_channel *chan = dev;
1182  	bool done = nbpf_status_get(chan);
1183  	struct nbpf_desc *desc;
1184  	irqreturn_t ret;
1185  	bool bh = false;
1186  
1187  	if (!done)
1188  		return IRQ_NONE;
1189  
1190  	nbpf_status_ack(chan);
1191  
1192  	dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1193  
1194  	spin_lock(&chan->lock);
1195  	desc = chan->running;
1196  	if (WARN_ON(!desc)) {
1197  		ret = IRQ_NONE;
1198  		goto unlock;
1199  	} else {
1200  		ret = IRQ_HANDLED;
1201  		bh = true;
1202  	}
1203  
1204  	list_move_tail(&desc->node, &chan->done);
1205  	chan->running = NULL;
1206  
1207  	if (!list_empty(&chan->active)) {
1208  		desc = list_first_entry(&chan->active,
1209  					struct nbpf_desc, node);
1210  		if (!nbpf_start(desc))
1211  			chan->running = desc;
1212  	}
1213  
1214  unlock:
1215  	spin_unlock(&chan->lock);
1216  
1217  	if (bh)
1218  		tasklet_schedule(&chan->tasklet);
1219  
1220  	return ret;
1221  }
1222  
nbpf_err_irq(int irq,void * dev)1223  static irqreturn_t nbpf_err_irq(int irq, void *dev)
1224  {
1225  	struct nbpf_device *nbpf = dev;
1226  	u32 error = nbpf_error_get(nbpf);
1227  
1228  	dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1229  
1230  	if (!error)
1231  		return IRQ_NONE;
1232  
1233  	do {
1234  		struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1235  		/* On error: abort all queued transfers, no callback */
1236  		nbpf_error_clear(chan);
1237  		nbpf_chan_idle(chan);
1238  		error = nbpf_error_get(nbpf);
1239  	} while (error);
1240  
1241  	return IRQ_HANDLED;
1242  }
1243  
nbpf_chan_probe(struct nbpf_device * nbpf,int n)1244  static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1245  {
1246  	struct dma_device *dma_dev = &nbpf->dma_dev;
1247  	struct nbpf_channel *chan = nbpf->chan + n;
1248  	int ret;
1249  
1250  	chan->nbpf = nbpf;
1251  	chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1252  	INIT_LIST_HEAD(&chan->desc_page);
1253  	spin_lock_init(&chan->lock);
1254  	chan->dma_chan.device = dma_dev;
1255  	dma_cookie_init(&chan->dma_chan);
1256  	nbpf_chan_prepare_default(chan);
1257  
1258  	dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1259  
1260  	snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1261  
1262  	tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
1263  	ret = devm_request_irq(dma_dev->dev, chan->irq,
1264  			nbpf_chan_irq, IRQF_SHARED,
1265  			chan->name, chan);
1266  	if (ret < 0)
1267  		return ret;
1268  
1269  	/* Add the channel to DMA device channel list */
1270  	list_add_tail(&chan->dma_chan.device_node,
1271  		      &dma_dev->channels);
1272  
1273  	return 0;
1274  }
1275  
1276  static const struct of_device_id nbpf_match[] = {
1277  	{.compatible = "renesas,nbpfaxi64dmac1b4",	.data = &nbpf_cfg[NBPF1B4]},
1278  	{.compatible = "renesas,nbpfaxi64dmac1b8",	.data = &nbpf_cfg[NBPF1B8]},
1279  	{.compatible = "renesas,nbpfaxi64dmac1b16",	.data = &nbpf_cfg[NBPF1B16]},
1280  	{.compatible = "renesas,nbpfaxi64dmac4b4",	.data = &nbpf_cfg[NBPF4B4]},
1281  	{.compatible = "renesas,nbpfaxi64dmac4b8",	.data = &nbpf_cfg[NBPF4B8]},
1282  	{.compatible = "renesas,nbpfaxi64dmac4b16",	.data = &nbpf_cfg[NBPF4B16]},
1283  	{.compatible = "renesas,nbpfaxi64dmac8b4",	.data = &nbpf_cfg[NBPF8B4]},
1284  	{.compatible = "renesas,nbpfaxi64dmac8b8",	.data = &nbpf_cfg[NBPF8B8]},
1285  	{.compatible = "renesas,nbpfaxi64dmac8b16",	.data = &nbpf_cfg[NBPF8B16]},
1286  	{}
1287  };
1288  MODULE_DEVICE_TABLE(of, nbpf_match);
1289  
nbpf_probe(struct platform_device * pdev)1290  static int nbpf_probe(struct platform_device *pdev)
1291  {
1292  	struct device *dev = &pdev->dev;
1293  	struct device_node *np = dev->of_node;
1294  	struct nbpf_device *nbpf;
1295  	struct dma_device *dma_dev;
