xref: /openbmc/u-boot/drivers/mmc/jz_mmc.c (revision f83ef0dac83110d20389eb71f09285f009f3d198)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * Ingenic JZ MMC driver
4   *
5   * Copyright (c) 2013 Imagination Technologies
6   * Author: Paul Burton <paul.burton@imgtec.com>
7   */
8  
9  #include <common.h>
10  #include <malloc.h>
11  #include <mmc.h>
12  #include <asm/io.h>
13  #include <asm/unaligned.h>
14  #include <errno.h>
15  #include <mach/jz4780.h>
16  #include <wait_bit.h>
17  
18  /* Registers */
19  #define MSC_STRPCL			0x000
20  #define MSC_STAT			0x004
21  #define MSC_CLKRT			0x008
22  #define MSC_CMDAT			0x00c
23  #define MSC_RESTO			0x010
24  #define MSC_RDTO			0x014
25  #define MSC_BLKLEN			0x018
26  #define MSC_NOB				0x01c
27  #define MSC_SNOB			0x020
28  #define MSC_IMASK			0x024
29  #define MSC_IREG			0x028
30  #define MSC_CMD				0x02c
31  #define MSC_ARG				0x030
32  #define MSC_RES				0x034
33  #define MSC_RXFIFO			0x038
34  #define MSC_TXFIFO			0x03c
35  #define MSC_LPM				0x040
36  #define MSC_DMAC			0x044
37  #define MSC_DMANDA			0x048
38  #define MSC_DMADA			0x04c
39  #define MSC_DMALEN			0x050
40  #define MSC_DMACMD			0x054
41  #define MSC_CTRL2			0x058
42  #define MSC_RTCNT			0x05c
43  #define MSC_DBG				0x0fc
44  
45  /* MSC Clock and Control Register (MSC_STRPCL) */
46  #define MSC_STRPCL_EXIT_MULTIPLE	BIT(7)
47  #define MSC_STRPCL_EXIT_TRANSFER	BIT(6)
48  #define MSC_STRPCL_START_READWAIT	BIT(5)
49  #define MSC_STRPCL_STOP_READWAIT	BIT(4)
50  #define MSC_STRPCL_RESET		BIT(3)
51  #define MSC_STRPCL_START_OP		BIT(2)
52  #define MSC_STRPCL_CLOCK_CONTROL_STOP	BIT(0)
53  #define MSC_STRPCL_CLOCK_CONTROL_START	BIT(1)
54  
55  /* MSC Status Register (MSC_STAT) */
56  #define MSC_STAT_AUTO_CMD_DONE		BIT(31)
57  #define MSC_STAT_IS_RESETTING		BIT(15)
58  #define MSC_STAT_SDIO_INT_ACTIVE	BIT(14)
59  #define MSC_STAT_PRG_DONE		BIT(13)
60  #define MSC_STAT_DATA_TRAN_DONE		BIT(12)
61  #define MSC_STAT_END_CMD_RES		BIT(11)
62  #define MSC_STAT_DATA_FIFO_AFULL	BIT(10)
63  #define MSC_STAT_IS_READWAIT		BIT(9)
64  #define MSC_STAT_CLK_EN			BIT(8)
65  #define MSC_STAT_DATA_FIFO_FULL		BIT(7)
66  #define MSC_STAT_DATA_FIFO_EMPTY	BIT(6)
67  #define MSC_STAT_CRC_RES_ERR		BIT(5)
68  #define MSC_STAT_CRC_READ_ERROR		BIT(4)
69  #define MSC_STAT_CRC_WRITE_ERROR	BIT(2)
70  #define MSC_STAT_CRC_WRITE_ERROR_NOSTS	BIT(4)
71  #define MSC_STAT_TIME_OUT_RES		BIT(1)
72  #define MSC_STAT_TIME_OUT_READ		BIT(0)
73  
74  /* MSC Bus Clock Control Register (MSC_CLKRT) */
75  #define MSC_CLKRT_CLK_RATE_MASK		0x7
76  
77  /* MSC Command Sequence Control Register (MSC_CMDAT) */
78  #define MSC_CMDAT_IO_ABORT		BIT(11)
79  #define MSC_CMDAT_BUS_WIDTH_1BIT	(0x0 << 9)
