1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MMCIF eMMC driver.
4 *
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
8
9 /*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
12 *
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
20 *
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
24 *
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
33 */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
57
58 #define DRIVER_NAME "sh_mmcif"
59
60 /* CE_CMD_SET */
61 #define CMD_MASK 0x3f000000
62 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY (1 << 21) /* R1b */
66 #define CMD_SET_CCSEN (1 << 20)
67 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH (1 << 5)
82 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
86
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK (1 << 0)
89
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK 0x0000ffff
92
93 /* CE_INT */
94 #define INT_CCSDE (1 << 29)
95 #define INT_CMD12DRE (1 << 26)
96 #define INT_CMD12RBE (1 << 25)
97 #define INT_CMD12CRE (1 << 24)
98 #define INT_DTRANE (1 << 23)
99 #define INT_BUFRE (1 << 22)
100 #define INT_BUFWEN (1 << 21)
101 #define INT_BUFREN (1 << 20)
102 #define INT_CCSRCV (1 << 19)
103 #define INT_RBSYE (1 << 17)
104 #define INT_CRSPE (1 << 16)
105 #define INT_CMDVIO (1 << 15)
106 #define INT_BUFVIO (1 << 14)
107 #define INT_WDATERR (1 << 11)
108 #define INT_RDATERR (1 << 10)
109 #define INT_RIDXERR (1 << 9)
110 #define INT_RSPERR (1 << 8)
111 #define INT_CCSTO (1 << 5)
112 #define INT_CRCSTO (1 << 4)
113 #define INT_WDATTO (1 << 3)
114 #define INT_RDATTO (1 << 2)
115 #define INT_RBSYTO (1 << 1)
116 #define INT_RSPTO (1 << 0)
117 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
118 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
120 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121
122 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
123 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125
126 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL 0x00000000
130 #define MASK_MCCSDE (1 << 29)
131 #define MASK_MCMD12DRE (1 << 26)
132 #define MASK_MCMD12RBE (1 << 25)
133 #define MASK_MCMD12CRE (1 << 24)
134 #define MASK_MDTRANE (1 << 23)
135 #define MASK_MBUFRE (1 << 22)
136 #define MASK_MBUFWEN (1 << 21)
137 #define MASK_MBUFREN (1 << 20)
138 #define MASK_MCCSRCV (1 << 19)
139 #define MASK_MRBSYE (1 << 17)
140 #define MASK_MCRSPE (1 << 16)
141 #define MASK_MCMDVIO (1 << 15)
142 #define MASK_MBUFVIO (1 << 14)
143 #define MASK_MWDATERR (1 << 11)
144 #define MASK_MRDATERR (1 << 10)
145 #define MASK_MRIDXERR (1 << 9)
146 #define MASK_MRSPERR (1 << 8)
147 #define MASK_MCCSTO (1 << 5)
148 #define MASK_MCRCSTO (1 << 4)
149 #define MASK_MWDATTO (1 << 3)
150 #define MASK_MRDATTO (1 << 2)
151 #define MASK_MRBSYTO (1 << 1)
152 #define MASK_MRSPTO (1 << 0)
153
154 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 MASK_MCRCSTO | MASK_MWDATTO | \
157 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
160 MASK_MBUFREN | MASK_MBUFWEN | \
161 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
162 MASK_MCMD12RBE | MASK_MCMD12CRE)
163
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ (1 << 31)
166
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE (1 << 31)
169 #define STS2_CRC16E (1 << 30)
170 #define STS2_AC12CRCE (1 << 29)
171 #define STS2_RSPCRC7E (1 << 28)
172 #define STS2_CRCSTEBE (1 << 27)
173 #define STS2_RDATEBE (1 << 26)
174 #define STS2_AC12REBE (1 << 25)
175 #define STS2_RSPEBE (1 << 24)
176 #define STS2_AC12IDXE (1 << 23)
177 #define STS2_RSPIDXE (1 << 22)
178 #define STS2_CCSTO (1 << 15)
179 #define STS2_RDATTO (1 << 14)
180 #define STS2_DATBSYTO (1 << 13)
181 #define STS2_CRCSTTO (1 << 12)
182 #define STS2_AC12BSYTO (1 << 11)
183 #define STS2_RSPBSYTO (1 << 10)
184 #define STS2_AC12RSPTO (1 << 9)
185 #define STS2_RSPTO (1 << 8)
186 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
187 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
189 STS2_DATBSYTO | STS2_CRCSTTO | \
190 STS2_AC12BSYTO | STS2_RSPBSYTO | \
191 STS2_AC12RSPTO | STS2_RSPTO)
192
193 #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */
195 #define CLKDEV_INIT 400000 /* 400 kHz */
196
197 enum sh_mmcif_state {
198 STATE_IDLE,
199 STATE_REQUEST,
200 STATE_IOS,
201 STATE_TIMEOUT,
202 };
203
204 enum sh_mmcif_wait_for {
205 MMCIF_WAIT_FOR_REQUEST,
206 MMCIF_WAIT_FOR_CMD,
207 MMCIF_WAIT_FOR_MREAD,
208 MMCIF_WAIT_FOR_MWRITE,
209 MMCIF_WAIT_FOR_READ,
210 MMCIF_WAIT_FOR_WRITE,
211 MMCIF_WAIT_FOR_READ_END,
212 MMCIF_WAIT_FOR_WRITE_END,
213 MMCIF_WAIT_FOR_STOP,
214 };
215
216 /*
217 * difference for each SoC
218 */
219 struct sh_mmcif_host {
220 struct mmc_host *mmc;
221 struct mmc_request *mrq;
222 struct platform_device *pd;
223 struct clk *clk;
224 int bus_width;
225 unsigned char timing;
226 bool sd_error;
227 bool dying;
228 long timeout;
229 void __iomem *addr;
230 u32 *pio_ptr;
231 spinlock_t lock; /* protect sh_mmcif_host::state */
232 enum sh_mmcif_state state;
233 enum sh_mmcif_wait_for wait_for;
234 struct delayed_work timeout_work;
235 size_t blocksize;
236 int sg_idx;
237 int sg_blkidx;
238 bool power;
239 bool ccs_enable; /* Command Completion Signal support */
240 bool clk_ctrl2_enable;
241 struct mutex thread_lock;
242 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
243
244 /* DMA support */
245 struct dma_chan *chan_rx;
246 struct dma_chan *chan_tx;
247 struct completion dma_complete;
248 bool dma_active;
249 };
250
251 static const struct of_device_id sh_mmcif_of_match[] = {
252 { .compatible = "renesas,sh-mmcif" },
253 { }
254 };
255 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
256
257 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
258
sh_mmcif_bitset(struct sh_mmcif_host * host,unsigned int reg,u32 val)259 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
260 unsigned int reg, u32 val)
261 {
262 writel(val | readl(host->addr + reg), host->addr + reg);