1296  	const struct nbpf_config *cfg;
1297  	int num_channels;
1298  	int ret, irq, eirq, i;
1299  	int irqbuf[9] /* maximum 8 channels + error IRQ */;
1300  	unsigned int irqs = 0;
1301  
1302  	BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1303  
1304  	/* DT only */
1305  	if (!np)
1306  		return -ENODEV;
1307  
1308  	cfg = of_device_get_match_data(dev);
1309  	num_channels = cfg->num_channels;
1310  
1311  	nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1312  			    GFP_KERNEL);
1313  	if (!nbpf)
1314  		return -ENOMEM;
1315  
1316  	dma_dev = &nbpf->dma_dev;
1317  	dma_dev->dev = dev;
1318  
1319  	nbpf->base = devm_platform_ioremap_resource(pdev, 0);
1320  	if (IS_ERR(nbpf->base))
1321  		return PTR_ERR(nbpf->base);
1322  
1323  	nbpf->clk = devm_clk_get(dev, NULL);
1324  	if (IS_ERR(nbpf->clk))
1325  		return PTR_ERR(nbpf->clk);
1326  
1327  	of_property_read_u32(np, "max-burst-mem-read",
1328  			     &nbpf->max_burst_mem_read);
1329  	of_property_read_u32(np, "max-burst-mem-write",
1330  			     &nbpf->max_burst_mem_write);
1331  
1332  	nbpf->config = cfg;
1333  
1334  	for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1335  		irq = platform_get_irq_optional(pdev, i);
1336  		if (irq < 0 && irq != -ENXIO)
1337  			return irq;
1338  		if (irq > 0)
1339  			irqbuf[irqs++] = irq;
1340  	}
1341  
1342  	/*
1343  	 * 3 IRQ resource schemes are supported:
1344  	 * 1. 1 shared IRQ for error and all channels
1345  	 * 2. 2 IRQs: one for error and one shared for all channels
1346  	 * 3. 1 IRQ for error and an own IRQ for each channel
1347  	 */
1348  	if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1349  		return -ENXIO;
1350  
1351  	if (irqs == 1) {
1352  		eirq = irqbuf[0];
1353  
1354  		for (i = 0; i <= num_channels; i++)
1355  			nbpf->chan[i].irq = irqbuf[0];
1356  	} else {
1357  		eirq = platform_get_irq_byname(pdev, "error");
1358  		if (eirq < 0)
1359  			return eirq;
1360  
1361  		if (irqs == num_channels + 1) {
1362  			struct nbpf_channel *chan;
1363  
1364  			for (i = 0, chan = nbpf->chan; i <= num_channels;
1365  			     i++, chan++) {
1366  				/* Skip the error IRQ */
1367  				if (irqbuf[i] == eirq)
1368  					i++;
1369  				chan->irq = irqbuf[i];
1370  			}
1371  
1372  			if (chan != nbpf->chan + num_channels)
1373  				return -EINVAL;
1374  		} else {
1375  			/* 2 IRQs and more than one channel */
1376  			if (irqbuf[0] == eirq)
1377  				irq = irqbuf[1];
1378  			else
1379  				irq = irqbuf[0];
1380  
1381  			for (i = 0; i <= num_channels; i++)
1382  				nbpf->chan[i].irq = irq;
1383  		}
1384  	}
1385  
1386  	ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1387  			       IRQF_SHARED, "dma error", nbpf);
1388  	if (ret < 0)
1389  		return ret;
1390  	nbpf->eirq = eirq;
1391  
1392  	INIT_LIST_HEAD(&dma_dev->channels);
1393  
1394  	/* Create DMA Channel */
1395  	for (i = 0; i < num_channels; i++) {
1396  		ret = nbpf_chan_probe(nbpf, i);
1397  		if (ret < 0)
1398  			return ret;
1399  	}
1400  
1401  	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1402  	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1403  	dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1404  
1405  	/* Common and MEMCPY operations */
1406  	dma_dev->device_alloc_chan_resources
1407  		= nbpf_alloc_chan_resources;
1408  	dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1409  	dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1410  	dma_dev->device_tx_status = nbpf_tx_status;
1411  	dma_dev->device_issue_pending = nbpf_issue_pending;
1412  
1413  	/*
1414  	 * If we drop support for unaligned MEMCPY buffer addresses and / or
1415  	 * lengths by setting
1416  	 * dma_dev->copy_align = 4;
1417  	 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1418  	 * DMA_MEM_TO_MEM