80  #define MSC_CMDAT_BUS_WIDTH_4BIT	(0x2 << 9)
81  #define MSC_CMDAT_DMA_EN		BIT(8)
82  #define MSC_CMDAT_INIT			BIT(7)
83  #define MSC_CMDAT_BUSY			BIT(6)
84  #define MSC_CMDAT_STREAM_BLOCK		BIT(5)
85  #define MSC_CMDAT_WRITE			BIT(4)
86  #define MSC_CMDAT_DATA_EN		BIT(3)
87  #define MSC_CMDAT_RESPONSE_MASK		(0x7 << 0)
88  #define MSC_CMDAT_RESPONSE_NONE		(0x0 << 0) /* No response */
89  #define MSC_CMDAT_RESPONSE_R1		(0x1 << 0) /* Format R1 and R1b */
90  #define MSC_CMDAT_RESPONSE_R2		(0x2 << 0) /* Format R2 */
91  #define MSC_CMDAT_RESPONSE_R3		(0x3 << 0) /* Format R3 */
92  #define MSC_CMDAT_RESPONSE_R4		(0x4 << 0) /* Format R4 */
93  #define MSC_CMDAT_RESPONSE_R5		(0x5 << 0) /* Format R5 */
94  #define MSC_CMDAT_RESPONSE_R6		(0x6 << 0) /* Format R6 */
95  
96  /* MSC Interrupts Mask Register (MSC_IMASK) */
97  #define MSC_IMASK_TIME_OUT_RES		BIT(9)
98  #define MSC_IMASK_TIME_OUT_READ		BIT(8)
99  #define MSC_IMASK_SDIO			BIT(7)
100  #define MSC_IMASK_TXFIFO_WR_REQ		BIT(6)
101  #define MSC_IMASK_RXFIFO_RD_REQ		BIT(5)
102  #define MSC_IMASK_END_CMD_RES		BIT(2)
103  #define MSC_IMASK_PRG_DONE		BIT(1)
104  #define MSC_IMASK_DATA_TRAN_DONE	BIT(0)
105  
106  /* MSC Interrupts Status Register (MSC_IREG) */
107  #define MSC_IREG_TIME_OUT_RES		BIT(9)
108  #define MSC_IREG_TIME_OUT_READ		BIT(8)
109  #define MSC_IREG_SDIO			BIT(7)
110  #define MSC_IREG_TXFIFO_WR_REQ		BIT(6)
111  #define MSC_IREG_RXFIFO_RD_REQ		BIT(5)
112  #define MSC_IREG_END_CMD_RES		BIT(2)
113  #define MSC_IREG_PRG_DONE		BIT(1)
114  #define MSC_IREG_DATA_TRAN_DONE		BIT(0)
115  
116  struct jz_mmc_plat {
117  	struct mmc_config cfg;
118  	struct mmc mmc;
119  };
120  
121  struct jz_mmc_priv {
122  	void __iomem		*regs;
123  	u32			flags;
124  /* priv flags */
125  #define JZ_MMC_BUS_WIDTH_MASK	0x3
126  #define JZ_MMC_BUS_WIDTH_1	0x0
127  #define JZ_MMC_BUS_WIDTH_4	0x2
128  #define JZ_MMC_BUS_WIDTH_8	0x3
129  #define JZ_MMC_SENT_INIT	BIT(2)
130  };
131  
jz_mmc_clock_rate(void)132  static int jz_mmc_clock_rate(void)
133  {
134  	return 24000000;
135  }
136  
137  #if CONFIG_IS_ENABLED(MMC_WRITE)
jz_mmc_write_data(struct jz_mmc_priv * priv,struct mmc_data * data)138  static inline void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data)
139  {
140  	int sz = DIV_ROUND_UP(data->blocks * data->blocksize, 4);
141  	const void *buf = data->src;
142  
143  	while (sz--) {
144  		u32 val = get_unaligned_le32(buf);
145  
146  		wait_for_bit_le32(priv->regs + MSC_IREG,
147  				  MSC_IREG_TXFIFO_WR_REQ,
148  				  true, 10000, false);
149  		writel(val, priv->regs + MSC_TXFIFO);
150  		buf += 4;
151  	}
152  }
153  #else