263 }
264
sh_mmcif_bitclr(struct sh_mmcif_host * host,unsigned int reg,u32 val)265 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
266 unsigned int reg, u32 val)
267 {
268 writel(~val & readl(host->addr + reg), host->addr + reg);
269 }
270
sh_mmcif_dma_complete(void * arg)271 static void sh_mmcif_dma_complete(void *arg)
272 {
273 struct sh_mmcif_host *host = arg;
274 struct mmc_request *mrq = host->mrq;
275 struct device *dev = sh_mmcif_host_to_dev(host);
276
277 dev_dbg(dev, "Command completed\n");
278
279 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 dev_name(dev)))
281 return;
282
283 complete(&host->dma_complete);
284 }
285
sh_mmcif_start_dma_rx(struct sh_mmcif_host * host)286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 struct mmc_data *data = host->mrq->data;
289 struct scatterlist *sg = data->sg;
290 struct dma_async_tx_descriptor *desc = NULL;
291 struct dma_chan *chan = host->chan_rx;
292 struct device *dev = sh_mmcif_host_to_dev(host);
293 dma_cookie_t cookie = -EINVAL;
294 int ret;
295
296 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
297 DMA_FROM_DEVICE);
298 if (ret > 0) {
299 host->dma_active = true;
300 desc = dmaengine_prep_slave_sg(chan, sg, ret,
301 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
302 }
303
304 if (desc) {
305 desc->callback = sh_mmcif_dma_complete;
306 desc->callback_param = host;
307 cookie = dmaengine_submit(desc);
308 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
309 dma_async_issue_pending(chan);
310 }
311 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
312 __func__, data->sg_len, ret, cookie);
313
314 if (!desc) {
315 /* DMA failed, fall back to PIO */
316 if (ret >= 0)
317 ret = -EIO;
318 host->chan_rx = NULL;
319 host->dma_active = false;
320 dma_release_channel(chan);
321 /* Free the Tx channel too */
322 chan = host->chan_tx;
323 if (chan) {
324 host->chan_tx = NULL;
325 dma_release_channel(chan);
326 }
327 dev_warn(dev,
328 "DMA failed: %d, falling back to PIO\n", ret);
329 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
330 }
331
332 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
333 desc, cookie, data->sg_len);
334 }
335
sh_mmcif_start_dma_tx(struct sh_mmcif_host * host)336 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
337 {
338 struct mmc_data *data = host->mrq->data;
339 struct scatterlist *sg = data->sg;
340 struct dma_async_tx_descriptor *desc = NULL;
341 struct dma_chan *chan = host->chan_tx;
342 struct device *dev = sh_mmcif_host_to_dev(host);
343 dma_cookie_t cookie = -EINVAL;
344 int ret;
345
346 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
347 DMA_TO_DEVICE);
348 if (ret > 0) {
349 host->dma_active = true;
350 desc = dmaengine_prep_slave_sg(chan, sg, ret,
351 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
352 }
353
354 if (desc) {
355 desc->callback = sh_mmcif_dma_complete;
356 desc->callback_param = host;
357 cookie = dmaengine_submit(desc);
358 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
359 dma_async_issue_pending(chan);
360 }
361 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
362 __func__, data->sg_len, ret, cookie);
363
364 if (!desc) {
365 /* DMA failed, fall back to PIO */
366 if (ret >= 0)
367 ret = -EIO;
368 host->chan_tx = NULL;
369 host->dma_active = false;
370 dma_release_channel(chan);
371 /* Free the Rx channel too */
372 chan = host->chan_rx;
373 if (chan) {
374 host->chan_rx = NULL;
375 dma_release_channel(chan);
376 }
377 dev_warn(dev,
378 "DMA failed: %d, falling back to PIO\n", ret);
379 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380 }
381
382 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
383 desc, cookie);
384 }
385
386 static struct dma_chan *
sh_mmcif_request_dma_pdata(struct sh_mmcif_host * host,uintptr_t slave_id)387 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
388 {
389 dma_cap_mask_t mask;
390
391 dma_cap_zero(mask);
392 dma_cap_set(DMA_SLAVE, mask);
393 if (slave_id <= 0)
394 return NULL;
395
396 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
397 }
398
sh_mmcif_dma_slave_config(struct sh_mmcif_host * host,struct dma_chan * chan,enum dma_transfer_direction direction)399 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
400 struct dma_chan *chan,
401 enum dma_transfer_direction direction)
402 {
403 struct resource *res;
404 struct dma_slave_config cfg = { 0, };
405
406 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
407 if (!res)
408 return -EINVAL;
409
410 cfg.direction = direction;
411
412 if (direction == DMA_DEV_TO_MEM) {
413 cfg.src_addr = res->start + MMCIF_CE_DATA;
414 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
415 } else {
416 cfg.dst_addr = res->start + MMCIF_CE_DATA;
417 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
418 }
419
420 return dmaengine_slave_config(chan, &cfg);
421 }
422
sh_mmcif_request_dma(struct sh_mmcif_host * host)423 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
424 {
425 struct device *dev = sh_mmcif_host_to_dev(host);
426 host->dma_active = false;
427
428 /* We can only either use DMA for both Tx and Rx or not use it at all */
429 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
430 struct sh_mmcif_plat_data *pdata = dev->platform_data;
431
432 host->chan_tx = sh_mmcif_request_dma_pdata(host,
433 pdata->slave_id_tx);
434 host->chan_rx = sh_mmcif_request_dma_pdata(host,
435 pdata->slave_id_rx);
436 } else {
437 host->chan_tx = dma_request_chan(dev, "tx");
438 if (IS_ERR(host->chan_tx))
439 host->chan_tx = NULL;
440 host->chan_rx = dma_request_chan(dev, "rx");
441 if (IS_ERR(host->chan_rx))
442 host->chan_rx = NULL;
443 }
444 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
445 host->chan_rx);
446
447 if (!host->chan_tx || !host->chan_rx ||
448 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
449 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
450 goto error;
451
452 return;
453
454 error:
455 if (host->chan_tx)
456 dma_release_channel(host->chan_tx);
457 if (host->chan_rx)
458 dma_release_channel(host->chan_rx);
459 host->chan_tx = host->chan_rx = NULL;
460 }
461
sh_mmcif_release_dma(struct sh_mmcif_host * host)462 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463 {
464 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465 /* Descriptors are freed automatically */
466 if (host->chan_tx) {
467 struct dma_chan *chan = host->chan_tx;
468 host->chan_tx = NULL;
469 dma_release_channel(chan);
470 }
471 if (host->chan_rx) {
472 struct dma_chan *chan = host->chan_rx;
473 host->chan_rx = NULL;
474 dma_release_channel(chan);
475 }
476
477 host->dma_active = false;
478 }
479
sh_mmcif_clock_control(struct sh_mmcif_host * host,unsigned int clk)480 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481 {
482 struct device *dev = sh_mmcif_host_to_dev(host);
483 struct sh_mmcif_plat_data *p = dev->platform_data;
484 bool sup_pclk = p ? p->sup_pclk : false;
485 unsigned int current_clk = clk_get_rate(host->clk);
486 unsigned int clkdiv;
487
488 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490
491 if (!clk)
492 return;
493
494 if (host->clkdiv_map) {
495 unsigned int freq, best_freq, myclk, div, diff_min, diff;
496 int i;
497
498 clkdiv = 0;
499 diff_min = ~0;
500 best_freq = 0;
501 for (i = 31; i >= 0; i--) {
502 if (!((1 << i) & host->clkdiv_map))
503 continue;
504
505 /*
506 * clk = parent_freq / div
507 * -> parent_freq = clk x div
508 */
509
510 div = 1 << (i + 1);
511 freq = clk_round_rate(host->clk, clk * div);
512 myclk = freq / div;
513 diff = (myclk > clk) ? myclk - clk : clk - myclk;
514
515 if (diff <= diff_min) {
516 best_freq = freq;
517 clkdiv = i;
518 diff_min = diff;
519 }
520 }
521
522 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
523 (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
524
525 clk_set_rate(host->clk, best_freq);
526 clkdiv = clkdiv << 16;
527 } else if (sup_pclk && clk == current_clk) {
528 clkdiv = CLK_SUP_PCLK;
529 } else {
530 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
531 }
532
533 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
534 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
535 }
536
sh_mmcif_sync_reset(struct sh_mmcif_host * host)537 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
538 {
539 u32 tmp;
540
541 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
542
543 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
544 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
545 if (host->ccs_enable)
546 tmp |= SCCSTO_29;
547 if (host->clk_ctrl2_enable)
548 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
549 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
550 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
551 /* byte swap on */
552 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
553 }
554
sh_mmcif_error_manage(struct sh_mmcif_host * host)555 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
556 {
557 struct device *dev = sh_mmcif_host_to_dev(host);
558 u32 state1, state2;
559 int ret, timeout;
560
561 host->sd_error = false;
562
563 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
564 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
565 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
566 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
567
568 if (state1 & STS1_CMDSEQ) {
569 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
570 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
571 for (timeout = 10000; timeout; timeout--) {
572 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
573 & STS1_CMDSEQ))
574 break;
575 mdelay(1);
576 }
577 if (!timeout) {
578 dev_err(dev,
579 "Forced end of command sequence timeout err\n");
580 return -EIO;
581 }
582 sh_mmcif_sync_reset(host);
583 dev_dbg(dev, "Forced end of command sequence\n");
584 return -EIO;
585 }
586
587 if (state2 & STS2_CRC_ERR) {
588 dev_err(dev, " CRC error: state %u, wait %u\n",
589 host->state, host->wait_for);
590 ret = -EIO;
591 } else if (state2 & STS2_TIMEOUT_ERR) {
592 dev_err(dev, " Timeout: state %u, wait %u\n",
593 host->state, host->wait_for);
594 ret = -ETIMEDOUT;
595 } else {
596 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
597 host->state, host->wait_for);
598 ret = -EIO;
599 }
600 return ret;
601 }
602
sh_mmcif_next_block(struct sh_mmcif_host * host,u32 * p)603 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
604 {
605 struct mmc_data *data = host->mrq->data;
606
607 host->sg_blkidx += host->blocksize;
608
609 /* data->sg->length must be a multiple of host->blocksize? */
610 BUG_ON(host->sg_blkidx > data->sg->length);
611
612 if (host->sg_blkidx == data->sg->length) {
613 host->sg_blkidx = 0;
614 if (++host->sg_idx < data->sg_len)
615 host->pio_ptr = sg_virt(++data->sg);
616 } else {
617 host->pio_ptr = p;
618 }
619
620 return host->sg_idx != data->sg_len;
621 }
622
sh_mmcif_single_read(struct sh_mmcif_host * host,struct mmc_request * mrq)623 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
624 struct mmc_request *mrq)
625 {
626 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
627 BLOCK_SIZE_MASK) + 3;
628
629 host->wait_for = MMCIF_WAIT_FOR_READ;
630
631 /* buf read enable */
632 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633 }
634
sh_mmcif_read_block(struct sh_mmcif_host * host)635 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
636 {
637 struct device *dev = sh_mmcif_host_to_dev(host);
638 struct mmc_data *data = host->mrq->data;
639 u32 *p = sg_virt(data->sg);
640 int i;
641
642 if (host->sd_error) {
643 data->error = sh_mmcif_error_manage(host);
644 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
645 return false;
646 }
647
648 for (i = 0; i < host->blocksize / 4; i++)
649 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
650
651 /* buffer read end */
652 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