1419  	 */
1420  
1421  	/* Compulsory for DMA_SLAVE fields */
1422  	dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1423  	dma_dev->device_config = nbpf_config;
1424  	dma_dev->device_pause = nbpf_pause;
1425  	dma_dev->device_terminate_all = nbpf_terminate_all;
1426  
1427  	dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1428  	dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1429  	dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1430  
1431  	platform_set_drvdata(pdev, nbpf);
1432  
1433  	ret = clk_prepare_enable(nbpf->clk);
1434  	if (ret < 0)
1435  		return ret;
1436  
1437  	nbpf_configure(nbpf);
1438  
1439  	ret = dma_async_device_register(dma_dev);
1440  	if (ret < 0)
1441  		goto e_clk_off;
1442  
1443  	ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1444  	if (ret < 0)
1445  		goto e_dma_dev_unreg;
1446  
1447  	return 0;
1448  
1449  e_dma_dev_unreg:
1450  	dma_async_device_unregister(dma_dev);
1451  e_clk_off:
1452  	clk_disable_unprepare(nbpf->clk);
1453  
1454  	return ret;
1455  }
1456  
nbpf_remove(struct platform_device * pdev)1457  static int nbpf_remove(struct platform_device *pdev)
1458  {
1459  	struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1460  	int i;
1461  
1462  	devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1463  
1464  	for (i = 0; i < nbpf->config->num_channels; i++) {
1465  		struct nbpf_channel *chan = nbpf->chan + i;
1466  
1467  		devm_free_irq(&pdev->dev, chan->irq, chan);
1468  
1469  		tasklet_kill(&chan->tasklet);
1470  	}
1471  
1472  	of_dma_controller_free(pdev->dev.of_node);
1473  	dma_async_device_unregister(&nbpf->dma_dev);
1474  	clk_disable_unprepare(nbpf->clk);
1475  
1476  	return 0;
1477  }
1478  
1479  static const struct platform_device_id nbpf_ids[] = {
1480  	{"nbpfaxi64dmac1b4",	(kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1481  	{"nbpfaxi64dmac1b8",	(kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1482  	{"nbpfaxi64dmac1b16",	(kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1483  	{"nbpfaxi64dmac4b4",	(kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1484  	{"nbpfaxi64dmac4b8",	(kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1485  	{"nbpfaxi64dmac4b16",	(kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1486  	{"nbpfaxi64dmac8b4",	(kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1487  	{"nbpfaxi64dmac8b8",	(kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1488  	{"nbpfaxi64dmac8b16",	(kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1489  	{},
1490  };
1491  MODULE_DEVICE_TABLE(platform, nbpf_ids);
1492  
1493  #ifdef CONFIG_PM
nbpf_runtime_suspend(struct device * dev)1494  static int nbpf_runtime_suspend(struct device *dev)
1495  {
1496  	struct nbpf_device *nbpf = dev_get_drvdata(dev);
1497  	clk_disable_unprepare(nbpf->clk);
1498  	return 0;
1499  }
1500  
nbpf_runtime_resume(struct device * dev)1501  static int nbpf_runtime_resume(struct device *dev)
1502  {
1503  	struct nbpf_device *nbpf = dev_get_drvdata(dev);
1504  	return clk_prepare_enable(nbpf->clk);
1505  }
1506  #endif
1507  
1508  static const struct dev_pm_ops nbpf_pm_ops = {
1509  	SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1510  };
1511  
1512  static struct platform_driver nbpf_driver = {
1513  	.driver = {
1514  		.name = "dma-nbpf",
1515  		.of_match_table = nbpf_match,
1516  		.pm = &nbpf_pm_ops,
1517  	},
1518  	.id_table = nbpf_ids,
1519  	.probe = nbpf_probe,
1520  	.remove = nbpf_remove,
1521  };
1522  
1523  module_platform_driver(nbpf_driver);
1524  
1525  MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1526  MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1527  MODULE_LICENSE("GPL v2");
1528