jz_mmc_write_data(struct jz_mmc_priv * priv,struct mmc_data * data)154  static void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data)
155  {}
156  #endif
157  
jz_mmc_read_data(struct jz_mmc_priv * priv,struct mmc_data * data)158  static inline int jz_mmc_read_data(struct jz_mmc_priv *priv, struct mmc_data *data)
159  {
160  	int sz = data->blocks * data->blocksize;
161  	void *buf = data->dest;
162  	u32 stat, val;
163  
164  	do {
165  		stat = readl(priv->regs + MSC_STAT);
166  
167  		if (stat & MSC_STAT_TIME_OUT_READ)
168  			return -ETIMEDOUT;
169  		if (stat & MSC_STAT_CRC_READ_ERROR)
170  			return -EINVAL;
171  		if (stat & MSC_STAT_DATA_FIFO_EMPTY) {
172  			udelay(10);
173  			continue;
174  		}
175  		do {
176  			val = readl(priv->regs + MSC_RXFIFO);
177  			if (sz == 1)
178  				*(u8 *)buf = (u8)val;
179  			else if (sz == 2)
180  				put_unaligned_le16(val, buf);
181  			else if (sz >= 4)
182  				put_unaligned_le32(val, buf);
183  			buf += 4;
184  			sz -= 4;
185  			stat = readl(priv->regs + MSC_STAT);
186  		} while (!(stat & MSC_STAT_DATA_FIFO_EMPTY));
187  	} while (!(stat & MSC_STAT_DATA_TRAN_DONE));
188  	return 0;
189  }
190  
jz_mmc_send_cmd(struct mmc * mmc,struct jz_mmc_priv * priv,struct mmc_cmd * cmd,struct mmc_data * data)191  static int jz_mmc_send_cmd(struct mmc *mmc, struct jz_mmc_priv *priv,
192  			   struct mmc_cmd *cmd, struct mmc_data *data)
193  {
194  	u32 stat, mask, cmdat = 0;
195  	int i, ret;
196  
197  	/* stop the clock */
198  	writel(MSC_STRPCL_CLOCK_CONTROL_STOP, priv->regs + MSC_STRPCL);
199  	ret = wait_for_bit_le32(priv->regs + MSC_STAT,
200  				MSC_STAT_CLK_EN, false, 10000, false);
201  	if (ret)
202  		return ret;
203  
204  	writel(0, priv->regs + MSC_DMAC);
205  
206  	/* setup command */
207  	writel(cmd->cmdidx, priv->regs + MSC_CMD);
208  	writel(cmd->cmdarg, priv->regs + MSC_ARG);
209  
210  	if (data) {
211  		/* setup data */
212  		cmdat |= MSC_CMDAT_DATA_EN;
213  		if (data->flags & MMC_DATA_WRITE)
214  			cmdat |= MSC_CMDAT_WRITE;
215  
216  		writel(data->blocks, priv->regs + MSC_NOB);
217  		writel(data->blocksize, priv->regs + MSC_BLKLEN);
218  	} else {
219  		writel(0, priv->regs + MSC_NOB);
220  		writel(0, priv->regs + MSC_BLKLEN);
221  	}
222  
223  	/* setup response */
224  	switch (cmd->resp_type) {
225  	case MMC_RSP_NONE:
226  		break;
227  	case MMC_RSP_R1:
228  	case MMC_RSP_R1b:
229  		cmdat |= MSC_CMDAT_RESPONSE_R1;
230  		break;
231  	case MMC_RSP_R2:
232  		cmdat |= MSC_CMDAT_RESPONSE_R2;
233  		break;
234  	case MMC_RSP_R3:
235  		cmdat |= MSC_CMDAT_RESPONSE_R3;
236  		break;
237  	default:
238  		break;
239  	}
240  
241  	if (cmd->resp_type & MMC_RSP_BUSY)
242  		cmdat |= MSC_CMDAT_BUSY;
243  