653 host->wait_for = MMCIF_WAIT_FOR_READ_END;
654
655 return true;
656 }
657
sh_mmcif_multi_read(struct sh_mmcif_host * host,struct mmc_request * mrq)658 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
659 struct mmc_request *mrq)
660 {
661 struct mmc_data *data = mrq->data;
662
663 if (!data->sg_len || !data->sg->length)
664 return;
665
666 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667 BLOCK_SIZE_MASK;
668
669 host->wait_for = MMCIF_WAIT_FOR_MREAD;
670 host->sg_idx = 0;
671 host->sg_blkidx = 0;
672 host->pio_ptr = sg_virt(data->sg);
673
674 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
675 }
676
sh_mmcif_mread_block(struct sh_mmcif_host * host)677 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
678 {
679 struct device *dev = sh_mmcif_host_to_dev(host);
680 struct mmc_data *data = host->mrq->data;
681 u32 *p = host->pio_ptr;
682 int i;
683
684 if (host->sd_error) {
685 data->error = sh_mmcif_error_manage(host);
686 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
687 return false;
688 }
689
690 BUG_ON(!data->sg->length);
691
692 for (i = 0; i < host->blocksize / 4; i++)
693 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
694
695 if (!sh_mmcif_next_block(host, p))
696 return false;
697
698 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
699
700 return true;
701 }
702
sh_mmcif_single_write(struct sh_mmcif_host * host,struct mmc_request * mrq)703 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
704 struct mmc_request *mrq)
705 {
706 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
707 BLOCK_SIZE_MASK) + 3;
708
709 host->wait_for = MMCIF_WAIT_FOR_WRITE;
710
711 /* buf write enable */
712 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713 }
714
sh_mmcif_write_block(struct sh_mmcif_host * host)715 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
716 {
717 struct device *dev = sh_mmcif_host_to_dev(host);
718 struct mmc_data *data = host->mrq->data;
719 u32 *p = sg_virt(data->sg);
720 int i;
721
722 if (host->sd_error) {
723 data->error = sh_mmcif_error_manage(host);
724 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
725 return false;
726 }
727
728 for (i = 0; i < host->blocksize / 4; i++)
729 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
730
731 /* buffer write end */
732 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
733 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
734
735 return true;
736 }
737
sh_mmcif_multi_write(struct sh_mmcif_host * host,struct mmc_request * mrq)738 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
739 struct mmc_request *mrq)
740 {
741 struct mmc_data *data = mrq->data;
742
743 if (!data->sg_len || !data->sg->length)
744 return;
745
746 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
747 BLOCK_SIZE_MASK;
748
749 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
750 host->sg_idx = 0;
751 host->sg_blkidx = 0;
752 host->pio_ptr = sg_virt(data->sg);
753
754 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
755 }
756
sh_mmcif_mwrite_block(struct sh_mmcif_host * host)757 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
758 {
759 struct device *dev = sh_mmcif_host_to_dev(host);
760 struct mmc_data *data = host->mrq->data;
761 u32 *p = host->pio_ptr;
762 int i;
763
764 if (host->sd_error) {
765 data->error = sh_mmcif_error_manage(host);
766 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
767 return false;
768 }
769
770 BUG_ON(!data->sg->length);
771
772 for (i = 0; i < host->blocksize / 4; i++)
773 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
774
775 if (!sh_mmcif_next_block(host, p))
776 return false;
777
778 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
779
780 return true;
781 }
782
sh_mmcif_get_response(struct sh_mmcif_host * host,struct mmc_command * cmd)783 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
784 struct mmc_command *cmd)
785 {
786 if (cmd->flags & MMC_RSP_136) {
787 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
788 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
789 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
790 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791 } else
792 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
793 }
794
sh_mmcif_get_cmd12response(struct sh_mmcif_host * host,struct mmc_command * cmd)795 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
796 struct mmc_command *cmd)
797 {
798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
799 }
800
sh_mmcif_set_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)801 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
802 struct mmc_request *mrq)
803 {
804 struct device *dev = sh_mmcif_host_to_dev(host);
805 struct mmc_data *data = mrq->data;
806 struct mmc_command *cmd = mrq->cmd;
807 u32 opc = cmd->opcode;
808 u32 tmp = 0;
809
810 /* Response Type check */
811 switch (mmc_resp_type(cmd)) {
812 case MMC_RSP_NONE:
813 tmp |= CMD_SET_RTYP_NO;
814 break;
815 case MMC_RSP_R1:
816 case MMC_RSP_R3:
817 tmp |= CMD_SET_RTYP_6B;
818 break;
819 case MMC_RSP_R1B:
820 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
821 break;
822 case MMC_RSP_R2:
823 tmp |= CMD_SET_RTYP_17B;
824 break;
825 default:
826 dev_err(dev, "Unsupported response type.\n");
827 break;
828 }
829
830 /* WDAT / DATW */
831 if (data) {
832 tmp |= CMD_SET_WDAT;
833 switch (host->bus_width) {
834 case MMC_BUS_WIDTH_1:
835 tmp |= CMD_SET_DATW_1;
836 break;
837 case MMC_BUS_WIDTH_4:
838 tmp |= CMD_SET_DATW_4;
839 break;
840 case MMC_BUS_WIDTH_8:
841 tmp |= CMD_SET_DATW_8;
842 break;
843 default:
844 dev_err(dev, "Unsupported bus width.\n");
845 break;
846 }
847 switch (host->timing) {
848 case MMC_TIMING_MMC_DDR52:
849 /*
850 * MMC core will only set this timing, if the host
851 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
852 * capability. MMCIF implementations with this
853 * capability, e.g. sh73a0, will have to set it
854 * in their platform data.