244  	/* set init for the first command only */
245  	if (!(priv->flags & JZ_MMC_SENT_INIT)) {
246  		cmdat |= MSC_CMDAT_INIT;
247  		priv->flags |= JZ_MMC_SENT_INIT;
248  	}
249  
250  	cmdat |= (priv->flags & JZ_MMC_BUS_WIDTH_MASK) << 9;
251  
252  	/* write the data setup */
253  	writel(cmdat, priv->regs + MSC_CMDAT);
254  
255  	/* unmask interrupts */
256  	mask = 0xffffffff & ~(MSC_IMASK_END_CMD_RES | MSC_IMASK_TIME_OUT_RES);
257  	if (data) {
258  		mask &= ~MSC_IMASK_DATA_TRAN_DONE;
259  		if (data->flags & MMC_DATA_WRITE) {
260  			mask &= ~MSC_IMASK_TXFIFO_WR_REQ;
261  		} else {
262  			mask &= ~(MSC_IMASK_RXFIFO_RD_REQ |
263  				  MSC_IMASK_TIME_OUT_READ);
264  		}
265  	}
266  	writel(mask, priv->regs + MSC_IMASK);
267  
268  	/* clear interrupts */
269  	writel(0xffffffff, priv->regs + MSC_IREG);
270  
271  	/* start the command (& the clock) */
272  	writel(MSC_STRPCL_START_OP | MSC_STRPCL_CLOCK_CONTROL_START,
273  	       priv->regs + MSC_STRPCL);
274  
275  	/* wait for completion */
276  	for (i = 0; i < 100; i++) {
277  		stat = readl(priv->regs + MSC_IREG);
278  		stat &= MSC_IREG_END_CMD_RES | MSC_IREG_TIME_OUT_RES;
279  		if (stat)
280  			break;
281  		mdelay(1);
282  	}
283  	writel(stat, priv->regs + MSC_IREG);
284  	if (stat & MSC_IREG_TIME_OUT_RES)
285  		return -ETIMEDOUT;
286  
287  	if (cmd->resp_type & MMC_RSP_PRESENT) {
288  		/* read the response */
289  		if (cmd->resp_type & MMC_RSP_136) {
290  			u16 a, b, c, i;
291  
292  			a = readw(priv->regs + MSC_RES);
293  			for (i = 0; i < 4; i++) {
294  				b = readw(priv->regs + MSC_RES);
295  				c = readw(priv->regs + MSC_RES);
296  				cmd->response[i] =
297  					(a << 24) | (b << 8) | (c >> 8);
298  				a = c;
299  			}
300  		} else {
301  			cmd->response[0] = readw(priv->regs + MSC_RES) << 24;
302  			cmd->response[0] |= readw(priv->regs + MSC_RES) << 8;
303  			cmd->response[0] |= readw(priv->regs + MSC_RES) & 0xff;
304  		}
305  	}
306  	if (data) {
307  		if (data->flags & MMC_DATA_WRITE)
308  			jz_mmc_write_data(priv, data);
309  		else if (data->flags & MMC_DATA_READ) {
310  			ret = jz_mmc_read_data(priv, data);
311  			if (ret)
312  				return ret;
313  		}
314  	}
315  
316  	return 0;
317  }
318  
jz_mmc_set_ios(struct mmc * mmc,struct jz_mmc_priv * priv)319  static int jz_mmc_set_ios(struct mmc *mmc, struct jz_mmc_priv *priv)
320  {
321  	u32 real_rate = jz_mmc_clock_rate();
322  	u8 clk_div = 0;
323  
324  	/* calculate clock divide */
325  	while ((real_rate > mmc->clock) && (clk_div < 7)) {
326  		real_rate >>= 1;
327  		clk_div++;
328  	}
329  	writel(clk_div & MSC_CLKRT_CLK_RATE_MASK, priv->regs + MSC_CLKRT);
330  
331  	/* set the bus width for the next command */