855 */
856 tmp |= CMD_SET_DARS;
857 break;
858 }
859 }
860 /* DWEN */
861 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
862 tmp |= CMD_SET_DWEN;
863 /* CMLTE/CMD12EN */
864 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
865 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
866 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
867 data->blocks << 16);
868 }
869 /* RIDXC[1:0] check bits */
870 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
871 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
872 tmp |= CMD_SET_RIDXC_BITS;
873 /* RCRC7C[1:0] check bits */
874 if (opc == MMC_SEND_OP_COND)
875 tmp |= CMD_SET_CRC7C_BITS;
876 /* RCRC7C[1:0] internal CRC7 */
877 if (opc == MMC_ALL_SEND_CID ||
878 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
879 tmp |= CMD_SET_CRC7C_INTERNAL;
880
881 return (opc << 24) | tmp;
882 }
883
sh_mmcif_data_trans(struct sh_mmcif_host * host,struct mmc_request * mrq,u32 opc)884 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
885 struct mmc_request *mrq, u32 opc)
886 {
887 struct device *dev = sh_mmcif_host_to_dev(host);
888
889 switch (opc) {
890 case MMC_READ_MULTIPLE_BLOCK:
891 sh_mmcif_multi_read(host, mrq);
892 return 0;
893 case MMC_WRITE_MULTIPLE_BLOCK:
894 sh_mmcif_multi_write(host, mrq);
895 return 0;
896 case MMC_WRITE_BLOCK:
897 sh_mmcif_single_write(host, mrq);
898 return 0;
899 case MMC_READ_SINGLE_BLOCK:
900 case MMC_SEND_EXT_CSD:
901 sh_mmcif_single_read(host, mrq);
902 return 0;
903 default:
904 dev_err(dev, "Unsupported CMD%d\n", opc);
905 return -EINVAL;
906 }
907 }
908
sh_mmcif_start_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)909 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
910 struct mmc_request *mrq)
911 {
912 struct mmc_command *cmd = mrq->cmd;
913 u32 opc;
914 u32 mask = 0;
915 unsigned long flags;
916
917 if (cmd->flags & MMC_RSP_BUSY)
918 mask = MASK_START_CMD | MASK_MRBSYE;
919 else
920 mask = MASK_START_CMD | MASK_MCRSPE;
921
922 if (host->ccs_enable)
923 mask |= MASK_MCCSTO;
924
925 if (mrq->data) {
926 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
927 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
928 mrq->data->blksz);
929 }
930 opc = sh_mmcif_set_cmd(host, mrq);
931
932 if (host->ccs_enable)
933 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
934 else
935 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
936 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
937 /* set arg */
938 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
939 /* set cmd */
940 spin_lock_irqsave(&host->lock, flags);
941 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
942
943 host->wait_for = MMCIF_WAIT_FOR_CMD;
944 schedule_delayed_work(&host->timeout_work, host->timeout);
945 spin_unlock_irqrestore(&host->lock, flags);
946 }
947
sh_mmcif_stop_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)948 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
949 struct mmc_request *mrq)
950 {
951 struct device *dev = sh_mmcif_host_to_dev(host);
952
953 switch (mrq->cmd->opcode) {
954 case MMC_READ_MULTIPLE_BLOCK:
955 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
956 break;
957 case MMC_WRITE_MULTIPLE_BLOCK:
958 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
959 break;
960 default:
961 dev_err(dev, "unsupported stop cmd\n");
962 mrq->stop->error = sh_mmcif_error_manage(host);
963 return;
964 }
965
966 host->wait_for = MMCIF_WAIT_FOR_STOP;
967 }
968
sh_mmcif_request(struct mmc_host * mmc,struct mmc_request * mrq)969 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
970 {
971 struct sh_mmcif_host *host = mmc_priv(mmc);
972 struct device *dev = sh_mmcif_host_to_dev(host);
973 unsigned long flags;
974
975 spin_lock_irqsave(&host->lock, flags);
976 if (host->state != STATE_IDLE) {
977 dev_dbg(dev, "%s() rejected, state %u\n",
978 __func__, host->state);
979 spin_unlock_irqrestore(&host->lock, flags);
980 mrq->cmd->error = -EAGAIN;
981 mmc_request_done(mmc, mrq);
982 return;
983 }
984
985 host->state = STATE_REQUEST;
986 spin_unlock_irqrestore(&host->lock, flags);
987
988 host->mrq = mrq;
989
990 sh_mmcif_start_cmd(host, mrq);
991 }
992
sh_mmcif_clk_setup(struct sh_mmcif_host * host)993 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
994 {
995 struct device *dev = sh_mmcif_host_to_dev(host);
996
997 if (host->mmc->f_max) {
998 unsigned int f_max, f_min = 0, f_min_old;
999
1000 f_max = host->mmc->f_max;
1001 for (f_min_old = f_max; f_min_old > 2;) {
1002 f_min = clk_round_rate(host->clk, f_min_old / 2);
1003 if (f_min == f_min_old)
1004 break;
1005 f_min_old = f_min;
1006 }
1007
1008 /*
1009 * This driver assumes this SoC is R-Car Gen2 or later
1010 */
1011 host->clkdiv_map = 0x3ff;
1012
1013 host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1014 host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1015 } else {
1016 unsigned int clk = clk_get_rate(host->clk);
1017
1018 host->mmc->f_max = clk / 2;
1019 host->mmc->f_min = clk / 512;
1020 }
1021
1022 dev_dbg(dev, "clk max/min = %d/%d\n",
1023 host->mmc->f_max, host->mmc->f_min);
1024 }
1025
sh_mmcif_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1026 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1027 {
1028 struct sh_mmcif_host *host = mmc_priv(mmc);