332  	priv->flags &= ~JZ_MMC_BUS_WIDTH_MASK;
333  	if (mmc->bus_width == 8)
334  		priv->flags |= JZ_MMC_BUS_WIDTH_8;
335  	else if (mmc->bus_width == 4)
336  		priv->flags |= JZ_MMC_BUS_WIDTH_4;
337  	else
338  		priv->flags |= JZ_MMC_BUS_WIDTH_1;
339  
340  	return 0;
341  }
342  
jz_mmc_core_init(struct mmc * mmc)343  static int jz_mmc_core_init(struct mmc *mmc)
344  {
345  	struct jz_mmc_priv *priv = mmc->priv;
346  	int ret;
347  
348  	/* Reset */
349  	writel(MSC_STRPCL_RESET, priv->regs + MSC_STRPCL);
350  	ret = wait_for_bit_le32(priv->regs + MSC_STAT,
351  				MSC_STAT_IS_RESETTING, false, 10000, false);
352  	if (ret)
353  		return ret;
354  
355  	/* Maximum timeouts */
356  	writel(0xffff, priv->regs + MSC_RESTO);
357  	writel(0xffffffff, priv->regs + MSC_RDTO);
358  
359  	/* Enable low power mode */
360  	writel(0x1, priv->regs + MSC_LPM);
361  
362  	return 0;
363  }
364  
365  #if !CONFIG_IS_ENABLED(DM_MMC)
366  
jz_mmc_legacy_send_cmd(struct mmc * mmc,struct mmc_cmd * cmd,struct mmc_data * data)367  static int jz_mmc_legacy_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
368  				  struct mmc_data *data)
369  {
370  	struct jz_mmc_priv *priv = mmc->priv;
371  
372  	return jz_mmc_send_cmd(mmc, priv, cmd, data);
373  }
374  
jz_mmc_legacy_set_ios(struct mmc * mmc)375  static int jz_mmc_legacy_set_ios(struct mmc *mmc)
376  {
377  	struct jz_mmc_priv *priv = mmc->priv;
378  
379  	return jz_mmc_set_ios(mmc, priv);
380  };
381  
382  static const struct mmc_ops jz_msc_ops = {
383  	.send_cmd	= jz_mmc_legacy_send_cmd,
384  	.set_ios	= jz_mmc_legacy_set_ios,
385  	.init		= jz_mmc_core_init,
386  };
387  
388  static struct jz_mmc_priv jz_mmc_priv_static;
389  static struct jz_mmc_plat jz_mmc_plat_static = {
390  	.cfg = {
391  		.name = "MSC",
392  		.ops = &jz_msc_ops,
393  
394  		.voltages = MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 |
395  			    MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 |
396  			    MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36,
397  		.host_caps = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS,
398  
399  		.f_min = 375000,
400  		.f_max = 48000000,
401  		.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
402  	},
403  };
404  
jz_mmc_init(void __iomem * base)405  int jz_mmc_init(void __iomem *base)
406  {
407  	struct mmc *mmc;
408  
409  	jz_mmc_priv_static.regs = base;
410  
411  	mmc = mmc_create(&jz_mmc_plat_static.cfg, &jz_mmc_priv_static);
412  
413  	return mmc ? 0 : -ENODEV;
414  }
415  
416  #else /* CONFIG_DM_MMC */
417  
418  #include <dm.h>
419  DECLARE_GLOBAL_DATA_PTR;
420  