1029 struct device *dev = sh_mmcif_host_to_dev(host);
1030 unsigned long flags;
1031
1032 spin_lock_irqsave(&host->lock, flags);
1033 if (host->state != STATE_IDLE) {
1034 dev_dbg(dev, "%s() rejected, state %u\n",
1035 __func__, host->state);
1036 spin_unlock_irqrestore(&host->lock, flags);
1037 return;
1038 }
1039
1040 host->state = STATE_IOS;
1041 spin_unlock_irqrestore(&host->lock, flags);
1042
1043 switch (ios->power_mode) {
1044 case MMC_POWER_UP:
1045 if (!IS_ERR(mmc->supply.vmmc))
1046 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1047 if (!host->power) {
1048 clk_prepare_enable(host->clk);
1049 pm_runtime_get_sync(dev);
1050 sh_mmcif_sync_reset(host);
1051 sh_mmcif_request_dma(host);
1052 host->power = true;
1053 }
1054 break;
1055 case MMC_POWER_OFF:
1056 if (!IS_ERR(mmc->supply.vmmc))
1057 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1058 if (host->power) {
1059 sh_mmcif_clock_control(host, 0);
1060 sh_mmcif_release_dma(host);
1061 pm_runtime_put(dev);
1062 clk_disable_unprepare(host->clk);
1063 host->power = false;
1064 }
1065 break;
1066 case MMC_POWER_ON:
1067 sh_mmcif_clock_control(host, ios->clock);
1068 break;
1069 }
1070
1071 host->timing = ios->timing;
1072 host->bus_width = ios->bus_width;
1073 host->state = STATE_IDLE;
1074 }
1075
1076 static const struct mmc_host_ops sh_mmcif_ops = {
1077 .request = sh_mmcif_request,
1078 .set_ios = sh_mmcif_set_ios,
1079 .get_cd = mmc_gpio_get_cd,
1080 };
1081
sh_mmcif_end_cmd(struct sh_mmcif_host * host)1082 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1083 {
1084 struct mmc_command *cmd = host->mrq->cmd;
1085 struct mmc_data *data = host->mrq->data;
1086 struct device *dev = sh_mmcif_host_to_dev(host);
1087 long time;
1088
1089 if (host->sd_error) {
1090 switch (cmd->opcode) {
1091 case MMC_ALL_SEND_CID:
1092 case MMC_SELECT_CARD:
1093 case MMC_APP_CMD:
1094 cmd->error = -ETIMEDOUT;
1095 break;
1096 default:
1097 cmd->error = sh_mmcif_error_manage(host);
1098 break;
1099 }
1100 dev_dbg(dev, "CMD%d error %d\n",
1101 cmd->opcode, cmd->error);
1102 host->sd_error = false;
1103 return false;
1104 }
1105 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1106 cmd->error = 0;
1107 return false;
1108 }
1109
1110 sh_mmcif_get_response(host, cmd);
1111
1112 if (!data)
1113 return false;
1114
1115 /*
1116 * Completion can be signalled from DMA callback and error, so, have to
1117 * reset here, before setting .dma_active
1118 */
1119 init_completion(&host->dma_complete);
1120
1121 if (data->flags & MMC_DATA_READ) {
1122 if (host->chan_rx)
1123 sh_mmcif_start_dma_rx(host);
1124 } else {
1125 if (host->chan_tx)
1126 sh_mmcif_start_dma_tx(host);
1127 }
1128
1129 if (!host->dma_active) {
1130 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1131 return !data->error;
1132 }
1133
1134 /* Running in the IRQ thread, can sleep */
1135 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1136 host->timeout);
1137
1138 if (data->flags & MMC_DATA_READ)
1139 dma_unmap_sg(host->chan_rx->device->dev,
1140 data->sg, data->sg_len,
1141 DMA_FROM_DEVICE);
1142 else
1143 dma_unmap_sg(host->chan_tx->device->dev,
1144 data->sg, data->sg_len,
1145 DMA_TO_DEVICE);
1146
1147 if (host->sd_error) {
1148 dev_err(host->mmc->parent,
1149 "Error IRQ while waiting for DMA completion!\n");
1150 /* Woken up by an error IRQ: abort DMA */
1151 data->error = sh_mmcif_error_manage(host);
1152 } else if (!time) {
1153 dev_err(host->mmc->parent, "DMA timeout!\n");
1154 data->error = -ETIMEDOUT;
1155 } else if (time < 0) {
1156 dev_err(host->mmc->parent,
1157 "wait_for_completion_...() error %ld!\n", time);
1158 data->error = time;
1159 }
1160 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1161 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1162 host->dma_active = false;
1163
1164 if (data->error) {
1165 data->bytes_xfered = 0;
1166 /* Abort DMA */
1167 if (data->flags & MMC_DATA_READ)
1168 dmaengine_terminate_sync(host->chan_rx);
1169 else
1170 dmaengine_terminate_sync(host->chan_tx);
1171 }
1172
1173 return false;
1174 }
1175
sh_mmcif_irqt(int irq,void * dev_id)1176 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1177 {
1178 struct sh_mmcif_host *host = dev_id;
1179 struct mmc_request *mrq;
1180 struct device *dev = sh_mmcif_host_to_dev(host);
1181 bool wait = false;
1182 unsigned long flags;
1183 int wait_work;
1184
1185 spin_lock_irqsave(&host->lock, flags);
1186 wait_work = host->wait_for;
1187 spin_unlock_irqrestore(&host->lock, flags);
1188
1189 cancel_delayed_work_sync(&host->timeout_work);
1190
1191 mutex_lock(&host->thread_lock);
1192
1193 mrq = host->mrq;
1194 if (!mrq) {
1195 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1196 host->state, host->wait_for);
1197 mutex_unlock(&host->thread_lock);
1198 return IRQ_HANDLED;
1199 }
1200
1201 /*
1202 * All handlers return true, if processing continues, and false, if the
1203 * request has to be completed - successfully or not
1204 */
1205 switch (wait_work) {
1206 case MMCIF_WAIT_FOR_REQUEST:
1207 /* We're too late, the timeout has already kicked in */
1208 mutex_unlock(&host->thread_lock);
1209 return IRQ_HANDLED;
1210 case MMCIF_WAIT_FOR_CMD:
1211 /* Wait for data? */
1212 wait = sh_mmcif_end_cmd(host);