jz_mmc_dm_send_cmd(struct udevice * dev,struct mmc_cmd * cmd,struct mmc_data * data)421  static int jz_mmc_dm_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
422  			      struct mmc_data *data)
423  {
424  	struct jz_mmc_priv *priv = dev_get_priv(dev);
425  	struct mmc *mmc = mmc_get_mmc_dev(dev);
426  
427  	return jz_mmc_send_cmd(mmc, priv, cmd, data);
428  }
429  
jz_mmc_dm_set_ios(struct udevice * dev)430  static int jz_mmc_dm_set_ios(struct udevice *dev)
431  {
432  	struct jz_mmc_priv *priv = dev_get_priv(dev);
433  	struct mmc *mmc = mmc_get_mmc_dev(dev);
434  
435  	return jz_mmc_set_ios(mmc, priv);
436  };
437  
438  static const struct dm_mmc_ops jz_msc_ops = {
439  	.send_cmd	= jz_mmc_dm_send_cmd,
440  	.set_ios	= jz_mmc_dm_set_ios,
441  };
442  
jz_mmc_ofdata_to_platdata(struct udevice * dev)443  static int jz_mmc_ofdata_to_platdata(struct udevice *dev)
444  {
445  	struct jz_mmc_priv *priv = dev_get_priv(dev);
446  	struct jz_mmc_plat *plat = dev_get_platdata(dev);
447  	struct mmc_config *cfg;
448  	int ret;
449  
450  	priv->regs = map_physmem(devfdt_get_addr(dev), 0x100, MAP_NOCACHE);
451  	cfg = &plat->cfg;
452  
453  	cfg->name = "MSC";
454  	cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
455  
456  	ret = mmc_of_parse(dev, cfg);
457  	if (ret < 0) {
458  		dev_err(dev, "failed to parse host caps\n");
459  		return ret;
460  	}
461  
462  	cfg->f_min = 400000;
463  	cfg->f_max = 52000000;
464  
465  	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
466  	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
467  
468  	return 0;
469  }
470  
jz_mmc_bind(struct udevice * dev)471  static int jz_mmc_bind(struct udevice *dev)
472  {
473  	struct jz_mmc_plat *plat = dev_get_platdata(dev);
474  
475  	return mmc_bind(dev, &plat->mmc, &plat->cfg);
476  }
477  
jz_mmc_probe(struct udevice * dev)478  static int jz_mmc_probe(struct udevice *dev)
479  {
480  	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
481  	struct jz_mmc_priv *priv = dev_get_priv(dev);
482  	struct jz_mmc_plat *plat = dev_get_platdata(dev);
483  
484  	plat->mmc.priv = priv;
485  	upriv->mmc = &plat->mmc;
486  	return jz_mmc_core_init(&plat->mmc);
487  }
488  
489  static const struct udevice_id jz_mmc_ids[] = {
490  	{ .compatible = "ingenic,jz4780-mmc" },
491  	{ }
492  };
493  
494  U_BOOT_DRIVER(jz_mmc_drv) = {
495  	.name			= "jz_mmc",
496  	.id			= UCLASS_MMC,
497  	.of_match		= jz_mmc_ids,
498  	.ofdata_to_platdata	= jz_mmc_ofdata_to_platdata,
499  	.bind			= jz_mmc_bind,
500  	.probe			= jz_mmc_probe,
501  	.priv_auto_alloc_size	= sizeof(struct jz_mmc_priv),
502  	.platdata_auto_alloc_size = sizeof(struct jz_mmc_plat),
503  	.ops			= &jz_msc_ops,
504  };
505  #endif /* CONFIG_DM_MMC */
506