1213 break;
1214 case MMCIF_WAIT_FOR_MREAD:
1215 /* Wait for more data? */
1216 wait = sh_mmcif_mread_block(host);
1217 break;
1218 case MMCIF_WAIT_FOR_READ:
1219 /* Wait for data end? */
1220 wait = sh_mmcif_read_block(host);
1221 break;
1222 case MMCIF_WAIT_FOR_MWRITE:
1223 /* Wait data to write? */
1224 wait = sh_mmcif_mwrite_block(host);
1225 break;
1226 case MMCIF_WAIT_FOR_WRITE:
1227 /* Wait for data end? */
1228 wait = sh_mmcif_write_block(host);
1229 break;
1230 case MMCIF_WAIT_FOR_STOP:
1231 if (host->sd_error) {
1232 mrq->stop->error = sh_mmcif_error_manage(host);
1233 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1234 break;
1235 }
1236 sh_mmcif_get_cmd12response(host, mrq->stop);
1237 mrq->stop->error = 0;
1238 break;
1239 case MMCIF_WAIT_FOR_READ_END:
1240 case MMCIF_WAIT_FOR_WRITE_END:
1241 if (host->sd_error) {
1242 mrq->data->error = sh_mmcif_error_manage(host);
1243 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1244 }
1245 break;
1246 default:
1247 BUG();
1248 }
1249
1250 if (wait) {
1251 schedule_delayed_work(&host->timeout_work, host->timeout);
1252 /* Wait for more data */
1253 mutex_unlock(&host->thread_lock);
1254 return IRQ_HANDLED;
1255 }
1256
1257 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1258 struct mmc_data *data = mrq->data;
1259 if (!mrq->cmd->error && data && !data->error)
1260 data->bytes_xfered =
1261 data->blocks * data->blksz;
1262
1263 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1264 sh_mmcif_stop_cmd(host, mrq);
1265 if (!mrq->stop->error) {
1266 schedule_delayed_work(&host->timeout_work, host->timeout);
1267 mutex_unlock(&host->thread_lock);
1268 return IRQ_HANDLED;
1269 }
1270 }
1271 }
1272
1273 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1274 host->state = STATE_IDLE;
1275 host->mrq = NULL;
1276 mmc_request_done(host->mmc, mrq);
1277
1278 mutex_unlock(&host->thread_lock);
1279
1280 return IRQ_HANDLED;
1281 }
1282
sh_mmcif_intr(int irq,void * dev_id)1283 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1284 {
1285 struct sh_mmcif_host *host = dev_id;
1286 struct device *dev = sh_mmcif_host_to_dev(host);
1287 u32 state, mask;
1288
1289 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1290 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1291 if (host->ccs_enable)
1292 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1293 else
1294 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1295 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1296
1297 if (state & ~MASK_CLEAN)
1298 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1299 state);
1300
1301 if (state & INT_ERR_STS || state & ~INT_ALL) {
1302 host->sd_error = true;
1303 dev_dbg(dev, "int err state = 0x%08x\n", state);
1304 }
1305 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1306 if (!host->mrq)
1307 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1308 if (!host->dma_active)
1309 return IRQ_WAKE_THREAD;
1310 else if (host->sd_error)
1311 sh_mmcif_dma_complete(host);
1312 } else {
1313 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1314 }
1315
1316 return IRQ_HANDLED;
1317 }
1318
sh_mmcif_timeout_work(struct work_struct * work)1319 static void sh_mmcif_timeout_work(struct work_struct *work)
1320 {
1321 struct delayed_work *d = to_delayed_work(work);
1322 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1323 struct mmc_request *mrq = host->mrq;
1324 struct device *dev = sh_mmcif_host_to_dev(host);
1325 unsigned long flags;
1326
1327 if (host->dying)
1328 /* Don't run after mmc_remove_host() */
1329 return;
1330
1331 spin_lock_irqsave(&host->lock, flags);
1332 if (host->state == STATE_IDLE) {
1333 spin_unlock_irqrestore(&host->lock, flags);
1334 return;
1335 }
1336
1337 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1338 host->wait_for, mrq->cmd->opcode);
1339
1340 host->state = STATE_TIMEOUT;
1341 spin_unlock_irqrestore(&host->lock, flags);
1342
1343 /*
1344 * Handle races with cancel_delayed_work(), unless
1345 * cancel_delayed_work_sync() is used
1346 */
1347 switch (host->wait_for) {
1348 case MMCIF_WAIT_FOR_CMD:
1349 mrq->cmd->error = sh_mmcif_error_manage(host);
1350 break;
1351 case MMCIF_WAIT_FOR_STOP:
1352 mrq->stop->error = sh_mmcif_error_manage(host);
1353 break;
1354 case MMCIF_WAIT_FOR_MREAD:
1355 case MMCIF_WAIT_FOR_MWRITE:
1356 case MMCIF_WAIT_FOR_READ:
1357 case MMCIF_WAIT_FOR_WRITE:
1358 case MMCIF_WAIT_FOR_READ_END:
1359 case MMCIF_WAIT_FOR_WRITE_END:
1360 mrq->data->error = sh_mmcif_error_manage(host);
1361 break;
1362 default:
1363 BUG();
1364 }
1365
1366 host->state = STATE_IDLE;
1367 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1368 host->mrq = NULL;
1369 mmc_request_done(host->mmc, mrq);
1370 }
1371
sh_mmcif_init_ocr(struct sh_mmcif_host * host)1372 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1373 {
1374 struct device *dev = sh_mmcif_host_to_dev(host);
1375 struct sh_mmcif_plat_data *pd = dev->platform_data;
1376 struct mmc_host *mmc = host->mmc;
1377
1378 mmc_regulator_get_supply(mmc);
1379
1380 if (!pd)
1381 return;
1382
1383 if (!mmc->ocr_avail)
1384 mmc->ocr_avail = pd->ocr;
1385 else if (pd->ocr)
1386 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1387 }
1388
sh_mmcif_probe(struct platform_device * pdev)1389 static int sh_mmcif_probe(struct platform_device *pdev)
1390 {
1391 int ret = 0, irq[2];
1392 struct mmc_host *mmc;
1393 struct sh_mmcif_host *host;
1394 struct device *dev = &pdev->dev;
1395 struct sh_mmcif_plat_data *pd = dev->platform_data;
1396 void __iomem *reg;
1397 const char *name;
1398
1399 irq[0] = platform_get_irq(pdev, 0);
1400 irq[1] = platform_get_irq_optional(pdev, 1);
1401 if (irq[0] < 0)
1402 return irq[0];
1403
1404 reg = devm_platform_ioremap_resource(pdev, 0);
1405 if (IS_ERR(reg))
1406 return PTR_ERR(reg);
1407
1408 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1409 if (!mmc)
1410 return -ENOMEM;
1411
1412 ret = mmc_of_parse(mmc);
1413 if (ret < 0)
1414 goto err_host;
1415
1416 host = mmc_priv(mmc);
1417 host->mmc = mmc;
1418 host->addr = reg;
1419 host->timeout = msecs_to_jiffies(10000);
1420 host->ccs_enable = true;
1421 host->clk_ctrl2_enable = false;
1422
1423 host->pd = pdev;
1424
1425 spin_lock_init(&host->lock);
1426
1427 mmc->ops = &sh_mmcif_ops;
1428 sh_mmcif_init_ocr(host);
1429
1430 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1431 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1432 mmc->max_busy_timeout = 10000;
1433
1434 if (pd && pd->caps)
1435 mmc->caps |= pd->caps;
1436 mmc->max_segs = 32;
1437 mmc->max_blk_size = 512;
1438 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1439 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1440 mmc->max_seg_size = mmc->max_req_size;
1441
1442 platform_set_drvdata(pdev, host);
1443
1444 host->clk = devm_clk_get(dev, NULL);
1445 if (IS_ERR(host->clk)) {
1446 ret = PTR_ERR(host->clk);
1447 dev_err(dev, "cannot get clock: %d\n", ret);
1448 goto err_host;
1449 }
1450
1451 ret = clk_prepare_enable(host->clk);
1452 if (ret < 0)
1453 goto err_host;
1454
1455 sh_mmcif_clk_setup(host);
1456
1457 pm_runtime_enable(dev);
1458 host->power = false;
1459
1460 ret = pm_runtime_get_sync(dev);
1461 if (ret < 0)
1462 goto err_clk;
1463
1464 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1465
1466 sh_mmcif_sync_reset(host);
1467 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1468
1469 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1470 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1471 sh_mmcif_irqt, 0, name, host);
1472 if (ret) {
1473 dev_err(dev, "request_irq error (%s)\n", name);
1474 goto err_clk;
1475 }
1476 if (irq[1] >= 0) {
1477 ret = devm_request_threaded_irq(dev, irq[1],
1478 sh_mmcif_intr, sh_mmcif_irqt,
1479 0, "sh_mmc:int", host);
1480 if (ret) {
1481 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1482 goto err_clk;
1483 }
1484 }
1485
1486 mutex_init(&host->thread_lock);
1487
1488 ret = mmc_add_host(mmc);
1489 if (ret < 0)
1490 goto err_clk;
1491
1492 dev_pm_qos_expose_latency_limit(dev, 100);
1493
1494 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1495 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1496 clk_get_rate(host->clk) / 1000000UL);
1497
1498 pm_runtime_put(dev);
1499 clk_disable_unprepare(host->clk);
1500 return ret;
1501
1502 err_clk:
1503 clk_disable_unprepare(host->clk);
1504 pm_runtime_put_sync(dev);
1505 pm_runtime_disable(dev);
1506 err_host:
1507 mmc_free_host(mmc);
1508 return ret;
1509 }
1510
sh_mmcif_remove(struct platform_device * pdev)1511 static void sh_mmcif_remove(struct platform_device *pdev)
1512 {
1513 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1514
1515 host->dying = true;
1516 clk_prepare_enable(host->clk);
1517 pm_runtime_get_sync(&pdev->dev);
1518
1519 dev_pm_qos_hide_latency_limit(&pdev->dev);
1520
1521 mmc_remove_host(host->mmc);
1522 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1523
1524 /*
1525 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1526 * mmc_remove_host() call above. But swapping order doesn't help either
1527 * (a query on the linux-mmc mailing list didn't bring any replies).
1528 */
1529 cancel_delayed_work_sync(&host->timeout_work);
1530
1531 clk_disable_unprepare(host->clk);
1532 mmc_free_host(host->mmc);
1533 pm_runtime_put_sync(&pdev->dev);
1534 pm_runtime_disable(&pdev->dev);
1535 }
1536
1537 #ifdef CONFIG_PM_SLEEP
sh_mmcif_suspend(struct device * dev)1538 static int sh_mmcif_suspend(struct device *dev)
1539 {
1540 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1541
1542 pm_runtime_get_sync(dev);
1543 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1544 pm_runtime_put(dev);
1545
1546 return 0;
1547 }
1548
sh_mmcif_resume(struct device * dev)1549 static int sh_mmcif_resume(struct device *dev)
1550 {
1551 return 0;
1552 }
1553 #endif
1554
1555 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1556 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1557 };
1558
1559 static struct platform_driver sh_mmcif_driver = {
1560 .probe = sh_mmcif_probe,
1561 .remove_new = sh_mmcif_remove,
1562 .driver = {
1563 .name = DRIVER_NAME,
1564 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1565 .pm = &sh_mmcif_dev_pm_ops,
1566 .of_match_table = sh_mmcif_of_match,
1567 },
1568 };
1569
1570 module_platform_driver(sh_mmcif_driver);
1571
1572 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573 MODULE_LICENSE("GPL v2");
1574 MODULE_ALIAS("platform:" DRIVER_NAME);
1575 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1576